
'NLMAI 16 1988 M

I t MA R \. s <

Macromodeling CMOS Circuits for
Timing Simulation

RLE Technical Report No. 529

June 1987

Lynne Michelle Brocco

Research Laboratory of Electronics
Massachusetts Institute of Technology

Cambridge, MA 02139 USA

This work was supported in part by the U.S. Air Force (Grant AFOSR-86-0164).

TK7855
.M41

.R43

o.5A

'IR ENGINEERING LU ::"

L'·TlI

Macromodeling CMOS Circuits for Timing Simulation

by

Lynne Michelle Brocco

B.S. Electrical Engineering
University of Akron

(1984)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

at the

Massachusetts Institute of Technology
June 1987

© Massachusetts Institute of Technology 1987

Signature of Author
Department of/lectrical Engineering and Computer Science

May 9, 1987

~IL ALCertified by
Jonathan Allen

Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students

1

�yn�r� fi~61L01'-cZY4czz-- -

Macromodeling CMOS Circuits
for Timing Simulation

by

Lynne Michelle Brocco

Submitted to the
Department of Electrical Engineering and Computer Science

on May 13, 1987 in partial fulfillment of the requirements
for the Degree of Master of Science

Abstract

A macromodeling and timing simulation technique is presented that allows fast, accurate
delay calculations for CMOS circuits. This method is well suited for delay calculations of
regular structure VLSI circuits, as well as circuits designed from standard cell libraries.
Timing models for both logic gate and transmission gate circuit forms are developed. For
logic gates, output transition time and delay time are functions of input transition time
and load impedance. Effective resistances for conducting transmission gates and
switching transmission gates are functions of input transition time and load capacitance.
Transmission gate circuits are then modeled as equivalent RC circuits. Separate
waveform models and delay calculation methods exist for both types of circuit forms,
with an interface to enable the use of both methods in the same simulation. An
experimental event-driven simulator was developed to test the accuracy of the
macromodels and to estimate improvements in execution time with respect to SPICE.
Typical delay times were within 5% for logic gate circuits and 10% for transmission gate
circuits when compared with SPICE. The execution time of the experimental simulator
was over two orders of magnitude faster than SPICE.

Thesis Supervisor: Jonathan Allen

Title: Professor of Electrical Engineering and Computer Science

2

Acknowledgments

I would like to thank my thesis supervisor, Jonathan Allen, for his guidance and

vision throughout the course of my work.

Thanks to Bob Armstrong, who makes himself invaluable on the "eighth floor"

with his many hacking skills, and to Don Baltus, who pointed me in the right direction.

I also appreciate the general support I received from all the people in the VLSI

group-Lance Glasser, John Wyatt, Adam Malamy, Charles Selvidge, Cyrus Bamji,

Barry Thompson, Mark Reichelt, Peter O'Brien, Dave Standley, and others.

Most of all, I thank Steven McCormick, my fiance, for his valuable technical

advice and, even more importantly, his love and emotional support.

This research was supported in part by a GE Foundation Fellowship and in part by

Air Force Office of Scientific Research Grant AFOSR-86-0164.

3

Table of Contents

Chapter One: Introduction 7
1.1 Previous Work 8

1.1.1 Modeling Mos Circuits 8
1.1.1.1 Circuit Analysis Models 8
1.1.1.2 Switch Level Models 8
1.1.1.3 Rc Tree Modeling 10
1.1.1.4 Macromodeling 11

1.1.2 Simulation Methods 13
1.1.2.1 Time Step Simulation 13
1.1.2.2 Waveform Relaxation 13
1.1.23 Event Driven Simulation 13

1.2 Overview of Thesis 14

Chapter Two: Macromodeling 16
2.1 Circuit Partitions 18
2.2 Waveform Models 21
2.3 Logic Gate Models 24

2.3.1 External Cell Variables 25
23.2 Output Waveform Calculation 26
2.33 Derivation of Parameters 31
2.3.4 Physical Interpretations 31
2.3.5 Scaling Parameters as a Function of Transistor Width 32

2.4 Transmission Gate and RC Circuit Modeling 33
2.4.1 Waveform Model 33
2.4.2 Modeling Circuits Containing Transmission Gates 36
2.4.3 Effective Resistance of Transmission Gates 39

2.4.3.1 Conducting Transmission Gates 39
2.4.3.2 Switching Transmission Gates 42

2.4.4 Analysis of Transmission Gate Circuits: Input from Driving Gate 47
2.4.4.1 Constructing the RC Tree 48
2.4.4.2 Waveform Calculation for a Driven RC Tree 50

2.45 Analysis of Transmission Gate Circuits: Switching Transmission Gate 51
2.4.5.1 Constructing the RC Tree 52
2.4.5.2 Waveform Calculation for a Switched RC Tree 53

Chapter Three: Timing Simulation using Macromodels 54
3.1 Event Driven Simulation 54
3.2 Module Representation 55
3.3 Circuit Structure 58
3.4 Event Scheduling 61

3.4.1 Coincident Events 62
3.5 Input Specifications 65
3.6 Program Organization 66

Chapter Four: Experimental Results 69

4.1 Testing Method and Goals 69
4.2 Test Circuits and Results 70

Chapter Five: Conclusions 88
5.1 Future Work 88
5.2 Final Thoughts 89

Appendix A: Derivation of Driving Resistance and Delay Offset for a Driving 90
Gate

4

List of Figures

Figure 2-1: Modeling feedback in cell macromodels.
Figure 2-2: Cross-coupled inverter circuit.
Figure 2-3: Output waveform of a CMOS inverter.
Figure 2-4: D.C. transfer function of a CMOS inverter.
Figure 2-5: Ramp model of a waveform
Figure 2-6: Fitting a ramp and an exponential to the same two points.
Figure 2-7: Macromodel for a logic gate cell
Figure 2-8: Output transition time function for an inverter.
Figure 2-9: Model for delay calculation of a cell
Figure 2-10: Output delay time function of an inverter.
Figure 2-11: Effects of input transition on delay.
Figure 2-12: Model of a cell with internal delay modeled with a capacitor
Figure 2-13: RC circuit and waveforms.
Figure 2-14: Two time constant waveform and example ramp
Figure 2-15: Conducting transmission gates driven by a logic gate
Figure 2-16: Circuit with a switching transmission gate
Figure 2-17: Model of conducting transmission gate
Figure 2-18: Conducting transmission gate effective resistance function.
Figure 2-19: Model of switching transmission gate
Figure 2-20: Switching transmission gate effective resistance function.
Figure 2-21: Switching transmission gate model.
Figure 2-22: Resistance model of conducting transmission gate.
Figure 2-23: Waveform of circuit in Figure 2-21.
Figure 2-24: Finding driving resistance and delay offset for a logic gate.
Figure 2-25: Switched RC circuit example
Figure 3-1: Sample module representation of a NAND gate.
Figure 3-2: Functions described by a parameter set.
Figure 3-3: A circuit specified as connections of instances of modules.
Figure 3-4: Instance representation of NAND gate module.
Figure 3-5: Two almost coincident transitions on a NAND instance.
Figure 3-6: Closely spaced transitions with different transition times.
Figure 3-7: Canceling events.
Figure 3-8: CMOS two phase flip-flop.
Figure 4-1: Inverter circuit.
Figure 4-2: Layout of the inverter cell.
Figure 4-3: Inverter string test circuit.
Figure 4-4: Domino logic test circuit.
Figure 4-5: String of domino logic blocks.
Figure 4-6: Logic gate implementation of a three-bit adder.
Figure 4-7: Input signals to the adder cell.
Figure 4-8: Output waveforms for the circuit of Figure 4-6.
Figure 4-9: Circuit testing conducting transmission gate model.
Figure 4-10: Circuit testing switching transmission gate model.
Figure 4-11: Shift register circuit.
Figure 4-12: Clock waveforms for shift register.
Figure 4-13: 4x4 Array Multiplier
Figure 4-14: Array multiplier cell
Figure 4-15: Three-bit adder circuit
Figure 4-16: RC model for poly interconnect line

5

19
20
22
23
23
24
24
27
28
29
30
32
35
36
38
38
39
41
42
43
44
45
47
48
52
56
59
60
60
62
63
64
65
71
71
72
74
75
76
77
78
79
80
81
82
83
84
84
86

List of Tables

Inverter circuit test results
Inverter string test results
Domino circuit test results
Domino string test results
Adder circuit test results
Conducting transmission gate test
Switching transmission gate test
Shift register test results
Shift register node values
Results for one array multiplier cell.
Multiplier cell inputs
Results for array multipliers
Results for RC model of poly interconnect.
Execution times of test simulations

6

Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:
Table 4-6:
Table 4-7:
Table 4-8:
Table 4-9:
Table 4-10:
Table 4-11:
Table 4-12:
Table 4-13:
Table 4-14:

72
73
74
75
77
79
80
81
82
85
85
85
86
87

CHAPTER ONE

Introduction

As VLSI circuits grow larger and the design task becomes more complex, effective

and efficient computer-aided design tools are becoming more of a necessity. This is true

for many aspects of the design and implementation of a VLSI chip. One important aspect

is timing of VLSI circuits.

Timing information is necessary not only in the evaluation stage of VLSI circuit

development, but in the design stage as well. Designers want quick, accurate timing

results in order to adequately explore all the topological possibilities for given circuit

blocks. Thus, there is a necessity for design tools that allow alternate architecture

exploration during the design phase of a VLSI project.

A macromodeling and timing simulation technique is developed in this paper that

provides fast, accurate timing results for CMOS circuits. This method is well suited for

evaluating regular structure circuits, in which a circuit is composed of orderly

connections of many instances of the same cell type. It also works well for CMOS circuits

designed using standard cell libraries, as delay information could be incorporated as part

of the library.

The goals of this research include the development of a macromodeling technique

for logic gate and transmission gate structures. The technology used in this thesis is a 2

micron CMOS process given in Glasser and Dobberpuhl's The Analysis and Design of

VLSI Circuits. Sample macromodels representing several logic gate and transmission gate

circuits are implemented in an experimental timing simulator. These macromodels

represent a fixed technology, that is, the two-micron technology described above.

Simulation of circuits using different CMOS technologies requires the derivation of new

macromodel parameter sets. This experimental simulator will be used to evaluate delay

accuracy of the models and improvements in execution time compared to SPICE.

7

-

1.1 Previous Work

The development of timing evaluation techniques for MOS circuits has propagated

in many directions. There are many modeling methods and many simulation techniques.

The following paragraphs summarize the major thrusts of this very active research area

and to justify the approach taken in this thesis.

1.1.1 Modeling MOS Circuits

There are different ways to classify timing models. There are models used for

analysis and models used for simulation. Circuit analysis uses models which are believed

to be mathematically accurate. Simulation models are more approximate, usually geared

toward calculating the output information desired. Timing simulation models are also

defined at several levels, such as the transistor level, the gate level, or a sub-circuit level.

1.1.1.1 Circuit Analysis Models

Circuit analyzers such as SPICE [1] and ASTAP [2] are based on mathematical

equations modeling the devices in the circuit. These more general circuit simulators form

network equations for the circuit and use general integration techniques. This type of

analysis requires much storage and computation time. Circuit size may be restricted to

no more than a few hundred nodes. Thus, analysis may also be restricted to only select

paths of the circuit. However, these programs are capable of 95 to 99% accuracy when

compared to actual results [3].

1.1.1.2 Switch Level Models

On the other extreme, in terms of model complexity, are switch level models. In

general, circuits are modeled as connections of bi-directional switches representing

transistors. Bryant [4] developed the switch level model initially for a logic simulation

program, MOSSIM. In this modeling scheme, a network is a set of nodes connected by

transistor switches. Each node has a state 0, 1, or X and each transistor has a state open,

closed, or indeterminate. This was an improvement over gate-type logic simulators as

simulation of more general circuit connections became possible.

RSIM [5] incorporated delay calculation information in the switch-level model. A

transistor is modeled as a switch in series with a resistor. Transistor groups, or closely

connected sub-networks of transistors, are analyzed statically for output states. The total

delay of the sub-network is then calculated from the RC time constant of the node. The

8

RC circuit models may be inaccurate, since only the resistance and capacitance of the

node in question is considered, ignoring other nodes in the RC network.

Crystal [6, 7], another switch level timing simulator, is used for timing verification.

Crystal locates slowest paths with a value independent, switch-level approach. Tables

are then used to calculate series resistances, based on input rise time, transistor type and

size, and output load. Intrinsic (step-input) rise time estimates are used, resulting in an

average error in rise times of 30%. Typical delay time errors of less than 10% are

claimed when compared to SPICE.

Rao, Trick, and Hajj [8] derived a switch-level simulator that uses table-driven

delay operators for timing information. After circuit partitioning into sources, logic gate

blocks, and pass transistor blocks, a switch-level simulation is performed to evaluate

transition sequences on output nodes. The transition sequences, along with circuit

parameters, such as load capacitance and transistor length and width, are passed to the

delay operator. The delay operator yields the delay of the transitions by table lookup.

No characterizations of RC circuits were evident.

Sundblad and Svensson [9] proposed an extended local relaxation algorithm (ELR)

in order to make switch level timing simulation fully dynamic. While other switch-level

simulators use the closely-connected transistor group as the basic element to be analyzed,

the ELR algorithm treats a transistor or bi-directional element as any other element. The

relaxation process follows the natural transient behavior of the circuit and is used as the

simulation inside the transistor groups. Simultaneous propagation of several signals

inside the transistor group is allowed. This method, when combined with a local timing

algorithm for simulation between the groups, results in a fully dynamic switch-level

simulation.

A different type of model was proposed for a switch-level simulator by Ruan and

Vlach [10]. Each transistor is replaced by a model equivalent to a constant current source

instead of a resistor. Neither numerical integration nor transistor model evaluation is

needed. Output time responses are represented as piece-wise linear segments.

ELOGIC [11] is an electrical logic simulator which uses switch-level modeling and

analysis techniques. Each switch-level element is modeled by a state transition table

mapping the input voltages to an output Norton equivalent circuit. A circuit node model

transforms the Norton equivalent circuit into a node voltage. ELOGIC is different from

9

many simulators because it uses voltage as the independent variable and time as the

dependent variable.

In general, switch-level models require little information to model transistors,

usually only a switch and a resistor. However, since a flat transistor level representation

of a circuit is used, the representation a large circuit can be very cumbersome. There

appears to be no exploitation of regularity using these models. Also, errors in delay

results can be quite large for this simple model.

1.1.1.3 RC Tree Modeling

Signal delay through RC circuits has been explored with emphasis on delay through

RC tree models for interconnect and CMOS circuits. Penfield, Rubinstein, and Horowitz

[12, 13] found a computationally simple technique for finding upper and lower bounds

on delay in RC trees. This method is useful for MOS interconnect lines with fanout.

Resistances and capacitances are assumed to be linear. Results may be used to (1) bound

the delay, (2) bound the signal voltage, given a delay time, or (3) verify that a circuit

performs faster than a given maximum delay.

Horowitz [14, 15] developed expressions for second order waveform

approximations in conducting and switching RC trees. He also developed timing models

for pass transistors, thus expanding the RC delay work to handle non-linear resistors.

This is done by transforming the voltage to make a linear problem. In addition, Horowitz

included methods to analyze slow inputs into inverters.

Lin and Mead [16, 17, 18] use RC circuits to model delay in MOS circuits. They

developed signal delay calculation methods for general RC meshes, which is a more

general circuit form than RC trees. A simulator was developed in which semantic cell

representations of sub-circuits, characterized by a series resistance, a loading capacitance,

and internal delay, may be composed hierarchically.

Calculation of signal delay through an RC circuit is only part of the task. An

accurate RC representation for a circuit must first be found. RC modeling is convenient

for modeling interconnect and also transmission gates, due to the bi-directional properties

of both, as long as accurate values for resistance and capacitance are found.

10

1.1.1.4 Macromodeling

Macromodeling is an approach which models a piece of a circuit, or sub-circuit, by

reducing the total amount of information representing that sub-circuit and keeping only

the information needed to calculate the desired output variables. Macromodeling is a

modular method which exploits repetitive sub-circuits. The use of macromodeling

assumes circuits may be partitioned into sub-circuits, which can be represented separately

while maintaining sufficient accuracy. Also, to be efficient, one must assume that

circuits simulated with this method have a large number of repetitive blocks.

Macromodeling exploits approximation and simplification techniques. Circuit

parameters which are not useful in calculating the desired output variables are discarded.

Thus, macromodels may only be used to calculate the output variables for which they

were derived. Accuracy of timing simulation using macromodels generally depends on

delay data of macromodels in the cell library [3].

MOTIS [19,20] is one of the earlier timing simulators developed that use

macromodels. Improvements have been made over the years up to the present day. In

general, MOTIS simulates circuits at the device level but uses methods found in logic

simulators to propagate voltage signals between nodes. Table lookup methods are used

to find device currents. Incremental voltages are found at each time point using nodal

analysis.

A second generation MOTIS timing simulator [21] implements new methods that

allow simulation of more general circuits. The new version of MOTIS also has improved

speed and accuracy. Circuits are partitioned and decoupled into several small uni-

directional sub-circuits. Active sub-circuits are then scheduled for simulation, which

involves node voltage computation with local time step control.

MOTIS3 [22] is a mixed level, mixed mode timing simulator. Mixed level implies

using models at different levels of circuit abstraction. Mixed mode means several types

of simulation techniques are used in the same program. Models are developed at the

behavioral level, the register transfer level, gate level, and transistor level. Modes of

simulation include the unit delay mode, which is logic verification at the switch level,

timing mode, which uses a simplified form of a conventional circuit simulator, and

multiple delay mode, which is a logic simulation with precalculated rise and fall delays.

NEWTON [23] is a gate level simulator that uses macromodeling techniques. Delay

11

is calculated as a function of transition times, gain and output loading. The logic models

include multiple paths and are used for gate-level type circuits. Accuracies of 95 to 99%

are claimed.

WASIM [24] is a waveform simulator using macromodels. The behavior of a sub-

circuit is composed of static (logic) and dynamic (output response) part. Dynamic

performance is done by modeling only the output stage of the macromodel. The

waveform is a sum of exponentials and are curve fitted to results of a circuit simulation

of the cell. The accuracy of this program was not explicitly mentioned.

Matson [25, 26] uses macromodeling as part of a circuit optimization package.

Logic gate behavior is described by simple formulas based on device equations. The

model formulas are curve fitted to SPICE results of the sub-circuit.

AUTODELAY [27, 28, 29] is an automatic delay calculator developed by Putatunda.

It was designed for calculation of signal propagation delays along selected paths in

standard cell and gate array designs. Delay and transition time of output waveforms are

modeled as linear functions of load capacitance, load time constant, and input transition

time. Circuit simulation of sub-circuits is used to derive parameters needed for the delay

and transition time functions. AUTODELAY uses four basic algorithms: RC network

synthesis to convert artwork to RC trees, RC network reduction to reduce complex RC

networks to a simple network, gate delay computation, and signal path delay

computation. Errors were found to be within 25% of conventional circuit simulators

using AUTODELAY.

Fyson and Nichols [30] developed MASCOT, a program for verification of static

and transient electrical characteristics of a network. Sub-circuits are uni-directional

elements and are represented by eleven parameters derived from circuit simulations. One

parameter describes the logical function of the sub-circuits, six parameters describe a 4-

segment transfer function from the sub-circuit's dominant input to the output, and four

parameters are used for calculation of propagation delays and rising and falling transition

times of the waveforms. In the one example that was described, a 1-bit binary

adder/subtractor was simulated and results differed from those of conventional circuit

simulators by approximately 7%.

Most macromodeling techniques assume uni-directionality of the sub-circuits.

That is, waveforms propagate from input nodes to output nodes only. Logic gates,

12

ignoring Miller effect, fit into this category. Thus, most work has been done using logic

gates and avoiding bi-directional devices such as transmission gates. Higher accuracies

are also much easier to achieve when treating only logic gate forms.

1.1.2 Simulation Methods

Just as there are different modeling approaches, there are also different simulation

techniques. Of course, often the selection of a particular modeling method requires a

specific simulation technique.

1.1.2.1 Time Step Simulation

The time step, or incremental, simulation technique is generally used for circuit

analyzers. Circuit analysis is partitioned into individual time steps. The entire circuit is

analyzed during each time step. The step size is chosen to accurately model the fastest

signal transitions occurring at that point in the simulation. Obviously, this technique

requires a lot of computation. Much of this computation may be deemed unnecessary

when considering variations in circuit activity. While a small part of the circuit may be

active and signals are changing rapidly, the rest of the circuit may be very inactive but is

analyzed using the same methods and step size as the active part of the circuit.

1.1.2.2 Waveform Relaxation

Waveform relaxation [31, 32] is an iterative method for circuit analysis. Each

circuit is partitioned into strongly connected blocks. Each block is analyzed

independently over the entire time interval using standard simulation techniques. This

decomposition allows latency, or the variation of degree of activity in a sub-circuit, to be

exploited. Computation using waveform relaxation tends to grow linearly with circuit

complexity. Circuit size is still a major limitation, although not to the degree in

incremental techniques.

1.1.2.3 Event Driven Simulation

Event driven simulation is a technique that performs delay calculation on a sub-

circuit only when an input signal is applied to the sub-circuit. This type of simulation

exploits the latency, or temporal sparsity, of a circuit by performing delay calculation on

only those parts of the circuit that are changing state. Evaluation of inactive sub-circuits

is bypassed without effecting the overall solution. Events, or pending signal transitions,

are scheduled using an event queue. The amount of computation required for this method

13

__

is related to how busy the event queue is. While most circuit analysis programs use the

incremental approach, most simulators using macromodels use the event driven

approach.

Event driven simulation, when used in conjunction with sub-division of circuits,

exploits structural sparsity. The advantages of event driven simulation are maximized by

sub-dividing the circuit as much as possible. MOS circuits are amenable to sub-division,

due to the fact that, ignoring Miller effect, the gate of an MOS transistor is electrically

isolated from the drain node, or output, of the transistor. This method is used in many

modeling techniques such as macromodeling, described above. Fanout of most circuit

structures is small, leading to a sparse connection matrix. Even though many incremental

simulators, like SPICE, use sparse matrix techniques, computation still increases more

than linearly with an increase in matrix (or circuit) size, since the entire matrix must be

considered at any particular time. At any one time, event driven simulation using

network sub-circuits effectively uses only a small portion of this connection matrix. This

part of the matrix corresponds to the connections of the sub-circuit being simulated.

SAMSON [33] is an event driven circuit simulator that is said to have comparable

waveform accuracy to SPICE while performing an order of magnitude faster due to its

event driven nature. SAMSON uses two circuit models-a dormant model and an active,

or alert, model. The dormant model decouples an inactive sub-circuit from the rest of the

circuit. The alert model, for active sub-networks, is modeled by non-linear algebraic-

differential system of subnet equations. Each sub-circuit has its own individual step size.

1.2 Overview of Thesis

The summary of timing simulation approaches in Section 1.1 supports the

following conclusion. In order to quickly receive reasonably accurate results of large,

fairly regular circuits, a macromodeling approach using event driven simulation should

be used. Macromodeling, as stated previously, is good for accurate, reduced-information

models of uni-directional logic gates.

It was also said that RC delay calculation techniques have been well developed and

are useful for bi-directional networks that may be modeled as RC circuits. Interconnect

and transmission gates fall into this category. Many efforts at macromodeling logic gates

circuits have been done, with varying degrees of success. However, there has not been a

14

-

successful effort, especially in terms of accuracy, involving macromodeling transmission

gate and RC circuits, as well as logic gate circuits. In this thesis, macromodeling

transmission gate circuits is done by linking accurate RC delay models to a

macromodeling event driven simulation method. The rest of this document describes

methods for developing delay models and delay calculation techniques for logic gate

structures and bi-directional structures such as transmission gates and RC trees.

The development of macromodels is discussed in Chapter 2. This includes

waveform models, logic gate models, transmission gate models, and delay calculations

for the models. Chapter 3 presents the simulation methods used. Representation of sub-

circuits, issues in event scheduling, and general program organization are a part of that

chapter. Experimental results are the subject of Chapter 4. Comparisons of delay times

and execution times are made. Finally, conclusions and possible future work on this

topic are presented in Chapter 5.

15

I

CHAPTER TWO

Macromodeling

A macromodel is a reduced data abstraction of a circuit. This means only

information necessary to calculate desired output variables is retained and the rest of the

data is eliminated. In this case, the desired information is timing and logic of the cell.

The timing of the cell is given in the form of output transitions, which contain delay and

waveform information, including a rising/falling flag. The external variables required for

calculating transitions are load impedance and input transition. Cell parameters dictate

the exact function to be performed on input variables in order to yield output transitions.

All circuits that are modeled in this thesis are CMOS.

Before plunging into the discussion on macromodeling, a few terms will be

defined. A cell, also referred to as a sub-circuit, is part of a circuit. Macromodeling is

performed upon these cells. In Chapter 3, cells will be further classified as modules and

instances. The input impedance of a cell input is the impedance looking into that input.

This impedance is generally used as part of the load impedance for another cell. The

input impedance is usually purely capacitive for most logic gate structures, consisting of

gate capacitance and other parasitic capacitances, and will be called the input capacitance

of the cell. The load impedance of a cell is the resistive and capacitive loading on the

outputs of a cell from interconnect, other cell inputs connected to the cell outputs, and

other parasitics external to the cell. In general, the output impedance of a cell, which is

the impedance looking into a cell output, is not used as part of the load impedance as its

effect is accounted for in the cell parameters. This output impedance may consist of a

resistive component and a capacitive component. An exception to this is made when the

effective driving impedance of a cell is needed to create an RC tree. Again, the effective

driving impedance may be composed of resistance and capacitance. The effective

driving resistance is the average value of resistance seen looking into a cell output during

a specific cell input transition. The effective driving resistance is usually a function of

input transition. In general, any effective resistance is a particular average resistance

seen by a given node for specific input transition and loading conditions.

The reduced information delay model is based on empirical results of SPICE

simulations of the cells. In general, the delay model is a piece-wise linear function of

16

input transition time and a linear function of load capacitance. The drawback of this

method is there may be lack of circuit insight into the timing behavior of various cells.

Also, empirical models may not model all situations that may arise as well as a physical

model since those situations must be explicitly modeled in the empirical approach [34].

However, an empirical model is well suited to a fast, efficient computer simulation, as the

data is well structured. Empirical models provide greater degrees of freedom for

modeling delay accurately and efficiently without being constrained by the behavior of

an equivalent circuit model.

Timing simulation may or may not use the logical values of circuit nodes, called

node values, to determine timing information. Node value dependent simulation uses

information about node values to calculate delay. In other types of simulation, timing

calculations are done without regard to node values of the circuits. Differences in

rising/falling transitions are compensated by keeping track of the number of inversions.

Timing verification is also node value independent, and is usually used to locate and

analyze the slowest paths [6]. Of course, it is not always the slowest paths that are of

interest. At times a designer may be interested in the delay of a quicker path as a "worst

case". The method used in this work is node value dependent simulation, where the

value of each node is important to the simulation. Obviously, little data reduction is

gained if all node values are stored. Usually, besides input and output nodes to a module,

only those internal nodes necessary for correct logic and delay calculation are stored.

Thus, each transition may be evaluated only in terms of local inputs to the cell and stored

node values of the cell. There are separate evaluations for rising and falling transitions.

This type of simulation may be somewhat slower, but is more accurate than simulations

that do not use this information, plus logic information is evaluated and produced.

The method for calculating the delay of a cell, for a given input signal on a given

cell input node, is
1. Find load impedance of each cell output node.

2. Calculate output transition time and output delay time for each cell output

as a function of the load impedance of the output, input signal and node
values of the cell.

3. Determine whether output waveforms are rising or falling.

4. Update node values of the cell.

17

. __ _��

2.1 Circuit Partitions

A question of circuit partitioning arises when developing macromodels. The main

issues are size of the cell and placement of cell boundaries.

The size of a cell may vary. A cell may be as small as a single inverter or

transmission gate, or as large as several logic gates. The trade-off is total number of cells

versus cell complexity. A maximum of two sets of parameters are needed for each

input/output pair, one for rising waveforms and one for falling waveforms. Thus, a three

input, two output cell will require a maximum of 12 sets of parameters. Also, since the

simulations are node value dependent, as the cell becomes larger, the number of node

values to examine becomes larger. Another factor to consider, however, is that the

number of SPICE simulations needed to generate a set of parameters may be less for a

larger cell, since the outputs will not be as sensitive to the input waveforms.

Most cells can be defined on functional borders. This means that a circuit may be

partitioned in such a way that portions of the circuit that perform a specific function may

constitute a cell. Examples of these types of cells are register cells and adder cells. The

major limitation on placement of a cell boundary is feedback. Feedback where the output

waveform affects the input waveform transition will be referred to as dynamic feedback.

Any tight, dynamic feedback loops must be internal to the cell, although any node that is

fed back to an internal node may be a cell output. Figure 2-1 shows the type of feedback

that would affect definition of cell boundaries. Figure 2-1 a) illustrates feedback via the

p-transistor that aids rising waveforms of the input. However, the input to this cell has

previously been calculated by the driving cell of the node and cannot be changed. Thus,

effects of the p-transistor cannot be modeled. However, if the point of feedback is

included internal to the cell such that it is isolated from the input, as in Figure 2-1 b), then

macromodeling via SPICE simulations will account for the feedback effect.

Feedback plays an important role in the cross-coupled inverter circuit, shown in

Figure 2-2. This is a difficult cell to model for two reasons. First, of course, are

feedback effects encountered at the input node. Also, the load on the input node is not

purely capacitive, since driving transistors of the feedback inverter effectively look like

resistances to a voltage source. Unfortunately, with the assumption of unidirectionality

of a cell, feedback cannot be adequately modeled as long as the feedback node is not

internal to the cell. If one chooses to ignore effects of feedback, errors may be

minimized by including loading effects of the feedback inverter. Thus, the input

impedance of the cross-coupled inverter cell would be an RC circuit. By not explicitly

18

__

a)

...

b)

Figure 2-1: Modeling feedback in cell macromodels.

a) This type of feedback cannot be modeled as the
output affects the input signal. b) Correct way of
modeling feedback such that the effects are isolated
from the input.

19

..··· · ··

..

Feedback Inverter

Figure 2-2: Cross-coupled inverter circuit.

modeling feedback, one must assume that the feedback inverter will never override the

driven input signal. In fact, the assumption is made that there will never be any

waveform action at the input node initiated by the output node, as follows from

unidirectionality. Ruehli [35] gives a rigorous approach for decomposition of a circuit

into sub-circuits such that there will never be any feedback between sub-circuits.

There are two basic types of delay calculation. One type of calculation is used

when the cell structure is of logic gate form and load impedances on the cell outputs are

purely capacitive. This method will be called logic gate delay calculation. A logic gate

cell may be an inverter, NAND, NOR, or combinations of these and other similar logic

forms. The other type of calculation, called RC circuit calculation, is used when the cell

to be analyzed is a transmission gate or a logic gate cell driving a load that is not purely

capacitive. This load may consist of conducting transmission gates or RC trees. A

method is needed for interfacing results of the two types of delay calculation. In this

way, cells that function differently in terms of delay may be modeled in a different way

as long as an interface is found to existing methods of delay calculation. This allows the

most efficient and accurate method of delay calculation without having to generalize over

all circuit types.

The method of calculation of delay for cells containing both logic gate forms and

RC circuits or transmission gates depends on the configuration of the cell. If all

source/drain nodes of transmission gates are internal to the cell, then logic gate delay

calculation may be used as long as the load impedance on the cell output nodes is purely

capacitive. If the cell contains both a logic gate followed by a transmission gate or

similar structure, and the load impedance is purely capacitive, then logic gate delay

calculation is performed. If the load is not purely capacitive, then the effective driving

resistance and capacitance will include effects of both the logic gate and transmission

20

-
- | - -

IL---

I i/- 1

/1

c---O

gate in the cell. If the cell is a transmission gate followed by a logic gate, the modeling is

not so easy. The input impedance obviously contains some resistance when the

transmission gate is conducting. However, calculating the effective resistance of the

transmission gate in this configuration is not straightforward. Thus, the transmission gate

should be modeled as a separate cell.

2.2 Waveform Models

Typically, waveforms of MOS circuits are fairly well behaved and easily

characterized. This is true mostly for the case of a logic gate circuit driving a purely

capacitive load. Output waveforms of logic gates may be separated into two basic

categories: output waveforms caused by fast inputs and output waveforms caused by

slow inputs [36].

A waveform caused by a fast input consists of an initial curve as the output begins

to respond, a linear region, and an exponential region. The linear region is caused by

driving transistors passing through saturation, and may be modeled by a current source

driving a capacitor. When the driving transistor turning on is in the non-saturation

region, the logic gate is better modeled as a resistor, and the exponential tail of the

waveform results. Figure 2-3 shows an output waveform of an inverter.

Output waveforms caused by very slow inputs basically follow the circuit's D.C.

transfer function. However, the transfer function is similar to the fast input case as it has

a linear region and a decaying tail. Instead of load capacitance being the major

determining factor in waveform shape, the shape of the transfer function is dominant.

Figure 2-4 shows the D.C. transfer function of a CMOS inverter.

The logic gate waveform model uses two points on the waveform to define the

model. These points correspond to times where the waveform completes 20% and 80%

of the transition, in terms of signal voltage. The waveform is fairly linear in this region,

thus two points should be sufficient to model the waveform action. Most of the critical

part of the signal, as far as the circuit is concerned, also occurs in the region, so the

location of the selected points is reasonable. In CMOS, these voltages are IV and 4v for

rising waveforms, or vice versa in the falling case, since CMOS is rail-to-rail.

These time values are interpreted as delay time, Td, and transition time, Tr, where

Td = t 2 0 %

Tr = t80% - t 2 0 %.

21

T TT TII
V(oul

I lme

Figure 2-3: Output waveform of a CMOS inverter.

Region I is the initial response, region II is the linear
region where the driving transistors are saturated, and
region III is the decaying exponential tail. The
dashed line represents the inverter input signal.

The delay time and transition time may define a ramp waveform model, as Figure 2-5

illustrates. The points on the waveform could also easily be interpreted as an exponential

waveform with a delay time and a time constant, as in Figure 2-6. However, for the most

part, we will view the waveform as a ramp with a delay time and transition time.

The ramp model works very well when a logic gate is driving a purely capacitive

load, since the output waveform behaves as described in previous paragraphs. When the

load is not purely capacitive, as in an RC tree or transmission gate, the waveform is better

approximated with a multi-time-constant exponential or some other waveform.

Waveform modeling for these situations is explained in Section 2.4.1.

22

V(ou

Figure 2-4:

V(in)

D.C. transfer function of a CMOS inverter.

Delay time = tl

Transition Time = t2 - tl

.4

tl t2 time

Figure 2-5: Ramp model of a waveform

23

Vo

V

V

V-j I.U 1. .V I- a 13. .5.3 4%U q.:> 1.

i

V

I
'f

time

Figure 2-6: Fitting a ramp and an exponential to the same two points.

2.3 Logic Gate Models

The macromodel for a logic gate cell is shown in Figure 2-7. As previously

mentioned, external variables are load impedance, input and output transitions, and node

impedances (for use by other cells). The internal variables consist of the parameters used

to calculate output waveforms.

Td.

Tr.

C.
in

Td
out

Tr
out

C
out

Figure 2-7: Macromodel for a logic gate cell

24

-~~~~~~_

V

' '' '' '' ''

2.3.1 External Cell Variables

The input variables include load impedance and input waveform. If the load is

composed of pure capacitance, then delay calculation is done by the method discussed in

Section 2.3.2. If the load consists of resistance and capacitance, then the circuit must be

characterized as an RC circuit with delay offset as described in the Section 2.4. The input

waveform is defined in terms of delay time, transition time, and rising/falling transition

as described in Section 2.2. Also specified is the node name upon which the input is

acting, especially necessary when there is more than one input to the cell.

The output variables are output waveform and cell node capacitances. The output

waveform is calculated as functions of the input variables, which are load capacitance

and input waveform. The names of the output nodes affected are also provided.

The impedance of each input and output node is available for use in calculations

for other cells. Impedance may be a function of the node values of the cell, although in

practice, this is usually only necessary when calculating the load of a transmission gate.

The output node capacitances consist of parasitic capacitances of drain nodes of the

transistors, as well as other layout parasitics which may be provided by a circuit

extraction program.

Input capacitance includes the effective gate capacitance of the logic gate plus any

parasitics. The parasitics may again be calculated by a circuit extraction procedure. The

gate capacitance is calculated by

Ceff - COXWgaeLgategate
gates

where

Esio2
COX Tox,

Tox is gate oxide thickness, £Sio2 is permittivity of the gate oxide, and Wgae and Lgate

are width and length of the transistor gate. The summation sign indicates that all gates

connected to the input must be included. For example, the effective input capacitance of

a CMOS inverter would include the gate capacitance of both the n- and p-transistors.

A constant input capacitance is assumed. In reality, the gate capacitance is not

constant, but a function of VDS and VGS [37]. However, SPICE simulations on an inverter

show that overall effective gate capacitance is very close to Cgate, N + Cgate, . SPICE

simulations also show that overall effective capacitance of a single n-type transistor

25

during a OV to 5v transition is very close to Cgate,N. One must keep in mind, however,

that SPICE may not be the best proof of gate capacitance behavior, as the issues of charge

conservation and correct capacitance modeling has not yet been resolved. Theoretical

calculations show that the above assumptions are reasonable.

2.3.2 Output Waveform Calculation

In general, output delay times and transition times are linear functions of load

capacitance and piecewise linear functions of input transition time. Logic functions of

the cell determine whether the output is rising or falling and also which set of parameters

to use in delay calculation.

The transition time, Tr, calculation may be viewed as a function of load

capacitance in the following manner:

Trout = Trnoload(Trin) + Rtr(Trin) x Cload (2.1)

Trnoload and Rtr are both piecewise functions of input transition time. Trnooad is the

output transition time when there is no load capacitance. Rtr is the "transition time

resistance". Transition time will therefore increase at a constant rate with Cload.

The output transition time in terms of input transition time is usually a two section

piecewise linear function. The first section is a constant value with a slope of zero. This

is the non-tracking section. The input transition is completed before the output transition

is well into its response. The effective output resistance of the gate and load capacitance

determine the transition time of the gate output. After a certain break point, the input

transition time is long enough to start having some effect on the output. This is the

second section, or the tracking region, of the function. It is called the tracking region

because the input signal is slow enough that the output signal will, in effect, trace it,

although the output waveform will be a function of the input waveform as defined by the

D.C. transfer function of the gate. The slope of the output transition time versus input

transition time in this section is non-zero and positive. Figure 2-8 shows a typical

relationship between input and output transition time for an inverter.

In some cases, for a cell composed of many transistors, or having a large load

capacitance, the function consists of only the first non-tracking region in a practical range

of input transition times. In the first case, the defined input is electrically removed

enough from the output that input transition time has little effect. In the second case, the

effect of large load capacitance is dominant, and the step input response is long enough

26

#... x C(.OlpF)

0 C(.lpF)

......# + C(.2pF)

.~...····~ C(.5pF)
"'# * # # #C (.Op)

D " ..- 4'
** ' ,.4' +

0.0

Nx. x 'c~Y·~~····*- · · o··~~~...4".

~' I I I I..I.. I

Figure 2-8: Output transition time function for an inverter.

Output transition time as a function of input
transition time with load capacitance as a parameter.

that the input transition time would have to be unrealistically long in order to affect

output transition time.

In other cases, the second region is actually better modeled by two sections, where

the last section has a slightly smaller slope. This effect is usually seen for small cells, as

in inverters, for smaller load capacitance. Under these condition will non-linearities in

timing behavior show up. Larger circuits tend to have outputs which are more decoupled

from inputs than smaller circuits. Capacitive effects will dominate timing results more

when the load capacitance is large. If the load capacitance is small, then non-linear

behavior will be more prevalent.

The delay time, Td, of a node is measured as the time the node completes 20% of

its transition minus the time at which the circuit input completed 20% of its transition.

27

Tr(out)I

The delay time calculation may be viewed as a function of load capacitance in the

following manner:

Tdou t = Tdnoload(Trin) + Rtd(Trin) x Cload + Tdin (2.2)

Tdin is the delay time of the input signal. Tdnoload and Rtd are both piecewise functions

of input transition time. Tdnoload is the delay when there is no load capacitance. Rtd is

the "delay resistance". The corresponding model for this equation is shown in Figure

2-9.

...

- -Td noload R

Td

-[- Cload

Figure 2-9: Model for delay calculation of a cell

Figure 2-10 illustrates an example of output delay time versus input transition time

for an inverter. Output delay time in terms of input transition time is fairly linear, as one

might expect. However, some curves exhibit a slightly smaller slope for longer input

transition times and are therefore fit with two piecewise linear sections. The reason for

this is related to the tracking and non-tracking regimes explained in previous paragraphs.

Consider the critical switching time of a gate, Tsw, as the time when the input voltage is

equal to the point on the D.C. transfer curve where Vin = Vou r Let this voltage be Vsw.

In this explanation, let delay be measured as the time the output reaches Vsw minus the

time the input reaches Vsw. In the non-tracking regime, input transition times are

completed before the output of the circuit has reacted measurably. The output is

dominated by the RC time constant. Thus, In the non-tracking region of smaller input

transition times, the delay referenced to the time the input reaches Vsw is ReqCload, where

Cload is the load capacitance plus any output capacitance and Req is the equivalent

resistance of the logic gate. When the input transition time is slow enough such that the

output follows the D.C. transfer curve, then, by definition, the output voltage reaches Vsw

28

#- x C(.OlpF)

o C(.lpF)

* + C(.2pF)

#-" ' ..' * C(.SpF)

*o # C(l.OpF)

. .. .'. ..

. , . .4

* .

*-' · ' .

" * ' ''' ''

*3.'

Tr(in)

Figure 2-10: Output delay time function of an inverter.

Output delay time as a function of input transition
time with capacitance as a parameter.

at the same time that the input voltage reaches that voltage. There is no delay with

respect to those voltage points. These two situations are illustrated in Figure 2-11.

Since, in the waveform model presented in Section 2.2, delay is measured with respect to

the 20% transition values, there should never be zero delay. Delay will increase with

input transition time, the transition will reach the 20% transition voltage before it will

reach Vsw. However, this increase in delay will be less when the output waveform is

defined by the D.C. transfer curve than when it is defined by the RC time constant. This

effect appears in the delay functions as the two piece-wise linear functions, where the

non-tracking region has a larger slope than the tracking region.

29

Td(out)

.malmm _ _ __ __

TIME (Nano)

a)

-V(ut)
_ .Vkin)

TIME (Nano)

b)

Figure 2-11: Effects of input transition on delay.

a) With a fast input transition, there is delay with
respect to Vsw because of the additional delay caused
by the RC time constant. b) With a slow input
transition, there is no delay referenced to V,,s since
the circuit's D.C. response determines the output
waveform.

30

43.

3.

2 t

1.

5.

4.

3.

2.

1.

I

-v(Put)

2.3.3 Derivation of Parameters

Parameters are derived from SPICE simulations of the cell. Simulations are done

for each input/output pair, and for rising/falling transitions.

The cells modeled at the time of this writing have been simulated at five different

loads, ranging from .OlpF to l.OpF, and at ten different transition times, ranging from .6ns

to 48ns. This range is variable and may be adjusted depending on expected conditions

under which the cell will operate. If it is known that certain outputs will not be sensitive

to certain types of input transitions, simulations for those situations may also be omitted.

A waveform analysis is performed on the results, and plots are made of the

analyzed data. The plots consist of points which are output delay time or transition time

versus input transition time with load capacitance as a parameter. The slopes, intercept,

and break points of the curves are then plotted with load capacitance as the independent

variable. The slopes and intercepts of these lines are then the parameters that are entered

into the cell's delay procedure file. The input and output load capacitances, as well as

driving transistor widths, are also entered into the delay procedure.

2.3.4 Physical Interpretations

Equation (2.2) in Section 2.3 showed one way of viewing calculation of delay time.

There is a delay offset, an effective resistance, and a load capacitance. Thus, the delay

calculation may be viewed as a simple operation using the Elmore delay [38], defined as

k Rke Ck, with an added delay offset. Node e is the output node, Ck is the capacitance
at node k, and Rke is the common series resistance between the driving source and nodes

k and e. Furthermore, this delay offset, which could also be called an internal delay,

could be modeled as a capacitor internal to the cell but connected to this effective output

resistance. Figure 2-12 shows the circuit for this model. The resulting equation is then

Td = Tdin + Rtd x (Cint + C load) (2.3)

The Elmore delay calculation works for non-step inputs, but only if the elements are

linear [38]. Since this is not the case, waveform effects are used in calculating the delay

offset and the effective delay resistance and RC calculations are performed assuming a

step input.

Calculation of transition time with respect to load capacitance may be approached

in a similar manner. There is a no-load, or internal, transition time, which may be

modeled by an internal capacitance. There is also an effective resistance. The result, this

31

I

R
td

Figure 2-12: Model of a cell with internal delay modeled with
a capacitor

time, is not the Elmore delay of the circuit, but the transition time, since resistance and

internal transition time parameters are derived with transition time as a result. Again,

waveform effects are accounted for in calculation of the effective transition time

resistance and no-load transition time.

The question of modeling the cell with two circuits, or more precisely, one circuit

with two sets of values, one set for delay time and one for transition time, instead of one

circuit with one set of values may arise. The latter would be more physically appropriate.

One reason is the definition of transition time in terms of the ramp model instead of an

exponential model, since an exponential waveform would result from the physical model.

However, a transform between the time constant of an exponential model and the

transition time of a ramp model is a simple mathematical operation. More importantly,

separating the calculation of the delay time and the transition time gives a greater degree

of freedom in calculating accurate values. The best fit for the transition time is found

independently of the best fit for delay time. Again, this is illustrative of the trade-offs of

empirical modeling versus physical modeling.

2.3.5 Scaling Parameters as a Function of Transistor Width

Ideally, the modeling methods used should be versatile enough to allow for scaling

the driving transistor widths of a logic gate. Transistor width specification may be a

parameter of the cell. The delay and transition time parameters would be scaled as a

function of the driving transistor width.

Tests were performed on inverters of various widths. Parameter values as a

function of inverter width were plotted. Relationships between the parameter values and

functions of inverter width were explored and tested. As would be expected, resistance

32

parameters decrease as width increases. This inversely proportional relationship is:

W Wmin

The other parameters, such as intercepts and break points, seemed to scale exponentially
with increases in inverter width. The scaling relationship for these parameters is:

Pw = Pw x (sb)sf

sb is the scale base, which varies with each parameter. sf is the scale factor, which
indicates how many times the width has doubled. The equation for the scale factor is:

sf = log2 (W)

Results for simulations of a parameterized inverter cell, with transistor width as the
external parameter, proved favorable. Inverters with transistor widths of 4 (minimum

width), 8, and 16 microns were tested. Although errors increase as the width grows
larger, part of this is because the absolute delay of the inverter is becoming much smaller.
Still, experimental delay values were within 10% of SPICE values.

Unfortunately, there did not seem to be a clean relationship in which all parameters

could be scaled using the same scale base. Values for the scale base ranged from .1 to
1.1 (dimensionless) for different parameter types. This is due to the different nature of
different parameters-some are slopes, some are break points, and others are intercepts.

Perhaps different scaling methods may lead to cleaner and more consistent relationships

for all types of parameters.

2.4 Transmission Gate and RC Circuit Modeling

As mentioned in the introduction to this chapter, there are two basic methods of
delay calculation. Waveform models and delay models were discussed for one method.
A more complex waveform model and delay calculation method will now be developed
for circuits containing RC trees and transmission gates.

2.4.1 Waveform Model

As mentioned in Section 2.2, there are some circumstances when the ramp
waveform model is not sufficient to model waveform behavior, such that large errors
may result in delay times and transition times. A ramp model is used when a logic gate is
driving a purely capacitive load. If the driving transistor is approximated by a resistor,

33

__ _�_ �

then the resulting circuit is a single RC circuit driven by a voltage source. The output

voltage is then modeled by a single time constant exponential.

When the load is not purely capacitive, as in an RC tree or conducting transmission

gate, or when the driving circuit cannot be approximated well by a single resistor, then

the output may not be as well behaved. Two or more dominant time constants may affect

the output waveform. This is likely to happen when the waveform that is being modeled

is at a node closer to the driving end of the tree than the output of the tree, or when there

is significant capacitance in the tree not on the path between the source and the output. A

more complex waveform model is then needed. Figure 2-13 shows an example RC circuit

and resulting waveforms. Although V(e) has a slow, single time constant decay, V(k)

shows effects of a fast initial transient with a slowly decaying tail.

The two time constant waveform model was developed by Mark Horowitz [15].

The model is calculated from RC tree values. This exponential waveform model has two

time constants. For circuits modeled in this application, one time constant models the

fast initial transient caused by the node capacitance on the path from the source to the

node in question, and the other time constant models the slow decay of the latter part of

the transition. This slow decay is caused by large loads at remote nodes off the path from

the input to the node in question.

The transfer function for the two time constant model is

1 + s'C
H(s) =

(1 + l)(l + sC 2)

The output voltage response of this transfer function to a step input is

V _ () e - t/ 1 + (2 - 2)e t2

--(-e) - 1 +(- - (2.4)
t2 - 1

In general, 1 is the time constant modeling the fast initial transient, while 2 is the time

constant modeling the slow decay. The time constants may be calculated from the RC

tree values. The method for doing this will be discussed in Sections 2.4.4.2 and 2.4.5.2.

The two time constant model may not model all situations adequately. If the

output has many time constants, as in the beginning of a long, distributed RC line, the

waveform model will not be able to model all the decay rates present [15]. It would,

34

__

R

T__o-A0 Af-

I

Vol

R

C1

R R
k e

= C Cl C2

I I

a)

b)
lime

Figure 2-13: RC circuit and waveforms.

a) R = 15KQ, C1 = .lpF, C2 = .2pF; b) Waveforms
at nodes k and e with step input.

4#

35

-

however, do better than a first order model. If the circuit has one decay rate, then the two

time constant model will reduce to the single time constant case.

Once the two time constant model is calculated for a circuit, it must be transformed

to an adequate ramp model for logic gate inputs. Basically, the ramp should be specified

in a way to best model the effects that the two time constant waveform would have on the

logic gate. Thus, we want to choose two points on the two time constant waveform that

correspond to critical regions on the loading gate's D.C. response. One choice is the -1

slope points on the D.C. response, since those points are the boundaries of the high gain

region of the gate where the output is most sensitive to the input. For a typical high gain

inverter, these points may be 2.2v and 2.3V. The ramp will then pass through the 2.2V

and 2.3v crossings of the two time constant response. Figure 2-14 illustrates a two time

constant waveform and a ramp that might be derived from it.

V(

V1

V2

Time

Figure 2.14: Two time constant waveform and example ramp

2.4.2 Modeling Circuits Containing Transmission Gates

The same basic method is used to analyze all transitions affecting transmission

gates. First, the transistor group including the transmission gate(s) is converted to an RC

circuit. A transistor group is defined similarly to a stage in Crystal, which is a chain of

36

I _ _

conducting transistors starting from a driving voltage source with each path ending in

either a transistor gate, a source-drain connection of a non-conducting transmission gate,

or a circuit output [6]. The driving logic gate, assuming a logic gate is the path to the

driving voltage source, must be converted to its RC equivalent. Any conducting or

switching transmission gates in the group are then also converted to RC circuits. The

result is an RC tree. The time constants necessary for the two time constant waveform

model of the nodes of the RC tree network are calculated. Only waveforms of nodes

which have a loading logic gate connected to it or are otherwise specified as outputs must

be evaluated. Lastly, equivalent ramps are derived from the two time constant

waveforms based on the characteristics of the loading gates.

A step input is assumed for waveform calculations of an RC tree. Waveform

effects are taken into account at an earlier step of the analysis, that is, calculation of

effective resistances of transmission gates. Effective resistance is a function of, among

other variables, input transition time. Along with effective resistances, delay offsets are

calculated to further account for internal delays and input waveform effects. These delay

offsets are added to the resulting output ramps derived from the RC networks.

When compared to the view of logic gate modeling in Section 2.3, delay

calculation is not so totally different. Logic gate calculations use a delay time, or delay

offset, plus a single time constant exponential curve to model waveforms. RC

calculations use a delay offset plus a two time constant exponential curve to model

waveforms. The two time constant waveform is then converted back to a single time

constant exponential for logic gate delay calculations.

There are two basic types of circuits that will be analyzed using RC tree equivalent

circuits. The first type is a driving gate with an RC tree as its load. Transitions in the RC

tree are initiated by a transition taking place in the driving gate. A circuit like this may

be an inverter with conducting transmission gate(s) as a load, as in Figure 2-15. The

input to the inverter changes, causing the output of the inverter to propagate through the

transmission gate(s).

The other type of circuit involves two RC trees at different logical node values

which are suddenly connected. Thus, assuming the driving tree has a resistive path to a

voltage source, node values of the loading tree will change to the node values of the

driving tree. The driving tree is assumed to be connected to a voltage source through

driving transistors of a logic gate. A circuit of this type may again be an inverter with a

transmission gate as a load, but this time the transmission gate turns on to connect its

37

Ht- t- T

Im
Figure 2-15: Conducting transmission gates driven by a logic

gate

Vdr

Figure 2-16: Circuit with a switching transmission gate

input to its output. Figure 2-16 is an example of this type of circuit.

In the event that the driving tree is not connected to a voltage source, then two

isolated RC trees are connected. If one tree is clearly dominant and will force the other

tree to the dominant node value, then the analysis of connecting RC trees may be used. If

this is not the case, then both trees are forced into the unknown, or X, logical value, and

delay analysis is meaningless. The nodes are set to the unknown value and no delay

analysis is performed. The capacitances of each tree determine which action will be

taken.

38

-

2.43 Effective Resistance of Transmission Gates

In order to convert circuits containing transmission gates to RC trees, the effective

resistance of the transmission gates must be found. There are two modes of operation for

a transmission gate for which an effective resistance must be found. The first is when a

conducting transmission gate passes a signal from one source/drain node to the other.

The second is when signals at the gate nodes of the transmission gate cause it to start

conducting, connecting nodes that are at different node values. The node values must

then settle to the same equilibrium value.

2.4.3.1 Conducting Transmission Gates

The model of a conducting transmission gate consists of an input capacitance to

ground, an output capacitance to ground, and a series resistance between the two

capacitors, as in Figure 2-17. This model is used whenever a signal passes from one

source-drain node to the other. If a transmission gate is non-conducting, then the model

would simply be an input capacitance and an output capacitance, with no connection

between them. These capacitances would also terminate the branches of the RC trees

connected to them.

............. ..

Rff
A A A

vv'-. :

Figure 2.17: Model of conducting transmission gate

The input and output capacitances are considered to be constant and are usually

derived from circuit extraction results. These capacitances include parasitic capacitances

to the substrate of the sources and drains of transistors and interconnect. Also included is

the channel capacitance of the transmission gate. Half of this value is added to the input

capacitance and half is added to the output capacitance.

39

0 -- i-

The resistance is modeled as a function of input transition time and the load

capacitance of the transmission gate in the direction the signal is propagating. Thus, an

effective resistance is calculated based on loading and signal conditions of that particular

transition.

Transmission gate resistance parameters are derived in much the same manner as

delay time and transition time parameters for logic gate cells. That is, SPICE simulations

are done for rising and falling transitions while varying input transition time and load

capacitance. A waveform analysis is performed on the results, and plots made of the

analyzed data. The data in this case is resistance. Resistance is calculated by dividing

the Elmore delay [38] of the output with respect to the input by the total capacitance seen

at the output source/drain node of the transmission gate. This may be done since the

Elmore delay of a single RC section is simply RC, where R is the resistance value and C is

the capacitance value. Penfield and Rubinstein [13] showed that the Elmore delay for a

rising waveform is equal to the area above the waveform and below 1 (assuming a unit

step response). 1 Thus, the Elmore delay needed for resistance calculations is simply the

area above (below) the output waveform minus the area above (below) the input

waveform. After the resistance data is plotted versus input transition time and load

capacitance, then the slope, intercept, and breakpoint parameters may be derived from

those plots.

Transmission gate effective resistance is also assumed to be piecewise linear with

respect to input transition time and a linear function of load capacitance. Figure 2-18

shows the relationship between conducting transmission gate resistance and input

transition time and load capacitance. The effective resistance increases immediately with

increasing transition time and then quickly levels off to a constant value. The effective

resistance is roughly equal for all load capacitances with a step input. As transition time

increases, the effective resistance rises more sharply and levels off at a slightly higher

resistance at smaller loads. All in all, the variation in resistance is not great. One

transmission gate example varies from 13 KOhm to 15 KOhm, versus both load

capacitances and input transition times. Since this function describes overall effective

resistance during a voltage transition, many effects dictate the behavior of effective

resistance versus input transition time. One such effect is the relationship of resistance to

Vgs when the transistors are in the non-saturation regime. The average value of Vgs is

larger for fast input transitions than for slower input transitions. This assumes that the

1For a falling waveform, the Elmore delay is the area below the waveform.

40

4 .o' . ·

x -.·.

·. .
·

· ' ·. · .~~~~#

x C(.OlpF)

o C(.lpF)

+ C(.2pF)

C(.SpF)

C(1.0)

5. 10. 15. 20. 25. 30. 35. 40. 45. 50.

Tr(in)

(ns)

Figure 2-18: Conducting transmission gate effective resistance function.

Effective resistance of a conducting transmission gate
as a function of input transition time with load
capacitance as a parameter. The N-type transistor is
4 microns wide, 3 microns long, and has a threshold
voltage of 1.2V. The P-type transistor is 8 microns
wide, 3 microns long, and has a threshold voltage of
- 1.2V.

average value is taken over the time interval between the start and end of the output

transition. Since transistor resistance is inversely proportional to Vgs resistance will be

smaller for faster inputs. At a certain breakpoint in input transition time, the average

value of Vgs will be approximately constant with respect to input transition time and the

resistance will level off. This breakpoint occurs earlier for smaller load capacitances.

41

R
(KOhms)

15.0

14.5 -

14.0 -

13.5 -

O.

x

.x'

i...
: O-

4.

x
.+ ..

. : 4- ..

:',.' .- "*
: ,. ' · ...

: ' "-.

.. ~]

..

; ~ .

- L · · · · ·i

.w

2.4.3.2 Switching Transmission Gates

The model for a switching transmission gate consists of an input capacitance and

an output capacitance to ground connected by a resistor in series with a switch, as shown

in Figure 2-19. This model is used whenever the inputs to the gates of the transistors turn

on, causing the transmission gate to start conducting. There are, of course, two inputs to

a CMOS transmission gate, one for the n-transistor and one for the p-transistor. There will

almost always be some delay between the time that these transitions will reach the

transmission gate inputs. In order for the switch to be on, it is defined in this model that

both the n- and p-transistors must be on. It is not necessary, however, for both to switch

at the same time.

t offset Reff

T C2

Figure 2-19: Model of switching transmission gate

The parameters that must be calculated are the time that the switch closes, toffset

and the value of the resistor, Reff. The switching resistance is calculated in much the

same way as conducting resistance, except that the input signal is at the gate nodes of the

transistors instead of a source/drain node. The resistance is again piecewise linear with

input transition time and linear with load capacitance. Figure 2-20 shows the relationship

between effective switching resistance and input transition time and load capacitance.

The resistance starts at a constant value, and this value is approximately the same for all

load capacitances. As the transition time increases, after a certain break point the

resistance starts increasing. This behavior can be related to the tracking and non-tracking

regions of output transition time versus input transition time that were described in

Section 2.3.2. For fast inputs, the output will be in a non-tracking region where the

output waveform will vary with load capacitance only. Thus, effective resistance will be

constant with input transition time. As the input becomes slower, the output waveform

42

.x* x C(.OlpF)
o C(.lpF)

x'.-' + C(.2pF)

* C(.5pF)

a··'~ ~# C(1.OpF)

.. '
c.o

o*.. + o ~~~~~~~~~.,
. + .

a " .+ 2 * 0.
'. . . . O" . . | . . _ .

.

. - 10 S. 20. . 3. . 4.. . .# I

Tr(in)

(ns)

Figure 2-20: Switching transmission gate effective resistance function.

Effective resistance of a switching transmission gate
as a function of input transition time with load
capacitance as a parameter. The input signal is
assumed to be Vg. The N-type transistor is 4 microns
wide, 3 microns long, and has a threshold voltage of
1.2V. The P-type transistor is 8 microns wide, 3
microns long, and has a threshold voltage of -1.2V.

will start to track the input waveform. Thus, the effective resistance will become greater

with increasing input transition time. This breakpoint occurs earlier for smaller load

capacitances. Also, the effect of input transition time on resistance is greater for smaller

load capacitances.

The time of closing of the switch, or switching delay offset, is also calculated as a

function of input transition time and load capacitance. This is analogous to the output

43

R
/?~'a'"~ L ._ _~

t1unms)

70.

60.

50.

40.

30. _

20. -

delay functions of logic gates.

The calculations mentioned above assume that input transitions of both the n- and

p-type devices occur at the same time, and both with the same transition time. Most of

the time this is not true. Differences in the input delay times and the input transition

times must be accounted for.

offsetp Rp

A AAA
- VV

offsetN RN

- A A
- VV L

Figure 2-21: Switching transmission gate model.

Effects of separate transitions for the p- and n-
transistors on the switching transmission gate model.
This model is used to derive the effective resistance
and delay offset of the transmission gate.

The switching delay offset and resistance are calculated separately for each input

transition. Thus, there are two values for delay offset and two for switching resistance,

one corresponding to the n-transistor input and one for the p-transistor input. The

resulting circuit model is shown in Figure 2-21.

Assume that total effective resistance, RT of a conducting transmission gate may be

modeled as a parallel combination of an n-transistor effective resistance and a p-transistor

effective resistance, as in Figure 2-22. Given a total resistance, RT, these components

may be found:

44

I A· A A~

%.r---

-1

R
p

R
n

Figure 2-22: Resistance model of conducting transmission gate.

Effective resistance is modeled as a parallel
combination of effective n- and p-resistances.

RNT (a+)RT
a

RPT = (a + 1)R T ,

where

n RWNLp

JP WLN

The desired resistance values are effective resistance of the n-transistor as a function of

n-transistor gate input, and effective resistance of the p-transistor as a function of p-

transistor gate input.

RN (R T,+n-inpt

Rp p=- (a + 1)RT,p-inpu t

RTninput is the effective resistance of a switching transmission gate as a function of the

n-transistor gate input. RT-input is the effective resistance of a switching transmission

gate as a function of the p-transistor gate input. Obviously, only the resistance of the

p-transistor is meaningful when the p-transistor gate changes, and only the resistance of

45
4*

the n-transistor is meaningful when the n-transistor gate changes. The resulting circuit is

shown in Figure 2-21.

The circuit in Figure 2-21 will then give the following waveform, assuming, for

this case, the p-transistor turns on (at tp) before the n-transistor (at tn) and a falling

waveform:

Vout = 1 t < tp

e- (t- tp)/RpCL tp < t < tn(2.5)

Vint e -(t tn)RTCL t > tn,

where

Vint = e-(tn-tp)IRpCL, and

RP x RN
RT=

R +RN

Assuming a unit initial value, the output voltage will be lV until the first input arrives at

tp. Once the p-transistor is on, the voltage will fall exponentially with time constant

RPCL, resulting in the second part of the equation. When the second input arrives at tn,

the waveform will continue falling, but with time constant (Rp//IIRN)CL, where 11 denotes

parallel combination. The voltage at the time when the second input arrives is Vint,

which may be derived by solving the first exponential by substituting tn for the time

variable, t.

The final effective resistance and delay offset are then found from the waveform.

Two critical voltage points are chosen. The points used are 1V and 4v, in order to find

effective values for a wide range of combinations of switching times of the two

transmission gate inputs as possible. The time constant and starting time of a single time

constant exponential fitting the critical points are found. The resistance is calculated

from the time constant and the load capacitance. The switching delay offset is the

starting time of the exponential. Figure 2-23 shows the waveform defined by Equation

(2.5) and two sample critical points. offset1 is the time at which the first transistor turns

on, and offset 2 is the time at which the second transistor turns on. A problem with this

method is that if the second transistor switches after the piecewise linear waveform

completes its transition, the effective resistance and delay only include effects of the first

transistor. This may happen when an n-transistor passes a high signal or a p-transistor

passing a low signal. A threshold drop would prevent a complete transition until the

other transistor turned on. These threshold drops would not be present, however, when

46

RN or Rp only

RN II Rp

off1 off2 Time

Figure 2-23: Waveform of circuit in Figure 2-21.

The piecewise exponential waveform is used for
derivation of switching transmission gate effective
resistance and delay offset.

an n-transistor passes a low signal or a p-transistor passes a high signal.

2.4.4 Analysis of Transmission Gate Circuits: Input from Driving Gate2

Although finding effective resistance of transmission gates is certainly a critical

step in this delay calculation, the delay offset of the output waveforms and the driving

resistance must also be found. Once the RC tree is constructed, then the actual waveform

calculation on the RC tree is performed.

2This analysis assumes transmission gates are conducting.

47

V(ou

Vc

V.
1

V
(

2.4.4.1 Constructing the RC Tree

The first step in constructing the equivalent RC tree is to find the effective driving

resistance and delay offset. Also needed is the output capacitance of the driving gate.

The output capacitance is mostly parasitic capacitance. Values of channel

capacitance are usually very small compared to the magnitude of the parasitics.

TIME (Nano)

Figure 2-24: Finding driving resistance and
delay offset for a logic gate.

The dashed lines represent the ramp waveform input
and output to the driving logic gate. The solid line is
an exponential curve fitted to the ramp waveform at
the critical points shown. The driving resistance is
found from the time constant of the exponential. The
delay offset is indicated by the arrows at the top of
the graph.

The driving resistance is a function of input transition time and load capacitance.

A logic gate simulation is performed on the inverter with the specified input signal and

the capacitance on the inverter output node as the load. This results in a delay time and a

transition time. From the points defined by the delay time and the transition time, the

output is viewed as a single time constant exponential. The time constant of the

48

4

-

exponential is used to calculate the driving resistance, and the starting time of the

exponential is the delay offset. The input and output waveforms of the driving gate

simulation, as well as the exponential fitted to the output waveform, is shown in Figure

2-24. The equations for calculating delay offset and driving resistance for a single time

constant exponential waveform are

Vl
toset = l - ln (V fV-) and

Rdt 2 - tl

C[ln(V vV-In (V - V)]

for rising waveforms. V is the final voltage of the waveform. Rising waveforms will

have an assumed initial voltage of zero. C is the capacitance of the node in question. V1

and V2 are voltages at times t and t2, respectively. The derivation of these relationships

may be found in Appendix A. Similar relationships may be derived for falling

waveforms. If V1 and V2 are defined as the 20% and 80% voltage points, which are the

Iv and 4v points, the t1 is the delay time and t2 - t is the transition time of the

waveform, as defined in Section 2.2. The relations reduce to

Toffse,t = Td - .161Tr (2.6)

R Tr
1.3 8 6 (CId + Cint)

Td and Tr are the output delay time and transition time, respectively, of the driving gate

simulation. The equations assume that the delay time and transition time are defined on

the Iv and 4v points, but can easily be derived for other points. Cin t is the parasitic

capacitance of the output node of the driving gate. Cd is the total load capacitance of the

entire RC tree, including the driving gate output capacitance. For falling waveforms

under the same assumptions, the relationships reduce to the same ones as Equation (2.6).

It was stated above that load capacitance has less effect on driving resistance than

delay offset of a driving logic gate. This is also true for the calculations of the effective

resistance of conducting and switching transmission gates. If the equations for Toffset and

Rdr are combined with Equation (2.3), it is clear to see why.

49

-

Toffset = Tdin +Rtd X (Cnt,Td + Cid) +. 161 Rt X (C in.Tr + Cd)

.161Rtr (C 'in,Tr + Cld)

1. 3 8 6 (Cld + Cint)

C int, Tr and C'int Tr are the internal cell capacitances defined by the no-load output

transition time and delay time, respectively, as in Equation (2.3). Cint is the output

capacitance of the driving node, as specified by the cell representation. If C 'int = C in

then the driving resistance is approximately .116 Rtr and has little or no dependence on

load capacitance. It should be noted, however, that Rtr is a piecewise linear function of

input transition time. An analogous argument may be used to show the relatively small

dependence of transmission gate resistance on load capacitance. The delay offset,

however, is a linear function of load capacitance. The delay time of any output node will

be substantially affected by the delay c -set. Thus, it is important to specify the correct

effective capacitance, Cid, seen by the driving gate.

The calculations of delay offset and driving resistance account for effects of the

input waveform on the driving gate. The input waveform is used for calculations of Td

and Tr, which are then used in equations for driving gate resistance and offset.

Once the RC equivalent for the driving gate is found, the equivalent RC circuits for

any conducting transmission gates are calculated. An approximation for the input

waveform is needed in order to calculate the resistance. The approximation used is the

result from the driving gate simulation that was also used to find driving resistance. The

approximation includes the effects of all the capacitances, but cannot include resistive

effects since the values had not been determined yet. As a result of this, the

approximation may be an overestimate on nodes toward the driving end of the tree, but

an underestimate at the loading end.

The branches of the RC tree are terminated at transistor gate-type inputs,

transmission gate source-drain connections when the gate is off, or at otherwise specified

circuit outputs.

2.4.4.2 Waveform Calculation for a Driven RC Tree

Once the RC circuit is derived, then the two time constant waveforms for the nodes

in the tree must be calculated.

From Equation (2.4), the quantities that must be found are 'r 1, 2, and z. The

equations needed to find these values are derived in Chapter 3 of [15].

50

tDe - Rke Ck

tp = RkCk

k

Me = RkeCk (1 _ CDk

z 2 = p - 'De

' 2, (1 2 T Me P

These equations all use resistance and capacitance values from the RC tree alone. Ck is

the capacitance at node k. Rke is the series resistance shared by the paths from the driving

node to node k and from the driving node to node e. 'tDe is the Elmore delay, or the first

moment of the impulse response, of node e in the network3 . p is the upper bound of the

responses of the network, and is also the sum of the open circuit time constants of the

network. Me may be found from the second moment of the impulse response of node e.

The second moment is 2 p (De - X Me)

An equivalent ramp is then derived for all nodes that are outputs or connected to

the input of a logic gate. The procedure for this was described in Section 2.4.1.

2.4.5 Analysis of Transmission Gate Circuits: Switching Transmission

Gate

As in the case when a transmission gate is driven by a switching logic gate, a

circuit involving a switching transmission gate is analyzed by first finding equivalent RC

trees. In this case, however, two equivalent RC trees must be calculated. One tree is

connected to the driving gate. The other is the loading RC tree. The two trees are

connected by the switching transmission gate. The input capacitance is included with the

driving tree and the output capacitance is included with the loading tree. The effective

resistance is included with the loading tree. An example of a switched RC circuit is

shown in Figure 2-25. Also designated are the driving tree and the loading tree of the

switched RC circuit.

3The Nth moment of waveform v(t) is defined as 0 tn v '(t) dt, where v(t) is the step response and v ' (t is the

impulse response of a network. The first order moment can be found more effectively by Jo (1 - v(t)) dt.

Similarly, the second order moment can be found by t (1 - v() dt.
-fO0

51

I CIn
Driving Tree Loading Tree

Figure 2-25: Switched RC circuit example

2.4.5.1 Constructing the RC Tree

The driving tree is found by calculating thefixed-voltage resistances of the devices

connected to it. This includes the driving logic gate and any conducting transmission

gates. Fixed-voltage resistance is the resistance of a driving gate or conducting

transmission gate, where the gate is at a given voltage, assuming the voltage is not going

to change. Thus, for an inverter with a high input, the fixed-voltage resistance of the

n-type transistor will be used, since that is the conducting transistor in this case. The

fixed-voltage resistance is used because it is assumed that there will be no waveform

transitions on any of the driving tree nodes. Thus, the dynamic effective resistances used

before have no meaning as there is no waveform upon which to base the calculations.

The fixed-voltage resistance is the resistance of a fully turned on transistor. It may

be found by incrementally changing the voltage across the transistor and dividing the

voltage change by the resulting current change. The fixed-voltage resistance per area

should be the same for all transistors of that type. The fixed-voltage resistance of a

transistor is simply

Rs = Rsq x LIW

R/sq is the resistance per square of the conducting transistor type of the gate. W and L are

the width and length of the transistor, respectively. If there are series and parallel paths,

as in a NOR or NAND gate, then fixed-voltage resistances of those transistors are

combined accordingly. For a conducting transmission gate, the fixed-voltage resistance

will be the n-transistor fixed-voltage resistance if the source/drain nodes are at a high

52

_1_1_ II _ _ __ _ __

RI

voltage and the p-transistor fixed-voltage resistance if they are at a low voltage.

The capacitances of the driving tree are simply the output parasitics of the driving

gate, the source-drain input and output capacitances of the conducting transmission gates,

input capacitances of loading gates, and any other explicitly stated capacitances.

Since waveform transitions are occurring in the loading gate, the dynamic method

of calculating effective resistances is used. The capacitances are found in the same way

as described in Section 2.4.3.

The effective switching resistance and delay offset for the transmission gate that is

turning on is found as described in Section 2.4.3.2.

If there are any conducting transmission gates in the loading tree, the method for

calculating conducting resistance of transmission gates is used. However, an assumption

for the waveform propagating through the transmission gate is needed since the

resistance is a function of waveform. Given the effective resistance and load capacitance

of the switching transmission gate, a time constant RswCL is found. The defined

transition time of an exponential having this time constant is 1.386 RswCL. This

transition time is used to find the effective resistance.

2.4.5.2 Waveform Calculation for a Switched RC Tree

The calculations to find X 1, X2, and Xz for connecting two RC trees is similar to

those used for driving a single RC tree. The steps that differ are the calculations of

t De , p, and Me. These results are also derived in Chapter 3 of [15].

De= (R + Rke) 2
ke 2

kF 1 k 2 1 R

(R[[-CTMe = (Rk + R)Ck [k -CT Rn
k 2 'p k 1 P

The notations k e 1 and k e 2 mean "for all nodes k in tree 1" (the driving tree) and "for

all nodes k in tree 2" (the loading tree), respectively. Node n is designated as the node in

tree 1 that will be connected directly to tree 2. C T2 is the sum of all the capacitances in

tree 2.

53

__

CHAPTER T : EE

Timing Simulation using Macromodels

Once the models for timing simulation have been developed, issues of

implementation must be confronted. Decisions must be made as to what simulation

method will be used, how cells will be represented, how circuits will be represented, and

exactly how the delay calculations will be performed. The following sections deal with

these topics.

3.1 Event Driven Simulation

There are two main approaches to circuit simulation, event driven simulation and

time step simulation. They are also sometimes referred to as the waveform approach and

the incremental approach, respectively, since event driven simulators apply an entire

waveform at once to the sub-circuit to be analyzed while incremental approach updates

the state of the entire network for every time step [35].

Time step simulation is usually used for circuit analyzers like SPICE. It operates by

analyzing the entire circuit in small increments of time. There is a uniform step size at

any given time for the entire circuit. This step size is chosen in order to produce the

required accuracy for the most sensitive parts of the circuit [39]. Thus, the parts of the

circuit that are relatively inactive are still analyzed using the minimum step size, which is

very inefficient. Since the amount of computation needed to analyze a circuit grows

more than linearly with the number of nodes, resources are strained if the circuit grows to

much more than 100 nodes. Thus, incremental techniques are better used to carefully

analyze the behavior of a smaller circuit. Larger circuits are more efficiently simulated

using waveform techniques.

Event driven simulation uses a more modular approach for timing simulation.

Cells may be analyzed for the entire time, or waveform, of interest, without analysis of

other cells. Cells are then independent of each other in terms of timing simulation, with

the exception of load impedance information needed from other cells connected to the

cell outputs. Simulation of a cell starts when the inputs to the cell starts changing. If no

inputs to the cell are changing, no simulation is performed. The amount of computation

needed to simulate a circuit is in part dependent upon the inputs to the circuit, which

54

determine the number of events that will take place. The computation may be expected

to grow in a linear fashion with the number of elements in the circuit.

Cell macromodels are assumed to be uni-directional. This assumption makes event

driven simulation practical. Uni-directional models assume that signal propagation is

from node inputs to node outputs only. Thus, a cell is simulated only when its inputs are

changing, and using only load impedance information from other cells. Since local

feedback outside cell boundaries is not allowed, small time step analysis using both input

and output waveforms is not needed.

Large MOS circuits generally have a high degree of latency, meaning that large

portions of the circuit are inactive at any given time during circuit operation. Exploiting

latency saves both computation time and storage by taking advantage of this inactivity

[35]. Macromodeling using event driven simulation exploits latency by simulating only

those cells whose inputs are changing. Since most cells in a large circuit are inactive at

any one time, much less computation is needed.

Event driven simulation takes advantage of many properties of large circuits. If

these circuits are represented by smaller cells in a macromodeling approach, event driven

simulation is made practical and desirable. Savings in both computation and storage may

be gained.

3.2 Module Representation

A module is defined as a reduced data representation of a sub-circuit. Each type of

lowest level sub-circuit, or leaf cell, of a system must be modeled as a module. The

technology and layout of a module is assumed to be fixed, although scaling parameters

with variables such as transistor width has been discussed in Section 2.3.5. A module is

described by a module name, input node names, output node names, internal node names,

input and output impedances, and a procedural delay representation.

An experimental simulator program uses a library of procedures to create and

initialize all modules. Each module has a separate short procedure to perform the

creation, assigning the correct representation for that module to each field. The cell

name, input node names, and internal node names are constants. The cell name is

represented internally as an integer while the input and internal nodes are arrays of

integers. If no internal nodes are to be represented, then an empty integer array is used.

The other fields use separate procedures as part of the module representation. An

example representation of a two-input NAND gate module is shown in Figure 3-1. The

55

_ _

1

o. 3

2 :

Record(

Module_name: 1,

Inputs: array[int][1,2],

Outputs: Nand2_outputs,

Internal_nodes: array[int]O,

Loadrep: Nand2_loadrep,

Delayrep: Nand2_delayrep

Figure 3-1: Sample module representation of a NAND gate.

integer representation for module and node names is used. Nand2 outputs,

Nand2_load_rep, and Nand2_delay_rep are the names of the procedures used to yield

output nodes, input and output impedances, and delay values respectively.

Most cells are inherently uni-directional, so definition of module inputs and

outputs is simple and constant under all conditions. Transmission gates, however, are

bi-directional circuits. Given a conducting transmission gate, there is nothing about the

transmission gate itself that dictates which way a signal will propagate through its source-

drain nodes. The circuit configuration containing the transmission gate, plus, in some

circumstances, the state of the circuit, will dictate which source-drain node is the output

and which is the input at any given time. Thus, a procedure Out_node is used to return

output nodes of a cell when the program needs them. Out_node returns output nodes as a

function of a cell input node. If the input node is either of the transistor gates, then both

source-drain nodes will be returned. If the input is a source-drain node, then the other

source-drain node will be returned. The code calling Out_node determines which node is

the input, or driving, node from the circuit configuration.

Each input and output node also has a node impedance representation, Calc_load.

The impedance of each node is either a capacitance or an RC circuit. The impedance may

be dependent on the state of the nodes, as in a transmission gate. If the transmission gate

56

is on, then the output impedance will be an RC circuit. If the transmission gate is off,

then it will be the capacitance of one of the source-drain nodes. A run_time procedure is

needed to yield these impedances because of possible dependence on node states.

Calc_load is called when the input impedance is needed for loading information for

another cell or the output impedance is needed for creating an RC tree.

Delay representation is an important field in the module representation, since all

the data and code necessary to evaluate the delay of an instance is contained within it.

The delay representation contains parameter values for delay and transition time

calculation. It also contains parameters for static output resistance calculation. The static

resistance values are carried along with the instance for RC tree calculations. Also, code

exists for the above calculations based on the node states and the input transition, as well

as any other instance parameter values, such as transistor width. This code updates the

states of the nodes as well.

This procedure, Calc_delay, is called every time delay calculation is performed

upon an instance of this module type. For transmission gate cells, Calcdelay is called to

evaluate the effective resistance for construction of RC trees. Separate procedures exist to

operate on all RC trees. These RC calculation procedures are independent of the module

delay representations. This is because the calculation for an RC tree may include several

instances. One group of calculations is done for all the instances contained in the RC tree.

Mathematical functions called by Calcdelay are piecewise linear functions with

an arbitrary number of pieces (usually a function of input transition time) and linear

functions (usually a function of load capacitance). There is also a procedure, used for

transmission gate resistance calculations, that uses an inverse linear function of

capacitance for the slope of one of the piecewise linear pieces, i.e.

f(Trin) = f + ml x Trin tbrkl < brk2

where

ml -= (mlint + mlsl Cload) -

Variables fo, tbrk, mlo, and mlsl are all module parameters. fo is the intercept, ml is a

slope, and tbrkl and tbrk2 are breakpoints of a function with input transition time Trin as

the independent variable. The slope, ml, is also shown as function of load capacitance,

Cload. mlint is the intercept and mlsl is the slope of ml with load capacitance, Cload as

the independent variable.

57

- -II �- I

The piecewise linear parameters are specified in the following manner, shown here

in a generalization of the CLU language:

record(fint f0oi

array[
section(mlin t mlsl brklint brklsl},
section{ m 2 int m 2s brk2in t brk2sl},
section(m 3 int m3si brk3int brk3sl),

Some of the above parameters are illustrated in Figure 3-2. The specification of a

parameter set starts with a parameter set, fo0 r and fO , which is used to find the initial

value or intercept of the function with respect to input rise time. An array of

specifications for piecewise linear sections follows. Each section is a record consisting

of a set of parameters for the slope and a set for the breakpoint indicating the start of that

section on the time axis. The size of the array of sections is variable, so the number of

piecewise linear sections is variable as well. Each slope, breakpoint, and intercept is a

linear function of capacitance and consists of two parameters, the slope and intercept

with respect to capacitance. For instance,

ml = tlint + mlsl x Cload

3.3 Circuit Structure

An instance is an occurrence of a sub-circuit within a circuit. It is described by a

module within a circuit. A circuit is modeled as connections of instances of modules.

This is illustrated in Figure 3-3. There are three basic module types in this example, Ml,

M2, and M3. The circuit contains three instances of MI, named I, 12, and 13

respectively. There is one instance of M2, named 14. Two instances exist, 15 and 16, of

type M3. Instance node names are the same as module node names.

An instance table contains instance names and instance representations of the

circuit. A connection table contains information about how the instances are connected.

Hierarchy is not useful in delay calculations with the given macromodels, as delay

calculations are always done on instances of one module. However, hierarchy may be

useful in input specification of the circuit. In this case, a preprocessor could be used to

flatten the circuit to the lowest level of defined instances. Hierarchy could be useful if

more general delay calculations may be derived from other delay calculations. In other

58

fTri,

f

m3

m2

rkl brk2 brk3 Tin

ml(Cload)

mlint

Figure 3-2: Functions described by a parameter set.

The top graph shows a piecewise linear function
described by parameters with input transition time as
the independent variable. Each of these parameters
is then a linear function of capacitance as shown
with slope ml in the bottom graph.

words, it would be useful to combine two or more macromodels to make a larger

macromodel.

An instance is represented by the instance name, the module definition, the states

of the nodes, the static output resistance, and a miscellaneous parameter field. An

instance of the NAND gate module of Figure 3-1 is shown in Figure 3-4. The instance

name is represented internally as an integer, as in the module name. The module

definition states the module type of the instance and points to the module definition

59

m ls

C load

--�-- I

T1

Figure 3-3: A circuit specified as connections of instances of modules.

5

Nand2

Record(

Instance_name: 5,

Module_type : Nand2,

Node_states :array[int][HI,LO,HI],

Static_res : array[real][10000.],

Parameters : array[real][],

Figure 3-4: Instance representation of NAND gate module.

described in Section 3.2. Every input, output, and represented internal node is assigned a

node state. The state of a node may be high (HI), low (LO), or unknown (X). Node

states are assigned during the initialization of the circuit and during delay calculation

procedures. The circuit initialization step is done in the same way as a switch-level

simulation, that is, performing the simulation without incorporating any delay times.

60

The static output resistance of each output node, which is the effective output

resistance of the driving conducting transistors, is calculated during the delay calculation

procedure. The values are stored as an array of real numbers as a part of the instance

representation for use in analysis of switching transmission gate circuits.

The remaining field of representation is an array of real numbers that may be used

for miscellaneous parameters. The meaning of the parameters may vary with different

module types. For a capacitor module, it is used to specify the value of capacitance. For

a variable width inverter, it may be used to store the transistor widths. Each procedure of

the module representation may use these parameters, and they may be used differently for

different modules. If no other parameters are needed to specify the instance, then the

array may be empty and it will be ignored.

3.4 Event Scheduling

Event driven simulation implies the need for an event queue. Events are placed in

the queue in chronological order, that is, the order in which the events will take place in

time. Thus, the next event to take place at any time is simply the event at the top of the

queue.

The event representation consists partly of the waveform model, represented by

delay time, transition time, and a rising/falling flag. Also included are the instance name

and node number upon which the waveform will act. The delay time of the transition is

repeated as a separate field, which is equal to the time the event will occur. The ordering

of the queue is based on this value.

The basic simulation loop of the program is simply a loop that runs until the queue

is empty. Once the queue is empty, no more events will occur in the circuit. Inside the

loop are procedures that fetch the next event from the queue, perform delay calculations

caused by the event, and then schedule the events resulting from the delay calculation.

Schedule Forced User Defined Inputs
While not(queue$empty(event_queue) do

Get next event from event_queue
Calculate delay of instance affected as a function of the event
For each output node of the instance

Find instances affected by output transition, if any
Schedule affected instances and transitions in event queue
End

End

61

3.4.1 Coincident Events

The event scheduling described above does not adequately handle coincident

events, i.e. two transitions occurring on the same instance at approximately the same

time. This may give rise to a series of transitions on the output node closely spaced in

time. A pair of such transitions would effectively cancel each other out. Figure 3-5

illustrates an example of this type of action. Two issues arise from this situation: queue

priority and event cancellation.

Figure 3-5: Two almost coincident transitions on a NAND instance.

Scheduling queue events was described briefly in previous paragraphs. It was

stated that event scheduling was done according to the delay time of the signal. This

implies that events scheduled to start at the same delay time are fetched in the order they

were put into the queue, without regard to any other variables, such as transition time.

However, situations may arise where this may not be adequate. Consider the set of

transitions shown in Figure 3-6. Although transition Ti has a delay time earlier than

transition T2, it is not clear that it should be scheduled earlier in the event queue. If both

transitions were to act upon the same instance, the instance may react first to T2. This is

because although Ti occurs first in terms of delay time, T2 reaches the switching voltage

of the instance, Vsw, before Ti because of the faster transition time. Thus, events may be

more correctly scheduled as a function of delay time, transition time, and the switching

voltage of the instance. This may be difficult because the switching voltage varies with

different circuits. Thus, queue priority would be a function of the instance affected. Of

course, one could estimate a switching voltage that would be close to most encountered.

It would be more accurate then simply using the 20% delay time.

Figure 3-5 shows the output transitions of the instance, consisting of two closely

spaced transitions whose effects would ultimately cancel. Instead of calculating the

effects of both these transitions throughout the circuit, which again would cancel, both

events could be removed from the queue, saving unnecessary computation. Obviously,

62

Volts

V
SW

TdT1 TdT2 Time

Figure 3-6: Closely spaced transitions with different transition times.

only pairs of conflicting events may be canceled, such that the final state would be the

same as the initial state. Also, the event pair must consist of a rising transition and a

falling transition. The question arises of determining exactly when to represent the

transitions as unique transitions and when to cancel them. One way is to cancel them

whenever the delay times are closer together than a certain tolerance. However, again the

issue of transition time and the delay of the transitions relative to the switching voltage of

the instance arises. Another method might be to take the maximum (for a high-low-high

transition) voltage at any time point or the minimum (for a low-high-low transition)

voltage at any time point of the two transitions. If this maximum (minimum) of the

transitions does not reach the switching voltage of the instance, then the two events are

canceled. If the switching voltage is reached, the events are scheduled. These two

situations are shown in Figure 3-7. This way, there is no scheduling of events having

transitions that would not reach the point of having an effect on the instance as a result of

another transition occurring.

Since nodes driven by two different sources are not allowed, then two successive

transitions in the same direction should never occur at the same node. This assumes that

correct event canceling algorithms are implemented for coincident events, as described

above.

Certain types of circuits depend on two or more actions taking place at the same

time. Consider the circuit in Figure 3-8. When Phi is low and Phi-bar high, the

feedback loop is closed. Input D is free to change and will not affect the node states in

63

_�

Volts

V
SW

Time
a)

Volts

V
SW

Time
b)

Figure 3-7: Canceling events.

a) Two transitions that will be canceled. The
maximum of the transitions does not reach the
designated switching voltage. b) These two
transition will be scheduled as the maximum of the
transitions reaches the switching voltage.

the cross-coupled inverter circuit since the input transmission gate is off. Due to the

event scheduling method used, serious problems may arise when Phi changes, even

ignoring the race problems that the circuit may actually experience. When Phi and

Phi-bar change, events are scheduled for simultaneous times on both transmission gates.

For correct functioning, the transmission gate that is turning off should be evaluated

64

"i

Phi-bar

D Qbar

Phi-bar

Figure 3-8: CMOS two phase flip-flop.

before the transmission gate that is turning on, since with the type of event driven

simulation used, the transmission gates cannot be evaluated at the same time. However,

there is no guarantee that this would happen. Thus, the states may be updated in such an

order that both transmission gates could be on. Thus, the input node to the forward

inverter is driven by two sources. If input D has changed, then these sources may be at

different voltages. One way to handle this would be to make the entire circuit a module.

The problem with this, as stated in Section 2, is that modeling a combination

logic/transmission gate cell with transmission gates on the cell input is difficult. This

problem has not been addressed thoroughly in this thesis, so future work is needed.

3.5 Input Specifications

The input to the program presently consists of two files, a connection file

specification, and an input transition specification. The connection file contains

information about the content and configuration of the circuit. This includes instance

names and their module types, along with any instance parameters. The module type is

designated by the module name and must exist in the module library. Modules that have

been implemented include an inverter, a two input NAND gate, a two input NOR gate, a

domino logic block, an adder cell, and a transmission gate, all in CMOS technology.

Explicit circuit inputs and outputs are also specified. Finally, connections between

instances are designated.

Information about the node states and input transitions are specified in the input

transition file. First, any user specified initialized node states are input. Then, any

scheduled input changes are included, with instance name and node, delay time,

65

___ __

transition time, and rising/falling data.

3.6 Program Organization

The overall order of operations in the experimental simulator program is:

Read input files
Create modules
Create instances
Build instance table and connection table
Initialize nodes
Schedule inputs and start simulation loop
After all changes processed, output results

Most of the above steps are initialization. Node initialization is done with a queue much

like delay calculation. Instead of delay calculation, the instance output states are

determined from the input states, i.e., a logic simulation is done. Logic simulation may

be thought of as the simplest simulation mode of a circuit, in terms of circuit models,

variables, and information provided. For instance, transistors are often modeled simply

as a switch, compared to the complex device models of circuit analyzers or delay

functions of macromodels. Since devices have zero delay in logic simulation, there is no

time scale for a given set of input values as in timing or circuit simulators. The output

information provided is simply the node values of the circuit, without any delay or

waveform information that would be provided by higher level simulators. The simulation

steps for node initialization used in the experimental simulator are the same as for delay

calculation, except that modules now have zero delay. If an output state is updated, for

example, from an unknown state to a low state, then any instances connected to that

output node are then scheduled to be updated in the initialization queue. At the end of

the node initialization step, all non-isolated nodes should be either at a high or a low

state.

The real work occurs in the simulation loop. The basic structure of the simulation

loop was described in Section 3.4. Inside the simulation loop, one of the steps described

performs the vast majority of the computations. This is, of course, the step performing

the delay calculations on the instances. This step is described in a little more detail.

The procedure used to initiate a delay calculation operation in the simulation loop

is instance$calc delay. This procedure, for a given instance and input transition, gets

the node states of the instance, calls instance$calculate loads to get the load impedance

on the output nodes of the instance, which may be a capacitance or an RC tree, and calls

module$calc delay, which in turn will call the correct delay procedure for that module

66

as a function of the load, input transition, and node states.

If the module is a logic gate, output transition(s) will be returned by

module$calc delay. Along with the input waveform and node states, the output

transition calculated at this point is a function of load capacitance only. If the load was

of RC tree form, additional analysis will be performed to complete the derivation of the

RC tree and calculate the correct outputs. The output transition returned at this point will

be used to calculate the driving resistance and the delay offset as described in Section

2.4.4.1. If the module is a switching transmission gate, a resistance and delay offset is

returned. A summarized form of an example delay calculation procedure for an inverter

is shown below.

inv4_calc_delay
%%%% Delay and transition time parameters %%%%
own dr := pm$create(

.9091e-9,11360.,
ars$[pm$create_section(0.,0.,.85,0.),

pm$create_section(1 1.43e-9,28570.,.6259,9.259e 10)])
own df := pm$create(

.6923e-9,5769.,
ars$[pm$create_section(0.,0.,.7421,1.316e1 1),

pm$create_section(9.33e-9,16667.,.4154,1.923e1 1)])
own tr := pm$create(

4.22e-9,40740.,
ars$[pm$create_section(0.,0.,0.,0.),

pm$create_section(3.6e-9,40000.,.23,-6.522e 10),
pm$create_section(38.e-9,100000.,.1033,1.667e1 1)])

own tf := pm$create(
2.4e-9,20000.,
ars$[pm$create_section(0.,0.,0.,0.),

pm$create_section(2.22e-9,22222.,.221,0.),
pm$create_section(26.35e-9,76470.,.1222,1.389e 11)])

%%%% Static resistance parameters %%%%
own nr:real := nres_per_sq*Ln/Wn
own pr:real := pres_per_sq*Lp/Wp
%%%% get direction of input waveform
rising := transition$get_ transition_type(in_wave)
%%%% Update states and select parameter set %%%%

67

_I

if rising
then

in_node_state := hi
out_node_state := lo
static_resistance := pr
delay_parm := df
transition_parm := tf

else
in_node_state : lo
out_node_state:= hi
static_resistance := nr
delay_parm := dr
transition_parm := tr

end
%%%% Do delay calculation %%%
if load is capacitive

then %% If a capacitive load
Get load capacitance C_ld
Calculate delay time Td_out from C_ld, inwave,

and delay_parm
Calculate transition time Tr_out from C_ld, in_wave,

and transition_parm
Create out_wave from Td_out and Tr_out

else %% If an RC tree load
%% Calculate delay offset and driving resistance
Get loading RC tree
Get total capacitance C_tot of RC tree
Calculate delay time Td_out using C_tot, in_wave,

and delay_parm
Calculate transition time Tr_out using C_tot,

in_wave, and transition_parm
Calculate driving resistance dr_res using C_tot

and Tr_out
Calculate delay offset T_off using Td_out and Tr_out
Assign drres to tree driving resistance
Create out_wave from T_off and Tr_out

end
return(outnode,out_wave,dr_res)
end inv4_calc_delay

For each output node of the instance, if the instance is a logic gate with a capacitive

load, the results are yielded to the simulation loop. If the instance is a switching

transmission gate, the driving and loading trees are constructed and RC tree calculations

are performed. Results are yielded for any logic gate inputs connected to the RC tree. If

the instance is a logic gate with an RC tree load, construction of the loading RC tree and

RC tree analysis is done. Again, results are yielded for any logic gate inputs connected to

the RC tree.

68

I

CHAPTER FOUR

Experimental Results

Now that macromodels and simulation methods have been developed, tests are

needed for evaluation. The following sections describe testing methods and test results

for various circuits.

4.1 Testing Method and Goals

A test program was written to test the accuracy of the models and approximate

execution times of the delay calculation. The experimental simulator program is about

3000 lines of code implementing the basic functions needed to test the models. The

procedures were written in CLU and run on a DECSYSTEM-20 and a VAX running UNIX.

Macromodels were developed for an inverter, a two input NOR gate, a two input

NAND gate, a domino logic block, a transmission gate, and a three bit adder. All of these

circuits are CMOS. Various types of circuits using these macromodels were tested. The

following steps were followed to develop a typical macromodel.
1. The cell to be modeled is simulated over a range of load capacitances and

input rise times. The cell is fixed at the layout level. The number of points
needed per input/output terminal pair depends on the cell to be modeled.
For example, an inverter would require more data points than an adder cell
since the output is more dependent on the input transition than in the adder
case. Non-linearities in the output transition time versus input transition
time also tend to be more predominant for an inverter, requiring more data
points and more piecewise linear sections to model the effects.

2. Output files resulting from the SPICE simulations are analyzed with a
program written to calculate delay times and transition times of waveforms.

This program consists of about 800 program lines. In the case of
transmission gates, a similar program calculates effective resistance and
delay offset.

3. The delay times and transition times (or effective resistance and delay
offset) are then plotted versus input transition time and load capacitance.
These linear and piecewise linear curves are the basis for the parameters
used in the macromodel. Software for this step of the macromodeling is
incomplete and is currently done manually.

69

4. Finally, procedures are written to represent the macromodel as a module.
These procedures include output node representation, input and output
impedance representation, and delay and logic representation. The same
procedure format suffices for most simple gate forms, with changes needed
for specific parameters, input and output node names, and logical behavior.

The evaluation of the models and the simulation method is done by comparing

delay times (model evaluation) and program execution time (simulation evaluation). The

basis for comparison is SPICE simulation of the circuits. These circuits were all originally

extracted from layout. The SPICE model files used are for a 2 micron CMOS process and

may be found in The Design and Analysis of VLSI circuits by Glasser and Dobberpuhl

[37].

The circuit delay time of a particular node is defined as the time of change of the

node minus the delay time of the input signal. Absolute error is simply the experimental

delay time minus the delay time derived from SPICE simulation waveforms. Percentage

error is the absolute error divided by the SPICE result values.

Execution time improvement is measured by the execution time needed for the

SPICE simulation divided by the execution time needed for the experimental simulation.

A variety of circuits were tested to illustrate the effectiveness of the models in

several areas. Accuracy over a range of inputs and loads for a sample macromodel is

observed. In order to test accuracy with a varying number of instances, simulations of

circuits with a string of gates and circuits with combinations of gates are performed.

Circuits with switching and conducting transmission gates are simulated to test those

models. Accuracy in circuits with internal feedback is observed. A larger circuit, in this

case an array multiplier, is tested. Finally, comparisons using an RC line model for

polysilicon interconnect are made.

4.2 Test Circuits and Results

This section shows the test circuits, a table of results and some explanation for a

variety of circuits. The execution times of all the circuits are included in one table, Table

4-14 on Page 87.

Inverter

The inverter circuit, shown in Figure 4-1, was used to test simulations over a range

of input waveforms and load capacitances. The inverter layout is shown in Figure 4-2.

Transistors are 4 microns wide and 3 microns long. Results included in Table 4-1. are

70

for falling inputs.

The largest errors encountered were for a small load capacitance and a fast input

transition. Of course, this is the condition for minimum delay and transition time, so a

larger percentage error occurs for a given absolute difference. In this case, one must look

to the absolute difference between experimental times and SPICE times to see that there is

a small difference between the two.

I Cload

Figure 4-1: Inverter circuit.

L … . . J

Figure 4-2: Layout of the inverter cell.

71

I1

Inverter Circuit Results

Case Model SPICE ATd % Td
Delay Delay (ns)

(ns) (ns)

1: .6ns,.05pF 1.987 2.360 -.373 -15.81

2: .6ns,l.OpF 12.78 12.52 .26 2.08

3: 24ns,.05pF 19.43 19.40 .03 .155

4: 24ns, 1.OpF 32.67 32.99 -.32 -.97

5: 6ns,.2pF 8.28 8.59 -.31 -3.61

Table 4-1: Inverter circuit test results

Tests for varying input transition times and load
capacitances.

The improvement in execution time for the experimental simulator, shown in Table

4-14, ranges from about 26 to 45 times faster than SPICE for this circuit.. Since only two

instances and one event are needed in the test simulation, and delay calculations are very

simple, most of the execution time is due to overhead. The gain in execution is less than

other tests since SPICE is performing a relatively short and simple analysis.

Inverter String

nl ~, n2 ~, n3 ~, n4 ~, n5 n6

-- (qoad

Figure 4-3: Inverter string test circuit.

A string of inverters, shown in Figure 4-3, was tested to observe how error behaves

as a function of node position in the string. Table 4-2 shows that neither error percentage

nor absolute difference in delay times consistently increased with increasing distance

from the input node.

A larger improvement in execution time is seen as SPICE analyzes a larger circuit.

The execution time of the experimental simulator is only very slightly higher than the

single inverter case. Additional nodes and signal propagations seem to cause a relatively

72

execution times in the experimental case.

Inverter String Results

Node Model SPICE ATd % Td
Delay Delay (ns)
(ns) (ns)

nl 14.05 14.27 -.22 -1.54

n2 21.63 21.93 -.30 -1.37

n3 26.79 26.60 .19 .714

n4 30.96 31.22 -.26 -.832

n5 35.61 35.75 -.14 -.392

n6 41.66 42.42 -.76 -1.79

Table 4-2: Inverter string test results

Inverter string test with rising input, input transition
time of 24ns, and load capacitance on the output
node of .2pF.

Domino logic block with p-transistor feedback

The test domino circuit is logically a trivial circuit, since statically, the output will

be at the same state as the input. The point of this test is to illustrate how feedback

internal to the macromodel affects accuracy and execution time.

All transistors are 4 microns wide and 3 microns long.

Both percent and absolute accuracy are very small. Although feedback is present

in the circuit via the p-transistor across the output inverter, the feedback is decoupled

from the input nodes. Feedback effects are then included in the circuit macromodel.

The improvement in execution time is higher than for the single inverter case

because SPICE must incrementally analyze the feedback effects. For the experimental

case, the effects of feedback are simply incorporated in the delay parameters of the

macromodel and require no special analysis. Notice that the execution time of the

experimental simulator for this circuit is approximately equal to its time for the single

inverter case. This is because, again, there are two instances and only one event as in the

inverter case. Thus, a much higher gain in execution time than for the single inverter

case is seen.

73

smaller rate of increase in

phi 0-

in 0o

out

I

Figure 4-4: Domino logic test circait.

Domino Circuit Results

Input Model SPICE ATd % Td
Delay Delay (ns)
(ns) (ns)

1: phi falling 14.63 14.65 -.02 -.14

2: phi rising 39.20 39.65 -.45 -1.14

3: in rising 39.14 39.84 -.7 -1.76

Table 4-3: Domino circuit test results

Load capacitance on the output node is .2pF.
input transition times are 6ns.

All

74

String of Domino Logic Blocks

Figure 4-5 shows the connections for a string of domino logic gates. Again,

comparison of delay propagation through this circuit shows no consistent increase in

absolute difference or percent error.

Comparison of a string of these domino blocks shows a big improvement in

execution time, 538 times faster, since SPICE must now perform analysis of the feedback

for all five instances of the circuit. The test simulator CPU time increase is only a

function of the increase of the number of cells and transitions and is not very different

from the inverter string case.

1

Figure 4-5: String of domino logic blocks.

The circuit represented by module dom is shown in
Figure 4-4.

Domino String Results

Node Model SPICE ATd % Td
Delay Delay (ns)

(ns) (ns)

nl 32.49 31.57 .92 2.91

n2 68.31 67.20 1.11 1.65

n3 104.1 102.8 1.3 1.26

n4 139.9 137.6 2.3 1.67

n5 181.5 180.9 .60 .33

Table 4-4: Domino string test results

The load capacitance is .2pF. phi is high and in is
rising with a transition time of 6ns.

75

Logic gate realization of an adder cell

The circuit in Figure 4-6 is a 12 gate implementation of a three bit adder cell. It
uses three types of gates. All gates are made up of minimum sized transistors, that is, 4

micron wide and 3 micron long transistors. Thus, interaction of three different

macromodels in a more complex configuration is tested.

The input signals applied to the adder are shown in Figure 4-7, This series of input

transitions suggests, assuming small gate delays with respect to the delay between inputs

changing, that the sum output would rise and fall twice. The carry output would rise

once and then fall. However, SPICE simulations show that this is not the case for the sum

output. The gate delays were such that the sum only made two transitions, as succeeding
inputs affected potential intermediate transitions of the sum output. The experimental

simulator, however, because of the event driven nature of the simulation algorithm,

produces intermediate transitions. These transitions overlap, however, to produce a
waveform similar to the actual SPICE waveforms. Also, the final delay times of the sum

and carry output are still very close to the SPICE delay times, even though the

experimental simulator exaggerated the intermediate transitions. The SPICE and test

waveforms are shown in Figure 4-8.

Carry

Sum

Figure 4-6: Logic gate implementation of a three-bit adder.

76

Results for Adder Circuit

Output Model SPICE ATd % Td
Delay Delay (ns)
(ns) (ns)

Sum rising 27.86 28.87 -1.01 -3.5

Carry rising 36.93 37.53 -.6 -1.6

Sum falling 87.54 86.49 1.05 1.21

Carry falling 116.4 115.6 .8 .69

Table 4-5: Adder circuit test results

The load capacitance on the output nodes are both
.2pF. The inputs to the cell are shown in Table 4-7.

Results are shown in Table 4-5. Errors in delay time behave consistently with

those found in previous tests. The execution time of the experimental simulator is larger

than for the previous tests since there are more instances and several transitions occur.

However, SPICE execution time also increases because of the larger circuit and longer

simulation time. The gain, however, is very large as the experimental simulator runs 900

times faster than SPICE. Increase in execution time as a function of circuit size and circuit

activity is much smaller in the experimental case than for SPICE.

A/

B

C

.' .%
/ *%

0 20 . 0 6 0 8 0 1 0
.~~ ~ ~ ~ ~ ~ ~ T m , (.ns.)

Figure 4-7: Input signals to the adder cell.

77

.V(sum)
___V(carry)

20. 40. 60. 80. 100. 120. 140. 160

TIME (Nanoseconds)

a)

_ V(sum)

... V(carry)

TIME (Nanoseconds)

b)

Figure 4-8: Output waveforms for the circuit of Figure 4-6.

a) Waveforms from a SPICE simulation of the circuit.
b) Waveforms from the experimental simulation of
the circuit model.

78

5.

4.

3.

2.

1.

- - - - - -A

N

II

II
I

I

II

II
I
I

Conducting transmission gates

l

Figure 4-9: Circuit testing conducting transmission gate model.

Conducting Transmission Gate Ckt

Node Model SPICE ATd % Td
Delay Delay (ns)
(ns) (ns)

nl 37.15 38.45 -1.3 -3.38

n2 43.90 46.65 -2.75 -5.90

n3 46.02 49.81 -3.79 -7.61

Table 4-6: Conducting transmission gate test

Load capacitance on output nodes is .2pF. Input
waveform is falling with a transition time of 6ns.

The conducting transmission gate model is tested using the circuit in Figure 4-9.

All transmission gates have 3 micron long, 4 micron wide n-type transistors and 3 micron

long, 8 micron wide p-type transistors. The waveforms into the three loading inverters

will exhibit different degrees of multi-time-constant behavior. The closer to the driving

inverter the node is, the more multi-time-constant behavior it will experience.

The results in Table 4-6 show that percent errors are a little higher than for the

logic gate cases. This is due to the non-linear properties of transmission gate resistance

as well as the more complex waveform behavior.

The execution time for the experimental simulator is a little higher for the given

number of instances than for a circuit for the same number of instances of logic gate

79

macromodels. This is because additional calculation is needed to transform the

transmission gates and driving circuits to RC circuits. Also, the delay calculation is more

complicated. Nevertheless, an improvement of 146 is still seen when compared to the

SPICE simulation.

Switching transmission gates

l

Figure 4-10: Circuit testing switching transmission gate model.

Switching Transmission Gate Circuit

Node Model SPICE ATd % Td
Delay Delay (ns)

(ns) (ns)

nl 21.38 23.38 -2.0 -8.55

n2 24.37 26.48 -2.1 -7.97

Table 4-7: Switching transmission gate test

The circuit testing the switching transmission gate mode consists of a switching

transmission gate, a driving circuit of an inverter and conducting transmission gate, and a

loading circuit of a conducting transmission gate. Load capacitance on the output

inverters are 0.2pF. The n-transistor gate voltage of the switching transmission gate rises

at delay time 2ns with a transition time of 6ns. The p-transistor gate voltage falls at delay

time 3.2ns with a transition time of .6ns. The driving circuit is initially at ground while

the loading circuit is initially at VDD. Thus, voltages on nodes nl and n2 will fall from

VDD to ground when the transmission gate starts conducting. The methods described in

Section 2.4.3.2 are used to model the effects of the transmission gate transistors turning

on at different times. Again, errors are higher than those of logic gate circuits due to

waveform modeling and nonlinear transistors.

80

The execution times are very similar to those for the conducting transmission gate

circuits. The same reasons apply as for that case.

Shift register

phi2

phil

in

I
Figure 4-11: Shift register circuit.

Shift Register Results

Node Model SPICE ATd % Td
Delay Delay (ns)
(ns) (ns)

nl 2.925 3.176 -.25 -7.9

n2 21.85 23.34 -1.49 -6.38

n3 66.42 64.58 1.84 2.85

n4 102.4 103.1 -.7 -. 68

Table 4-8: Shift register test results

A dynamic shift register is shown in Figure 4-11 and the results in Table 4-8. The

input to the shift register falls at delay time 0.2ns with a transition time of 0.6ns. The

initial and final values of the nodes are shown in Table 4-9. The input clock waveforms

are shown in Figure 4-12.

In this circuit we have switching transmission gates with skewed clock inputs plus

logic gate signal propagation. All errors are below 7.5%, however the absolute error is

only -.25ns for the highest percentage error case. The execution time gain is 308.

81

Shift Register Node Values

Node Initial Final
State State

nl 0 1

n2 1 0

n3 0 1

n4 1 0

Table 4-9: Shift register node values

The final state exists after the second cycle of phil.

phil

.

. . . .

.

.

.

.

.

.

.

phi2 / \
. * . * .. * ... * .

* * * s * * t
* f * * I

0 10 20 30 40 50 60 70 80 90 100 110
(ns)

Figure 4-12: Clock waveforms for shift register.

Array Multiplier

Array multipliers are regular circuits that lend themselves well to the type of

modeling and simulation developed in this work. An N x N array multiplier has N 2

instances of the same type of cell. Figure 4-13 shows the connections of these cells to

form a 4 x 4 array multiplier. The circuit represented in an array multiplier cell is shown

in Figure 4-14. One bit from each operand is input to the AND gate (or, equivalently, a

NAND gate in series with an inverter). The output of the AND gate is connected to one of

the adder inputs. The other adder inputs are carry-in and sum-in. In an array multiplier

the carry-in is from the previous column, same row and the sum-in is from the previous

row and subsequent column. Edge conditions can be seen in the array multiplier circuit

in Figure 4-13.

The specific adder circuit used for array multiplier tests is shown in Figure 4-15.

The adder was macromodeled as one cell. The macromodel contains many different sets

of parameters for different input conditions. However, some of the input conditions were

82

-- --

approximated as equivalent in the timing sense, eliminating the derivation of some

parameters. Also, the output delay times and transition times were all linear with respect

to input transition time (for the range of input transition times considered). This

drastically reduced the number of simulations needed for each set of parameters.

The number of variables required for a SPICE simulation was so large that SPICE

could not analyze even a 2 x 2 array multiplier. So, results from only a single array

multiplier cell will be compared with SPICE results. The array multiplier cell consists of

three modules, an adder model, a NAND gate model, and an inverter model. The results

for the input conditions of Table 4-11 are shown in Table 4-10. All output loads are

0.2pF. All input delay times are 0.2ns and transition times are 6ns.

The delay errors are larger than previously encountered. This may be a result of

assuming linear functions for output delay time and transition time with respect to input

transition time. Also, fewer input transition time and load capacitance points were used

to develop this macromodel than in previous tests. More SPICE simulations may be

needed to provide enough points for more accurate delay time and transition time

functions.

ao

PO
al

P1

a2

P2
a3

P7 P6 P5 P4 P3

Figure 4-13: 4x4 Array Multiplier

83

..

Figure 4-14:

ai

cin

Array multiplier cell

Sum

Carry

Figure 4-15: Three-bit adder circuit

84

Multiplier Cell Results

Case Model SPICE ATd % Td
Delay Delay (ns)
(ns) (ns)

Case 1

sum 69.60 76.37 -6.77 -8.86

Case 2

sum 41.64 48.62 -6.98 -14.3

carry 49.90 53.52 -3.62 -6.76

Case 3

sum 26.19 32.06 -5.87 -18.3

Table 4-10: Results for one array multiplier cell.

Multiplier Cell Inputs

Case A B Sum in Carry in

Case 1 Rising High Low Low

Case 2 High High Rising Low

Case 3 High High High Rising

Table 4-11: Multiplier cell inputs

Even though comparison with SPICE was not possible, results for a 2 x 2, 4 x 4, and

an 8 x 8 array multiplier are shown in Table 4-12, along with execution times. This table

illustrates how the execution time increases with the number of cells. Operands were

chosen in order to increase the number of transitions during the simulation as the size of

the array multiplier grows. The CPU time needed to simulate the multipliers grows with

order N2. Another way of stating this is that the CPU time grows roughly linearly with the

number of instances in the circuit, since the instances increase with order N 2.

Array Multiplier Results

Size A B Td CPUTEsT
(ns) (sec)

2 by 2 3 2 120.1 .533

4 by 4 14 7 197.6 1.626

8 by 8 148 185 598.9 5.788

Table 4-12: Results for array multipliers

85

Polysilicon Interconnect Line

Figure 4-16 shows an RC line model for polysilicon interconnect. The line is 5

microns wide and 5mm long. Average capacitance and resistance values for polysilicon

are assumed to be Cp = 0.5 x ()10-4 pF/m 2 and Rp = 35 /sq. Using ten RC

sections, one arrives at the model in the figure. Delay was measured and compared at the

fifth section and the tenth section. Results are shown in Table 4-13. The errors are

higher than the previous results since the two time constant waveform model less

discussed in Section 2.4.1 accurately models circuits with many time constants, as in a

long RC line.

r_ n5

vc- O AAAAAAI r, ,

T T T T- T T 'TTTT T TT T T-ad

Figure 4-16: RC model for poly interconnect line

Ten RC sections are used to model a 5 micron wide,
5mm long polysilicon line. R = 3500 and C =
.125pF.

Poly Interconnect Line Results

Node Model SPICE ATd % Td
Delay Delay (ns)
(ns) (ns)

n5 37.99 42.53 -4.54 -10.67

nlO 38.66 43.26 -4.60 -10.63

Table 4-13: Results for RC model of poly interconnect.

86

R R R R R

I Vr / r

Execution Times of Tests

Circuit CPUT CUSPICE CUSPICE

(sec) (sec) CPUTest

Inverter

Case 1 .288 7.58 26.32

Case 2 .292 10.53 36.06

Case 3 .279 12.46 44.66

-Case 4 .277 12.22 44.16

-Case 5 .284 7.94 27.96

Inverter String .361 63.99 177.3

Domino Circuit

Case 1 .349 44.61 128.0

- Case 2 .292 37.55 128.0

-Case 3 .284 32.24 113.0

Domino String .377 202.95 538.0

Adder Circuit .813 731.9 900.0

Conducting .465 67.97 146.0
transmission gate ckt.

Switching .427 59.07 138.0
transmission gate ckt.

Shift Register .761 234.2 307.7

Array Multiplier Cell

Case 1 .372 216.0 580.6

Case 2 .634 247.8 390.9

- Case 3 .570 191.7 336.3

Table 4-14: Execution times of test simulations

87

CHAPTER FIVE

Conclusions

A method has been presented for quick and accurate delay calculation of regular

structure or standard-cell based CMOS VLSI circuits. Current simulators do not meet both

speed and accuracy requirements needed for large circuits while modeling both logic gate

and transmission gate structures. The techniques presented in this work perform

calculations over two orders of magnitude faster than SPICE while keeping typical logic

gate accuracies under 5% and typical transmission gate or RC circuit accuracies under

10%.

The modeling approach is empirical, but insight into model behavior was gained by

considering physical properties of the circuits. For logic gates, output transition time and

delay time is calculated as a function of load capacitance and input transition time. For

transmission gates, resistance for the conducting case and switching case is modeled as a

function of input waveform and load capacitance. The effects of transmission gate inputs

having different delay times and transition times is also considered.

Methods for delay calculation of logic gate circuits and RC circuits were developed.

Waveform models were derived for both types of delay calculation. An interface was

found to link the two methods of delay calculation and waveform models.

Representations of sub-circuit modules and instances were presented. These

representations were implemented in an experimental event driven simulator.

Considerations in event driven simulation were discussed. Several tests were done to

illustrate accuracy and computation speed compared to SPICE.

5.1 Future Work

Although test results indicate that the efforts in this work have been largely

successful, there are still many issues that could be addressed and questions that need to

be answered.

To further the modeling work done thus far, a method could be derived to calculate

the effective input resistance of a cell. This input resistance would be a function of input

waveform, as is the output resistance of a cell. Thus, cell inputs could be modeled

88

·I _

correctly when that input is a transmission gate. In this thesis, only cell input capacitance

is used as input impedance information. Of course, if the entie cell is a transmission

gate, or series of transmission gates, then this case is modeled as an RC circuit.

More work on the effects of scaling transistors on macromodel parameters could be

done. Ideally, macromodel parameters would be a function of such variables as transistor

length and width, parasitic capacitance, and variation in cell layout. Also, adapting

macromodel parameters for use with different technologies would be valuable.

A more general implementation of the logic evaluation of cells could be done.

Logic evaluation is needed for node initialization as well as delay calculation. At

present, the logic behavior is implemented in program code individually for each module.

A more general and efficient way of describing the transistor structure of the module

could be provided. This may be possible by providing a switch-level description of the

cell, along with cell delay calculation parameters, as user input for a new library addition.

General switch-level simulation procedures could be used for logic evaluation on all

modules. This could potentially reduce the amount of program code needed for the delay

representation of each module.

Finally, a useful technique would be combining existing macromodels to create a

new macromodel. This would add a new dimension to the work, creating a hierarchical

simulator using macromodels. This would probably be initially feasible for smaller sub-

circuits, such as inverters and transmission gates. As cells with larger fan-in and fan-out

would be composed, the number of possible delay paths would grow larger. Some case

analysis may then be needed.

5.2 Final Thoughts

As developments in VLSI technologies and design remain a dynamic field, so must

the development of computer-aided VLSI design tools. Only through continuing research

in VLSI CAD can full use be made of technological advances in fabrication techniques,

device sizes, alternate technologies and design methods. It is hoped that the ideas

presented in this work contribute to this cause.

89

I

APPENDIX A

Derivation of Driving Resistance and
Delay Offset for a Driving Gate

The goal of this section is to find a resistance and delay offset for an exponential

waveform, given the final value of the exponential, Vf, and two sets of points on the

waveform, (tl,Vl) and (t2 ,V2).

Assume a rising exponential waveform:

V (t) = Vf (1- e - to)). (A.1)

Vf is the final value and X is the time constant of the exponential waveform. t o is the time

at which the exponential starts rising. The independent variable, t, may be solved for:

V
t = ln f + to. (A.2)

Vf - V(t)

The time-voltage pairs are then substituted in equation (A.2). The resulting equations

are:

V
t = [Vf] + to (A.3)

and

t2 = [_ + to (A.4)

Subtracting Equation (A.3) from Equation (A.4) and solving for X yields:

t2 - tl

{ In [v f - ln [f] }f

The resistance, R, of an exponential with time constant t, assuming a capacitance

of C, is then:

R = C (A.6)
C

where x is given in Equation (A.5).

90

__ __ I I_

The delay offset, to , of the exponential may be solved by using the results of
Equations (A.3) and (A.5) to yield:

V
to = t1 - In [V 1] (A.7)

The results for a falling waveform may be found by going through the same steps.
A falling exponential is described by:

V (t) = V i e- (t - to). (A.8)

Where Vi is the initial voltage, to is the delay offset, and is the time constant of the
waveform. Again, given two sets of time-voltage points on the waveform, (tl,V1) and
(t2,V 2), and the procedure described above, The time constant is:

C = t 2 l (A.9)

Resistance may be found using Equation (A.6). The delay offset is then:

to = t - ln i] (A.10)

91

_~~~~~~~~ I~~~~~~~~~~~~~~~ __~~~~~~~~~~~~~~~__ I ___ _ _ ~ ~ ~ ~ ~ ~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~-

References

1. L.W. Nagel, "SPICE2: A Computer Program to Simulate Semiconductor Circuits", Memo ERL-M520,
University of California, Berkeley, May 1975.

2. W.T. Weeks, AJ. Jimenez, G.W. Mahoney, D. Mehta, H. Qassemzadeh, and T.R. Scott, "Algorithms
for ASTAP: A Network Analysis Program", IEEE Transactions on Circuit Theory,Vol. 11, 1973, pp.
628-634.

3. Bernard Conrad Cole, "Stretching the Limits of ASIC Software", Electronics,23 June 1986, pp. 34-38.

4. Randal E. Bryant, "A Switch-Level Model and Simulator for MOS Digital Systems", IEEE
Transactions on Computers,Vol. C-33, February 1984, pp. 160-177.

5. CJ. Terman, Simulation Tools for Digital LSI Design, PhD dissertation, Massachusetts Institute of
Technology, October 1983.

6. J.K. Ousterhout, "A Switch Level Timing Verifier for Digital MOS VLSI", IEEE Transactions on
Computer Aided Design,Vol. CAD-4, July 1985, pp. 336-349.

7. J.K. Ousterhout, "Switch-Level Delay Models for Digital MOS VLSI", 21st Design Automation

Conference, IEEE, 1984, pp. 542-548.

8. V.B. Rao, T.N. Trick, and I.N. Hajj, "A Table-Driven Delay-Operator Approach to Timing Simulation
of MOS VLSI Circuits", International Conference on Computer Design: VLSI in Computers, IEEE,
Port Chester, NY, October 1983, pp. 445-448.

9. Rolf Sundblad and Christer Svensson, "Fully Dynamic Switch-Level Simulation of MOS Circuits",
IEEE Transactions on Computer-Aided Design,Vol. CAD-6, March 1987, pp. 282-289.

10. Genhong Ruan and J. Vlach, "Current Limited MOS Model in Logic and Timing Simulation",
International Symposium on Circuits and Systems, IEEE, San Jose, CA, May 1986, pp. 747-750.

11. Young H. Kim, J.E. Kleckner, R.A. Saleh, and AR. Newton, "Electrical-Logic Simulation",
International Conference on Computer-Aided Design, IEEE, Santa Clara, CA, November 1984, pp. 7-9.

12. J. Rubinstein, P. Penfield, Jr., and M.A. Horowitz, "Signal Delay in RC Networks", IEEE Transactions
on Computer-Aided Design,Vol. CAD-2, July 1983, pp. 202-211.

13. Paul Penfield, Jr. and Jorge Rubinstein, "Signal Delay in RC Tree Networks", Caltech Conference on
VLSI, Pasadena, CA, January 1981, pp. 269-283.

14. M. Horowitz, "Timing Models for MOS Pass Networks", Proc. of the Int. Symp. on Circuits and

Systems, 1983, pp. 198-201.

15. M. Horowitz, Timing Modelsfor MOS Circuits, PhD dissertation, Stanford University, December 1983.

16. T. Lin and C.A. Mead, "Signal Delay in General RC Networks", IEEE Transactions on Conputer-
Aided Design,Vol. CAD-3, October 1984, pp. 331-349.

17. T. Lin, A Hierarchical Timing Simulation Model for Digital Integrated Circuits and Systems, PhD

dissertation, California Institute of Technology, August 1984.

18. T. Lin and C.A. Mead, "Signal Delay in General RC Networks with Application to Timing Simulation
of Digital Integrated Circuits", Computer Science Department 5089:TR:83, California Institute of
Technology, 1983.

19. Basant R. Chawla, Hermann K. Gummel, and Paul Kozak, "MOTIS-An MOS Timing Simulator",
IEEE Transactions on Circuits and Systems,Vol. CAS-22, December 1975, pp. 901-910.

20. S.P. Fan, M.Y. Hsueh, A.R. Newton, and D.O. Pederson, "MOTIS-C: A New Circuit Simulator for
MOS LSI Circuits", International Symposium on Circuits and Systems, IEEE, Phoenix, AZ, April 1977,
pp. 700-703.

21. Chin Fu Chen and Prasad Subramaniam, "The Second Generation MOTIS Timing Simulator- An
Efficient and Accurate Approach for General MOS Circuits", International Symposium on Circuits and

92

Systems, IEEE, Montreal, Canada, May 1984, pp. 538-542.

22. David Tsao and Chin-Fu Chen, "A Fast-Timing Simulator for Digital MOS Circuits", IEEE
Transactions on Computer-Aided Design,Vol. CAD-5, October 1986, pp. 536-540.

23. Amrish Patel, Wally Bridgewater, and Rao Pokala, "Newton: Logic Simulation with Circuit Simulation
Accuracy for ASIC Design", IEEE 1986 Custom Integrated Circuits Conference, IEEE, Portland,
Oregon, June 1986, pp. 456-459.

24. Sani R. Nassif and Stephen W. Director, "WASIM: A Waveform Based Simulator for VLSIC's", IEEE
International Conference on Computer-Aided Design, IEEE, Santa Clara, CA, November 1985, pp.
29-31.

25. M.D. Matson, Macromodeling and Optimization of Digital MOS VLSI Circuits, PhD dissertation,
Massachusetts Institute of Technology, February 1985.

26. Mark D. Matson and Lance A. Glasser, "Macromodelling and Optimization of Digital MOS Circuits",
IEEE Transactions on Computer-Aided Design,Vol. CAD-5, October 1986, pp. 659-678.

27. Rathin Putatunda, "AUTODELAY: A Second Generation Automatic Delay Calculation Program for
LSI/VLSI Chips", International Conference on Computer-Aided Design, IEEE, Santa Clara, CA,
November 1984, pp. 188-189.

28. Rathin Putatunda, "Automatic Calculation of Delay in Custom Generated LSIVLSI Chips",
International Conference on Circuits and Computers, IEEE, NY, NY, September 1982, pp. 193-196.

29. Rathin Putatunda, "AUTODELAY: A Program for Automatic Calculation of Delay in LSI/VLSI
Chips", 19h Design Automation Conference, IEEE, Las Vegas, Nevada, June 1982, pp. 616-621.

30. CJ.R. Fyson and K.G. Nichols, "Simple Characterisation of Logic Gates for Use in Macrosimulation",
International Conference on Circuits and Computers, IEEE, NY, NY, September 1982, pp. 189-192.

31. J. White and AL. Sangiovanni-Vincentelli, "RELAX2: A Modified Waveform Relaxation Approach to
the Simulation of MOS Digital Circuits", Proc. of the Int. Symp. on Circuits and Systems, IEEE, 1982,
pp. 756-759.

32. E. Lelarasmee, A.E. Ruehli, and A.L. Sangiovanni-Vincentelli, "The Waveform Relaxation Method for
Time-Domain Analysis of Large Scale Integrated Circuits", IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,Vol. CAD-1, July 1982, pp. 131-144.

33. Karem A. Sakallah and Stephen W. Director, "SAMSON: An Event Driven VLSI Circuit Simulator",
Custom Integrated Circuits Conference, IEEE, Rochester, NY, May 1984, pp. 226-231.

34. John L. Wyatt. Private communication, November 1986

35. A.E. Ruehli, A.L. Sangiovanni-Vincentelli, and G. Rabbat, "Time Analysis of Large-Scale Circuits
Containing One-Way Macromodels", IEEE Transactions on Circuits and Systems,Vol. CAS-29,
March 1982, pp. 185-189.

36. Steven P. Mccormick, "Cross-Talk Noise Modelling for VLSI Interconnections", Ph.D. Thesis
Proposal, Massachusetts Institute of Technology, 1986

37. Lance A. Glasser and Daniel W. Dobberpuhl, The Design and Analysis of VLSI Circuits, Addison-
Wesley Publishing Company, Reading, MA, 1985.

38. W. Elmore, "The Transient Response of Damped Linear Networks with Particular Regard to Wideband
Amplifiers", Journal of Applied Physics,Vol. 19, January"" 1948, pp. 55-63.

39. C.A. Zukowski, Bounding Enhancements for VLSI Circuit Simulation, PhD dissertation, Massachusetts
Institute of Technology, June 1985.

40. T. Tokuda, K. Okazali, K. Sakashita, I. Ohkura and T. Enomoto, "Delay-Time Modeling for ED MOS
Logic LSI", IEEE Transactions on Computer-Aided Design,Vol. CAD-2, July 1983, pp. 129-134.

41. A.E. Ruehli, R.B. Rabbat, and H.Y. Hsieh, "Macromodelling - An Approach for Analysing Large Scale
Circuits", Computer-Aided Design,Vol. 10, March 1978, pp. 121-130.

93

42. AE. Ruehli and G.S. Ditlow, "Circuit Analysis, Logic Simulation, and Design Verification for VLSI"
Proceedings of the IEEE,Vol. 71, January 1983, pp. 34-48.

43. J.L. Wyatt, "Signal Propagation Delay in RC Models for Interconnect", to be published

44. Bryan Ackland and Neil Weste, "Functional Verification in an Interactive Symbolic IC Design
Environment", Caltech Conference on VLSI, Pasadena, CA, January 1981, pp. 285-298.

45. Bryan D. Ackland, Sudhir R. Ahuja, Teri L. Lindstrom, and Deborah J. Romero, "CEMU - A
Concurrent Timing Simulator", IEEE International Conference on Computer-Aided Design, IEEE,
Santa Clara, CA, November 1985, pp. 122-124.

46. Jonathan Allen, Introduction to VLSI Design, Massachusetts Institute of Technology, Cambridge, MA,
1985.

94

� � _ ____ ___ II

