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 2 

Animals	have	diversified	into	a	bewildering	variety	of	morphological	forms	33 

exploiting	a	complex	configuration	of	trophic	niches.	Their	morphological	34 

diversity	is	widely	used	as	an	index	of	ecosystem	function,	but	the	extent	to	which	35 

animal	traits	predict	trophic	niches	and	associated	ecological	processes	is	36 

unclear.	Here	we	use	measurements	of	nine	key	morphological	traits	for	>99%	37 

bird	species	to	show	that	avian	trophic	diversity	is	described	by	a	trait	space	with	38 

four	dimensions.	The	position	of	species	within	this	space	maps	with	70-85%	39 

accuracy	onto	major	niche	axes,	including	trophic	level,	dietary	resource	type	and	40 

finer-scale	variation	in	foraging	behaviour.	Phylogenetic	analyses	reveal	that	41 

these	form-function	associations	reflect	convergence	towards	predictable	trait	42 

combinations,	indicating	that	morphological	variation	is	organised	into	a	limited	43 

set	of	dimensions	by	evolutionary	adaptation.	Our	results	establish	the	minimum	44 

dimensionality	required	for	avian	functional	traits	to	predict	subtle	variation	in	45 

trophic	niches,	and	provide	a	global	framework	for	exploring	the	origin,	function	46 

and	conservation	of	bird	diversity.		47 

	 	48 
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Plants	and	animals	have	complementary	functions	in	the	biosphere,	with	plants	mainly	49 

contributing	as	autotrophic	producers	and	animals	occupying	multiple	higher	trophic	50 

levels	as	primary,	secondary	and	tertiary	consumers1-4.	Restriction	of	most	plant	species	51 

to	a	single	trophic	level	at	the	foundation	of	food	webs	theoretically	limits	the	scope	for	52 

niche	variation,	perhaps	explaining	why	their	vast	trait	diversity	is	predominantly	53 

constrained	to	a	simple	plane	with	two	dimensions5.	In	contrast,	the	ecological	trait	54 

space	of	heterotrophic	consumers	is	potentially	more	complex	and	55 

multidimensional6-9,	particularly	if	distinct	sets	of	morphological	traits	are	56 

consistently	associated	with	different	trophic	levels	and	dietary	types¾including	57 

herbivores,	pollinators	and	predators10.	This	concept	of	a	predictable	link	between	58 

animal	form	and	function	has	existed	since	Aristotle11	and	now	underpins	numerous	59 

trait-based	research	programmes12,	from	resolving	the	evolutionary	origins	of	60 

biodiversity13,14	to	quantifying	ecosystem	function15,16	and	predicting	responses	to	61 

environmental	change17,18.	However,	the	assumption	that	ecological	niche	space	and	62 

associated	ecosystem	functions	can	be	adequately	quantified	using	a	limited	set	of	63 

phenotypic	traits	remains	controversial19,20.	64 

At	one	extreme	of	complexity,	species	and	their	traits	may	be	embedded	within	65 

an	abstract	multidimensional	niche	space,	the	‘n-dimensional	hypervolume’	of	G.	E.	66 

Hutchinson21.	By	assuming	an	almost	limitless	number	of	ecological	dimensions,	this	67 

model	provides	a	compelling	explanation	for	the	diversity	of	species	and	phenotypes	68 

found	in	nature13,14,21.	At	the	other	extreme,	the	mapping	of	traits	onto	niche	space	may	69 

be	simplified	to	a	single	dimension22-24	by	functional	trade-offs25	or	pervasive	70 

convergent	evolution26,27.	Whether	form-function	relationships	are	either	unfathomably	71 

complex	or	unexpectedly	simple	has	major	implications	for	the	usefulness	of	trait-based	72 

approaches	to	quantifying	and	conserving	biodiversity16,28,29.	73 
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In	a	high-dimensional	Hutchinsonian	niche	space,	pinpointing	the	functional	role	74 

of	a	species	would	require	numerous	axes	of	phenotypic	variation30,	potentially	75 

confounding	efforts	to	understand	niches	based	on	standardised	trait	datasets12,15,17,18.	76 

Conversely,	if	most	of	the	diversity	in	functional	traits	can	be	collapsed	along	one	or	77 

two	fundamental	dimensions,	then	this	may	not	provide	sufficient	traction	for	traits	78 

to	be	informative	about	multiple	ecological	functions,	particularly	in	multitrophic	79 

systems19,28.	Some	ecomorphological	analyses	have	found	evidence	that	the	80 

dimensionality	of	animal	hypervolumes	may	lie	somewhere	between	these	extremes30-81 

32,	raising	hope	that	trait	combinations	could	be	partitioned	into	a	relatively	simplistic	82 

niche	classification	system¾analogous	to	the	periodic	table	of	elements27.	Yet,	previous	83 

studies	have	focused	on	restricted	spatial	and	taxonomic	scales,	producing	84 

contradictory	results	and	no	clear	consensus	about	the	structure	or	generality	of	form-85 

function	relationships	in	animals31-36.	86 

Here	we	present	the	first	comprehensive	assessment	of	phenotypic	trait	87 

diversity	for	extant	birds	(Aves),	the	largest	class	of	tetrapod	vertebrates.	For	over	a	88 

century,	birds	have	played	a	central	role	in	the	development	of	niche	concepts	and	89 

ecomorphology31,37-39,	and	now	provide	the	richest	template	for	exploring	the	function	90 

and	evolution	of	morphological	traits	in	the	context	of	species-level	ecological40	and	91 

phylogenetic	datasets41.	We	measured	eight	phenotypic	traits	with	well-established	92 

connections	to	locomotion,	trophic	ecology,	and	the	associated	niche	structure	of	93 

ecological	communities31,32,39,42	(Extended	Data	Fig.	1,	see	Methods).	In	particular,	the	94 

beak	is	the	primary	apparatus	used	by	birds	to	capture	and	process	food39,43,	while	95 

morphological	differences	in	wings,	tails	and	legs	are	related	to	locomotion,	providing	96 

insight	into	the	way	birds	move	through	their	environment	and	forage	for	resources31.	97 

With	the	addition	of	body	mass,	our	dataset	contains	full	sets	of	nine	traits	for	9,963	98 
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species,	representing	>99%	of	extant	bird	diversity	and	all	233	avian	families	(Extended	99 

Data	Table	1),	thereby	summarizing	whole-organism	trait	combinations	in	100 

unprecedented	detail	for	a	major	radiation	of	organisms	distributed	worldwide	across	101 

marine	and	terrestrial	biospheres.	We	use	a	range	of	analyses	to	explore	the	structure	of	102 

this	trait	diversity	and	its	connection	to	ecological	function.	103 

	104 

The	multiple	dimensions	of	avian	trait	space		105 

Across	birds,	body	mass	varies	by	a	factor	of	50,000	(Fig.	1a)	and	the	position	of	species	106 

along	this	single	axis	has	important	associations	with	metabolism	and	life	history44.	To	107 

go	beyond	this	basic	variation	among	organisms,	we	can	visualise	avian	trait	diversity	108 

by	projecting	species	into	a	multivariate	space	(hereafter,	morphospace)	derived	from	109 

principal	component	(PC)	scores	(see	Methods).	These	projections	can	be	restricted	to	110 

the	beak	(Fig.	1b,	Extended	Data	Table	2)	or	expanded	to	encompass	all	traits	(Fig.	1c,	111 

Extended	Data	Table	3),	in	both	cases	revealing	enormous	variation	in	size	(PC1)	and	112 

shape	(PC2-PC3).		113 

Unlike	the	bimodal	distribution	of	plant	forms5,	variation	in	bird	traits	is	centred	114 

on	a	single	dense	core	around	which	species	with	extreme	morphologies	are	scattered	115 

at	the	periphery	of	morphospace	(Fig.	1b-c,	Extended	Data	Figs.	3,4).	The	structure	of	116 

these	three-dimensional	projections	highlights	the	diversity	of	ways	that	birds	have	117 

explored	different	trait	combinations.	For	instance,	the	second	dimension	of	total	trait	118 

variation	(PC2;	6%	trait	variance)	describes	the	spectrum	from	small	to	large	beaks,	119 

while	the	third	dimension	(PC3;	4%	of	trait	variance)	separates	species	with	short	tails	120 

and	pointed	beaks	(e.g.	kiwis)	from	those	with	long	tails	and	stubby	beaks	(e.g.	121 

frogmouths)	(Extended	Data	Fig.	3).	Compared	to	the	primary	axis	of	body	size	(PC1),	122 

along	which	most	(83%)	phenotypic	variation	is	aligned,	these	and	the	remaining	123 
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dimensions	of	avian	morphospace	constitute	only	a	fraction	of	total	phenotypic	124 

variation	(17%).	However,	the	key	question	is	whether	the	position	of	species	in	this	125 

high-dimensional	morphospace	provides	deeper	insight	into	their	ecological	function.	126 

	127 

The	mapping	of	form	to	function		128 

To	understand	how	morphology	relates	to	ecological	function,	we	classified	species	into	129 

different	types	of	primary	consumers	(aquatic	and	terrestrial	herbivores,	nectarivores,	130 

frugivores,	granivores),	secondary	and	tertiary	consumers	(aquatic	carnivores,	131 

terrestrial	invertivores,	terrestrial	vertivores),	and	scavengers	(Extended	Data	Fig.	5a,	132 

see	Methods).	Most	avian	species	are	largely	specialized	on	a	single	trophic	level	(n	=	133 

8,343	species)	and,	within	this,	a	single	trophic	niche	(n	=	8,225	species).	The	rest	134 

constitute	omnivores	that	exploit	multiple	trophic	levels	(n	=	1,620	species)	or	niches	135 

(either	within	or	across	levels,	n	=	1,738	species)	in	relatively	equal	proportions	(see	136 

Methods).	To	test	whether	the	location	of	species	in	morphospace	predicts	their	trophic	137 

niche,	we	used	a	Random	Forest	(RF)	model,	a	type	of	machine	learning	algorithm	that	138 

applies	recursive	partitioning	(i.e.	decision	trees)	to	subdivide	morphospace	into	a	set	139 

of	non-overlapping	rectangular	hypervolumes	within	which	variation	in	species	niches	140 

is	minimized	(see	Methods).	We	began	by	assessing	whether	body	mass	alone	can	141 

predict	species’	trophic	niche,	then	added	additional	traits	to	build	up	a	progressively	142 

more	complete	description	of	avian	phenotype.		143 

We	found	that	a	model	using	only	body	mass	(Fig.	2a)	achieved	only	limited	144 

accuracy	in	predicting	either	trophic	niches	(29%)	or	broad	trophic	levels	(38%).	Only	145 

nectar	feeding	pollinators—many	of	which,	including	hummingbirds	(Trochilidae),	have	146 

evolved	miniaturized	forms	to	feed	on	flowers—were	predicted	consistently	by	body	147 

mass	(Fig.	2b).	Thus,	although	body	size	accounts	for	most	of	the	variance	in	our	148 
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phenotypic	traits	(Extended	Data	Table	3),	it	provides	a	relatively	weak	explanation	of	149 

avian	trophic	niche	space	at	global	scales.	The	predictability	of	trophic	niches	more	than	150 

doubled	when	including	beak	size	and	shape	(Fig.	2a,c)	and	increased	further	to	78%	151 

when	we	used	a	nine-dimensional	morphospace	with	a	full	set	of	beak	and	body	traits	152 

(Fig.	2a,d).	Moreover,	when	we	excluded	omnivores	(see	Methods),	thereby	restricting	153 

the	analysis	to	species	with	the	most	specialized	diets,	the	predictability	of	trophic	154 

niches	and	trophic	levels	exceeded	80%	(Fig.	2a).	These	results	were	robust	to	the	155 

method	used	to	match	traits	and	ecology,	with	alternative	approaches	(e.g.	discriminant	156 

analysis)	indicating	a	similar	rise	in	predictive	accuracy	as	morphological	157 

dimensionality	increases	(Extended	Data	Fig.	6,	see	Methods).	158 

To	visualize	the	striking	connection	between	phenotypic	form	and	trophic	159 

function,	we	mapped	the	density	of	each	specialist	trophic	niche	onto	morphospace	(n	=	160 

8,225).	Even	when	projected	onto	a	two-dimensional	plane,	here	defined	by	beak	size	161 

and	shape,	it	is	clear	that	each	trophic	level,	and	indeed	each	trophic	niche,	occupies	a	162 

largely	distinct	region	of	morphospace	(Fig.	3).	Specialist	invertivores	(n	=	4,788	163 

species)	and	frugivores	(n	=	1,030	species)	constitute	the	bulk	of	avian	species	diversity	164 

and	are	diffusely	distributed	around	the	centre	of	morphospace	(Fig.	3f-g).	Species	165 

targeting	other	resource	types	possess	more	extreme	combinations	of	beak	size	and	166 

shape,	forming	tighter	clusters	around	the	periphery	(Fig.	3a-e,h-i,	Extended	Data	Fig.	167 

4).	These	clusters	have	irregular	shapes	but	generally	occupy	a	single	contiguous	region	168 

of	morphospace¾a	‘phenotypic	fingerprint’¾concentrated	around	a	unique	central	169 

peak	of	high	species	density.	This	relatively	simple	one-to-one	mapping	of	form	to	170 

function	is	not	an	artefact	of	projecting	niches	onto	a	single	two-dimensional	plane	171 

because	even	in	the	full	nine-dimensional	morphospace	each	trophic	niche	can	be	well	172 

described	by	just	one	or	a	few	rectangular	hypervolumes	(see	Methods).		173 
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The	ecological	relevance	of	trait	variation	may	extend	far	beyond	predictions	of	174 

simplistic	trophic	niches	if	morphology	captures	additional	axes	of	ecological	175 

divergence,	including	subtle	gradations	of	behaviour	and	microhabitat.	The	intrinsic	176 

subdivision	of	basic	trophic	niches	into	numerous	variants	is	best	illustrated	in	birds	by	177 

terrestrial	invertivores	that	have	evolved	a	remarkable	array	of	foraging	techniques,	178 

from	catching	insects	in	continuous	flight	(e.g.	swallows)	to	plucking	from	vegetation	179 

(e.g.	antshrikes)	or	hopping	on	the	ground	(e.g.	pittas)	(Fig.	4,	Extended	Data	Fig.	5b).	To	180 

assess	how	morphology	relates	to	these	more	fine-scale	aspects	of	the	niche,	we	re-ran	181 

the	RF	model	after	subdividing	the	nine	specialist	trophic	niches	into	30	foraging	niches	182 

(Fig.	2e-g,	Extended	Data	Table	4,	see	Methods).		183 

As	expected,	foraging	niches	are	even	less	predictable	than	trophic	niches	or	184 

trophic	levels	on	the	basis	of	body	size	(Fig.	2a).	However,	predictability	increases	185 

substantially	when	using	multiple	trait-dimensions,	with	the	location	in	nine-186 

dimensional	morphospace	accurately	predicting	not	only	the	type	of	resources,	but	also	187 

the	specific	foraging	manoeuvre	and	substrate	used	by	each	species	(Fig.	2a,	e-g).	This	188 

result	shows	that	most	morphological	variation	encompassed	by	each	trophic	niche	189 

(Fig.	3)	is	not	simply	redundant35,36,	with	numerous	different	combinations	of	traits	190 

performing	similar	ecological	roles8.	Instead,	the	striking	correspondence	between	191 

avian	form	and	function	provides	continuous	metrics	for	quantifying	multitrophic	192 

niches	with	much	greater	detail	and	precision	than	afforded	by	coarse	ecological	193 

categories.		194 

	195 

The	dimensionality	of	trophic	niche	space	196 

	To	investigate	the	minimum	number	of	dimensions	required	to	predict	avian	niches,	we	197 

applied	RF	models	to	morphospaces	of	varying	dimensionality,	ranging	from	one	to	nine	198 
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dimensions,	exploring	all	possible	combinations	of	trait	axes	(n	=	511	combinations).	199 

Based	on	estimates	of	model	predictive	accuracy,	we	then	calculated	the	dimensionality	200 

(D)	of	trophic	niches	using	Levene’s	index	(see	Methods).	According	to	this	index,	D	=	201 

9	if	all	trait	dimensions	contribute	equally	to	predicting	trophic	niches,	with	D	202 

decreasing	towards	1	as	predictive	accuracy	is	driven	by	progressively	fewer	trait	203 

dimensions.	Using	this	approach,	we	calculated	the	overall	dimensionality	of	trophic	204 

niche	space	(DTotal)	as	well	as	the	mean	dimensionality	across	individual	trophic	205 

niches	(𝐷").			206 

We	found	that	dimensionality	varied	from	the	two-dimensional	niche	of	207 

nectarivores	to	the	four-dimensional	niche	of	frugivores,	and	that	niches	are	on	208 

average	defined	by	at	least	three	trait	dimensions	(𝐷"	=	3.5)	(Extended	Data	Fig.	7a).	209 

The	identity	of	these	dimensions	varies	across	niches	reflecting	adaptations	210 

associated	with	contrasting	modes	of	life	(Extended	Data	Fig.	8).	Taking	all	trophic	211 

niches	together,	an	integrated	niche	space	is	minimally	described	by	a	four-212 

dimensional	morphospace	(DTotal	=	4.4).	Decreasing	dimensionality	from	four	to	one	213 

dimension	results	in	an	almost	linear	decline	in	the	ability	to	predict	trophic	niches,	214 

while	increasing	dimensionality	from	four	dimensions	upwards	only	results	in	215 

marginal	improvement	in	niche	predictability	(Extended	Data	Fig.	7a).	Similar	216 

estimates	of	trophic	niche	dimensionality	were	obtained	regardless	of	the	method	217 

used	to	match	traits	and	ecology	(Extended	Data	Fig.	10)	and	whether	or	not	we	218 

accounted	for	the	phylogenetic	non-independence	of	species	(Extended	Data	Fig.	7b).	219 

These	consistent	results	suggest	that	trophic	niche	space	is	inherently,	yet	nonetheless	220 

moderately,	multidimensional.	On	the	one	hand,	a	four-dimensional	hypervolume	221 

challenges	the	view23,24	that	animal	trophic	niches	can	be	collapsed	along	an	axis	of	222 

body	size,	or	indeed	any	single	trait	dimension.	On	the	other	hand,	the	level	of	223 
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dimensionality	seems	remarkably	limited	given	the	scale	of	ecomorphological	224 

variation	encompassed	by	the	entire	avian	radiation.		225 

It	seems	plausible	that	our	use	of	simple	linear	measurements	has	led	to	an	226 

underestimate	of	niche	dimensionality	and	that	additional	or	more	sophisticated	body	227 

shape	measurements—such	as	beak	curvature43—may	reveal	further	axes	of	ecological	228 

variation.	However,	the	increment	in	niche-related	information	is	likely	to	be	minor	at	229 

the	scale	of	our	analyses,	particularly	as	simulations	suggest	that	our	estimate	of	230 

dimensionality	is	robust	to	the	addition	of	numerous	alternative	traits	(Extended	Data	231 

Fig.	9,	see	Methods).	Limited	dimensionality	could	also	reflect	the	coarseness	of	our	232 

niche	classification,	so	we	re-ran	RF	models	based	on	niches	subdivided	into	more	233 

precise	categories	relating	to	foraging	behaviours	and	substrates	(Extended	data	Table	234 

4).	We	found	that	more	trait	dimensions	are	indeed	required	to	predict	this	finer-235 

grained	classification	system	(𝐷"	=	4.1,	DTotal	=	5.6;	Extended	Data	Fig.	7b),	with	the	236 

trait	axes	defining	trophic	niches	forming	a	nested	subset	of	those	defining	foraging	237 

niches	(Extended	Data	Fig.	8,	see	Methods).	However,	the	increase	in	niche	238 

dimensionality	is	minor,	suggesting	a	hierarchical	structure	to	niche	space	whereby	239 

the	same	dimensions	are	repeatedly	partitioned	across	multiple	ecological	scales45.	240 

While	these	results	provide	compelling	evidence	that	multitrophic	niche	space	is	241 

predictably	organized	along	a	limited	number	of	fundamental	trait	dimensions,	they	tell	242 

us	little	about	how	this	correspondence	between	form	and	function	has	arisen.	243 

	244 

The	evolution	of	form-function	relationships	245 

One	explanation	for	the	apparent	matching	between	form	and	function	is	that	closely	246 

related	species	tend	to	occupy	the	same	niche	and	have	similar	traits	simply	due	to	247 

shared	ancestry46.	Alternatively,	each	trophic	niche	may	have	evolved	multiple	times,	248 
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with	the	strong	match	between	form	and	function	arising	from	repeated	phenotypic	249 

convergence	towards	the	same	adaptive	optima26,47.	The	extent	to	which	phylogenetic	250 

history	or	adaptive	evolution	shape	current	ecological	diversity	is	unclear.	To	address	251 

this,	we	compared	the	strength	of	the	relationship	observed	between	form	and	252 

trophic	function	to	that	expected	under	an	evolutionary	null	model	in	which	253 

similarity	in	species	traits	depends	on	the	time	elapsed	since	lineages	diverged	as	254 

well	as	variation	in	the	rate	of	stochastic	trait	evolution	(see	Methods).	We	found	that	255 

this	model	can	account	for	a	substantial	fraction	of	the	match	between	form	and	256 

trophic	niches	(Expected	accuracy	=	65%	[95%	CI:	60-70%])	but	is	insufficient	to	257 

explain	the	striking	predictability	of	avian	ecological	functions	(Observed	accuracy	=	258 

85%,	Extended	Data	Fig.	11).	Although	each	trophic	niche	is	populated	by	multiple	259 

distantly	related	clades	(Extended	Data	Fig.	12a),	these	lineages	are	far	more	tightly	260 

packed	in	morphospace	(Fig.	3)	than	would	be	expected	based	on	their	evolutionary	261 

relatedness	(Extended	Data	Fig.	12b).	Thus,	while	our	results	highlight	the	major	262 

imprint	of	phylogenetic	history	in	the	structuring	of	avian	trophic	diversity,	they	also	263 

suggest	that	the	correspondence	between	form	and	function	requires	an	adaptive	264 

explanation.	265 

To	explore	these	evolutionary	patterns	in	more	detail,	we	identified	91	pairs	of	266 

avian	families	with	the	most	similar	traits	within	each	trophic	niche	(see	Methods).	We	267 

found	that	some	(10%)	morphologically	matched	families	are	sister	clades	wherein	268 

phenotypic	similarity	can	be	explained	by	shared	ancestral	traits	(Fig.	4a).	However,	269 

most	pairings	represent	much	more	ancient	divergence	events	(median	divergence	time	270 

=	55	[Interquartile	range:	39-75]	million	years	[Ma]	versus	28	[Interquartile	range:	21-271 

51]	Ma	for	sister	clades),	suggesting	that	trait	similarity	has	resulted	from	convergent	272 

evolution	(Fig.	4a).		273 
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Classifying	phenotypic	convergence	events	by	spatial	context	revealed	that	such	274 

cases	tend	to	occur	in	pairs	of	clades	with	non-overlapping	geographical	distributions	275 

(Fig.	4b;	see	Methods).	We	also	assessed	whether	similarity	in	foraging	niches	predicted	276 

evolutionary	convergence	events	in	the	two	most	heterogeneous	trophic	groups	277 

(aquatic	predators	and	terrestrial	invertivores).	In	these	diverse	niches,	we	found	that	278 

convergence	among	pairs	of	families	using	the	same	foraging	techniques	and	substrates	279 

occurred	far	more	often	than	predicted	by	chance	(Fig.	4c).	A	key	role	for	both	280 

geographical	isolation	and	ecological	similarity	is	consistent	with	the	view	that	281 

macroevolutionary	convergence	is	driven	by	adaptation	to	vacant	ecological	niches47.	282 

Thus,	the	Neotropical	region	is	home	to	arboreal	frugivorous	toucans	(Ramphastidae)	283 

and	ground-dwelling	invertivorous	antpittas	(Grallariidae),	which	are	replaced	in	the	284 

Palaeotropics	by	hornbills	(Bucerotidae;	Fig.	5a)	and	pittas	(Pittidae;	Fig,	5b),	285 

respectively.	A	minority	of	families,	such	as	Swallows	(Hirundinidae)	and	Swifts	286 

(Apodidae),	appear	to	have	converged	despite	broad	spatial	overlap	(Fig.	5c),	although	287 

it	remains	plausible	that	the	early	stages	of	convergence	occurred	in	geographical	288 

isolation.	289 

By	tracing	evolutionary	trajectories	through	morphospace,	we	can	visualise	the	290 

likely	history	of	convergence	events	according	to	a	global	phylogenetic	tree41.	These	291 

reconstructions	show	that,	within	matched	family	pairs,	each	clade	has	on	average	292 

evolved	a	distance	equivalent	to	one-third	the	span	of	total	avian	morphospace	before	293 

arriving	at	its	current	position	(Fig.	5a-c,	Extended	Data	Fig.	13).	In	some	cases	294 

(illustrated	in	Fig.	5a),	family	pairs	have	followed	largely	parallel	trajectories,	while	in	295 

others	(Fig.	5b-c)	convergence	has	occurred	from	different	points	in	morphospace,	such	296 

that	the	current	gap	between	families	is	substantially	narrower	than	it	was	in	the	past.	297 
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A	corollary	of	widespread	convergent	ecological	adaptation	to	geographically	298 

segregated	vacant	niche	space	is	that	species	occupying	a	given	niche	will	cluster	299 

together	in	morphospace	regardless	of	their	geographic	origins.	To	reveal	this	global	300 

mapping	of	form	to	function,	we	partitioned	the	avian	hypervolume	into	biogeographic	301 

realms	(see	Methods).	We	found	that	each	trophic	niche	has	the	same	morphological	302 

signature	worldwide,	highlighting	the	repeatability	of	convergence	events	across	303 

multiple	evolutionary	arenas	(Fig.	6).		304 

	305 

Conclusions	306 

The	connection	between	avian	morphospace	and	trophic	niches	provides	compelling	307 

evidence	of	widespread	deterministic	convergence	in	a	diverse	multitrophic	308 

assemblage27.	Our	analyses	reveal	that	the	predictable	patterns	of	niche	filling	observed	309 

among	individual	lineages26,48,	or	in	more	localized	settings47,49,	are	part	of	a	grander	310 

evolutionary	dynamic	operating	across	entire	classes	of	organisms	at	a	global	scale.	This	311 

pervasive	convergent	evolution	of	morphological	traits	overrides	the	imprint	of	312 

phylogenetic	history	in	structuring	avian	niche	space,	reducing	the	power	of	313 

phylogenetic	biodiversity	metrics	to	predict	ecological	function50	unless	combined	with	314 

other	information	about	traits.	We	have	demonstrated	that	a	minimum	of	four	315 

independent	morphological	trait	axes	are	required	to	predict	variation	in	avian	trophic	316 

niches,	calling	into	question	the	validity	of	trait-based	macroecological	analyses	317 

assessing	functional	diversity	on	the	basis	of	fewer	morphological	trait	dimensions	(e.g.	318 

body	mass).	We	also	show	that	continuous	morphological	variables	can	predict	much	319 

more	subtle	fine-scale	variation	in	dietary	and	behavioural	niches	than	can	be	achieved	320 

using	standard	niche	categories	(e.g.	diet).		321 
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More	generally,	these	findings	have	relevance	to	multiple	environmental	322 

research	programmes	and	policy	frameworks,	many	of	which	have	taken	on	increased	323 

urgency	in	light	of	rapid	declines	in	animal	diversity	and	abundance3,4.	The	avian	trait	324 

space	presented	here¾based	on	the	most	complete	sample	of	morphological	variation	325 

for	any	major	taxon¾provides	a	highly	resolved	template	linking	species	traits	to	326 

ecological	function.	Trait	variation	within	any	avian	trophic	guild,	or	clade,	or	indeed	327 

any	historical,	contemporary	or	predicted	future	bird	community,	can	be	mapped	onto	328 

this	template	and	interpreted	in	the	context	of	regional	or	global	patterns.	In	practical	329 

terms,	this	resource	paves	the	way	to	a	new	generation	of	functional	and	behavioural	330 

diversity	indicators	for	use	in	setting	and	measuring	progress	towards	international	331 

conservation	targets,	understanding	functional	effects	of	extinction51,	and	evaluating	332 

how	animal	communities	assemble	and	respond	to	change16,29,52.		333 

	 	334 
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	335 

	336 

	337 

Figure	1.	The	avian	morphospace.	a,	Distribution	of	avian	body	masses	from	the	338 

lightest	(Mellisuga	helenae,	2g)	to	the	heaviest	species	(Struthio	camelus,	111kg).	b,	339 

Variation	in	beak	shape,	a	key	trait	related	to	resource	use.	The	first	three	dimensions	of	340 

beak	space	capture	variation	in	beak	size	(PC1),	relative	beak	length	(PC2)	and	ratio	of	341 

beak	depth	to	width	(PC3).	c,	A	three-dimensional	morphospace	combining	data	on	342 

body	mass,	beak,	wing,	tail	and	tarsus.	Axis	labels	indicate	the	proportion	of	variance	343 

explained.	The	density	of	species	is	projected	onto	each	two-dimensional	plane.	Data	344 

are	shown	for	9,963	species,	representing	>99%	of	all	birds.	345 

	 	346 
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		347 

	348 

Figure	2.	Trophic	structuring	of	multidimensional	morphospace.	a,	Mean	accuracy	349 

(%)	of	a	Random	Forest	model	predicting	trophic	level,	trophic	niche	and	foraging	niche	350 

for	all	birds	(n	=	9,963	species)	on	the	basis	of	body	size	(mass),	size	and	beak	traits,	or	351 

the	full	nine-dimensional	morphospace.	Stippling	indicates	improvement	in	predictive	352 

accuracy	after	omitting	omnivores	(see	Methods).	b-g,	Confusion	matrices	show	353 

predictions	for	each	trophic	(b-d)	and	foraging	niche	(e-g).	Diagonal	elements	of	each	354 

matrix	indicate	correct	matches	between	predicted	and	observed	niches;	off-diagonal	355 

elements	indicate	misclassification.	Red	=	high	levels	of	accuracy	(diagonal)	or	356 

misclassification	(off-diagonal).		357 
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	358 

	359 

Figure	3.	Partitioning	of	avian	morphospace	across	trophic	levels	and	niches.		360 

Heterotrophic	consumers	shape	the	biosphere	through	numerous	feedbacks	on	nutrient	361 

cycling	and	productivity2.	Here	we	illustrate	the	complexity	of	avian	ecological	function	362 

as	a	multitrophic	pyramid	built	on	a	foundation	of	autotrophic	producers	(plants),	363 

which	are	exploited	directly	by	aquatic	herbivores	(a),	terrestrial	herbivores	(b),	364 

nectarivores	(c),	frugivores	(d),	granivores	(e),	and	indirectly	by	aquatic	carnivores	(f),	365 

terrestrial	invertivores	(g),	terrestrial	vertivores	(h),	and	scavengers	(i).	Within	each	366 

trophic	niche,	the	first	two	dimensions	of	beak	morphospace,	capturing	variation	in	367 

beak	size	(PC1)	and	shape	(PC2),	are	plotted	against	total	beak	variation	of	9,963	368 

species,	representing	>99%	of	all	birds	(light	grey).	Contours	indicate	density	of	species;	369 

warmer	colours	indicating	higher	density.	Omnivores	are	not	shown.	370 

	371 

	 	372 
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	373 

	374 

Figure	4.	Scale	and	context	of	macroevolutionary	convergence	in	birds.	a,	Lines	375 

connect	phenotypically	matched	families	(n	=	91	pairs)	spanning	the	avian	evolutionary	376 

tree.	Exemplars	highlighted	with	bold	lines;	sister	clades	with	dashed	lines.	Tree	tips	are	377 

coloured	according	to	the	predominant	trophic	niche	(see	Fig.	3).	Matched	family	pairs	378 

are	not	randomly	distributed	in	relation	to	(b)	geographic	(n	=	91	pairs)	and	(c)	379 

foraging	niche	overlap	(n	=	64	pairs),	with	most	cases	having	disjunct	geographical	380 

distributions	and	similar	foraging	niches.	Red	points	and	whiskers	show	the	expectation	381 

(median	and	95%	confidence	interval)	under	a	null	model	of	trait	evolution	(see	382 

Methods).	383 

	384 

	 	385 
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	386 

Figure	5.	Convergent	evolutionary	trajectories	through	avian	morphospace.	To	387 

illustrate	the	probable	history	of	convergence	events,	data	from	ancestral	trait	388 

reconstructions	are	shown	for	three	exemplar	pairs	of	convergent	avian	families	(a,	top:	389 

Bucerotidae;	bottom	Ramphastidae;	b,	top:	Pittidae;	bottom:	Grallaridae;	c,	top:	390 

Apodidae;	bottom:	Hirundinidae).	Uppermost	panels	show	the	cumulative	phenotypic	391 

distance	travelled	by	each	family	pair	through	morphospace,	and	the	corresponding	392 

phenotypic	gap	between	families.	Phylomorphospace	plots	(lower	panels)	show	the	393 

position	of	ancestral	nodes	within	each	clade	(transition	from	yellow	to	red	indicates	394 

increasing	time	before	present,	Ma)	and	prior	to	divergence	of	the	family	pair	(grey).	395 

Size	of	discs	around	nodes	indicates	uncertainty	in	trait	reconstruction.	Nodes	leading	396 

to	other	lineages	are	not	shown.	Maps	show	global	distribution	of	each	family	in	relation	397 

to	biogeographic	realms	(see	Fig.	6).	398 

	399 

	 	400 
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	401 

	402 

	403 

	404 

Figure	6.	The	global	mapping	of	form	to	function	across	birds.	Clustered	points	405 

along	each	principal	coordinate	axis	(PCoA)	show	the	relative	morphological	similarity	406 

between	trophic	niches	from	different	ecological	theatres	(biogeographic	realms)	based	407 

on	the	average	pairwise	distance	between	species	(n	=	9,963	species)	in	nine-408 

dimensional	morphospace	(see	Methods).	Individual	trophic	niches	are	omitted	from	409 

realms	in	which	they	are	absent	or	rare	(<6	species).		410 

	411 

	412 

	 	413 
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Methods	414 

Morphological	trait	data	415 

We	assembled	a	database	of	morphometric	measurements	from	52,870	live	caught	416 

individuals	and	preserved	museum	skins,	of	which	2,288	specimens	were	from	existing	417 

published	databases53,54.	In	total,	our	database	represents	9,963	of	the	9,993	extant	418 

species	(99.7%)	recognized	in	the	global	avian	taxonomy	utilized	by	Jetz	et	al.41.	For	419 

each	individual,	we	measured	eight	traits	(generally	to	the	nearest	0.1	mm):	beak	length	420 

(from	tip	to	skull	along	the	culmen,	and	to	the	nares),	beak	width	and	depth	at	the	nares,	421 

tarsus	length,	wing	length,	first	secondary	length,	and	tail	length	(see	Extended	Data	Fig.	422 

1	and	Extended	Data	Table	1	for	further	descriptions).	We	obtained	measurements	from	423 

at	least	four	adult	individuals	from	each	species	where	possible	(two	from	each	sex;	424 

mean	total	=	5.3	individuals).	Sampling	was	conducted	by	93	researchers	across	65	425 

museum	collections	worldwide	using	a	standard	protocol	(see	Supplementary	426 

Information).	To	assess	repeatability,	we	compiled	measurements	by	different	427 

researchers	on	the	same	specimens	(n	=	2752	individuals	of	2523	species).	Repeated	428 

measures	were	highly	concordant	as	measurer	identity	accounted	for	only	0.74%	of	429 

total	trait	variance	in	this	dataset	(Extended	Data	Fig.	2;	see	Supplementary	material	for	430 

details).	We	extracted	estimates	of	mean	species	body	mass	(g)	from	Wilman	et	al.40,	431 

largely	based	on	the	compilation	by	Dunning55.	To	match	the	species	level	resolution	of	432 

our	ecological	niche	data	(see	‘Ecological	niche	data’	for	details),	we	calculated	mean	433 

trait	values	for	each	species.	This	is	justifiable	because	most	of	the	variance	in	trait	434 

values	occurs	between	(98.25%)	rather	than	within	(1.75%)	species	(Extended	Data	435 

Table	1;	see	Supplementary	material	for	details).	We	performed	a	principal	components	436 

(PC)	analysis	on	the	log-transformed	mean	species	trait	values.	We	centred	and	rescaled	437 

each	phenotypic	trait	to	unit	variance	before	performing	two	separate	PC	analyses	using	438 

(1)	the	four	beak	measurements	(beak	length	at	nares	and	culmen,	beak	width	and	439 

depth	at	nares)	and	(2)	all	nine	phenotypic	traits	(Extended	Data	Fig.	3).	We	visualised	440 

the	distribution	of	species	throughout	nine-dimensional	morphospace	by	calculating	the	441 

density	of	species	within	concentric	shells	with	a	width	of	one	morphological	unit	442 

(Extended	Data	Fig.	4).	443 

	444 

Ecological	niche	data	445 
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For	each	species,	we	scored	the	proportion	of	its	diet	obtained	from	three	trophic	levels	446 

(primary	consumer;	secondary/tertiary	consumer;	scavenger)	and	nine	trophic	niches	447 

(aquatic	herbivore;	terrestrial	herbivore;	nectarivore;	granivore;	frugivore;	aquatic	448 

predator;	invertivore;	vertivore;	scavenger)	encompassing	the	major	resource	types	449 

utilized	by	birds	(Extended	Data	Fig.	5a).	Our	scoring	of	species	diets	is	primarily	based	450 

on	data	from	Wilman	et	al.40,	extensively	updated	and	re-organized	based	on	recent	451 

literature.	For	instance,	we	classified	species	eating	any	kind	of	aquatic	prey	as	aquatic	452 

predators,	whereas	in	Wilman	et	al.40	species	feeding	on	aquatic	and	terrestrial	453 

invertebrates	were	grouped	together	(e.g.	flamingos	with	warblers).	Based	on	these	454 

dietary	scores	we	assigned	species	to	the	trophic	level	from	which	they	obtained	at	least	455 

70%	of	their	resources,	with	species	utilizing	multiple	trophic	levels	in	relatively	equal	456 

proportions	classified	as	‘omnivores’56.	Similarly,	we	assigned	species	to	the	trophic	457 

niche	from	which	they	obtained	at	least	60%	of	their	resources	(this	lower	threshold	458 

was	chosen	due	to	the	larger	number	of	trophic	niche	categories56).	Species	utilizing	459 

multiple	niches,	within	or	across	trophic	levels,	in	relatively	equal	proportions	were	460 

classified	as	‘trophic	generalists’.	Although	not	all	omnivores	are	trophic	generalists,	461 

and	vice	versa,	there	is	nonetheless	broad	overlap,	and	for	simplicity	we	use	the	term	462 

‘omnivore’	when	referring	to	both	categories	together.		463 

Following	the	standardized	protocol	outlined	in	Wilman	et	al.40,	we	used	the	464 

extensive	literature	on	avian	feeding	ecology	and	behaviour	(e.g.57)	to	quantify	for	each	465 

species	the	relative	use	of	31	different	foraging	niches	(scored	in	10%	intervals),	466 

describing	different	combinations	of	diet,	foraging	manoeuvre	and	substrate	(Extended	467 

Data	Fig.	5b-c).	These	foraging	niches	expand	on	previous	guild	classifications31,32,34,58-61	468 

to	reflect	the	wider	taxonomic	and	ecological	scope	of	our	analysis.	Based	on	these	469 

scores,	we	assigned	each	species	occupying	a	specialist	trophic	niche	(i.e.	excluding	470 

omnivores)	to	the	foraging	strategy	by	which	it	accessed	at	least	60%	of	its	dominant	471 

resource	type.	Two	foraging	niches	(ground	and	arboreal	gleaning	vertivores)	were	472 

each	represented	by	only	six	species	and	so	were	excluded.	Species	utilising	multiple	473 

foraging	strategies	in	relatively	equal	proportions	were	classified	as	‘foraging	474 

generalists’,	thus	providing	a	total	of	30	foraging	niches	used	in	our	analysis.	Further	475 

descriptions	of	each	foraging	niche,	and	the	assignment	of	species	to	each	category,	are	476 

provided	in	Extended	Data	Table	4.	477 

	478 
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Phylogenetic	data	479 

To	explore	the	evolutionary	basis	of	form-function	relationships,	we	used	the	time-480 

calibrated	molecular	phylogeny	of	Jetz	et	al.41	using	the	Hackett	et	al.62	backbone.	To	481 

ensure	reliable	estimates	of	evolutionary	parameters,	we	restricted	our	phylogenetic	482 

analyses	to	the	n	=	6,666	species	with	morphological	data	and	for	which	branch	lengths	483 

were	estimated	on	the	basis	of	genetic	data.	Because	the	evolutionary	models	we	use	484 

are	computationally	expensive	to	fit	to	the	entire	avian	phylogeny,	we	based	our	485 

analysis	on	the	maximum	clade	credibility	(MCC)	tree	generated	from	across	1,000	486 

trees	sampled	at	random	from	the	posterior	distribution	using	TREEANNOTATOR	487 

(included	in	BEAST	v.1.6.1)63.	488 

	489 

Geographic	data	490 

Range	maps	of	species	breeding	distributions	were	obtained	from	Birdlife	International	491 

(http://www.birdlife.org/datazone/home).	Owing	to	the	taxonomic	lumping	or	492 

splitting	of	various	lineages,	there	are	differences	in	the	species	classification	used	by	493 

IUCN	and	Jetz	et	al.41.	We	aligned	the	IUCN	dataset	with	that	of	Jetz	et	al.41	by	editing	494 

species	range	maps	in	ArcMap	v	10.364	based	on	published	information	on	geographical	495 

ranges	of	relevant	taxa57.	Species	ranges	were	then	extracted	onto	an	equal	area	grid	496 

(Behrmann	projection)	with	a	resolution	of	110	km	(≈	1°	at	the	equator).		497 

	498 

Quantifying	the	match	between	traits	and	niches	499 

We	tested	whether	species	ecological	niches	can	be	predicted	on	the	basis	of	species	500 

traits	using	Random	Forest	(RF)	models65	implemented	using	the	R66	package	501 

‘randomForest’67.	This	method	is	suitable	for	matching	traits	to	ecology	because	it	502 

makes	minimal	assumptions	about	the	shapes	of	species	niches	and	can	accommodate	503 

interactions	across	multiple	trait	axes.	RF	models	use	an	ensemble	of	decision	trees	to	504 

partition	feature	space	(i.e.	morphospace)	into	a	set	of	non-overlapping	rectangular	505 

hypervolumes	within	which	impurity	in	ecological	niches	is	minimised	(Supplementary	506 

Fig.	1).	Each	internal	node	in	a	tree	thus	corresponds	to	a	split	along	one	randomly	507 

selected	dimension	of	morphospace,	with	each	terminal	node	corresponding	to	a	unique	508 

rectangular	hypervolume.	Each	decision	tree	in	the	RF	provides	a	‘vote’	on	the	identity	509 

of	a	species’	ecological	niche	based	on	its	position	in	morphospace.	We	used	the	510 

majority	vote	across	trees	to	predict	the	ecological	niche	of	species	and	then	calculated	511 
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the	proportion	of	species	correctly	assigned	to	each	niche.	Throughout	we	report	512 

overall	model	predictive	performance	as	the	mean	classification	accuracy	across	513 

ecological	niches.	Model	parameters,	including	the	number	of	trees	(n	=	500)	and	the	514 

number	of	random	traits	to	sample	at	each	node	(n	=	2),	were	selected	based	on	initial	515 

sensitivity	tests.	516 

	 Because	species	are	highly	unevenly	distributed	across	ecological	niches,	we	517 

randomly	up-sampled	or	down-sampled	each	niche	to	an	equivalent	number	of	species	518 

before	fitting	the	models	(n	=	5000,	2000	and	1000	species	for	trophic	levels,	trophic	519 

niches	and	foraging	niches	respectively).	To	provide	unbiased	estimates	of	predictive	520 

performance,	we	used	5-fold	cross	validation.	We	randomly	split	our	data	into	five	equal	521 

sized	sets,	maintaining	the	same	relative	frequency	of	each	ecological	niche	within	each	522 

set.	We	trained	a	model	on	80%	of	the	data	(‘training	set’)	and	used	this	to	predict	523 

species	niches	in	the	remaining	20%	of	the	data	(‘test	set’),	repeating	this	five	times,	524 

once	for	each	partition.	To	account	for	stochasticity	in	model	fit	arising	the	random	525 

partitioning	of	the	dataset	during	cross-validation,	we	fitted	eleven	replicate	models	526 

and	used	the	modal	prediction	for	each	species.	We	compared	the	predictive	527 

performance	of	RF	models	including:	(1)	only	body	mass,	(2)	body	mass	and	PC	scores	528 

based	on	all	beak	measurements	(length,	width	and	depth),	and	(3)	PC	scores	based	on	529 

all	nine	phenotypic	traits.	530 

	531 

Sensitivity	tests	of	trait-niche	matching	532 

While	the	RF	model	detects	a	strong	statistical	match	between	traits	and	ecological	533 

niches	(Fig.	2),	it	is	possible	that	this	accuracy	is	only	achieved	through	a	highly	complex	534 

mapping	of	form	to	function.	For	example,	each	niche	could	be	comprised	of	multiple,	535 

widely	scattered	clusters	in	morphospace	representing	a	series	of	unique	evolutionary	536 

radiations.	If	one	member	of	each	cluster	is	included	in	the	training	dataset,	we	may	537 

infer	a	high	statistical	predictability	of	trophic	niches,	despite	the	link	between	538 

morphology	and	ecology	being	unpredictable	(i.e.	not	repeatable)	in	an	evolutionary	539 

sense26.	We	examined	this	by	(1)	re-fitting	a	RF	model	constraining	the	number	of	540 

terminal	nodes	permitted	in	each	tree,	and	(2)	repeating	our	analysis	using	Linear	541 

(LDA)	and	Mixture	Discriminant	Analysis	(MDA).	Discriminant	Analysis	is	widely	used	542 

for	matching	variation	in	ecology	and	morphology	based	on	restrictive	assumptions	543 

about	the	shape	of	ecological	niches.	Unlike	our	RF	model,	LDA	assumes	that	each	niche	544 



 25 

corresponds	to	a	single	multivariate	normally	distributed	morphological	cluster,	with	545 

equal	variance	across	niches.	MDA	relaxes	these	assumptions	by	allowing	each	niche	to	546 

be	modelled	by	a	Gaussian	distribution	of	subclasses,	with	an	equal	covariance	547 

structure	across	subclasses.		548 

First,	we	found	that	even	when	RF	tree	size	is	strongly	constrained	(e.g.	n	=	20	549 

terminal	nodes),	predictive	accuracy	remains	high,	indicating	that	each	trophic	niche	550 

can	be	well	described	by	one	or	a	few	rectangular	hypervolumes	(Supplementary	Fig.	551 

2).	Second,	despite	their	restrictive	assumptions,	the	LDA	and	MDA	predicted	specialist	552 

trophic	niches	with	a	71%	and	80%	accuracy,	respectively	(Extended	Data	Fig.	6).	Thus,	553 

additional	analyses	support	high	predictability	of	ecological	niches,	indicating	that	the	554 

strong	match	between	traits	and	ecology	does	not	arise	from	over-fitting	of	the	RF	555 

model	and	instead	reflects	a	relatively	simple	one-to-one	mapping	of	morphology	to	556 

ecological	niches.	557 

Simulations	show	that,	depending	on	the	shape	and	arrangement	of	ecological	558 

niches	in	morphospace,	MDA	and	LDA	may	underestimate	the	true	match	between	559 

traits	and	ecological	niches	(Supplementary	Fig.	3).	Specifically,	when	niches	occur	as	560 

disjunct	clusters	in	morphospace,	as	observed	in	some	smaller	species	radiations	(e.g.	561 

Anolis	lizards47),	then	LDA	and	MDA	accurately	predict	niche	identity	(Supplementary	562 

Fig.	3a-b).	However,	when	niches	have	irregular	shapes	that	closely	abut	in	563 

morphospace,	as	in	our	empirical	dataset	(Fig.	3),	species	along	the	boundaries	of	each	564 

niche	are	likely	to	be	misclassified	leading	to	a	lower	predictive	accuracy	(LDA	=	84%;	565 

MDA	=	95%)	(Supplementary	Fig.	3c-d).	In	contrast,	a	RF	model	can	readily	incorporate	566 

close	non-linear	relationships,	providing	a	more	robust	estimate	of	the	match	between	567 

morphology	and	ecology.	We	therefore	focus	our	analysis	on	the	results	from	the	RF	568 

model.	569 

		570 

Phylogenetic	null	model	of	trait-niche	relationships	571 

The	predictable	relationship	between	traits	and	ecological	niches	may	simply	reflect	572 

shared	phylogenetic	ancestry.	We	assessed	this	possibility	by	comparing	the	empirical	573 

estimates	of	niche	predictability	to	those	expected	under	an	evolutionary	null	model.	574 

Keeping	the	trophic	niche	of	each	species	fixed,	we	simulated	morphological	trait	values	575 

according	to	a	Brownian	motion	model	of	trait	evolution	applied	to	the	avian	576 

phylogenetic	tree	(see	section	‘Phylogenetic	models	of	Brownian	trait	evolution’	for	577 
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details)68.	This	null	model	allowed	us	to	quantify	the	similarity	in	species	traits	expected	578 

due	to	phylogenetic	relatedness	in	the	absence	of	ecological	adaptation.	We	fitted	a	RF	579 

model	to	each	of	100	replicate	simulated	trait	distributions	in	order	to	calculate	the	580 

expected	predictability	of	overall	niche	space	and	each	individual	trophic	niche	581 

(Extended	Data	Fig.	11a).	We	repeated	this	analysis	using	MDA	and	LDA	as	alternative	582 

methods	for	matching	traits	to	niches	and	obtained	similar	results	(Extended	Data	Fig.	583 

11b-c).	As	a	further	test,	we	assessed	whether	species	sharing	the	same	trophic	niche	584 

are	more	densely	packed	in	trait	space	than	expected	under	the	evolutionary	null	model	585 

by	comparing	the	mean	pairwise	Euclidian	trait	distance	between	species	within	each	586 

trophic	niche	to	that	expected	across	1000	simulations	of	the	null	model	(Extended	Data	587 

Fig.	12).	588 

	589 

Phylogenetic	models	of	Brownian	trait	evolution	590 

We	parameterized	the	null	model	of	Brownian	trait	evolution	according	to	the	empirical	591 

rates	of	trait	evolution	estimated	across	the	avian	phylogenetic	tree	using	BAMM69,70.	592 

This	modelling	framework	uses	reversible	jump	Markov	chain	Monte	Carlo	(MCMC)	to	593 

fit	a	set	of	distinct	macro-evolutionary	regimes	across	the	phylogenetic	tree,	the	594 

number,	location	and	parameters	of	which	are	estimated	from	the	data.	Each	regime	595 

may	be	characterized	by	a	different	rate	and	dynamic	of	trait	evolution,	including	either	596 

increasing	or	decreasing	rates	through	time.	Unlike	many	studies,	we	are	not	597 

specifically	interested	in	these	estimated	parameters	per	se,	and	instead	simply	use	598 

them	to	parameterize	our	null	model	simulations	to	account	for	the	potentially	complex	599 

dynamics	of	avian	phenotypic	evolution.		600 

We	fitted	this	model	separately	to	each	of	our	nine	PC	trait	axes	to	estimate	601 

marginal	densities	of	phenotypic	rates	on	each	branch	of	the	avian	phylogeny.	Sensible	602 

priors	on	rate	parameters	were	assigned	using	the	settBAMMpriors	functions.	We	ran	603 

the	MCMC	simulation	for	600	million	generations,	sampling	the	parameters	every	604 

80,000	generations.	We	discarded	the	first	10%	of	samples	as	burn-in	and	assessed	605 

convergence	by	calculating	the	effective	sample	size	(ESS)	of	the	model	log-likelihood	606 

and	the	estimated	number	of	macro-evolutionary	regime	shifts.	ESS	for	each	trait	was	607 

consistently	above	the	recommended	value	of	200.	We	used	the	mean	marginal	rate	608 

configuration	across	the	phylogeny	to	parameterise	the	simulations.	609 

	610 
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Quantifying	the	dimensionality	of	trophic	niche	space	611 

To	quantify	the	dimensionality	of	trophic	niche	space,	we	fitted	RF	models	to	612 

morphospaces	consisting	of	one	to	nine	trait	dimensions,	exploring	all	possible	613 

combinations	of	PC	trait	axes	(n	=	511	trait	combinations	for	nine	traits)	(Extended	Data	614 

Fig.	7a).	We	repeated	this	analysis	using	phylogenetically	corrected	principal	615 

component	scores,	obtaining	very	similar	results	(Extended	Data	Fig.	7b).	For	each	level	616 

of	dimensionality,	we	identified	the	combination	of	trait	axes	that	provided	the	highest	617 

mean	niche	predictability	(Extended	Data	Fig.	7).	In	one	dimension,	PC1	is	the	optimal	618 

trait	axis.	However,	in	higher	dimensions	the	identity	of	the	optimal	trait	axes	does	not	619 

simply	correspond	to	their	relative	contribution	to	total	phenotypic	variance	(Extended	620 

Data	Fig.	7).	For	instance,	in	three	dimensions,	trophic	niche	space	is	best	described	by	621 

PC1,	PC3	and	PC4	rather	than	PC2	(Extended	Data	Fig.	8a).	In	general,	trait	axes	622 

accounting	for	only	a	minor	fraction	to	the	total	phenotypic	variance	contribute	623 

disproportionately	to	defining	ecological	niche	space.		624 

Using	the	maximum	predictive	accuracy	at	each	level	of	morphospace	625 

dimensionality,	we	calculated	the	dimensionality	of	trophic	niche	space	(DTotal)	626 

according	to	Levene’s	index71,	627 

	628 
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	630 

where	pi	is	the	proportion	of	the	maximum	predictive	accuracy	(across	all	trait	631 

combinations)	accounted	for	by	dimension	i.	We	applied	the	same	approach	to	calculate	632 

the	dimensionality	of	each	individual	trophic	niche	and	also	foraging	niche	space.			633 

The	core	trait	dimensions	identified	using	these	estimates	of	dimensionality	634 

(Extended	Data	Fig.	8c-d)	varied	across	niches	in	ecologically	informative	ways.	For	635 

instance,	it	makes	sense	that	PC7	forms	one	of	three	core	axes	of	the	granivore	(seed-636 

eating)	niche	because	it	describes	the	ratio	of	beak	depth	to	width,	with	higher	values	637 

corresponding	to	a	stronger	bite	force	and	ability	to	crush	seeds39.	Similarly,	one	of	638 

three	core	axes	of	the	aquatic	predator	niche	is	PC8,	a	correlate	of	wing	pointedness,	639 

with	higher	values	corresponding	to	greater	soaring	ability	and	flight	efficiency72.	640 

	641 

Sensitivity	tests	of	niche	dimensionality	642 
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To	assess	the	robustness	of	our	estimates	of	niche	dimensionality	D,	we	performed	643 

multiple	sensitivity	tests.	First,	we	repeated	our	analysis	using	synthetic	morphological	644 

axes	generated	from	a	phylogenetic	PCA	that	accounts	for	the	non-independence	of	645 

species73.	Estimates	of	niche	dimensionality	(DTotal	=	4.4)	and	predictive	accuracy	(81%)	646 

obtained	using	this	method	were	very	similar	to	those	based	on	phylogenetically-647 

uncorrected	PC	axes	(Extended	Data	Fig.	7a-b).	Second,	rather	than	a	RF	model	we	used	648 

LDA	and	MDA	to	predict	trophic	niches.	Estimates	of	trophic	niche	dimensionality	649 

(DTotal)	vary	from	DTotal	=	3.3	for	MDA	to	DTotal	=	6	for	LDA,	with	a	RF	model	providing	an	650 

intermediate	estimate	of	DTotal	=	4.4	(Extended	Data	Fig.	10).	At	the	scale	of	foraging	651 

niches,	estimates	of	dimensionality	were	more	constrained	varying	from	DTotal	=	5.6	(RF	652 

and	MDA)	to	DTotal	=	6	(LDA)	(Extended	Data	Fig.	10).	Thus,	all	models	agree	that	(1)	653 

trophic	niche	space	is	minimally	described	by	at	least	four	complete	trait	dimensions	654 

and	that	(2)	when	niches	are	resolved	at	a	much	finer	scale	(i.e.	foraging	behaviours	and	655 

substrates),	dimensionality	increases	only	marginally,	with	niche	space	described	with	656 

six	or	fewer	trait	dimensions.	Given	the	higher	predictive	accuracy	of	the	RF	model	and	657 

the	known	sensitivity	of	MDA	and	LDA	to	niche	shape	we	consider	the	RF	estimates	to	658 

be	the	most	robust	(see	‘Sensitivity	tests	of	trait-niche	matching’,	Supplementary	Fig.	3).	659 

Our	trait	sampling	generates	imperfect	predictions	of	trophic	niches,	suggesting	660 

that	additional	trait	axes	may	be	required	to	fully	describe	niche	space,	leading	to	661 

potentially	higher	estimates	of	dimensionality.	To	explore	this	possibility,	we	simulated	662 

how	total	niche	dimensionality	(DTotal)	changes	when	the	remaining	variation	in	niches	663 

left	unexplained	by	our	nine-dimensional	morphospace	is	equitably	divided	among	an	664 

additional	number	of	hypothetical	trait	dimensions.	Simulations	show	that	even	with	665 

the	addition	of	many	hypothetical	trait	axes	(e.g.	n	=	100	trait	dimensions),	our	estimate	666 

of	trophic	niche	dimensionality	increases	only	marginally	(DTotal	=	6.1	versus	4.4,	667 

Extended	Data	Fig.	9a).	DTotal	is	robust	to	this	proliferation	of	trait	dimensions	because	668 

so	much	variation	in	trophic	niches	is	explained	by	our	existing	nine-dimensional	669 

morphospace	(Extended	Data	Fig.	7a).	Estimates	of	foraging	niche	dimensionality	are	670 

potentially	more	sensitive	to	the	inclusion	of	additional	trait	axes,	with	our	simulations	671 

suggesting	an	upper	bound	of	DTotal	<	11	(Extended	Data	Fig.	9b).	We	note,	however,	672 

that	these	simulations	are	likely	to	overestimate	the	potential	increase	in	673 

dimensionality	from	measuring	additional	traits.	For	instance,	if	some	variation	in	674 

ecology	occurs	independently	of	traits	or	if	there	are	differences	in	the	amount	of	675 
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ecological	variation	explained	by	hypothetical	trait	dimensions,	this	leads	to	676 

substantially	smaller	increases	in	DTotal	(Extended	Data	Fig.	9b).	Thus,	our	simulations	677 

should	be	viewed	as	providing	an	upper	bound	on	niche	dimensionality.		678 

	679 

Identifying	phenotypically	matched	families	680 

To	identify	clades	with	similar	ecologies	that	are	most	similar	in	their	functional	traits,	681 

we	assigned	avian	families	to	one	of	three	functional	groups:	(1)	primary	consumers,	682 

(2)	terrestrial	secondary/tertiary	consumers,	and	(3)	aquatic	secondary/tertiary	683 

consumers.	We	restricted	the	analysis	to	families	containing	more	than	5	species	with	684 

both	genetic	and	morphological	data	(n	=	132).	Because	relatively	few	large	families	685 

were	aquatic	primary	consumers	or	scavengers,	these	groups	were	lumped	with	686 

terrestrial	primary	consumers	and	terrestrial	secondary/tertiary	consumers,	687 

respectively.	Within	each	of	these	functional	groups,	we	identified	phenotypically	688 

matched	pairs	of	families	by	fitting	a	RF	model	predicting	family	identity	on	the	basis	of	689 

morphological	traits	and	then	calculating	the	mean	species	proximity	scores	for	each	690 

pairwise	combination	of	clades.	These	scores	indicate	the	proportion	of	times	a	species	691 

in	a	clade	is	assigned	to	the	same	rectangular	hypervolume	as	a	species	from	another	692 

clade.	This	metric	of	proximity	has	an	advantage	over	standard	distance-based	693 

measures	(e.g.	Euclidian	distances)	because	it	does	not	require	any	assumptions	694 

regarding	the	relative	importance	of	different	trait	axes	in	discriminating	between	695 

families.	Instead,	this	information	is	learnt	from	the	data.	In	total,	we	identified	n	=	91	696 

unique	family	pairs	(41	reciprocally	matched	pairs	were	only	counted	once	in	the	697 

analysis)	(Supplementary	table	1).	698 

	699 

Reconstructions	of	ancestral	traits		700 

To	visualise	how	matched	family	pairs	have	evolved	similar	trait	values,	we	used	the	701 

branch	and	trait	specific	rate	estimates	obtained	from	our	BAMM	analysis	to	702 

reconstruct	trait	values	at	each	node	in	the	phylogenetic	tree	as	well	at	1	million	year	703 

(myr)	time	intervals	along	each	branch74.	For	each	time	step,	we	quantified	the	mean	704 

position	of	each	family	along	each	trait	axis,	and	summed	the	Euclidian	distance	705 

between	these	successive	time	points	to	estimate	the	total	distance	evolved	across	706 

morphospace	by	each	family	since	they	diverged75.	To	visualise	the	evolutionary	707 

trajectories	of	selected	families	through	morphospace	(Fig.	4b-d),	we	also	calculated	the	708 
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trait	gap	(i.e.	5%	quantile	of	minimum	pairwise	distances)	between	each	family	at	each	709 

1myr	time	interval75.	710 

Different	family	pairs	occupy	different	trophic	and	foraging	niches	and	these	711 

niches	are	defined	by	different	sets	of	traits	(Extended	Data	Fig.	8).	When	calculating	712 

phenotypic	distance	metrics,	we	therefore	selected	the	two	trait	axes	that	best	describe	713 

the	niche	of	each	family	pair	(Supplementary	table	1).	These	trait	axes	were	identified	714 

using	the	mean	ranking	of	variable	importance	scores	across	the	two	families	from	the	715 

RF	model.	To	compare	distance	metrics	based	on	different	combinations	of	trait	axes,	716 

we	rescaled	current	and	ancestral	species	trait	values	to	unit	variance	prior	to	717 

calculating	phenotypic	distances.	We	express	these	distances	as	a	proportion	of	the	total	718 

span	of	avian	morphospace,	calculated	as	the	diameter	of	a	circle	centred	on	the	719 

centroid	of	morphospace	and	containing	95%	of	species	(Extended	Data	Fig.	13).	720 

	721 

The	ecology	and	geographic	distribution	of	phenotypically	matched	clades	722 

To	explore	the	geographic	and	ecological	context	of	convergence,	we	quantified	spatial	723 

overlap	and	similarity	in	foraging	behaviour	of	families	within	matched	pairs	724 

(Supplementary	table	1).	Spatial	overlap	between	families	(n	=	91	pairs)	was	quantified	725 

using	the	summed	proportion	of	each	species	geographic	range	occurring	in	each	of	726 

nine	biogeographic	realms76.	Foraging	niche	overlap	between	families	of	aquatic	727 

predators	and	invertivores	(n	=	64	pairs)	was	quantified	using	the	summed	728 

proportional	use	of	each	foraging	niche.	Spatial	and	foraging	overlap	were	scored	using	729 

Schoener’s	D	statistic	(here	denoted	by	the	symbol	S	to	distinguish	from	our	730 

Dimensionality	metric),		731 

	732 

𝑆(𝑝0 , 𝑝2) = 1	 −	12	7|𝑝0,, − 𝑝2,,|
,

	733 

	734 

where	pX,i	(or	pY,i)	is	the	proportional	use	of	region/niche	i	by	species	X	(or	Y).	Values	of	S	735 

vary	from	0	(no	overlap)	to	1	(complete	overlap)	and	were	multiplied	by	100	to	report	736 

overlap	scores	for	each	family	pair	from	0	to	100%	(in	10%	intervals).		737 

If	families	are	restricted	to	single	biogeographic	realms	or	foraging	niches,	then	738 

many	family	pairs	would	be	expected	to	show	little	spatial	or	ecological	overlap	simply	739 

by	chance.	We	therefore	compared	the	observed	frequency	of	spatial	and	foraging	740 
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overlap	to	that	expected	under	100	replicate	simulations	of	our	phylogenetic	null	741 

model,	in	which	matched	family	pairs	are	generated	through	a	process	of	complex	742 

Brownian	trait	evolution	(see	section	‘Phylogenetic	null	models	of	trait-niche	743 

relationships’	for	details).	744 

To	visualize	the	effects	of	these	non-random	evolutionary	dynamics,	we	745 

generated	a	matrix	of	pairwise	trait	distances	between	the	species	in	the	full	nine-746 

dimensional	morphospace.	We	calculated	the	mean	distance	between	species	in	each	747 

combination	of	trophic	niche	and	biogeographic	realm	and	used	Nonmetric	748 

Multidimensional	Scaling	to	translate	this	distance	matrix	onto	two	orthogonal	principal	749 

coordinate	axes.		750 

	751 

Data	availability	752 

All	geographic	and	phylogenetic	data	are	publicly	available.	Morphological	data	and	753 

ecological	niche	assignments	will	be	made	available	with	the	final	accepted	version	of	754 

the	article.		755 

Code	availability	756 

All	custom	scripts	will	be	made	available	with	the	final	accepted	version	of	the	article.		757 

	 	758 
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Extended	Data	Table	1.	Description	of	species	traits	and	%	of	variance	attributed	to	759 

intraspecific	differences	(from	a	variance	components	analysis).	760 

	761 

Trait	(mm)	 Description	

%	variance	

within	species	

Beak	length	(tip-to-nares)		 Distance	from	the	anterior	edge	of	the	nostrils	to	the	tip	 1.39	

Beak	length	(culmen)	 Distance	along	the	culmen	from	the	base	of	the	beak	to	the	tip	 1.71	

Beak	width	 Width	of	beak	at	the	anterior	edge	of	the	nostrils	 2.49	

Beak	depth	 Vertical	height	of	beak	at	the	anterior	edge	of	nostrils	 1.62	

Tarsus	length	 Distance	from	the	middle	of	the	rear	ankle	joint,	i.e.	the	notch	between	the	tibia	

and	tarsus,	to	the	end	of	the	last	scale	of	the	acrotarsium	

1.71	

Wing	length	(mm)	 Distance	between	the	carpal	joint	to	wing	tip	 0.72	

Secondary	length	(mm)	 Distance	between	the	carpal	joint	to	the	tip	of	the	first	secondary	feather	 1.33	

Tail	length	(mm)	 Distance	from	the	tip	of	the	longest	rectrix	to	the	point	at	which	the	two	central	

rectrices	protrude	from	the	skin	

2.99	

Body	mass	(g)	 Mass		 NA	

Estimates	of	intraspecific	variation	are	not	available	for	body	mass.	762 

	763 

	 	764 



 33 

Extended	Data	Table	2.	Trait	loadings	for	beak	space	and	%	of	variance	accounted	for	765 

by	each	principal	component	axis	(n	=	9963	species).	766 

	767 

Trait	 PC1	 PC2	 PC3	 PC4	

Beak	length	(culmen)	 0.46	 0.47	 -0.01	 -0.75	

Beak	length	(tip-to-nares)	 0.52	 0.55	 0.02	 0.66	

Beak	width	 0.47	 -0.46	 0.76	 -0.01	

Beak	depth	 0.55	 -0.52	 -0.65	 0.02	

Variance	%	 84.2	 13.0	 1.7	 1.1	

Cumulative	variance	 84.2	 97.2	 98.9	 100	

		 	768 
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	769 

Extended	Data	Table	3.	Trait	loadings	for	phenotype	space	and	%	of	variance	770 

accounted	for	by	each	principal	component	axis	(n	=	9963	species).	771 

		772 

		 PC1	 PC2	 PC3	 PC4	 PC5	 PC6	 PC7	 PC8	 PC9	

Beak	length	(culmen)	 0.22	 -0.42	 0.30	 -0.26	 0.08	 -0.10	 0.07	 0.01	 0.77	

Beak	length	(tip-to-nares)	 0.23	 -0.67	 0.23	 -0.26	 0.05	 0.08	 -0.04	 0.06	 -0.60	

Beak	width	 0.23	 -0.26	 -0.37	 0.41	 0.01	 0.06	 0.75	 -0.11	 0.01	

Beak	depth	 0.28	 -0.29	 -0.39	 0.47	 0.13	 -0.05	 -0.65	 -0.06	 0.11	

Tarsus	length	 0.23	 0.26	 0.13	 -0.06	 0.86	 0.00	 0.06	 -0.34	 -0.09	

Wing	length	 0.26	 0.10	 -0.15	 -0.28	 -0.30	 0.66	 -0.10	 -0.53	 0.07	

Tail	length	 0.21	 0.07	 -0.58	 -0.56	 -0.06	 -0.54	 0.02	 -0.07	 -0.06	

Secondary	length	 0.25	 0.14	 -0.26	 -0.18	 0.22	 0.44	 0.02	 0.76	 0.07	

Body	mass	 0.74	 0.34	 0.36	 0.19	 -0.31	 -0.23	 0.00	 0.10	 -0.10	

Variance	%	 83	 6.1	 3.8	 3.2	 2.1	 0.8	 0.5	 0.3	 0.2	

Cumulative	variance	 83	 89.2	 93	 96.2	 98.3	 99.1	 99.6	 99.9	 100	

	 	773 
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Extended	Data	Table	4.	Description	of	foraging	niches	within	specialist	trophic	niches.	774 
Scavenger	
(n	=	22)	

Ground	(SCG,	n	=	22)	–	species	eating	carrion	(dead	animal	or	fish	remains)	on	

the	ground	(e.g.	vultures).	

Invertivore	

(n	=	4765)	
Aerial	screen	(IASC,	n	=	278)	–	species	capturing	flying	invertebrates	on	the	

wing	(e.g.	swallows,	swifts).		Often	described	as	‘hawking’.	In	contrast	to	ISA,	IASC	
is	characterized	by	continuous	and	extended	flight	with	multiple	items	captured	

before	landing.	

Aerial	sally	(ISA,	n	=	317)	–	species	capturing	flying	invertebrates	in	mid-air,	
with	the	attack	starting	from	a	perch	(i.e.	branch,	rock,	fence	post,	telegraph	wire,	

etc.)	and	then	returning	to	a	perch	(e.g.	jacamars,	kingbirds,	etc).	‘Hawking’	will	

sometimes	refer	to	this	category,	but	the	key	distinguishing	feature	is	that	only	a	

single	prey	item	is	captured	before	returning	to	a	perch.		

Sally	to	substrate	(ISS,	n	=	343)	–	species	capturing	invertebrates	(including	

arachnids,	worms,	molluscs,	etc.)	attached	to	the	substrate	(e.g.	leaves,	twigs,	

branches,	rock	faces,	etc)	following	an	aerial	attack	manoeuvre	(e.g.	flight,	
pounce,	jump,	hover).			

Sally	to	ground	(ISG,	n	=	245)	–	species	capturing	invertebrates	on	the	ground	

following	an	aerial	attack	manoeuvre	(e.g.	flying,	gliding,	dropping	or	pouncing)	

(e.g.	chats,	shrikes,	kiskadee	etc).	The	aerial	manoeuvre	may	be	followed	by	brief	

hopping	toward	prey	(e.g.	terns).		

Glean	arboreal	(IGA,	n	=	1792)	–	species	capturing	invertebrates	attached	to	the	

substrate	(e.g.	leaves,	twigs,	branches,	grass,	bamboo,	stems,	hanging	dead-leaves	

[not	dead	leaves	on	the	ground]	etc).	No	aerial	attack	manoeuvre	is	involved.		

Glean	bark	(IGB,	n	=	339)	–	species	capturing	invertebrates	attached	to	or	

concealed	within	large	branches	and	trunks	of	trees	(e.g.	woodpeckers,	

treecreepers,	woodcreepers,	wallcreepers,	nuthatches,	sittelas,	nuthatches,	

vangas,	etc.,	including	honeyguides).	This	is	distinguished	from	IGA	by	at	least	

one	criterion.	First,	the	species	employs	specialized	methods	for	moving	over	

surfaces	which	are	often,	but	not	always	vertical,	vertical	and	too	large	to	be	

gripped	by	the	closed	foot	(including	creeping,	climbing	or	scaling).	Second,	the	
species	extracts	prey	from	in/under	the	bark	using	specialized	methods	

(including	hammering,	probing	or	chiselling).	Also	includes	species	capturing	

insects	from	rock	and	cliff-faces	(though	not	just	on	boulders	[see	IGG]),	

habitually	perching	on	or	clinging	to	large	mammals	and	species	that	feed	on	

honey	and	beeswax.	

Glean	ground	(IGG,	n	=	1026)	–	species	capturing	invertebrates	on	the	ground.	

In	contrast	to	ISG,	the	search	and	attack	manoeuvres	take	place	on	the	ground	
(e.g.	thrushes).	This	includes	species	standing	on	the	ground	and	gleaning	insects	

from	vegetation	(e.g.	tinamous	or	larks)	but	excludes	species	that	jump	or	sally	

upwards	to	capture	prey	from	vegetation	(ISS)	or	the	air	(ISA).	The	ground	is	dry	

and	thus	excludes	aquatic	habitats	(including	beaches,	estuaries,	wetlands	and	

marshes	[see	AQGR]).	

Aquatic	

predator		
(n	=	757)	

Ground	(AQGR,	n	=	314)	–	species	capturing	invertebrates	or	vertebrates	while	

standing	in	aquatic	habitats	(including	beaches,	estuaries,	wetlands	and	marshes)	
(e.g.	storks,	herons,	shorebirds).	Prey	may	be	captured	on	the	ground	or	

on/under	water.	This	category	includes	species	capturing	aquatic	prey	(e.g.	fish)	

or	terrestrial	prey	in	aquatic	habitats	(e.g.	grasshopper).	

Perch	(AQPE,	n	=	44)	–	species	capturing	invertebrates	or	vertebrates	on/under	
water	following	a	direct	attack	flight	from	a	perch	(e.g.	kingfisher).		

Aerial	(AQAE,	n	=	87)	–	species	capturing	invertebrates	or	vertebrates	on/under	

water	during	continuous	flight	(including	dipping,	hovering,	pattering,	snatching).	

In	contrast	to	AQPE,	prey	item	is	identified	while	flying	(not	from	perch).	The	
predators	body	may	partially	submerge	but	does	not	plunge	beneath	the	surface	

(AQPL).	Includes	kleptoparasitic	species	capturing	fish	by	chasing	other	

piscivores	and	forcing	them	to	regurgitate	(e.g.	skuas,	frigatebirds).	

Plunge	(AQPL,	n	=	59)	–	species	capturing	invertebrates	or	vertebrates	by	

plunging	under	water	following	continuous	flight.	The	predators	body	submerges	
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entirely	beneath	the	surface,	with	the	prey	captured	either	by	the	momentum	of	

the	plunge	or	following	propelled	swimming.		

Surface	(AQSU,	n	=	73)	–	species	capturing	invertebrates	or	vertebrates	

on/under	water	whilst	swimming	on	the	water	surface.	In	contrast	to	AQPE	or	
AQAI	there	is	no	direct	attack	flight.	The	species	may	dip	under	the	water	but,	in	

contrast	to	AQDI,	contact	with	the	surface	is	maintained.		

Dive	(AQDI,	n	=	134)	–	species	capturing	invertebrates	or	vertebrates	under	

water	by	diving	from	the	surface	(not	the	air,	see	AQPE	and	AQPL).	

Vertivore	

(n	=	311)	

Aerial	screening	(VASC,	n	=	20)	–	species	captures	vertebrate	prey	during	flight.	

Both	predator	and	prey	are	in	flight	(e.g.	peregrine,	hobby,	falcon)	

Aerial	to	substrate	(VAS,	n	=	54)	–	species	captures	prey	on	branches	or	the	

ground	by	diving	from	the	air,	usually	after	circling	or	hovering	in	flight.	Includes	
quartering	flight	(e.g.	kestrels,	kites,	some	owls).	

Sally	to	substrate	(VSS,	n	=	190)	–	species	captures	prey	on	branches	or	the	

ground	by	diving	from	a	perch	(e.g.	many	owls,	eagles).	

Glean	ground	(VGG,	n	=	6)	–	species	capturing	prey	on	the	ground,	including	

eggs	in	ground	nests,	while	they	themselves	are	also	walking	or	running	on	the	

ground	(e.g.	secretary	bird,	seriemas,	ground	hornbills).		

Glean	arboreal	(VGA,	n	=	6)	–	species	capturing	prey	from	foliage,	branches,	

epiphytes,	cavities,	bark	or	other	arboreal	substrate	while	perched	on	the	
substrate.	There	is	no	flight	attack	involved.	This	includes	eating	bird	chicks	from	

arboreal	nests	and	drinking	blood	while	perched	on	mammals	(e.g.	oxpeckers).		

Nectarivore	

(n	=	507)	

Aerial	(NAE,	n	=	318)	–	species	feeding	on	nectar	or	other	plant	exudates	(e.g.	

sap)	while	in	flight	(e.g.	hummingbirds).		

Glean	(NGL,	n	=	184)	–	species	feeding	on	nectar	or	other	plant	exudates	(e.g.	

sap)	while	perched,	including	nectar	predators	that	pierce	corollas	(e.g.	sunbirds,	

flowerpiercers).	Species	feeding	on	honey	(e.g.	honeyguides)	included	under	IGB.	

Granivore	

(n	=	662)	

Granivore	above-ground	(GRA,	n	=	185)	–	species	foraging	on	seeds,	grains	and	

nuts	taken	from	vegetation	(e.g.	trees,	grass	stems)	while	perched	(e.g.	
seedeaters,	finches).	

Granivore	ground	(GRG,	n	=	408)	–	species	foraging	on	fallen	seeds,	grains	and	

nuts	collected	from	the	ground.	Including	birds	that	eat	grains	by,	on,	and	under	

water	(e.g.	partridges,	pheasants,	finches).	

Herbivore	

terrestrial	

(n	=	93)	

Above-ground	(PA,	n	=	13)	–	species	foraging	on	leaves,	buds,	blossom,	or	other	

vegetation	(except	fruit,	seeds	and	nectar).	The	food	is	taken	from	above	ground,	

generally	while	the	species	is	perching	on	branches	or	other	stems.	Generally,	a	
small	part	of	diet,	except	for	the	hoatzin,	plantcutters.		

Ground	(PG,	n	=	73)	–	species	foraging	on	grass,	leaves,	buds,	blossom,	or	other	

vegetation	(not	fruit	or	seeds)	taken	while	the	species	is	on	the	ground	(e.g.	

geese).	The	vegetation	may	itself	be	off	the	ground.		

Herbivore	

aquatic	

(n	=	82)	

Aquatic	ground	(PAQGR,	n	=	9)	–	species	foraging	on	aquatic	vegetation	

(including	seeds)	either	below	or	above	the	water	surface	(algae,	pondweed,	

waterside	vegetation).	The	species	collects	vegetation	while	under	water,	sitting	

on	the	water	surface	or	wading.	

Aquatic	surface	(PAQSU,	n	=	47)	–	species	foraging	on	aquatic	vegetation	
(including	seeds)	on/under	water	whilst	swimming	on	the	water	surface.	The	

species	may	dip	under	the	water	but,	in	contrast	to	PAQDI,	contact	with	the	

surface	is	maintained.	

Aquatic	dive	(PAQDI,	n	=	13)	--	species	foraging	on	aquatic	vegetation	(including	

seeds)	under	water	by	diving	from	the	surface.	

Frugivore	

(n	=	1030)	

Aerial	(FAE,	n	=	88)	–	species	foraging	on	fruits	in	flight,	including	those	that	

hover	to	pluck	fruit	from	bushes	and	trees	(e.g.	oilbird,	some	manakins).	

Glean	(FGL,	n	=	894)	–	species	foraging	on	fruits	while	perched	(not	in	flight)	
above	ground	and	plucking	fruits	from	vegetation	(e.g.	toucans,	hornbills).	

Ground	(FGR,	n	=	20)	–	species	foraging	on	fruits	lying	on	the	ground	(e.g.	

trumpeters).	
	n	=	number	of	species	within	each	specialist	trophic	and	foraging	niche.	The	number	of	species	within	a	trophic	niche	is	generally	775 
greater	than	the	sum	of	the	constituent	foraging	niches	because	some	species	(n	=	642)	use	multiple	foraging	manoeuvres	and	776 
substrates	in	relatively	equal	proportions	and	are	classed	as	foraging	generalists.		777 
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	778 
 779 

780 
Extended	Data	Figure	1.	Diagram	of	linear	measurements	of	avian	morphology.	a,	781 

Resident	frugivorous	tropical	passerine	(fiery-capped	manakin,	Machaeropterus	782 

pyrocephalus)	showing	four	beak	measurements:	(1)	beak	length	measured	from	tip	to	783 

skull	along	the	culmen;	(2)	beak	length	measured	from	the	tip	to	the	anterior	edge	of	784 

the	nares;	(3)	beak	depth;	(4)	beak	width.	b,	Insectivorous	migratory	temperate-zone	785 

passerine	(redwing,	Turdus	iliacus)	showing	five	body	measurements:	(5)	tarsus	length;	786 

(6)	wing	length	from	carpal	joint	to	wingtip;	(7)	secondary	length	from	carpal	joint	to	787 

tip	of	the	outermost	secondary;	(8)	Kipp's	distance,	calculated	as	wing	length	minus	788 

first-secondary	length;	(9)	tail	length.	Analyses	exclude	Kipp's	distance,	and	789 

thus	include	8	traits	shown	here	(plus	body	mass,	making	9	traits	in	total).	Illustration	790 

by	Richard	Johnson.	791 

	792 

	 	793 
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	794 
	795 

	796 

Extended	Data	Figure	2.	Repeatability	of	avian	morphological	trait	797 

measurements.	Data	points	show	replicate	measurements	taken	by	different	798 

researchers	on	the	same	museum	specimens	for	a	subset	of	our	global	dataset	(n	=	2752	799 

specimens	of	n	=	2523	species).	Points	falling	along	the	1:1	line	indicate	a	perfect	800 

correspondence	between	measurers.	The	%	of	total	trait	variance	(Var)	occurring	801 

between	measurers	within	specimens	is	shown.	The	number	of	specimens	varies	across	802 

traits	and	is	indicated	in	the	top	left	of	each	plot.	803 

	804 

	805 

	806 
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	807 
	808 

	809 

Extended	Data	Figure	3.	Trait	loadings	along	principal	component	(PC)	810 

dimensions	based	on	all	9	phenotypic	traits.	Results	are	shown	for	PC	axes	811 

representing	variation	in	shape,	and	thereby	excluding	PC1	which	represents	variation	812 

in	body	size.	Colours	indicate	the	increasing	density	of	species	(from	yellow	to	red)	on	813 

each	2-dimensional	plane	(n	=9,963	species).	See	Extended	Data	Table	3	for	trait	814 

loadings.		815 

	 	816 
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	817 

	818 

Extended	Data	Figure	4.	Density	profiles	through	multidimensional	morphospace.	819 

The	relative	density	of	species	with	distance	from	the	centroid	of	nine-dimensional	820 

morphospace	is	calculated	for	concentric	shells	of	1-unit	diameter.	Density	is	shown	for	821 

all	species	(n	=	9,963)	and	each	trophic	niche	separately.	822 

	823 

	 	824 
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	825 

	826 
	827 

	828 

Extended	Data	Figure	5.	Avian	trophic	niches	and	foraging	niches.	Silhouettes	829 

depict	archetypal	species	belonging	to	(a)	nine	specialist	trophic	niches,	(b)	seven	830 

major	foraging	niches	used	by	terrestrial	invertivores,	and	(c)	six	major	foraging	niches	831 

used	by	aquatic	predators.	Foraging	niches	for	the	remaining	seven	specialist	trophic	832 

niches	are	less	diverse	and	are	not	shown.	See	Extended	Data	Table	4	for	a	full	list	and	833 

description	of	trophic	and	foraging	niches.			834 

	835 

	836 

	837 

838 
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	839 
	840 

	841 

Extended	Data	Figure	6.	Classification	accuracy	(%)	using	alternative	842 

classification	algorithms.	Predictions	of	species	trophic	levels,	trophic	niches	and	843 

foraging	niches	using	(a)	Random	Forest,	(b)	Mixture	Discriminant	Analysis,	and	(c)	844 

Linear	Discriminant	Analysis	for	all	birds	(n	=	9,963	species)	on	the	basis	of	body	size	845 

(mass),	size	and	beak	traits,	or	the	full	nine-dimensional	morphospace.	Stippling	846 

indicates	improvement	in	predictive	accuracy	after	omitting	omnivores	and	foraging	847 

generalists	(see	Methods).		848 

	 	849 
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	850 

Extended	Data	Figure	7.	Intermediate	dimensionality	of	avian	niche	space.	Accuracy	851 

curves	 indicate	the	maximum	predictability	of	(a-b)	trophic	and	(c)	 foraging	niches	 in	852 

morphospaces	consisting	of	different	numbers	of	trait	dimensions.	Results	are	shown	for	853 

a	 morphospace	 based	 on	 (a,c)	 standard	 and	 (b)	 phylogenetic	 principal	 components	854 

analysis.	Accuracy	is	shown	for	individual	niches	(colours	matching	those	depicted	in	Fig.	855 

3)	and	total	niche	space	(black,	DTotal).	Points	indicate	the	level	of	niche	dimensionality	856 

(D)	 according	 to	 Levene’s	 index.	 Horizontal	 bar	 shows	 the	 mean	 (𝐷")	 and	 range	 in	857 

dimensionality	estimates	for	each	niche.	858 

	 	859 
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	860 

Extended	Data	Figure	8.	The	dimensionality	of	avian	trophic	and	foraging	niches.	861 

a-b,	The	identity	of	the	trait	dimensions	best	describing	(a)	trophic	and	(b)	foraging	862 

niches	for	different	levels	of	dimensionality.	c-d,	estimates	of	dimensionality	(D)	863 

according	to	Levene’s	index	for	(c)	trophic	niches	and	(d)	foraging	niches.	Each	niche	is	864 

given	separately,	and	with	all	niches	combined	(‘All’),	along	with	the	identity	of	the	865 

principal	component	(PC)	dimensions	(coloured	squares)	that	best	predict	the	niche.		866 

	867 

	868 

	869 

	870 

	871 

	 	872 
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	873 

	874 

	875 
	876 

Extended	Data	Figure	9.	Estimated	total	dimensionality	(DTotal)	of	morphospace	is	877 

robust	to	the	inclusion	of	additional	hypothetical	trait	axes.	Results	are	shown	for	878 

(a)	specialist	trophic	niches	and	(b)	foraging	niches.	In	addition	to	the	nine	measured	879 

traits,	we	simulated	the	effects	of	including	additional	hypothetical	trait	axes,	up	to	a	880 

total	of	100	axes.	We	assume	that	each	additional	trait	axis	has	an	equal	contribution	in	881 

accounting	for	the	variation	in	niches	currently	unexplained	by	our	empirical	nine-882 

dimensional	morphospace.	This	assumption	is	conservative,	because	any	variation	in	883 

the	relative	contribution	of	these	additional	trait	axes	would	lead	to	smaller	increases	in	884 

DTotal	than	estimated	here.	Thus,	our	simulations	are	best	interpreted	as	providing	an	885 

upper	bound	on	DTotal	from	measuring	additional	trait	axes.	DTotal	also	depends	on	the	886 

assumption	of	whether	these	additional	trait	axes	would	enable	ecological	niches	to	be	887 

predicted	with	complete	accuracy	(i.e.	100%)	or	whether	some	variation	in	niches	is	888 

inherently	unpredictable.	Assuming	lower	levels	of	maximum	predictive	accuracy	(e.g.	889 

85%)	leads	to	less	sensitivity	in	estimates	of	DTotal	to	variation	in	the	number	of	trait	890 

axes.	891 

	892 
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	894 
	895 

	896 

Extended	Data	Figure	10.	Estimating	dimensionality	of	avian	niche	space	using	897 

alternative	classification	algorithms	Random	Forest	(a,d),	Mixture	Discriminant	898 

Analysis	(b,e)	and	Linear	Discriminant	Analysis	(c,f).	Accuracy	curves	indicate	the	899 

cumulative	maximum	predictability	of	(a-c)	trophic	and	(d-f)	foraging	niches	in	900 

morphospaces	consisting	of	different	numbers	of	trait	dimensions.	Points	indicate	the	901 

dimensionality	of	niche	space	(DTotal)	according	to	Levene’s	index.	902 

	 	903 
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	904 

	905 

	906 
	907 

Extended	Data	Figure	11.	The	expected	match	between	avian	traits	and	trophic	908 

niches	arising	from	shared	phylogenetic	history.	Boxplots	show	the	predictive	909 

accuracy	of	three	alternative	classification	algorithms¾	Random	Forest	(RF),	Mixture	910 

Discriminant	Analysis	(MDA),	and	Linear	Discriminant	Analysis	(LDA)¾used	to	911 

estimate	trophic	niches	with	the	full	nine-dimensional	morphospace	(points)	for	n	=	912 

6,666	species	with	both	morphological	and	genetic	data.	In	each	case,	overall	913 

classification	accuracy	exceeds	that	expected	under	the	evolutionary	null	model	(box	914 

and	whiskers	show	50%	interquartile	range	and	95%	confidence	interval).	The	null	915 

model	incorporates	a	multi-rate	process	of	Brownian	trait	evolution	whereby	rates	of	916 

evolution	can	vary	both	across	lineages	and	over	time.	 	917 



 48 

	918 

	919 

	920 
	921 

	922 

Extended	Data	Figure	12.	Non-random	trait	packing	within	avian	trophic	niches.	923 

a,	Phylogenetic	distribution	of	avian	trophic	niches	across	the	complete	avian	tree	(n	=	924 

9,963	species)	with	species	lacking	genetic	data	inserted	according	to	taxonomic	925 

constraints41.	Tips	and	internal	branches	connected	by	species	sharing	the	same	trophic	926 

niche	are	highlighted	across	the	avian	evolutionary	tree.	b,	Mean	pairwise	trait	distance	927 

between	species	in	each	trophic	niche	(points)	is	less	than	expected	due	to	phylogenetic	928 

relatedness,	based	on	species	with	both	morphological	and	genetic	data	(n	=	6,666).	Box	929 

and	whiskers	show	50%	interquartile	range	and	95%	confidence	interval	of	mean	930 

pairwise	trait	distances	expected	under	an	evolutionary	null	model.	This	null	model	931 

incorporates	a	multi-rate	process	of	Brownian	trait	evolution	whereby	rates	of	932 

evolution	can	vary	both	across	lineages	and	over	time.	933 

	934 
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	936 
	937 

Extended	Data	Figure	13.	The	distance	across	morphospace	independently	938 

evolved	by	phenotypically	matched	pairs	of	avian	families.	We	calculated	the	939 

average	phenotypic	distance	evolved	by	each	clade	since	they	last	shared	a	common	940 

ancestor	with	their	phenotypically	matched	family	(n	=	91	pairs).	Distances	are	941 

expressed	in	(a)	raw	morphological	units	(trait	axes	scaled	to	unit	variance)	and	(b)	as	a	942 

proportion	of	the	total	span	of	morphospace.	On	average,	each	clade	within	a	matched	943 

family	pair	has	independently	evolved	a	distance	equivalent	to	one-third	of	the	total	944 

span	of	morphospace.	For	comparison,	the	9	matched	family	pairs	that	are	also	sister	945 

clades	(i.e.	each	other’s	closest	relative)	have	each	on	average	evolved	a	distance	946 

equivalent	to	only	~10%	of	the	total	span	of	morphospace.	Position	of	letters	indicate	947 

the	average	distance	evolved	by	families	within	sister	clades:	(A) Cettiidae-948 

Phylloscopidae,	(B) Cardinalidae-Thraupidae,	(C)	Emberizidae-Passerellidae,	(D)	949 

Phalacrocoracidae-Sulidae,	(E) Odontophoridae-Phasianidae,	(F)	Strigidae-Tytonidae,	950 

(G)	Ardeidae-Threskiornithidae,	(H) Cacatuidae-Psittacidae,	(I)	Accipitridae-951 

Cathartidae.	952 

	 	953 
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