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Abstract

Power consumption and signal delay are crucial to the design of high-pertormance VLS| circuits.
This thesis presents CAD tools for modeling and optimizing digital MOS designs. The tools
determine the transistor sizes that minimize circuit power consumption subject to constraints on
signal path delays. Computational efficiency is obtained through macromodeling techniques and
a specialized optimization algorithm. The macromodels are based on device equations, and
encapsulate logic gate behavior in a set of simple yet accurate formulas. The optimization
algorithm exploits properties of the digital MOS domain to convert the primal optimization
problem into a dual form which is much easier to solve. The result is a pair of CAD tools that can
optimize a circuit in roughly the amount of time needed to perform a transistor level simulation of
the circuit.

Thesis Supervisor: Lance A, Glasser

Title: Assistant Professor of Electrical Engineering and Computer Science



Acknowledgments

| am very grateful to my thesis advisor, Lance Glasser, for his patient support and
encouragement throughout the course of this research. | am also pleased to acknowledge the
assistance of my readers John Wyatt, Paul Penfield, Jr., and Ron Rivest. Chris Terman, Dimitri
Bertsekas, and Rich Zippel read drafts of this thesis and gave valuable comments. Barbara Lory
instructed me in the nuances of English grammar as | prepared this docurnent. | am indebted to
James Roberge and Rick Carley for teaching me circuit theory, and to Dimitri Bertsekas and Kevin
Tsai for introducing me to the art and science of nonlinear optimization. Jack Hilibrand and Larry
Rosenberg provided much technical advice and guidance. Jeff Fox, Rich Olsen, and Gerry
Sussman were helpful in defining the thesis topic, while Dan Dobberpuhl and Mark Horowitz
kindly shared their knowledge of MOS circuit design and CAD tools.

Thanks are also due to my fellow graduate students In this research group. | thank John _
Wroclawski, whose initial predictions concerning this thesis ("What we have here is the original
Pandora's box.") proved to be excruciatingly accurate, for many enlightening discussions on
what it means to transfer an algorithm from the realm of theory into a computer, as well as for
nurturing our sometimes cooperative, sometimes capricious computer system. John Hoyte's
single path optimizer was the precursor to this thesis; he gladly related his experiences to me.
Steve McCormick supplied a good deal of help with the text formatter used to generate this
document, and Bob Armstrong wrote the graphics editor that created the figures. | am
appreciative of my office mates, Charles Zukowski and Anne Park, for their insight and

companionship.
| thank my parents and sisters, and my friends In the church, for their prayers and support.

This work was supported in part by an RCA fellowship, In part by the Delense Advanced
Research Projects Agency of the Department of Defense under Contract No. NO00O14-80-C-0622,
and.in part by the Air Force Office of Sponsored Research under Contract No. F49620-84-C-0004.



To my Parents

To Him Who loves us and has loosed us from our sins by His blood, And made us a
kingdom, priests to His God and Father, to Him be the glory and the might forever and
ever. Amen.

Revelation 1:5-8



Tablé of Contents

Chaﬁtér' One: Introduction

1.1 Previous Work
1.2 Overview of the Thesis

Chapter Two: Macromodeling

2.1 Overview
2.2 Motivation and Intent
2.3 Inverters
2.3.1 Objective Function
2.3.2 Output Wavelorrn
2.3.2.1 Resistive Model
2.3.2.2 Extende«) Model
2.3.3 Input Capacitance
2.4 General Logic Gates
2.4.1 Qutput Waveform
2.4.2 Input Capacitance
2.5 Implementation
Chapter Three: Optimization

3.1 Overview
3.2 Unconstrained Minimization
3.3 Properties of Our Problem
3.4 Constrained Minimization
3.4.1 Feasible: Directions
3.4.2 Penalty Methods
3.4.3 Duality
3.4.3.1 Lagrange Multipliers
3.4.3.2 Finding the Optimum
3.4.3.3 Degenerate Cases
3.4.3.4 Restrictions
3.4,.3.5 Summary
3.5 Implementation
3.5.1 Control
3.5.2 Data Structures
3.5.3 Language Requirements
3.5.4 Program Breakdown
3.5.5 Examples



Chapter Four: Conclusion

4.1 Summary

4.2 Future Research

4.3 Perspective
References

102

102
103
104

108



Table of Figures

Figure 2-1: Waveform Characterization

Figure 2-2: Load Characterization

Figure 2-3: Macromodel Representation

Figure 2-4: A Depletion Load nMOS Inverter

Figure 2-5; Switched Resistor Model

Figure 2-6: MOSFET |-V Characteristics

Figure 2-7: Delay Mapping

Figure 2-8: Circuit for Determining Drive Curves

Figure 2-9: Comparison of Drive Curves

Figure 2-10: Resistor Model for a Very Fast Input

Figure 2-11: Amplifier Model for Fast and Moderate Inputs
Figure 2-12: Amplifier Model for Slow Inputs

Figure 2-13: Inverter's Predicted Response

Figure 2-14: Inverter's Actual Output Responses

Figure 2-15: Input Capacitance Model

Figure 2-16: Expected Input Capacitance -

Figure 2-17: Gate Capacitances

Figure 2-18: Capacitance for a Falling Input

Figure 2-19: Capacitance for a Rising Input

Figure 2-20: Approximate Capacitance for a Rising Input
Figure 2-21: General Logic Gate '
Figure 2-22: Example of a General Logic Gate

Figure 2-23: Circuit Model for a General Logic Gate
Figure 2-24: An RC Tree Network

Figure 2-25: Reduction of Effective Transconductance
Figure 2-26: Circuit Model for Input Capacitance

Figure 2-27: Input Capacitance for the Top Input of a NAND Gate
Figure 2-28: Input Capacitance for the Bottom Input of a NAND Gate

Figure 3-1: Minimizing a Function of a Scalar

Figure 3-2: Finding an Interval Containing the Minimum
Figure 3-3: Minimizing a Function of a Vector

Figure 3-4: A Chain of Inverters

Figure 3-5; Feasible Directions Algorithm

Figure 3-6: Feasible Directions Algorithm with a Nonconvex Set

Figure 3-7: A Pair of Inverters

Figure 3-8: Delay Contour

Figure 3-9: Contours of Delay and Power
Figure 3-10: Set of Possible Pairs

NN NN N
PE8REBoaoID

BRB2BIYIZR/REEELEEBBLERB2BREY

~N ~
W -0



Figure 3-11: Reaching the Optimum

Figure 3-12: Inner Loop Minimization

Figure 3-13: Quter Loop Maximization

Figure 3-14: Circuit with an Inactive Constraint
Figure 3-15: Effect of an Inactive Constraint
Figure 3-16: Effect of an Infeasible Constraint
Figure 3-17: A Duality Gap

Figure 3-18: Trajectory of the Optimization

Figure 3-19: Boundary Conditions Applied to a Cell
~ Figure 3-20: Simplified Arithmetic Logic Unit
Figure 3-21: Circuit and Data Structure for a Chain of Inverters
Figure 3-22: A Full Adder Module

Figure 3-23: Four Bit Adder

73 -

74
78

78
78
79
a1

a7



Table of Tables

Table 2-1: Pullup/Pulldown Regions of Operation 22
Table 2-2: Macromodel Curve Fit Accuracies 54
Table 3-1: Components of the Optimizer 92
Table 3-2: Initial Sizes and Constraints for the Inverter Chain 93
Table 3-3: Optimization Statistics for the Inverter Chain 93
Table 3-4: Delay Accuracies for the Inverter Chain 94
Table 3-5: Comparison of Optimizers 94
Table 3-6: Path Delay Specifications for the Full Adder Module 97
Table 3-7: Optimization Statistics for the Full Adder Module 97
Table 3-8: Delay Accuracies for the Full Adder Madule 97
Table 3-9: Path Delay Specifications for the Four Bit Adder 100
Table 3-10: Optimization Statistics for the Four Bit Adder 100
Table 3-11: Delay Accuracies for the Four Bit Adder 101



CHAPTER ONE

‘ | Introduction

The design of a VLS| circuit is an enarmous task. Sophisticated CAD tools are essential If
designers are to take full advantage of the power offered by fabrication technology. This thesis
describes tools for modeling digital MOS circuits and optimizing their performance. These tools
find the transistor sizes that minirﬁlze power consumption subject to constraints on signal path
delays. Thé principal advantage is an increase in designer productivity. At present, designers
size transistors based on intuition and numerous SPICE simulations. This process Is so time
consuming—for both man and machine—that designers are hard-pressed to arrive at any circuit
that meets delay specifications and can rarely afford the extra effort needed to minimize power
consumption as well. This hinders not only the design of the circuit at hand, but also the
comparison of alternate topologies for implementing functional blocks, as the performance
benefits offered by different topologies cannot be truly ascertained unless the corresponding

circuits have been optimized.

Another application is automlatic module generation for silicon compilers. The module's
transistors must be properly sized in order to meet system performance specifications, but it
would be unthinkable to have a human perform the sizing. The task could involve thousands of
transistors, making it too mundane and complicated. A special purpose optimizer can accomplish

the chore far mcre efficiently.

1.1 Previous Work

Several authors have studied optimization work of this nature. General purpose optimization
packages such as DELIGHT [1] and APLSTAP [2] perform much of the work in the optimization
process. They iteratively improve the design solution as a designer would, but by employing
nonlinear optimization algorithms, choose the next solution point more accurately and efficiently
than a human could., The key advantage is that an optimal solution is reached. However the
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optimization process tends to be computationally expensive for a number of reasons. First, since
the optimization package is general purpose in nature, it cannot exploit properties of digital MOS
logic and use algorithms which would be more problem specific and hence potentially faster.
Second, because the optimization package Iis isolated from the circuit's data base,
communicating solely via the simulator, there is no mechanism to access the circuit's structural
description or to embed additional information in the data base which could assist the
optimization. This hampers the application of more efficient algorithms that would require such
provisions. Third, the circuit's signal path delays must be determined fairly accurately; this
generally entails the use of a device level simulator such as SPICE, which is rather expensive
computationally, The consequence of these three factors is that general purpose optimizers are
typically restricted to circuits with at most about thirty design parameters.

In an effort to address larger designs, some researchers have investigated more specialized
techniques [3]. By using a resistive model for transistors and neglecting the changes in a logic
gate's input capacitance induced by sizing its transistors, these workers were able to simplify the
optimization problem greatly. They reformulated the original problem, a minimization subject to
nonlinear constraints, as an unconstrained minimization, This allows for much simpler
optimization algorithms, leading to fast convergence times. Nonetheless, the simplifications
needed to reformulate the problem seriously reduce the accuracy of both the power minimization
and the satisfaction of the delay constraints, making the approach inappropriate for high-

performance circuit design.

Other authors have aimed for fast computation times by simplifying the logic gate models
and the optimization techniques. Examples are TV [4] and Andy [5]. Both tools use resistor
madels for transistors instead of the computationally expensive device level models. Heuristics,
rather than nonlinear optiniization algorithms, guide the sizing of transistors in critical paths. In
particular, TV speeds up paths by widening the transistors of slow logic gates, while Andy uses a
fixed sizing ratio from gate to gate when a chain drives a large capacitive load and then reduces
the speed and power consumption of gates that are not on the critical paths. Although these
approaches are computationally fast enough to be applied to large circuits, our problem domain
requires more accuracy and efficiency. The resistor model is not accurate enough for high-
performance design, and the heuristic sizing rules are inexact and somewhat inefficient. The
heuristics are an attempt to decouple the sizing problem to the point where individual logic cells

can be sized independently of the bulk of the circuit, and consequently these rules take limited
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account of interactions among cells and signal paths, For instance, the heuristics ignore
common subpaths. If two paths sharing a common portion need to be sped up, often it is best to
speed up the common portion, since then both paths benefit. TV and Andy do not account for
this. Moreaver, both tools ignore the sensitivity of delay to power. When speeding up a chain of
logic gates, additional power should be given to the gate which will provide the greatest increase
in speed. This results in a chain that consumes the minimum power for the speed it offers. While
the heuristics will mimic this rule under certain conditions, they will not do so in general.
Furthermore, schemes that simultaneously consider all signal paths are pqtentially more efficient
than those that apply heuristics to each path in sequence and then iterate. Owing to these
deficiencies in the heuristic sizing rules, their final solution will be neither optimal, nor will it have

necessarily been arrived at in a computationally efficient fashion.

1.2 Overview of the Thesis

This thesis presents a novel approach to the transistor sizing problem. We attack the
competing needs for accuracy, computational speed, and a nearly optimal solution by combining
the benefits of the previous approaches we examined. Like TV and Andy, we work at a higher
level of abstraction than SPICE, transcending the details of actual transistor operation. However
we acquire additional computational speed by modeling entire logic cells rather than just
individual transistors, Like the general purpose optimizers, we employ nonlinear optimization
techniques. This helps to assure that we reach an optimal solution in an efficient manner.
However we exploit properties of digital MOS circuits and apply a specialized algorithm to the

problem, yielding striking improvements in computational speed.

Chapter 2 discusses the theory and implementation of the logic cell macromodeler. Weo
begin with a resistor-capacitor model and examine its limitations. We then develcp a more
elaborate model, one accounting for waveform shape effects, The theory gives us the form of the
macromodel equations. In the implementation section we describe how the equations’
parameters are determined with a sophisticated macromodeling support package. The resulting
macromodels are accurate and computationally fast, and are pertinent to timing simulation and

verification as well as optimization.

Chapter 3 presents the theory and implementation of the optimization algorithms. We

explore several possible optimization methods. We choose a method particularly suited to our

12



problem, taking advantage of the propérties of the digital MOS domain, and of our ability to create
a circuit data base customized for the transistor sizing problem. Our approach, called duality,
allows us to partition the problem into many simpler, smaller subproblems, and to transform the
nonlinear delay constraints into a much simpler form, These techniques lead to very fast
computation times. The chapter closes with a description of the software and several examples of

the optimizer’s performance.

Chapter 4 concludes the thesis with a summary of the contributions of this work and the
perspectives gained from it. We also discuss several areas for future investigation, especially as

related to automatic circuit design.,
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CHAPTER TWO

Macromodeling

2.1 Overview

This chapier discusses accurate, computationally efficient models for MOS logic gates. The
models are well suited for simulation and optimization of high-performance VLS! circuits. The
models are based on device equations, and acquire much of their accuracy through careful

consideration of waveshape effects.

The significance of waveshape effects has been investigated by other workers. Crystal (6], a
timing simulator, models transistors as resistors, but uses different values for transistor
resistances depending on input wavetorm, While this leads to good accuracies (typically within
10% of SPICE predictions), the approach does have some limitations. For example, the tables of
effective transistor resistances depend on a uniform trigger point voltage (the point on a logic
gate's transfer curve where vy ;. = le) and can produce substantial errors if this restriction is
removed, for instance by varying beta ratios. Moreover the table interpolations can generate
jagged delay functions; this can make the optimization task more difficuit.

For these reasons we chose to base our models entirely on device equations. Horowitz
[7] pursued a similar strategy in modeling the delay of a MOS inverter. He derived equations for
the gate's response and then obtained estimates of parameters from the gate's drive curves

(curves of v, versus v for different values of load current).

In this chapter we describe a more general and sophisticated model. We develop equations
for power consumption, output waveform, and input capacitance of a general MOS logic gate.
These equations are the culmination of several passes at modeling MOS logic gates; they are
computationally fast because they incorporate the minimum level of detail needed to acquire the
desired precision. To obtain high accuracy in the model, we wrote a macromodeling support
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package to determine the equations' parameters. The package curve fits the model equations to

SPICE simulation resuits and finds the parameter set which provides the greatest accuracy.

Section 2 describes the basic principles of the macromodeling approach. Sectlon 3
presents models for MOS inverters. Our analysis opens with a treatment of the resistor-capacitor
model. After studying its range of validity, we construct an improved madel that accounts for
waveform shape effects, The analysis is extended to more general logic gates in section 4. The
theory gives us the form of the macromodel equations. In section 5 we discuss a macromodeling

support package that solves for the equations’ parameters.

2.2 Motivation and Intent

Circuit optimization is a computationally expensive process. It is an iterative procedure,
requiring multiple simulations at each step to evaluate delays and their gradients. Moreover,
high-performance circuit design requires fairly precise delay estimates, but using a device level

simulator would be out of the question for all but small circuits.

Since it is too time consuming to compute circuit responses during the optimization, we
instead pursue an approach where much of the work is performed in advance, prior to the
optimization. We divide a large circuit into many small piece.. This partitioning is done such that
the pieces have limited, well-understood interactions, while the elements inside the pieces have
strong, complex interactions. Thus computin;; the interactions among elements within a piece
would be very expensive, and it behooves us to characterize the behavior of the pieces

beforehand to avoid having to compute the behavior during the optimization.

This approach is called macromodeling. In the digital MOS domain, candidates for pleces
would be cells such as logic gates and storage elements. We model the attributes of the cells as
functions of the cell's internal description and boundary conditions. In particular, we are
concerned with a cell's power, input load, and output waveform attributes. The cell's internal
description consists of its transistor sizes, layout parasitics, ahd process parameters. Boundary
conditions are imposed on the cell by external agents. These include input waveforms from
drivers and output loading from receivers and wiring capacita..ces. We characterize waveforms

as time-shifted ramps with exponential tails. This waveshape is representative of those found in
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time

Figure 2-1: Waveform Characterization

digital MOS circuits.! Figure 2-1 displays an example. The chain of inverters is driven by a falling
input waveform; tne figure shows the output waveform of each gate. Here Ty denotes the time
shift and T, the time constant of the exponential portlon.2 Conceptually Ty Is the time until the
output begins to move in response to an input transition and Tsw is a measure of how quickly the
output switches once it does begin to change. We curve fit actual circuit waveforms to the
time-shifted ramps with exponential tails. From the figure we see that the output waveform of the

chain of inverters is described by

1Ac:tual circuit waveforms begin more smoothly than our approximation. However the error is negligible because the
logic gate driven by the wavetorm does naot realiy begin to switch until the wavetorm approaches the trigger paint voitage
(the point an the dc transfer curve where IN = VOUT) and is therefore insansilive to the shape of the first part of the
waveform,

For each waveform, the ramp ends and the exponential begina after T « 1) seconds of the transition have
elapsed, This time was chosen based on typical circuit wavetorms. The ramp S sﬂ:pe matches that at the beginning of the
exponential, giving a smogth waveform,
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n
chainTge, = ; T kot

chain TSWoul = TSWoum

We characterize output loads in terms of an effective capacitance, uividing charge
transferred by change in voltage. This is illustrated in Figure 2.2. Note that this allows us to
model RC interconnection networks since the effective capacitance can be a function of

waveform slope.

Y '
VIN ' ’ ’/

A 4
<
=z

Figure 2-2: Load Characterization

We have effectively "black-boxed" the cell as shown in Figure 2-3. The cell Is affected by its
environment via the boundary conditions Tswm and CL. It interacts with its neighbors via lis
interface attributes Cln and Tg,\o ot The internal attributes power and Ty, are isolated from the
environment and have no influence on the attributes of the cell's neighbors.

2.3 Inverters

We begin our macromodeling analysis with the ubiguitous inverter, illustrated in Figure 2-4.
. The results will be extended to more general gates in a subsequent section. For the sake of
conciseness, our analysis is only shown for rising input, falling output nMOS gates, although we
will present macromodel equations for both transitions. The macromodel equations for CMQOS are

similar.
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Figure 2-3: Macromodel Representation

Input

Figure 2-4: A Depletion Load nMOS Inverter

2.3.1 Objective Function

The practicing engineer typically must design circuits such that they satisfy delay
specifications. The engineer also desires to minimize some objective function subject to those
delay constraints. Power dissipation is a major concern in nMQS technology, since generating an
output low requires that both the pullup and pulidown networks be on simuitaneously. We
accordingly choose to minimize power dissipation, which for nMOS is dominated by static power
consumption. The static power consumed by an nMOS inverter is roughly proportional to the
shape factor (ratio of channel width to length) of the pullup; that Is,

18



Power=a +a,§ o
where a, and a, are constants that depend on the fabrication process and power supply voitage.

The choice of an objective function for CMOS circuits is not as clear. Usually a designer
wishes to minimize area, power dissipation, or some combination of the two. Characterizing the
area consumption is difficult because it is highly dependent on layout techniques. However we
can easily describe the contribution of the trgnsistors. This is simply

n
Area = Poly Pitchx Z stack width,
i=1

where we have omitted the transistor lengths because for CMOS they are set to the minimum

channel length.

As density increases, power dissipation is becoming a vital issue in CMOS technologies.
Unlike the nMOS case, ac power dissipation is dominant. This ac term accounts for the charging
and discharging of wiring, parasitic, and transistor gate capacitances. |f we desire to have
minimum impact on the layout, we might choose to vary only the transistor sizes, A gate's
transistors contribute to the ac power dissipation through their effect on the total load
capacitance that the gate's driver sees. Their effect on the capacitance, and hence on the ac
power since it is proportional to capacitance, is proportional to the total transistor area. Another
power term comes from the switching behavior of the logic gate. As the input switches there isa
brief interval where both pullup and pulldown networks are on. The magnitude of the ensuing
short-circuit current depends on the shape factors of the transistors, while the duration of the

interval depends on the sifpe of the input waveform.

2.3,2 OQutput Waveform

2.3.2.1 Resistive Modsg!

As we have seen, computational limitations mandate the use of a simple delay model. The
simplest transistor representation that provides tolerable accuracy is a switched resistor. The
MOS transistor is madeled by a capacitor from the gate to ground and a switched linear resistor
from drain to source. The gate to source voltage controls whether the resistor Is switched on or
off. Figure 2-5 shows an example, The delay characteristics of the model, along with their
implications for circuit optlmizatior:. have been analyzed by John Hoyte and Lance Glasser in

19



Output

Figure 2-5: Switched Resistor Maodel

[8] and [9]. The principal advantage of the model Is its simplicity, which allows one to derive
closed form expressions for the aptimal transistor sizes, leading to fast run times. Unfortunately
the model can be alarmingly inaccurate. Moreover the errors can he exacerbated by the
optimization. These workers found that for a chain of similar gates where the capacitive loading
on each stage is dominated by the input capacitance of the next stage (rather than the wiring
capacitance), pushing the chain for speed results in equal stage delays. That Is, if for a given
input transition we desire that the chain respond as quickly as possible, the model predicts that
the total delay be uniformly apportioned among the gates. A gate with a rising output switches
just as quickly as one whose output is falling. For nMOS this virtually guarantees that while
stages with rising outputs are insensitive to input waveshape, those with falling outputs are highly
sensitive to input slope. (We will cover this in more detail in the next section.) This sensitivity
means that the pulldown transistor cannot be accurately modeled as a resistor, and the effect on
total chain delay is significant because the stage delays are equal. Rising output stage delays, for
which the resistive model tends to be valid, do not dominate the total delay. The model exhibits
errors of up to 70%, clearly unacceptable for serious circuit design.



2.3.2.2 Extended Madel

Faced with the insability of the resistive model to account for waveshape effects, we are
compelled to derive a mcse elaborate model. Ever mindful of computation time limitations, we
pursue the simplest possible extensions that will provide the needed accuracy. We begin by
studying the inverter's response to different input waveform slopes, paying particular attention to
the different regions of transistor operation. The equations describing these regions are

t'Ds=0 Vos = vTH(O off
ins = K(gg= vy 0<vgg= Vry < Vg saturated
it _ 9 o . .
ipg=2K(gs= vy ) VDS) ¥ps Ves VTH> YDs linear
where Ve = threshold voltage
K=%(w/l)p C0
The corresponding i-v characteristic curves are shown in Figure 2-6.
i
»
linear saturated
lncreaslrig
Vas
> VYos

Figure 2-6: MOSFET |-V Characteristics

As the inverter's input rises and its output falls, the puliup and pulldown transistors
sequence through different regions of operation, These regions are summarized in Table 2-1,
For the fast input response3 the bulk of the delay accrues from the last states where the pulidown

3. Fast" means that the input transition time is fast relative to the output transition time,
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is in its linear region. From the translétor's i-v characteristics we see that a line passing through
the origin is a reasonable approximation of device behavior in this region. Hence the pulldown
can be approximated by a resistor, and the resistive model works well here. However for slow
inputs the pulldown is saturated for a significant portion of the transition, causing the inverter to
behave like an amplifier. In this mode the inverter is highly sensitive to the input waveform and

consequently the resistive model breaks down,

Fast Input Response Slow Input Response
pullup pulldown pullup pulldown
linear off linear off
linear . sat linear . sat
linear linear sat sat

sat linear sat linear

Table 2-1: Pullup/Pulidown Regions of Operation

We seek a simple model that includes both amplifier and resistor behavior. We are
especially concerned with the middle and latter parts of the input transition, for it is here that the
inverter's output is sinking the most current. The beginning of the transition, where the noise
margin requirement limits the output current, is not as crucial. For slow inputs the inverter can be
modeled as an amplifier when the pulldown is saturated, and as a resistor tied to Vg, When the
pulldown is in its linear region. As the input transition becomes faster, the inverter spends
proportionately less time as an amplifier and more as a resistor. The mapping of the inverter to an
amplifier and resistor is shown in Figure 2-7, We begin with the amplifier model when the input
voitage reaches V"_. This is an ac model; it measures perturbations from (vIN, vOUT) = (V“_, VOH).
We change to the resistor model as the pulldown transistor firmly enters its linear region. For
continuity of v, - and i, ;. when the change occurs, we use the resistor model when Voo 2

rpd icaps + Vour'

We can acquire much insight into the behavior of the model by studying its drive curves.
These curves show the model's Vout Versus v, relationship for ditferent values of output load
current. Figure 2-8 presents the circuit that measures the relationships; Figure 2-9 compares the
model's drive curves with those of an actual nMOS inverter. In both of the drive curve figures, the
inverter's DC transfer curve is indicated by the solid curve, and corresponds to I = 0. The

transter curve shifts as IL becomes nonzero.
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Figure 2-8: Circuit for Determining Drive Curves
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The model's drive curves possess several features that have ii.portant implications. Firsi,

the DC transfer curve is flat outside of the range v, € [VIL' VIH]. This means that the gate will not
respond until a rising input has reached V|L. or until a falling input has dropped to VIH. These
“dead zones" provide immunity to noise in the input signal. Second, the two modes of model
operation are clearly visible. The horizontal lines on the left and right sides of the figure display
the resistive behavior. Here changes in output current produce a proportionate shift in output
voltage,* and the output voltage is independent of input voltage. The amplifier mode is
represented by the slanted lines in the center of the drive curves. Here the output wayeform is
entirely determined by the input waveform, the output slope being proportional to the input slope.
For sufficiently slow inputs the inverter's output will closely track the DC transfer characteristic,
exhibiting a strong dependence on the input waveform's shape. For faster inputs the inverter will
not be able to track the input waveform, and will be forced out of the amplifier regime into the
resistive regime. Therefore the inverter becomes less sensitive to input waveform shape as the

input transition speeds up.

The ac model used for the amplifier behavior clashes with traditional engineering
philosophy. Normally one creates an ac model by linearizing a circuit about a quiescent
operating point. Here however we are interested in large signal behavior. Consequently, while
we can perturb the system from an initial point (in this case (v, Vo) = (Vi VOH)). we have no
easy method to calculate the model's parameters such as g m and - We cannot simply evaluate
the parameters at a quiescent operating point because we have none. We instead view the
problem at a more objective-oriented level, and seek to determine which values of g m ML ete. will
provide the closest approximation to observed respanse times. Moreover, rather than using the
same set of parameter values for the rising input and falling input responses (which would
correspond to using a single drive curve to characterize the inverter), we procure additional
accuracy by using distinct sets for each transition's begin and switch responses. This leads us to
the following strategy: analytically derive expressions for the form of the macromodel equations,

then curve fit to observed data to solve for the parameters in the equations.

4Tha reader may have noticed that this Is not true for the low L high v uT’ portion of the actual inverter's drive
curves for larger | . This Is because the pullup has moved from ils ﬁnear region into saturation, and is behaving like a
current source rather than a resistor, However the macromodeil equations that we will develop depend only on he
pullup's current sourcing ability being proportional to its shape factor, which will be rue whether the pullup is best
modeled as a resistor or as a current source. This is a consequence of aur delay parameterization, TB and TS
measure the duration of the inverter's response, which Is inversely proportional lo shape factor for either a resistor or
current source model,
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Output Waveforms for Different Input Slopes

We carn derive closed form expressions for the model's response to dilferent input
waveforms. We begin Gy studying the response to fast input transitions and work toward very
slow transitions, The inverter is driven by a ramp

Yy = (T—AV—)I+ VoL
SWRin
where AV is an arbitrary positive voltage difference and we vary TSWRIn to select the time for the
ramp to transit this difference. The ramp is held at VOH once it reaches that voltage. The
implementation of the modeler curve fits actual responses to time-shifted ramps with exponential
tails. We approximate this by taking TBEF, the delay before the output begins to fall, as the time
required for the output to drop to some VBEF. We take TSWF. the measure of output switching

time, to be praportional to the reciprocal of the slope at some VSWF.

Very Fast Inputs

For sufficiently fast inputs the inverter model changes from an amplifier io a resistive form
immediately. In other words, the first order resistive model is valid. Figure 2-10 shows the maodel.

Lumping the self-capacitances ¢_, and c,, from the pulldown (the self-capacitance from the
d bd

g
pullup is negligible, or so SPICE claims) into one effective capacitance5 Cpogr W find

=1,
Your=Vou = Voz)e"p(" )+V0L
De
V.,—-V
o~ VoL
Tper=Tp,In (T/T) +i
BeF~ VoL
T
De
T.. . & ——————
WF —
3 Vswr— Yor

5The effective capacitance ¢_ , Is not simply the sum of ¢ d and ¢, ,. The contribution from the gate to drain coupling
capacitance is larger than cgd B_gcause the gate vollage is Rol fixed, but rising. Our macromodel equations will account

for this.
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where TDe= rpdem,. Cmal= cpd+ C,_

1, = time for input to reach vV,

=7 Vie= VoL
T 'SWRin AV
F od — —— C_
Vau <

Figure 2-10: Resistor Model for a Very Fast Input

Fast Inputs

In this regime the inverter modei does not change from an amplifier to a resistive form
immediately, but does change before the output drops to Vg, .. Figure 2:11 shows the amplifier
model. The output switches quickly enough that the current in the total load capacitance Ct otal
dominates that of r, , allowing us to neglect the resistor. Horowitz [7], who derived delay estimates
and bounds for inverters using a simpler madel, has analyzed the behavior of this regime. The

response prior to the model change is

v & AV ( )
Your= You~ =1y
2 Craml TSWRIn
T =(VomV 2 Croral TSWRln % +
2er = |(Vou = ¥ pep g AV ‘n

The model changes to a resistor once the condition VOL 2 o icaps + Vour is satisfied. Denoting

the time at which this occurs as t , we have

change

T
2 SWRin ")
t =r C <—1 [1 Vou—=V, ] > t
change rpd total tlt 8T Olotal AV ( o OL) t iL
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SWRin 1
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change ™ En'pd" pd 1 Tswm 8n'n ' Croa AV
(-1
change
Your = Y change = Vo) e"p(" T )+ Vo
De
T
De
Ty & ——
F -
S Vswe= VYo

where T pde al

=T Vie=Yor
= swrin T Ay

Moderate Inputs

Here the input waveform is slow enough that the model changes after the output has fallen
to VSWF. The current in Cmm' still dominates that of L The simplified circuit is shown in Figure

2-11, The equations for Vout and TBEF are identical to those of the previous case, but the

expression for Ts becomes

Clolal 7.’S WRin ]
TS wr™ ( V )2g AV
: Vswr28nm

O

Im Vin — Cpd — G

Figure 2-11; Amplifier Model for Fast and Moderate Inputs



Slow Inputs

As we continue to slow down the input waveform, we eventualily reach a point where we can
no longer neglect the current through r, . The resulting circuit is shown in Figure 2-12, This ylelds
the following differential equation in the ac co'mponent of Vour:

(t=1t,)AV v dv
gm T = + = + Ctotal-;_m= 0
SWRin 4 d

Unfortunately the solution for Vout contains both exponential and linear terms, and we cannot
obtain closed form expressions for TBE and Tsw.

||
B}
o

9nVin —r— Cpq "L

o)

Figure 2-12;: Amplifier Model for Slow Inputs

Very Slow Inputs

Here the input and output waveforms have slowed to the point where the current through
Cwm is almost negligible compared to that through r, . The amplifier system reaches steady state,
exhibiting a constant tracking error to the ramp input, being entirely limited by the speed of the
input. A Laplace transform analysis of the system reveals that the output crosses the inverter's
trigger point6 atatimer me after the input does,” with a slope equal to the input's divided by
the DC gain [10). Accordingly we have

Vip= VoL

Rn = TRy LSWRin

eThe point on the inverter's DC transier curve where the input and output voltages are equal.

The reason for the delay can be claritied by cansidering a simpler circuit, where a very slow vultage ramp drives a
series RC connection. The capacitor voltage will lag the ramp by the RC delay. Qur amplifier mogel can be transiormed

into this representation by taking its Thevenin equivalent, indicating an output delay of " ctotal
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Torr= trpgin ¥ 7. Coomat
TSwRin

SWF g r, AV

where VTP = the inverter's trigger point voltage

Modeling the Model

Combining the results from the previous section gives us the response for the entire range of
input waveforms. This is illustrated in Figure 2-13. Figure 2-14 shows actual data for the rising
and falling output transitions. The figures also include curves for TTPout. the delay from when the
input signai crosses the inverter's trigger point voltage to when the output does. Note the
differences in the actual data for the two transitions. For nMOS technologies, static gates turn on
both pullup and pulldown networks in order to generate a low output. Guaranteeing a valid
output low requires that the resistance of the pulldown network be much lower than that of the
pullup network. For very fast inputs we expect TSWOut to be roughly constant. This is apparent for
the rising output transition, but for the falling transition, due to the low r " this region is scarcely
noticeable. The effect can also be seen in the TBEoul and Tp,,, CUrves. The input to output
coupling capacitance and the pullup/pulldown resistance form a high pass filter. Since rpu Is
much larger than r_, the filter's cutoff paint for rising outputs occurs at slower inputs than it does
for falling outputs. Furthermore, because the pulidown transistor is in its linear region during fast
falling input transitions, Cd is larger, and more of the input transition couples to the output.
Consequently the TE,EF‘out and T.ﬂ,mut curves become convex as we move toward very fast inputs.
The capacitive coupling Is forestalling the rise of the output. The dissimilarity in resistances also
implies a low trigger point voltage. For the same input slope, it takes longer for a failing Input to
transit the dead zone and approach the trigger point voltage than it does for a rising input.
Correspondingly the T, ., curve is steeper than the Ty, CUrve. For CMOS technologles the
resistances are nearly symmetric, and both output transitions exhibit curves resembling those

shown for the nMOS falling output transition.

Having developed equations describing the inverter's response to various input slopes, we
now seek a means of coalescing the results into one conglomerate expression, It is common to
use smoothing functions to effect this combination. However many workers fail to consider the
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SWin

Figure 2-13: Inverter's Predicted Respanse

computational overhead incurred with these functions. We instead create simple functions that
exhibit the desired behavior in each of the input slope regimes. To avoid placing any
unnecessary burdens on the optimization algorithms, we choose functions that are twice
continuously differentiable.® Moreover we prefer functions that do not contain muitiple maxima or
minima, i.e., that are unimodal. This helps eliminate cusps that could trap the optimizer's iterative

solution technique.

To describe the time until the inverter's output begins to fall in response to a rising input we

use

T

BEFour = 1,

seF0 t M Tswrin

Here the Intercept TBEFO is obtained from our analysis of the inverter's response to a moderate
input; the slope m includes both the time to reach the inverter's VIL and the moderate input
behavior. Fixing the length of the pulldown transistor's channel, we have

aOmlmlzatio:m algorithms exist for solving problems with ill-behaved {e.g., discontinuous) functions, but because of
their added generality these algorithms tend to be slower,
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Figure 2-14: Inverter's Actual Output Responses
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The switching time of the output's fall is described in a similar faéhlon:

+mT

T =T SWRin

SWFour SWFO

TSWFO is the inverter's response to a very fast input; it is proportional to the product of the

pulldown’s resistance and the total capacitance. The slope m chiefly depends on the inverter's

very slow and moderate input behaviors.

Towro=% T "4Crom
b

1
—a+t W Crotal
'nd

C
m= d+dJ;+dJﬂ

8 Sm
Cloral

s
—¢d+d +d
Wpd ¥od

We can characterize the delay until the output begins to rise in response to a falling input as

+mT,

T SWFin

BERout — =T

BERO

Due to the high resistance of the bullup. TBEF‘0 depends primarily on the inverter's very fast Input
behavior. The slope m depends on the delay in reaching VlH as well as the moderate input

behavior.
TBERO =4 t bl ’pu Ctoml
1
—+a + b1 S —C otal
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The equation for the switching time of the output's rise is more complicated than that for the
output's fall, since both the very fast input and moderate input behaviors are significant, whereas

for Tewrout
limited regime. We write

the RC regime can be ignored because the curve's shape is dominated by the gain

(Tewro— Tsmo)
.S.‘WRO SWRO + (Tasym +mT

T SWRO SWFIw

SWRout =

asym
Tswro = Tswro) + ™ Tswrm

Tswro is determined by the very fast input behavior, and reflects the product of the pullup

resistance and the total capacitance. The slope m is again related to the very slow and moderate
input behaviors, Tassx:o is the intercept of the curve's slow input asymptote.

TSWRO =4 t ’pu Ctotal
bl
—+a+—
Wpd
C
m=d +d——+ 42
gmrL gm
S C
-"dl‘l'dzﬂ'f'dl total
W Wpd
aym _
Towro =& 1 & Tswro

The preceding equations all depend on the total capacitance C . driven by the inverter.

total
The pulldown's gate to drain and body to drain capacitances contribute to this; both are
proportional to the pulldown's width. In our analysis of the inverter's response we lumped these

capacitances into one effective capacitance, Coar We have

de‘:C'led



2.3.3 Input Capacitance

Calculating a gate's delay requires knowledge of the input capacitances of the gates that it
drives. In this section we derive expressions for an inverter's input capacitance. Our resuits will

be extended to more general logic gates in a later section,

We begin by considering the components of the input capacitance. Figure 2-15 shows our
model. The input capacitance has two constituents: the gate to drain and gate to source

transistor capacitances.

I— |
out — i oﬁ—Dc out

— ¢,

n [ _—;7_CL —f T

Figure 2-15: input Capacitance Model

The input capacitance presented to the driver can change during the course of the input
transition. This effect is largely due to the input to output coupling capacitance Coa* Consider a
rising input transition of moderate speed. During the beginning portion of the input waveform—
that is, before the input voltage has reached V"_—the inverter's output has not yet moved
significantly, The input capacitance is therefore simply Ces * Coar Since both terms are

proportional to the pulldown transistor's width, we have

C

BElR ™ cgs + cgd

_'“1'*'“;“’,,4

However as the input voltage passes V"_ the inverter begins to pull its output low. Consequently
the driver must supply more current to charge Cgd than it would have had the output voltage
remained fixed, This is called the Miller effect[11]. The effective input capacitance has
increased. Note that the total voltage change across ¢ is always Vou * VoL While that across
Cod is 2 (Vm| Vo but we are only interested in the capacitance seen during the beginning and
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switching portions of the input waveform. For very fast input transitions the output will not have
moved until after the input has fully switched; hence the driver will not have seen any Miller
capacitance during the actual transition. As we slow the speed of the input transitions, more of
the output's switching time overlaps with the input's and we see more Miller capacitance.
Eventually all of the output’s switching time overlaps with the input's and Cswm reaches a plateau.
The expected behaviors of the effective input capacitances CBE‘n and Cswm appear in Figure
2-186. '

R R I R el e e,

> Tswin

Figure 2-16: Expected Input Capacitance

The analysis is complicated slightly by the fact that since Cad and ¢ a3 are functions of Vas
and vg, they not only vary as the gate switches, but their average value during the input
transition changes as the input transiion slows down. Figure 2-17 displays their variation as a
function of the drain to source voltage. Detailed discussions of the capacitances' origin and

behavior may be found in [12, 13].

The outcome is that we see two effecis as the input transition slows down: more of the
output switches during the input transition, and the average Cgs and Coq SEEN during the input
transition changes. For the falling input, rising output transition the puilldown begins in its linear
region and terminates in saturation. As the switching time of the input increases, the pulldown
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linear Vgs - VT sat

Figure 2-17: Gate Capacitances

spends proportionately less time in its linear region and more in the saturation region.9 From the
cga and Cod curves in Figure 2-17 we see that Cas increases slightly while cgd drops. Also, more of
the output transition overlaps with the input transition. Hence, although the coupling capacitance
Cqd has dropped, this is offset by the increased overlap between transitions, and the Miller
capacitance is virtually unchanged. Figure 2-18 provides an illustration from SPICE simulations
of an inverter. Csw,_.ln is roughly independent of TSWFW and only depends on the size of the

pulidown. For a fixed pulldown width we have

CSWFIn =aq + 4 wpd

For the rising input, falling output transition the pulldown begins saturated and ends In its
linear region. For fast inputs the pulldown will remain saturated for most of the input transition.
As we slow down the input transition, the inverter is more able to track the change at its input, and
there is less delay between the rise of the input and fall of the output. Consequently the pulldown
spends proportionately more time in the linear region and less in the saturated region. The gate

9We saw this same phenomenon In the section on delay; as the Input transition slows, the pulidown spends mare lime
in saturation and the inverter behaves more like an amplitier,
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Figure 2-18; Capacitance for a Falling Input

capacitance curves in Figure 2-17 shaow us that Cas diminishes slightly while Cod increases. As we
have seen, slower input transitions imply that more of the output transition overiaps with the input
transition. Unlike the case for CSWFin. here the two Miller capac!tance effects have
complemented rather than offset one another. The coupling capacitance and the input and

ou.nut transition overlap both incréase. giving rise to a significant Miller effect.

Figure 2-19 displays data from SPICE simulations; the data agrees fairly closely with our
analysis. The input capacitance begins at a minimum, and then increases as the input transition |
slows, increasing the input to output transition overlap and the coupling capacitance. Once the
input transition extends beyond the entire output transition, the overlap cannot be further
increased and the curve reaches a plateau. For very fast inputs the input transition completes
before the output has a chance to drop. We have

- 4
Cswrom = Sgs + Cad

where Cas and ¢ g0 € the average gate capacitances during the input transition. Since both are

proportional to Wgr We may write
Cowrom= 4 Wpa

For slow inputs we see the full effect of the Miller capacitance. We have
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Figure 2-19; Capacitance for a Rising Input

We have seen that the input capacitance C begins at a minimum. Owing to the Miller

effect, it rises to a plateau as T, increases. Sv\:\znwill now characterize the transition region
between the fast and siow TSWHIn regimes. As always, we desire an accurate yet computationally
simple characterization, preferably twice continuously differentiable. We choose to parameterize
the transition region in terms of an initial slope m, as shown in Figure 2-20. Here we have taken
advantage of the fact that the interval of constant CSWFlln prior to the transition region Is
insignificant relative to the duration of the region. This arises because for very fast inputs the
output begins to fall almost immediately. The drop in the pulldown's vjo brings the pulldown out
of saturation, causing it to exhibit significant Cad during even fairly fast input transitions.
Consequently CSWRln begins to grow virtually as soon as the input transition slows and is no

longer a step.

The slope of the transition region is governed by the load capacitance, transconductance,
and Co of the pulldown. As the input transition slows the Miller effect increases. Since the

coupling capacitance cgd' is proportional to the width of the pulldown, this increase in Miller
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Figure 2-20: Approximate Capacitance for a Rising Input

effect, and hence in m as well, must also be proportional to the width. The load capacitance and
transcon-iuctance are pertinent because of their influence on the output waveform. For transistor
sizes and loads that provide fast output waveforms, the transition region will be narrow because
the input transition need only slow down slightly in order to completely overlap the output
transition. This implies a steep slope m. In contrast, large CL and small O will lead to relatively
shallow slopes. From our analysis of delay we saw that the ratio of C, to 9n determines the speed

of the output transition, and so we may write

g
m= wpd(cl + czc—':)
w

'pd
— wpd(c1 + c’C—L)

Summarizing, our final equation for CSWRln is

mT
SWin
Ceowor = Cenn + ACcwo, (-
SWRI SWRO SWRI
" " ACsupin T Mgy
ACswrin = Cswrooin - Cswaom



Cowroin= g+ €ea

—awy,
CSWRooin = cgs + 2cgd
— b1 Wod
8,

m= wpd(c1 + czz,'i)

w
pd
— wpd(cl + CZFL-)

For a CMOS inverter both the rising and falling input switching capacitance exhibit
signlflcant Miller capacitance. Recall that the magnitude of the Miller capacitance is affected by
the input to output transition overlap and the change in average Cad and Cgs 25 the input
waveform slows down. As we saw in the nMOS case, for a transistar that is being turned off the
two effects roughly cancel, while for a transistor being turned on they complement one another,
producing a substantial Miller effect. Since for a CMOS inverter an input transition always turns
on one device and turns off another, we always see a Miller effect capacitance, and model both

C and C

SWFin as above.

SWRin

2.4 General Logic Gates

Inverters are but one of a myriad of logic gates fqund in circuit designs. In this section we
will extend our results to cover a more general class of logic gates. We limit our analysis to logic
gates with a single active input, as shown in Figure 2-21. Transitions at muitiple inputs are not
supported by our abstract model; accurate evaluation of their effects requires a low-level
simulator that computes node voltages and branch currents. We feel that this represents an
excessive computation cost and t'herefore choose a worst case gate state with a single active

input to model multiple input transitions.

We will derive macromodel equations for the general logic gate by extending our inverter
equations, As regards the objective function—be it power or area—the equations are basically
unchanged. The power consumption of an nMOS gate is still proportional to the shape factor of
the pullup, and the power or area consumption of a CMOS gate is still dependent on the stack
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Figure 2-21: General Logic Gate

widths. However the equations for the output waveform and input capacitance require moderate

extensions.

2.4.1 Output Waveform

Additional transistors in a logic gate introduce two complications. If they are part of the path
that switches the output by forming a path to VDD or ground, their resistance and capacitance
impede the output transition. if they are included in a side path that does not connect the output
to a supply rail, their channel capacitance couid add to the load capacitance and hinder the
output transition. During the output switching transient, transistors with high inputs are
predominantly in their linear region. Hence we model them as RC lines formed of their draln to

source resistance and channel to gate and substrate capacitance,

Figure 2-22 contains an example. Note that although the top transistor in the right pulldown
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branch is not in the conducting path, its capacitance adds to the total load. The general situation

is depicted in Figure 2-23,

L, 0
LT

LA S
wl O
L

T
L

active F"

input

|
P
;.

™
l

Figure 2-22: Example of a General Logic Gate

Output Waveforms for Difterent Input Slopes

In this section we will indicate the basic modifications needed to the Inverter output
waveform equations.
Very Fast Inputs

For very fast inputs transitions we again take advantage of the fact that the switching
transistor is primarily in its linear region, and model it as an RC line. Although we cannot derive a
closed form solution for the response since the circuit contains a distributed RC line,'® we can

1OWe could approximate the RC lines as lumped elements, but this would lead to very complicated and computationally
expensive equalions. :
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Figure 2-23: Circuit Model for a General Logic Gate

Co

find the approximate response by using an approach lirst proposed by Eimore [14]. The true

response is approximated as a single time constant exponential of the form

- - (=t )/ T
vour= Vou VOL)e( 1 Toe+V,,

where {; = time for input to reach V“_

TD .= Eimore delay

Although Elmare originally developed the approximation for analyzing cascaded linear amplifiers,
his work has recently resurfaced in waveform estimation and bounding work in MOS circults
[15,16]. The Elmore delay is the time constant that gives the minimum error between the
approximate and true responses. intuitively, the Elmore approximation simply superposes the
effect of each capacitor's current on the output node. For an RC tree, the Elmore estimate fora

falling voltage at a particular nodeiis



Tpe= Zk: Ry Cy

Here R, is the resistance in common between the path from the input to node k and the path from
the input to the output of interest. For example, in Figure 2-24 the Elmore delay for the top output
is

T, =R C,+ R +%R)C,+ (R + R+ R)C,+ (R + R)C,

We apply the Elmore delay forrt_\ula to compute TBEFout and TsWF out for our general logic gate.

Ry

/\/\, O Cutput 1

mot ANT—AMN— v

Figure 2-24: An RC Tree Network

Moderate Inputs

o

In this regime the speed of the output transition is limited by the slope of the input and
transconductance of the switching transistor. Consequently, transistors in the conducting path
which are electrically after the switching transistor have small Vos and we can neglect their
voltage drops.11 However we must add their capacitances (along with those of any transistors
connected to them) to the total load capacitance. Transistors which are before the switching
transistor do not impose any additional load since their capacitances are already discharged;
nonetheless their resistance will decrease the switching transistor's effective 9 If they are In the
conducting path, impeding the output transition. This effect is illustrated in Figure 2-25. The
effective g has been reduced to 9 /(1 + g )

o
"Thls is not a cascade connection because these transistors are in their linear regions and behave as resistors, not
current sources. Hence they are detrimental rather than beneficial to performance,
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Figure 2-25: Reduction of Effective Transconductance

Very Slow Inputs

The effects are identical to those of the previous case: transistors which are electrically after
the switching transistor increase the total load capacitance, while those before it decrease the

effective transconductance.

Curve Fitting the Response

Combining our results, we extend the inverter's macromodel to encompass more general

gates as follows;

Let Wod = width of the switching device
= effective total Wog of devices in the conducting path

wpdtaml
(treat as if wpd's were conductances)

Wodbefore effective total Wod of devices before the switching
transistor in the signal path

Cmml = cpddrlver + cpdqfur + CL

Coddriver €, Wod
Cpdafter = Z ¢, Wodi
after
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Teerour = Taero T M Tswm
TB eFo°  Use moderate input slope approximation
1
=a+ bl—Clo:al
m
1

—~a+ bl;p;cloml

m: ot effect plus moderate input slope behavior

8o C
=d +d -2+ 4 22

: gpdtoral gmqﬂ'

S C
—~d +d—L g 22

2
wpd total wpd

Switching time of falling output transition

Tswrow= Tswro t M TSWRM
TSWFO: a + Elmore delay approximation with rd= -‘;;—d for each conducting pulldown

m: very slow input behavior plus moderate input slope behavior

1 Croral

47



Delay until output begins to rise
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2.4.2 Input Capacitance

As we have seen, the addition of extra transistors to form more complicated logic functions
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has an effect on a gate's output response. We have examined the effective capacitance of an
nMOS inverter during the beginning and switching phases of the rising and falling input. Of these
four modes, only one depended on the output waveform. The input capacitances during the
beginning portion of the input transition had no dependence because the output was still
stationary. The capagitance during the switching portion of a falling input had none because the
average input to output coupling capacitance dropped as the input waveform slowed down,



leading to no net Miller effect. Hence the input capacitance for these three modes depends only
on the pulldown transistor's size, being proportional to the transistor’s width (assuming a fixed
channel length). Only the switching portion of the rising input possesses a significant output
waveform dependence. To account for this dependence we must analyze the conducting path
containing the switching transistor, Figure 2-26 shows an abstract gate model zlong with its
circulf level representation. We model 'on’' transistors as resistors (linear region approximation)
and have added the appropriate capacit\ances from nonconducting paths to the total load

capacitance.

We find that r, causes a significant drop in the input capacitance. This fact has been
exploited for many years by amplifier designers to raise input impedance and thereby improve the
transfer characteristic. For very fast inputs, the output remains stationary throughout the Input
transition. We have

¢
gs
Cswron™ T o 7 o + e, (1+8,r,)
m

Since the switching transistor is saturated during the input transition, we know cwl > cgd and can

simplify the expression to

<

SWROI d
n 1+gmrb 8

For very slow inputs node a will have dropped to V, by the completion of the input

transition and we may write

CS WRooin

= €y +2¢ od

The slope m is affected in a variety of ways. The effective g modifies the C,_/ g, term. The
gate's trigger point voltage is higher due to the resistance My and the resistances also cause the
active transistor's v, to be lower during the input transition. These two effects imply that the
transistor is further in its linear region during the input transition and hence Cad is larger and the
Miller effect increases. Also, the resistance r, lowers CSWHOIn' while CSWR w0l remains
unchanged. Hence the total capacitance increase during the transition region from fast to slow

inputs grows, leading to a larger slope,
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Figure 2-26: Circuit Model for Input Capacitance

We couid add terms to the rﬁacromodel equation to account for each of these influences,
but the additional accuracy scarcely justifies this in light of the computational overhead that
would be incurred. Moreover complicated equations are often notoriously good at confusing
curve fitters by enduing the fitter's error function with many local minima, rather than a single,
global minima. Consequently the fitter may converge to a local minimum which could be far from
the global minimum. We 'instead exercise prudence and focus on the dominant effect, the total
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change in input capacitance during the transition region, and add an r, term to our equation for

the slope.

Our analysis yields the following equation for CSWRin:

mT
SWRin
C =C + ACopp.( )
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Sample curves for a two-input NAND gate are shown in Figures 2-27 and 2-28. These curves
illustrate the influence of the bottom pulldown transistor's resistance. In comparison with the
capacitance curves for the bottom input, those for the top have a lower Cg,\ o and a steeper

transition slope.

2.5 Implementation

We have developed a general purpose macromodeling software package. The modeler is
called Miranda. which stands for Modeler for iImproved Range and Accuracy. It processes cell
template files, a macromodel control file, and macromodel equations. Each cell template file
contains a logic cell’'s general topology. The macromodeler inserts values for device sizes,
capacitive loads, and input waveforms into the template, and then runs SPICE on the resuiting
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Figure 2-27: Input Capacitance for the Top Input of a NAND Gate
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Figure 2-28: Input Capacitance for the Bottom Input of a NAND Gate
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circuit. The values of the input capacitance and output waveform are extracted from the SPICE
output and stored. This procedure repeats for every combination of device sizes, loads, and input
waveforms specified in the control file. At present 216 SPICE runs are performed for the general
logic gate analyzed in this chapter. The particular logic cells used are inverters and NAND gates.
Owing to the simplicity of the cells, the SPICE simulations are quite fast, each requiring about ten
cpu seconds on a DEC 20/60.

Once the data points have been obtained, the macromodeler solves for the parameters in
the macromodel equatibns by using nonlinear curve fitting algorithms. We minimize the sum of
squared error; minimizing the maximum error might also be acceptable but it is too sensitive to
noise in the data. The curve fitter uses a Davidon-Fletcher-Powell algorithm [17] with
modifications to accept upper and lower bounds on the parameters [18). This is essential for
ensuring that the final equations make physical sense. Otherwise local minima in the error
function could draw the curve fitter toward nonphysical values for the parameters. Local minima
in the error function also mandate that higher order effects be successively included in the model
equations. That is, we solve for the first order terms in the equations first and then progressively
solve for higher order terms, For example, when curve fitting the macromodel equation for output
switching times, we first start with the simple RC model. We select a subset of data points with
fast inputs and large capacitive loads—those points for which the model is most accurate—and
solve for the RC terms in the equation, We lock these parameters and then soive for the
waveshape terms. Next we solve for self-capacitance terms. Finally we unlock all parameters and
curve fit again. This technigue hélps to guarantee that we reach the global minimum of the error
iunction, and adds very little to the total computatlbn time because the time is dominated by the '

SPICE runs.

The modeler is written in a computer language called CLU[19], It consists of SPICE
interface, minimization, and matrix manipulation program modules. These modules contain 3200,
1800, and 1000 lines of code, respectively. All told, the modeling support routines comprise about
6000 lines of CLU code; the modeling programs specific to the general logic gate discussed In
this chapter represent an additional 1700 code lines.

Pertinent curve fit statistics are shown in Table 2-2. The macromode! equations are typically
within several percent of SPICE predictions, a major improvement over RC models. These

benefits come at a small price in computational overhead because we have modeled the response
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of the entire cell, rather than using a more sophisticated transistor.-model and then having t0
compute the transistors' interactions to obtain the cell's response. The accuracy and
computational speed of the macromodels make them well suited for both simulation and

optimization applications.

Rising Input, Falling Output Falling Input, Rising Output
Model Eqn % Error Model Eqn % Error
ave  max ave  max
| CBERI n 1.5 5.6 CBEFI " 1.5 6.9
Cswm n 37 123 Cewrin 13 9.7
TaeFout 57 183 Taerout 46 132
T swFout 86 278 TawRout 30 106

Table 2-2; Macromodel Curve Fit Accuracies



CHAPTER THREE

Optimization

3.1 Overview

In this chapter we will present the theory and implementation of our optimization algorithms.
Our emphasis is on developing basic understanding and intuition rather than a rigorous
mathematical structure via formal proofs. The theory of nonlinear optimization is fairly extensive
and we cannot discuss all of it here; readers interested in more detailed treatments are referred to
[20], [21],[22], and [2]. We begin with a description of techniques for solving unconstrained
minimization problems, After next covering the special characteristics of our optimization
problem, for these always have a significant impact on the algorithm chosen, we move on to
constrained problems. We examine several approaches to constrained nonlinear optimization
and select one which is ideally suited to our problem, We follow the theoretical development with
a description of implementation issues and close with a summary of the advantages and

disadvantages of our approach along with results from several circuits.

3.2 Unconstrained Minimization

Unconstrained minimization problems are of the form

min f(x)

subjectto x € B

where f is a real-valued function, % is (for this unconstrained case) R”, and n is the dimension of
the parameter vector. Typical applications are curve fitting, where an error function |s to be
minimized, or speed critical circuit designs, where the signal propagation delay is to be

minimized.

The most straightforward case occurs when the dimension of the vector x is one. We shall
treat f as a function of a scalar by examining its dependence on the component of the vector x.
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Consider the example shown in Figuré 3-1. We lie at some point X and wish to generate a next
point x,  , that is closer to the minimum x . To determine the new point Xy, 1 We must select a
search direction and a step size to move in that direction, It is clear that the direction should be
governed by the sign of the derivative of f. This choice of direction is called a steepest descent
algorithm. In our example the derivative at Xy is negative so we move in a positive direction, in this

case to the right.

\

f(x)
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.
h 4
>

>
x
x

Figure 3-1: Minimizing a Function of a Scalar

Once the search direction is known, the step size is computed by probing in the search
direction. A sequence of successively distant points is probed until an interval containing the
minimum is found. A typical procedure is illustrated in Figure 3-2, where a pattern of three points
has been identified for which

alb<c
fla) > fib) < fc)

The next task is to predict where the minimum lies within the interval. Specifically we wish to find
a next point L which is closer to the true minimum than the current point X, we do this by
setting

dfix,)

ol S R S e




and we must determine the step size a,. Often one can use a quadratic or cubic approximation to
the function f(x) along the search direction and then compute where the minimum of the
approximation occurs. However these approximations require that the function f(x) be
continuous and smooth. Moreover these step size formulas can be sensitive to computational
noise (e.g., roundoff error) and may tend to behave erratically in regions where the second
derivative of f(x) approaches zero, The golden section and Armijo step size rules are more robust,
both in terms of the amount of computational noise that they can tolerate and the clags of
functions that they can address, but the rate at which they converge to the minimum Is slower.

f(x)
/1

N

i

A 4
>

Figure 3-2: Finding an Interval Containing the Minimum

We can considerably improve the convergence rate by applying Newton's method to our
problem. This method employs a quadratic approximation with second derivative information to

compute x, _ ;. We write

iy _, (lx
"k+1="k'“k( dxz/J) (dx

For a quadratic function the step size a, is exactly one and the minimum will be reached In only

one iteration. For nonquadratic but smooth f(x) a unity step size is usually a good initlal guess.
Note that while the method converges quickly, it finds a point where the first derivative is zero (a
stationary point), which could be either a local minimum, local maximum, or saddle point.

Our discussion readily generalizes to multidimensional problems. The function f becomes a
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function of a multidimensional vector x. Figure 3-3 displays an example of a two-dimensional
problem. The ovals are contours of constant function values. The dot in their center Is the
function's minimum. The solid jagged line shows a typical sequence of points that might be
generated by a steepest descent algorithm, which for multidimensional problems takes the form

X1 = X~ 4 VSIxY)

Xy

N

........
.
LIS

> X4

Figure 3-3: Minimizing a Function of a Vector

The zigzagging is due primarily to the simplicity of the method that generates the search
directions. The steepest descent algorithm searches in a direction opposite to the gradient.
These directions will point to the objective function's minimum only if its contours are circular. If
the contours are elliptical, as they are in our example, the imprecision of the search directions will
introduce zigzagging as shown, espeéially for functions whose contours are highly noncircular.

One can sometimes decrease the amount of zigzagging through careful choice of the
parameters used by the step size algorithm. This routine seeks a minimum of the funq}ion in the
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'current search direction., Recall that the routine probes function values along the search
direction and then provides an approximation of where the minimum lies. If the routine is not
allowed to reach the minimum, but is instead restricted to an interval of points along the search
direction prior to it, the amount of “overshoot" may be reduced. In practice one usually
experiments with different step size parameters and then chooses the parameters that give the
quickest convergence. While this may work reasonably well if the functions to be minimized have
similar characteristics, it will not perform favorably for our. circuit optimizer because the shapes of
the functions are circuit dependent. There is no "typical" circuit for which one can tune the step

size parameters,

Newton's method offers considerable advantages over the steepest descent algorithm, The
dashed line in Figure 3-3 shows a typical trajectory. The method generalizes from the one-

dimensional case to
—_— - -1
X1 = X “kF (xk)Vj(xk)

where F(xk) is the Hessian (matrix of second derivatives) of f at X, By accounting for second
derivatives the method provides better search directions and hence requires fewer iterations to
converge than steepest descent. Note that for quadratic functions the minimum would be
reached in one iteration with a step size a =1 For functions that are well approximated by a
quadratic, and for regions in % near a minimum, a step size of one is fairly accurate, or at least the
step size routine can begin its search with a step size of about one. The ensuing reduction in the
number of function evaluations has a favorable impact on computation time. One drawback is
that the method requires computation of the inverse Hessian of f. However methods exist which
will build an approximation to the inverse Hessian during the course of the minimization using
only gradient information [17]. An additional advantage Is that the algorithm can be modified to
handle box and linear constraints'? in the vector space % (18]

12!\ box constraint stipulates that a component of x lie within some closed interval; L.e., lower bound S x, S upper
bound. A linear constraint dictates that some linear combination of the compenents of x be nonpositive; i.e,, 3 / a‘xl s0,

59



3.3 Properties of Our Problem

Having acquired a rudimentary understanding of several key aptimization issues, we move
on to choosing an optimization technique that is appropriate for our problem. Selection of the
technique is highly problem dependent, as "appropriateness" in nonlinear optimization is nearly
synonymous with fast computation times, requiring that the optimization technique be closely
matched with the problem’s characteristics. We therefore take a short respite from our informal
theoretical presentation and pause to consider the properties of our optimization problem. We
shall see that the problem can be separated, allowing us to apply a divide and conquet strategy

and thereby greatly increase computational speed.

We desire to minimize a circuit's power consumption subject to constraints on.signal path
delays and‘ transistor sizes. The objective function, total power, Is the sum of the power
consumptions of each circuit cell. Moreover for nMOS the power consumption of each cell Is
solely determined by, and is linear in, the shape factor of its pullup transistor., For CMOS the
power consumption is linear in the capacitive loads that must be driven, which are due to the area
of the transistor gates and interconnect capacitance, but also depends somewhat on the input
waveforms. Hence for nMOS, and nearly for CMOS, the power consumption of a circuit is a
separable function. That is, it is the sum of independent terms from each cell, and can be
expressed in the form

n

Plolal = ; Pl

where P| is a function of cell i only and models cell behavior for the fabrication process’' worst

case power consumption parameters.

The problem's constraints are of two varieties: worst case delay specifications and
transistor size design rules. The delay along a signal path Is a nonlinear function of the circuit's
transistor sizes and is nonlocal, being compased of contributions from each cell along the signal
path. These contributions are not entirely independent, but fortunately transistor sizing Is very
nearly a separable operation, because both waveshape and capacitive loading effects diminish
rapidly with electrical distance. Consider the inverter chain shown in Figure 3-4. Whether the
input signal is slow or fast, by the time the waveform has propagated to the chain's output its
shape will be predominantly determined by the last gate in the chain. As we saw in the
macromodeling chapter, fast inputs put the gate in an RC response mode where the output
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waveform's switching time is governed by the gate's effective output resistance and capacitive
load. Slow inputs place the gate in a gain limited mode where the gate's gain increases the
sharpness of the waveform's transition. Thus a gate behaves as a crude wave shaper.

oo
T

Figure 3-4: A Chain of Inverters

Capacitive loading effects also attenuate quickly with electrical distance. Suppose the chain
is driving a large capacitive load. As every practicing engineer knows, the last gate will have to be
fairly wide in order to drive the load. The second to last gate will in turn have to be somewhat
large to drive the wide pulldown transistor of the last gate. We need progressively less widening
as we work our way backwards from the load. Within a few gates we reach a point where we are

fully shielded from the size of the load.

Transistor size design rules and layout considerations restrict the minimum and maximum
sizes that a transistor can have, and for nMOS there is minimum beta ratio (ratio of pulldown to
pullup shape factors) that a gate can have. The former is a box constraint; the latter is a linear -
constraint. The constraints on a circuit’s transistors are entirely local to each cell and are

therefore separable.

Accuracy requirements are also important and exhibit a pecullar ambivalence in our
problem. The delay specifications on the signal paths must be met to the full accuracy afforded
by the macromodels. However the power minimization is less critical. We can tolerate small
errors in minimizing the circuit's power conSumption. especially if the inaccuracies are
accompanied by large savings in computation time, In fact, at present designers use only crude

heuristics or almast ignore the power consumption issue entirely.

In summary the problem embraces characteristics ranging from the trivial to the extremely
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difficult. The objective function is a simple summation of contributions from each logic cell, each
contribution being linear in the cell's transistor sizes. On the other hand we anticipate hardship
with the delay constraints since they are global and nonlinear in the circuit's transistor sizes.
Fortunately there are not many of them; typically a designer will specify delays for only a few
percent of the paths through a functional block. In contrast the transistor size constraints are
quite simple, consisting of linear and box constraints. However there are a large number of them,
at least one for every transistor in the circuit, carrying the potential for huge run timds. The
objective and constraint functions are essentially separable, linearly composed of nearly
independent contributions from the circuit's cells, We would prefer a nonlinear optimization
algorithm that can exploit this separability, pursuing a divide and conquer strategy where the
problem is partitioned into many smaller subproblems. This segmentation is beneficial because
with most optimization algorithms run times grow superlinearly with the number of design
variables. Thus by breaking up a large problem, faster run times can be achieved. In particular, if
the problem could be partitioned down to the cell level, the size of the vector space for each
subproblem would be the number of transistors in each cell. Small vector spaces usually imply

fast run times.

3.4 Constrained Minimization

Having examined our problem from a nonlinear optimization perspective, we now proceed to
select a suitable algorithm. We commence by surveying several nonlinear optimization
techniques. We descrihe their conceptual framework and their strengths and weaknesses in the
context of our problem. Every technique has its pluses and minuses; none is a panacea. We shall
choose the most appropriate technique, one which promises both computational efficiency and

robustness.

3.4.1 Feasible Directions

The method of feasible directions has seen moderate use in circuit optimizers (such as
DELIGHT, described in chapter one) and in nonlinear optimization as a whole. These algorithms
are geared toward solving problems of the form

min f{x)

subject to x € B, a subset of R”
g(x)s0
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Points in % satisfying the constraints g‘(x) < 0 are said 10 be feasible. We wish to find the point
that minimizes f within the feasible set. The basic idea is that given a point within the feasible set,
find a search direction that will keep the next point within the feasible set (for a step size within (0,
e] for some ¢ > 0) while decreasing f. Figure 3-5 shows an example, The dotted lines are contours
of f; the dashed lines are boundaries of the feasible set. We begin at a point X, and move toward
the minimum of f in the teasible set, improving the intermediate solution at each iteration until the

optimum is reached.

Figure 3-5: Feasible Directions Algorithm

The principal advantage of this scheme is that each design solution X, is feasible. When
satisfied with the circuit's performance, the designer is free to stop the procedure, knowing that
all constraints have been met. This will be true even if the final solution has not yet been reached.
This option is useful because often achieving the final solution is too expensive either
computationally or in terms of the designer's time; the extra performance provided by the
optimum simply does not warrant the additional expenditure of effort.

Feasible directions methods have a number of drawbacks, especially as regards our



problem. First, the algorithm does not partition the problem.13 and so works in a very large vector
space, in this case the number of transistors in the circuit. This implies long run times. Second,
the control structures for these algorithms (at least for those dealing with nonlinear constraints)
are rather complicated. The underlying reasan for this is that, in order to guarantee convergencs,
the algorithm generates search directions that move away from nearly active constraints. This is
necessary owing to the feasible set boundaries from nonlinear constraints. Due to their
nonlinearity, these boundaries do not form straight lines and hence one cannot predict their
behavior based only on their value and gradient at some intermediate solution point. There Is a
possibility that they may curve in and intersect the proposed search direction. This dilemma can
be remedied by moving away from nearly active constraints. Of course eventually the final
salution may lie on a constraint boundary; this is accomplished by reducing the threshold of what
constitutes a "nearly active” constraint as the optimization progresses. The impact that this
modification has on the algorithm’s complexity is considerable. The control structure becomes
quite cv nplicated, and requires a fair amount of "magic numbers" (parameters whose values are
crucial to determining computational speed; these numbers are usually tuned to a class of
problems to provide reasonable run times, and if poorly tuned can sometimes cause the algorithm
to fail entirely), and the convergence rate is only linear, Consequently the algorithm tends to be

siow and may be unreliable, especially for large, complicated problems such as ours.

The method might not be able to reach the optimum if the feasible region is not a canvex set.
We show an example in Figure 3-6. Here the algorithm has stopped at the point x # rather than
reaching the true optimum x", because reaching the optimum would require a temporary drop In
the objective function. This behavior Is typical of n.umerical methods algorithms. The algorithms |
have only local information from the points that have been previously explored, and no global
picture of the constraint and objective functions' behaviors over the entire feasible set.
Consequently they have no a priori knowledge of where to look for the optimum. The alternative
is to probe different points in the feasible set to find the best starting point, or to accept temporary
losses in the objective function in the hope of accruing a large gain eventually [23, 24, 25]. These
approaches tend to be quite expensive computationally, especially for vector spaces of many
dimensions, and in practice the best technique is simply to have a designer specify a good

starting point based on intuition and past experience. We also note that a sufficiently ill-behaved

130! course one could always apply sparse matrix techniques in the actual implementation of the algorithm, but such
an approach is not as computationally efticient as an algorithm which inherently partitions the problem,
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objective or constraint function wiil break any optimization algorithm, causing it to reach a
nonaptimal solution or fail to run at all. Different algorithms are sensitive to different aspects of ill
behavior and manifest their confusion in different ways. As far as this goes, feasible direction

methods tend to do rather well in design applications and have seen substantial use.
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Figure 3-6: Feasible Directions Algorithm with a Nonconvex Set

Another drawback is that the method itself has no means of generating the initial feasible
point. In general a separate“mechanism must be provided to abtain an initial feasible point. The
optimization is split into two phases. The first phase finds an initial feasible solution while the
second performs the actual optimization. This dichotomy is not a hindrance if an initial solution
exists. However for our problem it is likely that overly optimistic designers might specify path
delays that cannot be met.” In this case we would like the optimizer to do its best to meet those
constraints while optimizing those paths with achievable specifications. Implementing this
scheme in a teasible directions algorithm necessitates a blurring of the boundary between the two
phases. This can have nightmarish consequences as far as the software implementation Is

concerned.



In summary the basic philosophy of the feasible directions method seems well suited to
engineering design problems, and has led to its use by a number of workers [1, 2]. However its
complexity and failure to partition the problem renders it somewhat inappropriate for problems

involving a large number of parameters and constraints such as ours.

3.4.2 Penalty Methods

Penalty methods offer another means of solving constrained nonlinear minimization
problems. The underlying concept is to express the problem as an unconstrained minimization by
adding a penalty term to account for the constraints. For example, consider the problem with
equality constraints

min f{x)
subject to h[(x) =0

We can convert this to an unconstrained minimization of the form

min {x) + %c|h(®)|*}, ¢>0

If we embed this minimization in an. ouier loop where we progressively increase the value of ¢, the
constraint h(x) will be driven to zero to avoid having the penalty term ' c|h(x)[* tend to infinity.'*

The algorithm readily generalizes to problems with inequaiity constraints,

These algorithms offer a number cf advantages over feasible directions methods, First, the
control structure for the algorithm is straightforward and uses very few magic numbers, allowing
for a fairly robust implementation, capable of handling even very large problems. Penalty.
methods have been successfully applied to optimal control problems involving thousands of
variables. Second, since the algorithms convert the problem to an unconstrained minimization,
Newton and quasi-Newton methods are applicable. These second order methods expedite
convergence. Third, the algorithms can be started at infeasible points; there is no need to

precede the algorithm with a routine to find an initial feasible solution.

There are some disadvantages, however. In comparison with feasible directions methods,

penalty functions do not necessarily generate a sequence of feasible solutions. Since the

14Tl'lea penaity function method can be improved by augmenting it with Lagrange multipliers. This extended algorithm is
called the method of multipliers [22]; it offers a quicker convergence rate and reduced sensilivity to roundolt error.
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intermediate solutions might not meet specifications, the designer is obliged to wait until the
algorithm converges to a final solution. This could entail a fair amount of computer time.
Furthermore the convergence rate is sensitive to both the problem and the penalty function. In
our example we used a quadratic penalty function. A different type, say the absolute value of the
constraint cubed, would yield a different rate. Which function is most beneficial depends on the

problem's objective and constraint functions.

In the context of our circuit optimization problem, the major defect is that the minimization Is
not separable. The obiéctive function for our problem is power and the constraints include path
delays. In the section covering the properties of our problem we saw that these are both
separable. However, since the penalty function is nonlinear, the argument of the minimization is
not separable. Consequently we are compelled to operate in the vector space corresponding to
all of the circuit's transistors and cannot apply divide and conquer strategies. This not only has
severe repercussions as far as computational efficiency is concernad, but also hampers the
employment of quasi-Newton methods, since the inverse Hessian for the problem will be
enormous, requiring large amounts of computation time for its calculation and memory for its

storage.

In conclusion we see that penalty methods would be ideal were it not for the above-
mentioned problem. This does not mean that these algorithms are impractical for our application;
quite the contrary, they have seen much use in solving very large problems such as in optimal
control. They are often the method of choice for solving large problems. However for our
application there is a better method, one offering substantial improvements in computational -

efficiency. We describe this method in the following section.

3.4.3 Duality

Spurred on by the shortcomings of feasible directions and penalty methods, in this section
we examine an alternative technique for nonlinear optimization. The technique is called duality,
and is a fairly exotic approach in comparison to the other two methods. We shall see that the
computational efficiency that it affords more than compensates for its conceptual complexity.
Here we begin with an overview as a means of introducing the key issues. The basic idea of
duality is to form a so-called dual problem which can be significantly easier to solve than the
original, or primal, problem In our case the primal is difficult to solve because of the global,

nonlinear delay constraints and large number of transistors to size.
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Duality offers several major advantages. First, the primal probiem need not be feasible. This
is a strong possibility because high-performance designs often push circuit topologies to the
limits of their performance. It is likely that a designer will specify delays for some signal paths
which cannot be met. In this event we desire that our CAD tool do its best to meet those speed
specifications while optimizing the power consumption of the other paths whose delay constraints
can be satisfied. Duality achieves this goal. Second, inactive constraints pose no difficulty for
duality. A designer specifies maximum delays along signal paths. Due to paths sharing common
portions, it is possible that one path's delay- specification will be exactly met while a companion
path will be faster than required, and yet this situation minimizes power consumption. This is
essentially a recasting of the critical path problem; the first path is one of the circuit's critical
paths. Third, and perhaps most importantly, duality can be extremely efficient computationally.
This is due to two factors. Dualit;( converts the nonlinear delay constraints into simple box
constraints, allowing us to apply fairly simple optimization algorithms (which implies robustness
as well) with quasi-Newton methods. The quasi-Newton methods lead to fast convergence. Also,
the dual approach permits us to exploit the separability of the power and delay functions,
enabling us to use a divide and conquer strategy where each cell is optimized separately.
Partitioning affords significant computation speed advantages. In subsequent sections we will

examine the conceptual framework of duality and justify the preceding claims.

Like any noniinear optimization approach, the advantages are balanced by drawbacks.
Duality is not applicable to all problems; it works best for those satisfying a certain convexity
requirement, a property which digital MOS circuits possess. Another drawback is due to our
partitioning approach rather than duality itself. Although exploiting separability provides run time
improvements, it necessitates the maintenance of additional data in the circuit's data base, along
with a close interaction between the control structure and the data base. Partitioning the circuit
into cells implies incremental optimization of each cell in succession. This leads to a
sophisticated data base and even plaées profound requirements on the programming language

chosen to implement the optimizer.

3.4.3.1 Lagrange Multipliers

Lagrange multipliers are the key to understanding duality. We shall explain their use and
significance through a simple example. Consider the inverter chain shown in Figure 3-7. Here
two inverters drive a capacitive load and we wish to place a maximum delay specification on the
delay of a digital signal from the source v, to the chain's output. If we fix the width of the pullup
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Figure 3-7: A Pair of Inverters

transistor, the length of the pulldown, and the beta ratio of the inverters, then we can treat the
power consumptions of the inverters as the only free variables because specifying the power
consumption of either logic gate uniquely determines the gate's transistor sizes. Let P1 be the
power consumed by the first gate and P2 be that consumed by the second, and suppose we

desire the total delay T = T",‘l + T1 + T2 to be less than or equal to some T

total

This maximum delay specification places restrictions on the allowable power consumptions
of the gates. Certain regions in (P1, P,) space will not meet the speed specification. For instance
if the shape factors of the transistors in the second inverter are too small, the inverter will not be
able to charge the capacitor CL quickly enough to satisfy the delay constraint, On the other hand,
if the shape factors are too large, implying a wide pulldown and hence a large input capacitance,
the first inverter will not be able to drive the second quickly enough. Of course the first inverter's
shape factors can be made larger to drive the extra load, but after a certain point the first
inverter's input capacitance becomes so large that the delay through Rg precludes meeting the
delay specification. Since power consumption is linearly related to shape factor, the bounds on
the siiape factors imply bounds on the power consumption. Similar reasoning upplies to the
power consumption of the first inverter, giving us the forbidden zones shown in Figure 3-8.

We can more precisely characterize the feasible set of power consumptions. We do this by
employing a simple RC model for the inverters, allowing us to derive an analytic expression for the
delay through the gates as a function of their transistor sizes. The model equations are

r r
R =+ R =2 C =c_w P=p §
pu pd in pd pu'" pu
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| Figure 3-8: Delay Contour

Here Rpu and R od are the effective resistances of the pullup and pulldown transistors, Cln is the
input capacitance, and P is the power consumption. Spu and wpd are free variables representing
the shape factor of the pullup transistor and width of the pulldown transistor, respectively. The
macromodel parameters Mo Fod? cpd. and ppu depend on the fabrication process and power
supply voitage. The total chain delay is the sum of the RC products through each stage. For a

rising output we have

Towd=TiwtT+T,

= RgCppy + Ry, Cipy + R,y

= Ry(gmg ) + (2 pd)(cpd pdz)+(%)cL

The resulting constraint surface T, .., = T\, + T, + T, = T is elliptical as depicted in the figure,

total
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We can also view the correlation between total power and path delay by adding contours of
constant power to our figure. Figure 3-9 displays the result. To meet the delay constraint’we
must stay within the elliptical region, but the total power dissipation varies with position in the
region, As we move toward the upper right of the feasible set, the power dissipation increases. At
the point Max we have reached the maximum power consumption that will still allow us to satisfy
the delay constraint. The delay and power contours are tangent and their gradients point in the
same direction. If we instead work our way toward the lower left of the feasible set, the total
power dissipation decreases. When we reach the point Min the dissipation will be at its lowest
level that will siill satisfy the delay constraint. Here the delay and power contours are' again
tangent, but now their gradients point in opposite directions.

A\ A
_:U

Figure 3-9: Contours of Delay and Power

We wish to find this point of minimum power consumption. The behavior of the power and
delay gradients provide a means of identifying the point. We have seen that the gradients point In

opposite directions; mathematically this can be expressed as
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VP='—p.VT
or V(P+pT)=0
. where p>0

The variable p Is called a Lagrange multiplier and offers the key to solving our nonlinear
optimization problem. In the following sections we will discover how to apply this key and also
see that the Lagrange multiplier has an intuitive meaning which conveys much insight regarding
the optimization problem,

3.4.3.2 Finding the Optimum

We can acquire an understanding of how to find the optimum by using a graphical approach.
We commence 'by revisiting the two-inverter chain of the previous section. Now, however, we are
interested in the possible total power and total delay combinations that the circuit can exhibit. In
other words, we desire the locus of points (Tmm, Pmm) that will be generated if we substitute all
valid transistor size combinations into the circuit. This locus of points Is denoted the set of all
possible pairs, ¥ and is displayed in Figure 3-10. The set's lower left boundary Is the classic
power-delay tradeoff curve (bold line); it represents designs that offer propagation delays with the
lowest passible power consumption for those delays. Points toward the left of the curve are in the
high-speed, high-power region. As we move down the curve to the right, we trade off speed for
reduced power consumption and eventually enter the low-power, low-speed region.

Points that are not on the tradeoff curve correspond to nonoptimal circuits. These circuits
either consume more power than an optimal circuit with the same delay, or are slower than an
optimal circuit with the same power consumption. For example, suppose the inverter chain Is
driving a large capacitive load. We should make the second inverter's shape factors relatively
large in order to drive the load, and then make the first inverter slightly large to drive the wide
pulldown of the second inverter. !f due to some confusion we reverse the ordering, making the
first inverter very large rather than the second, the circuit will still consume the same amount of
power as the optimal one, but will be considerably slower.

Our delay specification places a restriction on the points that we can accept. Specifically it
stipulates that the total delay be less than or equal to T'. We can focus our attention on this
subset by shifting the vertical axis as shown in Figure 3-11. Points to the left of the axis have
delays which are faster than T hence this subset is called the feasible region. The optimum is the
point in this region with the lowest power consumption, and Is located at (0, P) in the figure.
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We must somehow reach this optimum point starting from an arbiirary pointin the set?. The
approach duality takes can be thought of as a two-step process, as illustrated in the figure. The
first step is to move to and remain on the lower boundary of . The second is to walk along this
boundary to the optimum. Note that while conceptually this process may be interpreted as two
steps, it must be implemented as an inner loop embedded in an outer loop. Step one corresponds
to the inner loop and step two to the outer. This forces the search to follow along the lower

boundary of the set.
normal Pata
(1) /\/

P(x) + pg(x)

(9(x), P(x))

- - - - - - - -

Tio <T°

Figure 3-12: Inner Loop Minimization

We will now describe the implementation of each loop. Figure 3-12 gives a graphical
representation of the inner loop. Suppose that we begin at some arbitrary assignment x of
transistor sizes, with some arbitrary nonnegative Lagrange muiltiplier . The transistor sizes x
map to point (g(x), P(x)) in g-P space. We can move from this point to the lower boundary of the
set of possible pairs by sliding the solid line down until it is tangent to the bottom of %, while
preserving the slope of the line. By geometry we know that a line through a point (g(x), P(x)) with
normal (u, 1) intersects the vertical axis at P(x) + ug(x), and the multiplier s fixes the slope of the
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line. Hence this sliding operation is equivalent to bringing the vertical intercept down while
holding p fixed. In other words, we must perform the minimization:
min {P(x) + p g(x)}

subject to x € %, the set of valid transistor sizes,
with p fixed

We shall denote the argument of the minimization as L(x, ), the Lagrangian, and the minimum
intercept as @(n), the dual functional. Note that since the new circult produced by this
minimization maps to the lower left boundary of %, the circuit is well designed in the sense that it
consumes the minimum power for the speed that it offers. Furthermore, ‘since the minimization
finds a point where the Lagrangian’s gradient with respect to x Is zero, we have
Vx[P(x) + pg(x)] = 0. This is equivalent to the optimality concljtion we derived in the preceding
section, indicating that the circuit's power and delay gradients point in opposite directions.

The outer loop walks along the lower boundary toward the optimum. We can gain insight
into how this might be accomplished by contemplating the effect of different Lagrange multipliers
on the inner loop's minimization. Figure 3-13 provides an illustration. We see that as we move
toward the optimum point (0, P") the intercepts g() increase in valve until they reach P".
Conversely, if we move away from the optimum in either direction, the intercepts <p(p|) decrease.
We can therefore express this as a maximization:

P" = maxp(p)
subjectto p 2 0

The maximization gives us the Lagrange multiplier p of the optimum, while the inner loop
minimization provides the obtimal transistor size assignments.

We are now in a position to grasp the intuitive significance of the Lagrange muitiplier, From
Figure 3-13 it is apparent that as p increases, the line becomes more vertical, and we move up
and toward the left. Power consumption increases whereas delay decreases. We are generating
transistor size assignments that push the circuit topology harder for speed. The fact that the
multiplier has a concrete, practical meaning is quite important, because it allows a designer to
follow our CAD tool's "intent" as it optimizes a circuit, showing the signal paths that are the most
troublesome in meeting the delay specifications. This knowledge s vital for directing efforts to
improve the circuit, such as reduction of interconnect capacitance and modification of circuit

topologies (e.g., the insertion of super buffers).
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Figure 3-13: Outer Loop Maximization

3.4.3.3 Degenerate Cases

It is crucial that optimization algorithms perform properly even when faced with certain
degenerate conditions in the delay constraints, such as inactive or infeasible constraints. Inactive
constraints can come from one of two sources: (1) a delay specification on a signal path that is so
loose that minimum size transistors along the path will satisfy it, or (2) interactions among paths
give rise to a situation where meeting one path's constraint causes another's to be inactive. Of
these two possibilities, the second is the most likely and occurs frequently in practice. For
instance, peruse the circult in Figure 3-14. If the delay specifications mandate that the top path
be faster than the bottom path, then the top path will be the so-called critical path, This critical
path will be optimized such that it precisely satisfies its delay constraint, while the bottom path will
be somewhat faster than required. The bottom path could be slowed down by widening the path's
pulldown transistor in the NOR gate, thereby impeding signal propagation due to the increased
capacitance presented to the external driver. However, to do so may necessitate that the NOR
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gate's pullup have a larger shape factor in order to satisfy a maximum beta ratio constraint. '3
Thus this would increase power consumption and hence be nonoptimal. The geometric
representation in power-delay space is displayed in Figure 3-15, whiéh shows a projection of the
set of possible pairs onto the subspace of power and the second delay constraint. This constraint
could be met exactly if the optimizer moves to the point (0, P#) on the vertical axis, but this would
entail a higher power consumption than the optimum P". Regarding the implementation, the
optimizer cannot reach the nonoptipal point (0O, P#) because to do so requires a negative Bo and
the outer loop maximization is confined to nonnegative Lagrange multipliers. Hence the optimizer
could roll along the left lower boundary of %, but would be forced to stop once it had driven 1, to

ZBI'O.16

e

Figure 3-14: Circuit with an Inactive Constraint

Another important degenerate condition comes from infeasible delay constraints where the
designer requests a maximum signal path delay that cannot possibly be met. These cases occur
frequently in high-performance circuit design as the designer pushes a circuit topology and
fabrication process to the limits of their performance. In these situations we desire that the
optimizer do the best that in can, sizing those paths with infeasible constraints such that they
switch as fast as possible, and sizing paths with feasible constraints such that their power
consumption is optimized. Figure 3-16 offers an example. Here the dual algorithm drives the
path's Lagrange multiplier toward infinity, sizing the transistors for maximum speed. Thus the
algorithm gives useful feedback to the designer, indicating the maximum speed the circuit

topology can provide.

15" a gate's beta ratio becomes too large, the trigger point valtage may be so low that the gate becomes a noise
datector, respunding to input perturbations that are only slightly above VOL'

16Unde»r certain conditions (e.g., signal paths for clocks) it might be desirable to exactly satisfy the delay conatraint,
even at a cost in power dissipation, In this case one could simply remove the nonnegativity constraint on the path's
Lagrange muitiplier.
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Figure 3-16: Effect of an Infeasible Constraint

3.4.3.4 Restrictions

As we mentioned at the beginning of our discussion, aithough duality does offer significant
advantages over other optimization methods, it is limited in the scope of objective and constraint
functions that it can solve. In particular, certain objective and constraint functions can produce a
condition known as a duality gap, illustrated in Figure 3-17. In our previous examples we always
portrayed the set of possible pairs as if it were co;vex. In general this need not be the case.
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Certain objective and constraint functions can give rise to nonconvexities in the lower left
boundary of ¢. This can lead to gaps between the optimum value <p' found by the dual algorithrn
and the true optimum f. The dual algorithm cannot reach the true optimum because the Inner
loop minimization brings the line down as low as possible on the boundary of the set. The
minimizer cannot converge to the true optimum because, for any Lagrange multiplier, a line
passing through the optimum passes through the interior of the set. The dual algorithm instead
converges to either point (g(x *}, f(x *)) or point (g(x’), f(x)). In order to satisfy the g(x) < 0
cdnstraint. one would implement the algorithm so that it converges to the former rather than the
latter, The point is feasible but has a higher value for its objective function than the true optimum.

Figure 3-17: A Duality Gap

A good deal of real world problems do exhibit duality gaps. Despite this, many workers
prefer to use the dual algorithm. The reasons for this are that the dual offers extremely fast
computation times and in many cases the duality gap is negligibly smail (if one exists at all). For
instance, in one application involving optimal scheduling of electric power generation systems,
the gap was only a few percent of the optimum [26]. This was a considerable improvement over
the heuristic scheduling rules that had been previously employed. Other methods such as penalty
functions would have been prohibitively expensive computationally and would not have

significantly irproved the solution owing to the smallness of the gap.

It can be proven that if the objective function f(x) and the constraint functions gl(x) are

convex, then Pis convex and there is no duality gap. The opposite need not be true: nonconvex
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objective or constraint functions do not necessarily lead to a duality gap. From the
macromodeling chapter we know that our objective function, power consumption, is convex in
the shape factors of the circuit's pullup transistors. The delay of a single logic gate is convex in
the shape factors of the gate's pullups and in the widths of its pulldowns. However the
expressions for the delay through a group of logic cells are too complicated to analyze to
ascertain convexity, The complexity of nonlinear systems taxes one's ability to analytically derive
results.’” We remind the reader that duality is not solitary in its inability to find optima in the face
of ill-behaved functions. Objective functions with local minima can cause any algorithm to drop
into a local, rather than global, minimum, Also, as we saw in our discussion of feasible directions
algorithms, nonconvex constraints can cause those algorithms to stop before they reach the
optimum. Penalty method algorithms are susceptible to the same problem, depending on the
penalty function used and the degree of nonconvexity of the constraints. In summary, sufficlently
ill-behaved functions will confuse any nonlinear optimization algorithm (as well as any other

optimization technique, such as heuristics, for that matter).

We have chosen an algorithm that is perhaps more sensitive to ill behavior in the objective
and constraint functions, but is well suited to our particular problem because the power and delay
functions for individual cells are convex and the functions describing groups of cells are nearly
separable. In such a situation a duality gap, if it occurs, would be due to interactions among cells,
but the separability arose from the fact that these interactions were small, and hence the duality
gap must also be small. Our strongest evidence is that we have applied the optimizer to many

circuits and have yet to encounter a duality gap.

If however a duality gap does occur we could bound its size. In Figure 3-17 we see that the
true optimum f lies between <p' and f(x *), the values of the dual functional and objective
function, respectively, for the dual's solution. '® Moreover it is easy to tell when we have a duality
gap. Without a gap, we will either have [ > 0 and gl(x) = 0 (active constraint), or b = 0 and
gl(x) < 0 (inactive constraint).19 If neither of these conditions are met, we have encountered a

17Jc>hn Wyatt caplured this quite succinctly as follows: "With linear syatem theory the ratio of elegance to applicability
is almost infinite; with nonlinear systems the ratio is nearly zero."

18Thme bounds also apply for duality gaps with inactive constraints, where the true optimum lies in the left half plane
rather than on the vertical axis.

1gAn infeasible delay constral_nt will lead to Fl — 00 and gj(x) > 0. In practice one detects this by noting when "l has
approached a large, positive upper bound.
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duality gap. If the bounds on the gap 'are small, indicating that we are close to the optimum, then
we can safely settle for a slightly inaccurate solution, If the bounds indicate that the gap might be
large, then we could initiate another optimization algorithm such as the penalty method, starting
at the dual's solution. This approach would probably be much faster than using the penaity
method from the problem's inception. We doubt that such a two-stage optimization will ever be
necessary because digital MOS circuits do not appear to exhibit any duality gaps, let alone large
ones; nor do we anticipate that circuit designers will be eager to exchange a good deal of
computer time for a few percent improvement in power consumption, especially since current
design practice is to use simple heuristics to minimize power consumption when sizing
transistors, a technique which is far less accurate than duality.

3.4.3.5 Summary

We have seen that duality offers unidque advantages over other optimization approaches.
Duality converts minimizations subject to nonlinear constraints into an inner loop minimization
embedded in an outer loop maximization, both subject to simple constraints. These loops
produce intermediate solution points that move along the bottom of set ® to the optimum as
depicted in Figure 3-18.

> 9= T - T"

Figure 3-18: Trajectory of the Optimization

The inner loop brings the intermediate solutions down to the bottom of ¢, and is expressed
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() = min {P(x) + p"(T(x) - T")}
subjecttox ¢ %

Summing over each cell i, this can be manipulated to be

min{}_ P+ 3 p] T,(00}

subjectto x € B R
where P, is the power consumption of cell i, and g, T, and T; are column vectors formed of
components of the corresponding circuit vectors that pertain to cell i. We have eliminated the
pT T term because it is irrelevant to the minimization, contributing a constant.

Moving the summation outside of the minimization,

. T
Z min {P‘.(x) +a, Tl(x)}
subjectto x¢ %

This separability allows us to size each cell in succession, operating in a small vector space
whose dimension is the number of transistors in each cell. Furthermore the set & Is defined by
fairly simple constraints. The minimum and maximum transistor size restrictions contribute box
constraints, while the minimum and maximum beta ratio specifications contribute linear

constraints. Hence approximations to Newton's method can be applied, giving fast convergence.

The outer loop moves the intermediate solutions along the lower boundary of ? to the
optimum, This loop is a maximization of the form

¢ =max p(p)
subjecttop 20

where a Lagrange multiplier has been assigned to each of the delay constraints. Duality has
effectively converted the nonlinear delay constraints to simple box cohstraints on the multipliers.
Moreover we have a fairly small vector space, whose size is the number of delay constraints, likely
to be about ten to twenty for typical functional block designs. Quasi-Newton methods are again
applicable. An added bonus is that the gradient of the dual, which is needed to compute search
directions, turns out to be the value of the constraint functions; i.e., V(u)=T, ., - T". Since
these values have to be computed to find the value of the dual anyway, we have acquired the
dual's gradient at no extra expense in computation time.
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The benefit that accrues from this divide and conquer approach and the small vector spaces
is computational efficiency. (We shall see specific examples in the next section.) For our
transistor sizing problem, duality is much faster than standard optimization approaches. While
sparse matrix techniques could enhance the performance of these other methods, they would still
be at a disadvantage because (1) duality preserves the separability of the problem whereas most
other algorithms do not, hindering the application of sparse matrix techniques and (2) sparse
matrix techniques must first determine how to partition the problem before solving it, whereas
duality can directly exploit the separability inherent in digital MOS logic by breaking up the

problem along logic cell boundaries.

3.5 Implementation

There are two ways to write a program. One s to carefully design it. The other Is to
start debugging a blank piece of paper.

—Dave Gifford

Having established the theoretical framework of duality, we now proceed to its
implementation. We segment our discussion into several parts, examining first the control and
then the data structures. We shall see that while duality lends itself to a rather simple control
structure, the data structures needed to exploit separability are rather sophisticated, and have a
significant impact on the computer language chosen to implement the algorithm. We conclude
the section with examples of several circuits that have been optimized by our CAD tool.

3.5.1 Contral

We have seen that duality maps the nonlinear delay constraints into simple box constraints
on Lagrange muitipliers, This mapping leads to simple, computationally efficient control
structures. The outer loop maximization uses a Davidon-Fletcher-Powell quasi-Newton method
[17] with modifications for the box constraints [18]. The Davidon-Fletcher-Powell algorithm is
started with a diagonal approximation to the dual's inverse Hessian. The step size algorithm s
somewhat nonstandard. Although calculation of the dual functional ¢(p) yields both its value and
its gradient, permitting the use of a cubic step size rule with a theoretically excellent convergence
rate, computational noise prevented its use. Instead a step size rule that inspects only the
gradient of the dual is used. We have found the rule to be quite fast. As a whole the maximizer
performs very well. The simple box constraints permit a straightforward control structure which is

both fast and robust.
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The inner loop minimization is slightly more complicated since it must handle linear as well
as box constraints.?® The box constraints arise from minimum and maximum transistor sizes; the
linear constraints are due to beta ratios. We use a minimization algorithm due to Bard
[21] coupled with a diagonal approximation to the Lagrangian's Hessian Vix L(x, p). We employ
a golden section step size rule, We experimented with a quadratic step size rule, but found it to
be overly sensitive to roundoff error, especially when the Lagrangian was nearly linear in the

direction of the search,

The implementation of the minimization exploits the separability of digital MOS logic. Rather
than attempting to minimize the Lagrangian of the entire circuit simultaneously, each cell's
Lagrangian is minimized assuming that its neighbors will not change. Interactions are propagated
by a relaxation technique: we.iterate the minimization of the circuit three times. This
manipulation carries substantial advantages. Minimizing a cell's Lagrangian has become
independent of the delay specification on paths through the cell, depending only on the values of
the Lagrange muitipliers and the boundary conditions (such as input waveforms and output

loads) applied to the cell.

bottom path

Figure 3-19: Boundary Conditions Applied to a Cell

An additional manipulation removes the dependency of the boundary conditions on the
constrained paths. For instance, examine the subcircuit shown in Figure 3-19. When minimizing
the Lagrangian of the inverter, we must account for both signal paths through the inverter. The

20Le! the reader be warned that this minimization problem does not meet the so-called regularity requirement
(stipulating that the gradients of the active constraints at a solution point be linearly independent) and hence most of the
feasible directions algorithms for simple constraints in the literature are inapplicable here,
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standard approach is to explicitly add B, (TI - T;) terms to the cell's Lagrangian for each
constrained path j passing through the cell. As one might imagine, this approach typically leads
to a rather complicated Lagrangian, especially considering that the logic cells driving the NOR
gate could have many inputs, and the inverter's output may drive several paths as well. Hence the
inverter could be included in many constrained signal paths; this implies ; large amount of
computer time. Eliminating the B TI' term alleviates only part of the problem because the
different paths present different boundary conditions; in our figure the switching time of the input
transition, TSWin. along the top path difters from that along the bottom path. We instead pose the
following question; if we approximate and treat the inverter as if only one signal path passed
through it, which boundary conditions will produce a solution that is close to the true optimum? If,
immediately prior to the inverter's minimization, we linearly expand its delay TBEQut as a function

. , 0 0
of T about the current solution point (Tswm, TBEout)‘ we can write

SWin

appmx dTBEoul —_BEout 1 - To )
BEaut Wln} BEout dTSWi SWin SWin
n

That portion of the circuit's Lagrangian which includes the inverter's interactions with the NOR

gateis

(R

= approx
Llnvener(x"‘ )= Ptnverm + k top"\"" BEintop CBEin +T BEow SWlmop} )

approx
+ Boriom R BEinborom € 8Ein T T8Eour SWinbottom))
_ ave approx §
- Ptnverter + (“"rap + P'bou‘om) (RBEln CBEM + TBEour SWln} )

Here T;\xm and HBEi are weighted averages of the inverter's input boundary conditions from the

two paths; i.e.,
ave 1 .
TS Win = g+ n (" top TSWIn top + Pvottom TS Wlnbolmm)
top bottom p
ave BEln BEM ’
ReEm = Brap + Boorom [ ]tap) + bouom[ bouom)

Note that since the transistor sizes of the inverter's neighbors are fixed during its minimization,
the average driver impedance FIBEIn applied to the inverter is nearly constant. However the input
switching time TSWIn variev because the inverter's input capacitance Cswm changes as the
inverter is sized, and the minimization must account for the resuiting impact on signal delay. -
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Similar reasoning applies to the'inverter's output boundary conditions. For general logic
cells this technique is applied for every cell input to output path that is included in a constrained
circuit path. This approach considerably reduces the complexit'y of the cell's Lagrangian.
Consequently, when sizing a cell we avoid the computational cost of searching for and utilizing
path data that is not local to the cell's data structure.

While this technique provides a tremendous savings in computation time, it does place
rather elaborate demands on the data structures., When the minimizer sizes a cell, it is essentially
performing an incremental optimization of the circuit. This is more involved than an incremental
simulation. Information regarding boundary conditions imposed on a cell by its drivers and
receivers must be maintained in the data base. It is this sophisticated data base with its closely
coupled interaction with the control structure that makes the approach used by general purpose
optimization tools inappropriate for our problem. As we saw in our review of tools such as
DELIGHT and APLSTAP, these programs "black box" the circuit, interacting with it solely via a
simulator. Hence the tools are in a sense isolated from the data base. They can neither access
the circuit's connectivity description to guide partitioning nor embed additional information in the
data base to assist the optimization. Their methodology does not support our incremental
optimization approach with its accompanying savings iin cpu time.

3.5.2 Data Structures

L]
L4

The data structures supply all the necessary circuit optimization information to the control
routines. This task is more involved than it might appear at first glance due to the data structures’
variety and representation. Contemplate the example in Figure 3-20. Three different structures
are needed to describe the design: (1) a circuit descriptor describing the circuit's
interconnection, attributes (e.g., power consumption), transistor sizes, etc. (2) a path descriptor
describing the signal paths whose delays the designer has constrained, and (3) a routing
capacitance descriptor describing the capacitive loading added to the various signal paths by the
interconnect. All of these descriptors are hierarchical in order to communicate with the designer
in a convenient fashion. Moreover the format of the circuit descriptor is nat uniform, but rather
depends on the type of circuit module. For example, the circuit descriptor for the ALU's adder
must be different in format from that of the XOR logic gates, because the adder is composed of
cells while the XOR gates are not, and the gate descriptors must contain pointers to transistor
sizes, routines to compute power and delay, and the like. Furthermore the formats can even vary
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according to the kind of logic cell, since a cell's topology may be encoded differently depending

on the cell's type.

A ——% ------ - ____;__1___ _______

------

XOR 2 S s Ml s S —t> Y

Figure 3-20: Simplified Arithmetic Logic Unit

There are several methods for handling data structure problems of this sort. We shall see
that most current approaches are inefficient or inapplicable to our prablem. Probably the most
typical is static storage, where all of the structure's variables are explicitly declared prior to
compilation and then assigned permanent storage locations upon compilation. Untortunately the
size of cell structures depends on the cell type, and this cannot be known until the circuit's design
description is parsed at run time. One solution would be to assign storage for the maximum size
data segments that will ever be needed. For instance, when writing matrix routines in Fortran,
programmers typically allocate storage for the largest matrices that will ever be encountered.
This is somewhat wasteful of storage, but often acceptable because usually matrix data structures
are not excessively large. For VLSI designs the approach is totally Infeas‘ible because of the
hierarchy. The levels of hierarchy and number of components at each level can potentially vary
widely from circuit to circuit; allocating storage to handle the worst case at each level would

consume an enormous amount of memory.
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Another solution would be to parse the circuit design description and then generate
computer language source code for the data structures. The code is then compiled and executed
to create the data structures, tailored to the particular circuit to be optimized. This approach has
been used successfully by Chris Terman in his RSIM simulator [27]. While the technique is
perhaps the most efficient in its use of storage space, its implementation becomes quite unwieldly

for elaborate data structures such as ours.

Some computer languages support semi-dynamic storage allocation and allow a
programmer to allocate and deallocate blocks of storage at run time. The task of managing the
storage falls entirely on the programmer. This has two major drawbacks. First, if the data
structures are complicated the programmer is not likely to manage the storage as efficiently as
could a language system that supported dynamic storage allocation and automatic reclamation
(such as modern LISP). Second, depending on the language, error checking may be limited in
this approach. While some languages such as Pascal and C provide a means of checking the
type correctness of variables in the storage block at compile time, others do not, and run time
type checking is rarely used on conventional machines because of the additional computational
overhead.?' In our experience the lack of error checking dramatically increases program

development time.

The shortcomings of the previous approaches illumine the need for a computer language
that offers sophisticated data structuring features. In particular, we want to be able to build data
structures dynamically, hierarchically create other structures out of these structures, and easily
walk the interconnection and hierarchy pointers to obtain information. For storage efficlency we
divide a module's data into two categories: generic and instance information. Generic
information is common to all modules of a given kind; it includes data such as input and output
names and children interconnection. Instance information includes data which is unique to a
particular circuit module, such as its transistor sizes. For run time efficiency we desire to avoid
walking the interconnection hierarchy to access a cell's boundary conditions. We instead assign
a boundary conditions descriptor to each cell instance and make it point to the attributes fields of
its neighbors.

The resuit of these concepts is displayed in the example of Figure 3-21. Generic structures

2 Lisp machines are an important exception, For example, the Symbolics 3600 uses special purpose hardware that
performs the checks in parallel with the computations, As a result throughpul is not reduced.
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are shown as dashed polygons with italicized names; instance structures are depicted as solid
ovals. The block object at the tup represents boundary conditions imposed on the inverter chain
by the outside world. The dashed lines indicate pointers to generié data structures. The solid
lines are pointers for the hierarchical instance descriptors, and the dotted lines are boundary

condition pointers.

3.5.3 Language Requirements

The preceding discussion conveys the necessity of a rich set of data management
capabilities. The computer language chosen to implement the optimizer must suoport general
data structures, such as records and unions (where a variable is aeclared as one of a set of
possible types). Moreover these structures must be allocated and deallocated dynamically by the
language system. For example, neither the lifetime nor the size of an array should be
predetermined. The array grows and shrinks as required, and its storage space should be
reclaimed when the array is no longer needed. User defined data types, along with a provision for
governing their access, are also vital to our task. The ability to create and control the
manipulation of abstract data types Is cruciai for protecting data structures and expediting
program development. Through user defined types and their interface routines we can tightly
control how data structures are accessed, providing both protection and flexibility in case the
structure's internal representation must be changed. In addition the hierarchical nature of circuit
design mandates that the language be facile with pointers. As we saw, for reasons of efficiency
and error checking we desire that these be implicit pointers, handled by the language system (as
in LISP), rather than explicit pointers, handled by the programmer (as in PL/l). Hence the
children Huey, Dewey, and Louie of Figure 3-21 are considered to be extensions of the data
structure for their parent Donald; no special mechanism is required to access them, Lastly, the
language must support recursion, both in procedure calis and data structures. This is again due
to the hierarchy inherent in our problem. Recursive procedure calls are the natural means for
performing the optimization, and the data structures are built by combining similar structures in a

tree-like fashion.

These concepts embody many of the principles of data abstraction and object oriented
programming. These methodologies are geared more toward the creation and manipulation of
data structures than are traditional programming languages. For each type of data object, there
is a collection of programs that instantiate and modify objects of that type. For primitive types
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(e.g., real, string) this collection is supplied by the language system; for user defined types the
programmer writes it. Conceptually, a procedure creates and manipulates objects by sending
messages to the object's collection. Objects are created and maintained in a separate portion of
memory called the heap which is distinct from that portion where the programs reside. Objects
are independently allocated and deallocated in the heap by the language system, not by the
programmer. The system also reclaims the memory space freed by deallocated objects for future

\

obi~ct creations.

We have chosen the CLU [19] language to implement our optimizer, This language was
developed primarily to explore data abstraction issues. At present CLU compilers are available
for DEC System 20's and VAX's. Other features of the language system include extensive compile
time type checking, an outstanding interactive debugger, and a sophisticated exception handling
mechanism for communication among program routines. All greatly facilitate program
development. Another good choice would have been ZetaLISP on a Symbolics 3600.

3.5.4 Program Breakdown

Table 3-1 lists the major components of the optimizer. There are general support packages
for optimization which interface to smaller packages that optimize each logic cell type. The
circuit optimization package comprises the dual, module, path, Croute, opt-bcs, and parse
clusters. The dual cluster formulates the dual functional, its gradient, and its second derlvatives.
This cluster controls the outer loop maximization. The module, path, and Croute clusters create
and manipulate objects representing the circuit, path delay specification, and wiring capacitance
descriptors, respectively. The opt - bcs cluster computes boundary conditions applied to cells by
its electrical neighbors; this information is needed to size the cells., The parse cluster scans
design specification files. The gate cluster consists of routines to compute the power, delay, and
transistor sizes of the general logic gate described in the macromodeling chapter; it directs the
inner loop minimization. The min, max, and matrix clusters form a support package for generic

nonlinear minimization and maximization.
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Program Cluster Lines of Code

dual 350
module 4060
path 1010
Croute 440
opt-bcs 980
parse 550
gate 2690
max , 740
min 1810
matrix 990
Total 13620

Table 3-1: Components of the Optimizer

3.5.5 Examples

We have applied our optimizer to many circuits; here we present a few representative cases.
The optimizer is called Tess, standing for Tool for Enhancing Silicon Systems.22 Qur first example
is the inverter chain of Figure 3-21. (The circuit is simple in order to allow a comparison with
DELIGHT.) We specified the initial transistor sizes and constraints of Table 3-2 and requested
maximum rise and fall delays of 8.0 ns. The optimizer stops when the delays for active constraints
are within five percent of these values. Optimization statistics appear in Table 3-3. This table
shows, for each maximizer iteration, the value of the dual functional o(p), the step size used to
reach the next assignment of Lagrange muitipliers p, the active delay constraints, and the
satisfied delay constraints.' The letter 'r' designates the rising output transition while an 'f'
denotes the falling output transition. The optimizer began with minimum size transistors and all
Lagrange multipliers set to zero; it reached a solution in slightly over 15 cpu seconds on a DEC
System 20/60. Note that the rising input, falling output delay constraint for this example remained
inactive and satisfied throughout the optimization. This frequently occurs with nMOS circuits
because the bata ratio requirement can introduce a large discrepancy between the speeds of
rising and falling output transitions.

The accuracy of the macromodel's delay predictions is summarized in Table 3-4. In the

22or Thesis to End Scholastic Servitude.
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parameter initial minimum maximum

Sou 0.5 05 1.0
w 40pm - 40pm 20,0 um
' 4.0 4.0 8.0

Table 3-2: Initial Sizes and Constraints for the Inverter Chain

iter # olp) step size power [mW]  active satistied
0 1.51 35.42 1.51 none f
1 2.05 . 2,08 r rf

Optimization time (DEC 20/60 running CLU)
set up: 1.1sec optimization; 15.2 sec

Table 3-3: Optimization Statistics for the Inverter Chain

table, T is the time until the output begins to move in response to an input transition and

TSWout
also gives the final values of the Lagrange multipliers. These show the speed-power tradeoff

imposed by each constraint. The falling output constraint is inactive and did not affect the

BEout
is a measure of how quickly the output switches once it does begin to change. This table

optimization; hence its multiplier-is zero. Meeting the rising output specification required an
increase in power consumption. The corresponding multiplier is positive. Furthermore its value
indicates the circuit’s location on the constraint’s tradeoff curve. Increasing the path's speed by
1.0 ns will boost power consumption by about 0.4'mW. This information can be invaluable to a°
designer, for it shows the relative difficulty of meeting each path's delay specification. This can
guide attempts to improve the circuit such as rerouting wires to reduce capacitance or

ameliorating module topologies.

An attempt was made to run DELIGHT on the inverter chain and compare its results to those
of our optimizer, but the effort met with only partial success. The complex Interactions among
objective and constraint functions overwhelmed DELIGHT's direction finding routine, causing the
program to hang up in infinite loops in a most unpredictable and exasperating tashion.?® This

Bill Nye, the author of DELIGHT, believes that the problem lies in the direction finder's quadratlc programming
subroutine., He is investigating more robust routines.
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predicted [ns] SPICE [ns}

Path TBEour' TSWout TBEout' TSWour error [X]  p [mW/ns]
in — out, rise 4.06, 3.85 3.80,3.76 +5 0.403
in — out, fall 5.23, 0.64 5.563,0.77 -7 0.000

A4 L]

Total SPICE verification time (DEC 20/60 running FORTRAN): 16.5 cpu sec

Table 3-4: Delay Accuracies for the Inverter Chain

illustrates how general purpose optimization algorithms can fail when faced with a problem of this
nature; specialized algarithms are essential. To pacify the direction finder, we eliminated the
maximum beta ratio and minimum shape factor constraints, and started DELIGHT at an initial set
of transistor sizes that was fairly close to the optimal solution. The problem was also simplified by
not evaluating the chain's rising input, falling output response. This did not affect the final
solution since this transition's delay constraint was not active, but it halved the number of SPICE
runs needed and reduced the strain on DELIGHT's direction finder, DELIGHT required five
iterations to converge to within five percent of the optimum, consuming 3018 cpu seconds on a
VAX750. Table 3-5 gives the statistics along with those of our optimizer for camparison.

Optimization Accuracy:
cpu time [sec]

optimizer setup optimization power [mW]
DELIGHT (VAX 750) 133.7 3018.0 2.02
~ Tess (DEC 20/60) 1.1 15.2 2.08
inverter Transistor Sizes:
first second third
optimizer Spu, wpg Spu, wpd Spu, wpd
DELIGHT 0.72,6.0 0.44,7.1 0.83,7.2

Tess 0.87, 4.6 0.50, 5.2 1.0,8.0

Table 3-5: Comparison of Optimizers

The performances of the circuits produced by the two optimizers are quite similar. Both
have falling input, rising output delays of 8.0 ns as requested, with power consumptions of 2 mWw,
The power consumption of DELIGHT's circuit is less than ours by about three percent, but this is
mainly due to the removal of the minimum Spu constraint on the second inverter. DELIGHT's
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circuit allocates the chain's delay in a slightly different fashion than ours; the final stage is
somewhat slower than ours while the second is a little faster, requiring a larger first stage Spu in
order to drive the wider second stage Wogr This also affects the first stage’s Wod which must be

wider to satisfy the minimum beta ratio constraint,

Our optimizer runs considerably faster than DELIGHT with SPICE. It is difficult to make an
exact comparison of how fast DELIGHT would run on the DEC 20/60, had it been able to handle
the inverter chain without simplifications, but we can make fairly accurate estimates. A DEC
20/60 will run Fortran code about three or four times faster than will a VAX 750. DELIGHT only
evaluated one path transition, with fewer transistor size constraints and an initial set of sizes that
was fairly close-to the optimum. These simplifications halve the number of SPICE simulations per
iteration and reduce the number of iterations needed to reach the optimum, leading to about a
factor of five improvement in run time. Hence we believe that DELIGHT would require about 4000
cpu seconds to size the inverter chain on our DEC 20. This is about 300 times slower than our
optimizer. We also feel that our run times scale better than DELIGHT's as circuit complexity
increases. The partitioning scheme used by our optimizer leads to approximately linear growth
while the growth rate of DELIGHT's feasible directions algorithms and SPICE's simulation

algorithms are more rapid.

A more complicated example is displayed in Figure 3-22. This is a full adder module
consisting of four logic cells with a total of eighteen transistors. Path specifications appear In
Table 3-6. Table 3.7 gives the optimization statistics. Starting from the smallest devices allowed
by the layout rules and beta ratio requirement, the optimizer required about 160 cpu seconds to
size the transistors. Delay prediction accuracies are shown in Table 3-8. The accuracy Is

typically within several percent of SPICE.

This exam.ple illustrates several important characteristics of the optimizer. Note that the step
size is large for the first iteration but near one for all others. The reason for this concerns the
method used to generate the search direction. The maximizer starts with all Lagrange multipliers
at zero and transistors at the minimum size permitted by design rules. In this region ¢(p) is linear
in all components of s and hence its second derivatives are zero.?* Quasi-Newton methods are

24The transistor size restrictions place lower bounds on the power consumption and speed of the circuit. (Without
these restrictions, setting the Lagrange multipliers to zero would produce a circuit with zero power dissipation and Infinite
delay,) Consequently, the multipliers must reach some posilive threshold before the inner loop minimizer will size
tr?nsistors beyond minimum size. Until some pj reach this threshold, P(x) and gi(x) stay fixed, and hence @(p) = P(x) +
$ 9(x)islinearin p.
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Figure 3-22: A Full Adder Module

therefore inapplicable for the first iteration, and so the optimizer begins with a steepest ascent
(follow the gradient) step instead. For subsequent iterations the maximizer is no longer in the
linear region and can use quasi-Newton methods. These methods have two advantages: they -
generate good search directions and the step size is typically about one, so the step size routine
can begin its search anticipating a unity step size. The ensuing reduction in the number of

function evaluations substantially improves cpu time.

Another signiﬁéant point involves the active constraints. These constraints correspond to
signal paths whose delay specifications are being met at the expense of increased power
consumption. With nMOS circuits, and especially for fixed beta ratios, there are often Iérge
differences between the rising and falling output delays along signal paths. Experienced circuit
designers occasionally increase beta ratios beyond the minimum required by design rules in order
to improve circuit speed. In like fashion the optimizer uses this same ‘echnique to reduce cells’
falling output delays, leading o signal paths with comparable rise and fall delays.

96



Path Number Desired Delay [ns] Other Inputs

a — sum 1 80 b low, Cn high
a—c 2 8.0 b low, C high
Cin — Sout 3 6.0 a high, b low

Table 3-6: Path Delay Specifications for the Full Adder Module

iter # o(p) step size power [mW]  active satisfied

0 2.01 34.64 2.0 none 1f
1 2.20 0.78 2.26 1r, 2rf, 3rf 1rf, 2f, 3t
2 223 1.9 223 1r,2rf, 3r  1rf, 2f, 3f
3 232 2.02 2.25 ir, 2rf, 3r  1rf, 2r, 3rf
4 233 . 2.32 1r, 2rf, 3r all

Optimization time (DEC 20/60 running CLU)
setup: 2.2 sec optimization: 163.1 sec

Table 3-7: Optimization Statistics for the Full Adder Module

predicted [ns] SPICE [ns]

Path 7.BEouf‘ 7-SWout TBEout' TSWout error [%] B [mW/ns]
a — sum, rise 5,96, 1.66 6.42,1.73 -7 0.060
a — sum, {all 5.47,0.49 6.16, 0.63 -12 0.000
a— Gy, rise 2,78, 3.26 2.78, 3.31 -1 0.078
a—C,p fall 4.98, 0.79 5.29, 1.02 -9 0.163
Cn ~ Cout’ rise 3.03,3.26 3.10, 3.30 -2 0.122
Cin — Cour fall 4,09, 0.85 446, 0.76 -9 0.000

Total SPICE verification time (DEC 20/60 running FORTRAN); 189.2 cpu sec

Table 3-8: Delay Accuracies for the Full Adder Module
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We also note that the set of activé paths changes as the optimization progresses. in the first
iteration constraint 3f is active, but due to the interactions among signal paths it is inactive
thereafter. It is these interactions that make the optimization task so difficult. Widening a
transistor to speed up one path may slow down Another because of capacitive loading effects.
Some workers have advocated using heuristics to order the paths according to how "critical"
they are, and then optimizing each path in succession. Unfortunately path interactlons can
seriously undermine the search for an optimal solution because sizing one signal path can
adversely affect previously sized paths. Moreover the identity of the critical paths can change
during the optimization. (In fact, one of our earlier optimization schemes was based on critical
path heuristics and had to be abandoned for these reasons.) We feel that nonlinear optimization
algorithms offer major advantages over heuristics in their handling of path interactions, By
simultaneously cunsidering all signal paths at each iteration, nonlinear optimization algorithms
can produce sofutions which are more optimal and arrive at them in a more efficient manner than

heuristics,

The maximizer uses a nonstandard step size algorithm, This Is necessary because of
inaccuracies in the inner loop minimization. The minimization embedded in each iteration of the
maximizer sizes the transistors. This sizing is a function of the value of the Lagrange multipliers,
which are determined by the maximizer, If the minimizer sized transistors to extremely high
accuracies then () would increase at every iteration. However this would be very wasteful of
computer time, especially since transistor fabrication is only accurate to a few percent at best.
Consequently the minimization is done to only a few percent accuracy, and this injects a small
amount of noise into the computation of p(p). The noise is especially noticeable as the optimizer
closes in on the solution, for here the Lagrange muitipliers begin to converge and the minimizer
can exhibit a kind of hysteresis, refusing to resize devices until the Lagrange multipliers change
significantly,. We had originally implemented a cubic step size rule for the maximizer, but this
noise caused the optimizer to behave erratically as it moved toward a solution. We replaced the
cubic rule with an algorithm that only uses the gradient of the dual and not its value. This focuses
the optimizer on our primary concern, the signal path delays, since the gradient of the dual Is the
value of the delay constraints. This rule circumvented any difficulties and is quite fast, requiring
only one or two Iiterations to reach the vicinity of the solution. In this example the effects of the
noise are not clearly visible, but in some ather circuits we have optimized, the value of @(u)
actually decreased during certain iterations, despite the fact that this is a maximization loop.
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Figure 3-23: Four Bit Adder

A final example concerns the multiple bit adder shown in Figure 3-23, rumprised of four of
the full adder modules of Figure 3-22, The adder contains sixteen logic cells having a total of 72
transistors. The circuit was optimized subject to the delay specifications of Table 3.9.
Optimization statistics appear in Table 3-10, while Table 3-11 presents a comparison of the
macromodel's predicted delays versus those of SPICE. We again see a small number of outer
loop iterations, with all but the first step size near one. Furthermare the computation time has
grown roughly linearly with circuit complexity relative to the previous examples. Starting with
minimum size transistors, the optimizer required only 520 cpu seconds to optimize the adder. In
contrast, considerably more time was needed for SPICE runs to just verify the accuracy of the
predicted delays.

In summary the speed and precision of the optimizer are quite impressive. These examples
show run times of about one cpu second per transistor per constrained path, with accuracles
typically within several percent of SPICE estimates.



Path Number  Desired Delay [ns] . Other Inputs

A, — Sum, 1 8.0 a=1b=0c, =1
A, — Sum, 2 8.0 8 =1b=0c¢, =1
A, — Sum, 3 8.0 8 =1b=0c¢ =21
A, — Sum, 4 8.0 a=1b=0c¢ =1
Cn = Sout 5 20.0 a=1b=0

Table 3-9: Path Delay Specifications for the Four Bit Adder

iter # o(n)  stepsize  power [mW] active satisfied
0 8.02 19.88 8.02 none 1f, 2f, 3f, 4t
1 9.42 1.34 9.53 1r, 2r, 3r, 4r, 5cf  1rf, 2ck, 3rf, 4rf, 5t
2 9,84 2.96 9.33 1r, 2r, 3r, 4r, 5ef  1rf, 2rf, 3f, 4f, 5f
3 1001 . 10.25 1r, 2r, 3r, 4r, &rf all

Optimization time (DEC 20/60 running CLU)
set up: 2.7 sec optimization: 519.6 sec

Table 3-10: Optimization Statistics for the Four Bit Adder
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Path

A0 — Sumo, rise
A0 — Sumo. fall

A1 — Sum,. rise
A1 — Sum,.fall

;t’\2 — Sum2. rise
A2 — Sumz, fall

Aa — Sums. rise
Aa — Sums. fail

Cn — Cour rise

Cn — Coutt fail

predicted [ns]

T T

BEout' " SWout

6.20, 1.66
5.53, 0.49

6.26, 1.66
5.83, 0.49

6.28, 1.66
5.52,0.49

6.19, 1.66
5.44, 0.49

17.43, 2.46
18.30, 0.55

T

BEout’

SPICE [ns]
T

6.76,1.73
6.20, 0.62

6.67,1.73
5.96, 0.59

6.72,1.73
5.92, 0.61

6.78, 1.74
5.86, 0.60

16,14, 2,55
18.99, 0.61

Swout

error [%]

-7
-12

+12
-4

p [mW/ns)

0.049
0.000

0.101
0.000

0.008
0.000

0.114
0.000

0.246
0.242

Total SPICE veritication time (DEC 20/60 running FORTRAN): 1468.6 cpu sec

Table 3-11: Delay Accuracies for the Four Bit Adder
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CHAPTER FOUR

Conclusion

4.1 Summary

We have presented a novel technique for optimizing VLS| functional blocks. Qur CAD tools
find the transistor sizes that minimize a circuit's power cdnsumption subject to delay constraints
on signal paths, This transistor sizing problem is simply too hard far conventional methods. The
difficulty is mainly due to the need for a high degree of accuracy, the potentially large number of
transistors to size, and the nonlinear nature of the circuit's path delay constraints. To achieve the
signal delay precision vital to high-performance circuit design, standard practice has been to
have a human designer run a transistor level simulator (such as SPICE) on a circuit and manually
update the transistor sizes until delay specifications are met, or to use general purpose nonlinear
optimization algorithms directly interfaced to a circuit simulatar. The former approach involves a
good deal of designer and computer time, usually precluding reaching the optimum; the latter
entails an excessive amount of computer time for all but small circuits. We also examined several
methods where workers had simplified the logic gate models or applied heuristics rather than
nonlinear programming algorithms in order to reduce cpu time, but these schemes were found to

be too Inaccurate.

Our approach combined knowledge from circuit theory, nonlinear programming, and
modern computer language design. We pursued work in two areas. First, we derived agcurate,
computationally efficient macromodels for logic gates. The form of the macromodel equations
was based on the logic gates' equivaient circuit models and reflected a careful consideration of
waveshape effects; the equations' parameters were determined by curve fitting to observed data
from a transistor level simulator. Second, we created a special purpose optimizer, explolting
properties of digital MOS logic gates. The optimizer used a dual algarithm which breaks the
problem into an inner loop minimization embedded in an outer loop maximization. The outer loop
solved for Lagrange mulitipliers, one for each path delay specification, subject to nonnegativity
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constraints on the multipliers. The inner loop solved for the optimal transistor sizes, subject to
box and linear constraints, and was partitioned down to the cell level. Thus both loops operated
in small vector spaces with simple constraints, greatly expediting convergence to the solution.
The optimizer was implemented in a computer language system that offered sophisticated data
and control abstraction mechanisms along with extensive program development facilities. The
result was an extremely effective method for solving what is surely a very difficult optimization
problem,

4.2 Future Research

Like many research projects, this work has perhaps raised more issues than it has settled.
The ability to optimize a functional block's power and delay carries implications regarding other
areas of circuit optimization as well. !(nowledge from one domain can be applied to problems In
another. For example, designers frequently face situations where a speed specification on a
circuit path cannot be met, no matter how the circuit's transistors are sized. In such cases
designers often try to rearrange interconnect wires and module placements to reduce the
capacitive loading on critical nodes, hoping to thereby meet the speed requirement. Qur
optimizer can be an Invaiuable asset in such situations. Since it maintains information on the
sensitivities of cell delays to input waveforms and capacitive loading, estimates of the new circuit
delays after a wiring or module placement change could be provided. Moreover the sensitivities
could also be used in conjunction with the values of the Lagrange multipliers to predict the
performance of the new circuit after its optimization. These estimates would be extremely useful
in guiding a designer during experiments with possibie floor plans for a chip.

These concepts can be further extended. Having a tool which can efficiently optimize a
functional block topology with specified path delays, we can generate rough characterizations of
the power-defay tradeoffs for optimized functional blocks. This gives us an aid in topology
selection. For instance, the tradepff curves indicate over which range of delay specifications an
adder with a look-ahead carry circuit would be preferable to, say, an adder with a Manchester
carry, By integrating these ideas into a VLS| design system, one could form a powerful designer's
assistant CAD tool.

An orthogonal but equally important issue concerns the optimizer's implementation. We
have gone to considerable pains to preserve the separability inherent in the problem, allowing us
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to partition it and reap considerable bénefits in computational speed. While we originally sought
to segment the problem in order to decrease the size of the vector spaces, partitioning aiso allows
us to run the algorithm on parallel computation machines. Redently several workers have
developed special purpose paraliel machines for VLSI design [28,29]. These machines have
accelerated logic level simulation tremendously. We feel similar success could be had if this

optimizer were to be implemented on parallel machines.

4.3 Perspective

Through a rather intricate partnership of circuit theory, optimization algorithms, and
software technology we have solved an important VLSI design problem. Many bottlenecks in the
design process have yet to be overcome if designers are to keep pace with the ever-increasing
power offered by fabrication technology. We believe that similar multidisciplinary strategies are

essential if progress is to continue.

104



(1]

(2]

[3]

[4]

(5]

(6]

[7]
(8]

(0]

[10]
1]
[12]
[13]

(14]

References

W. Nye, E. Polak, A. Sangiovanni-Vincentelli, and A. Tits, “DELIGHT: An Optimization-
Based Computer-Aided Design System,” Proceedings International Symposium on
Circuits and Systems, |EEE, April 1981, pp. 851-858.

R. Brayton, G. Hachtel, and A. Sangiovanni-Vincentelli, "A Survey of Optimization
Techniques for Integrated-Circuit Design," Proceedings of the IEEE, Vol. 69, No. 10,
October 1981, pp. 1334-1362,

A, Ruenhli, P, Wolff, and G. Goertzel, "“Analytic Power/Timing Optimization Technique for
Digital System,"” Proceedings 14th Design Automation Conterence, |\EEE, June 1977, pp.
142-146.

N. Jouppi, "“Timing Analysis for nMOS VLSI," Proceedings 20th Design Automation
Conference, IEEE, June 1983, pp. 411-418.

S. Trimberger, “Automated Performance Optimization of Custom Integrated Circuits,"”
Proceedings International Symposium on Circuits and Systems, |IEEE, May 1983, pp.
194-197.

J. Ousterhout, “Switch-Level Delay Models for Digital MOS VLSI," Proceedings 21st
Design Automation Conference, IEEE, June 1984, pp. 542.548,

M. Horowitz, Timing Models for MOS Circuits, PhD dissertation, Stanford, 1983.

L. P. J. Hoyte, "Automated Calculation of Device Sizes for Digital IC Designs,” Master's.
thesis, MIT, 1982.

L. Glasser and L. Hoyte, 'Delay and Power Optimization in VLSI Circuits,” Proceedings
21st Design Automation Conlerence, |IEEE, June 1984, pp. 529-535.

J. Roberge, Operational Ampilifiers: Theory and Practice, Wiley, 1975, pp. 97-104.
P. Gray and C. Searle, Electronic Principles: Physics, Models, and Circuits, Wilay, 1969,
S. Sze, Physics of Semiconductor Devices, Wiley, 1969,

L. Glasser and D. Dobberpuhl, The Design and Analysis of VLSI Circuits, Addison-Wesley,
1985.

W. Elmore, "The Transient Response of Damped Linear Networks with Particular Regard
to Wideband Amplifiers,” Journal of Applied Physics, Vol. 19, No. 1, January 1948, pp.
55-63.

105



(18]

[16]

[17]
(18]
[19]
[20]

[21]
[22]

[23]
(24]

[25]

[26]

(27]
(28]

[29]

J. Rubinstein, P. Penfield, and M, Horowitz, "Signal Delays in RC Tree Networks," IEEE
Transactions on Computer Aided Design, Vol. CAD-2, No. 3, July 1983, pp. 202-211.

T.-M. Lin and C. Mead, "Signal Delay in General RC Networks with Application to Timing
Simulation of Digital Integrated Circuits,”" Proceedings, Conference on Advanced
Research in VLSI, MIT, January 1984, pp. 93-98.

R. Fletcher and M. Powell, “A Rapidly Convergent Descent Method for Minimization,"
Computer Journal, Vol. 6, 1963, pp. 317-322,

D. Bertsekas, "Projected Newton Methods for Optimization Problems with Simple
Constraints,"' SIAM Journal on Control and Optimization, Vol. 20, 1982, pp. 221-2486,

B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert, *Abstraction Mechanisms in CLU,"
Communications of the ACM, Vol. 20, No. 8, August 1977, pp. 564-578.

D. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley, 1984,
second edition,

Yonathan Bard, Nonlinear Parameter Estimation, Academic Press, 1974.

D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic
Press, 1982,

S. Kirkpatrick, C. Gelatt, Jr., and M. Vecchi, "Optimization by Simulated Annealing,"
Science, Vol, 220, No, 4598, May 1983, pp. 671-680.

S. White, "“Concepts of Scale in Simulated Annealing,” Proceedings International
Conterence on Computer Design: VLSIin Comauters, IEEE, October 1984, pp. 646-651.

J. Greene and K. Supowit, "'Simulated Annealing without Rejected Moves," Proceedings
International Conference on Computer Design: VLS! in Computers, |EEE, October 1984,
pp. 658-663.

D. Bertsekas, G. Lauer, N. Sandell, and T. Posbergh, "Optimal Short Term Scheduling of
Large-Scale Power Systems,' IEEE Transactions on Automatic Control, Vol. AC-28, No. 1,
January 1983, pp. 1-11.

C. Terman, Simulation Tools for Digital LS! Design, PhD dissertation, MIT, 1983,

G. Pfister, “The Yorktown Simulation Engine: Introduction,'" Proceedings 19th Design
Automation Conference, IEEE, June 1982, pp. 51-54.

Zycad Corporation, LE-1000 Series Logic Evaluator Intermediate Form Specification,
Roseville, Minnesota, 1983, Release 1.0.

1086



