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Living organisms persist by virtue of complex interactions among many components

organized into dynamic, environment-responsive networks that span multiple scales and

dimensions. Biological networks constitute a type of information and communication

technology (ICT): they receive information from the outside and inside of cells, integrate

and interpret this information, and then activate a response. Biological networks enable

molecules within cells, and even cells themselves, to communicate with each other and

their environment. We have become accustomed to associating brain activity – particularly

activity of the human brain – with a phenomenon we call “intelligence.”Yet, four billion years

of evolution could have selected networks with topologies and dynamics that confer traits

analogous to this intelligence, even though they were outside the intercellular networks of

the brain. Here, we explore how macromolecular networks in microbes confer intelligent

characteristics, such as memory, anticipation, adaptation and reflection and we review

current understanding of how network organization reflects the type of intelligence required

for the environments in which they were selected. We propose that, if we were to leave
,

terms such as “human” and “brain” out of the defining features of “intelligence,” all forms

of life – from microbes to humans – exhibit some or all characteristics consistent with

“intelligence.” We then review advances in genome-wide data production and analysis,

especially in microbes, that provide a lens into microbial intelligence and propose how

the insights derived from quantitatively characterizing biomolecular networks may enable

synthetic biologists to create intelligent molecular networks for biotechnology, possibly

generating new forms of intelligence, first in silico and then in vivo.

Keywords: microbial intelligence, emergence, decision-making, robust adaptation, association, anticipation, self-

awareness, problem solving

INTRODUCTION

For centuries, mankind has grappled with the precise nature and

defining features of intelligence. Debates have erupted over how

to define and measure the extent of intelligence in parts of the

biological (and non-biological) world. Alan Turing, for example,

famously proposed a test for evaluating the performance of “artifi-

cial intelligence”: namely, can it be distinguished from the perfor-

mance of human beings by another human (Turing, 1950)? There

have also long been philosophical discussions on what can be con-

sidered “intelligent.” A number of studies have explored whether

there are differences in intelligence between human populations

(Neisser et al., 1996), whether animals (Thorndike, 1998), and

even plants (Trewavas, 2002) exhibit intelligent behaviors, whether

non-human artificial systems are capable of intelligence (Brooks,

1991) and, more recently, whether intelligence spans biological

domains including even the simplest of microbes (Hellingwerf

et al., 1995; Bruggeman et al., 2000; Hoffer et al., 2001; Ben Jacob

et al., 2004). For the purposes of this discussion, however, and in

the interest of brevity, we limit ourselves to systems of biological

nature.

As an abstract concept, “intelligence” escapes easy definition.

As a linguistic construct, its characteristics have varied substan-

tially across philosophical and cultural contexts. Here, we do not

attempt a definition of intelligence; rather, we discuss how some

features (like decision-making) commonly associated with a brain

can also be found in the microbial world. Rather than launch
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an ontological, epistemological, or semantic inquiry, we instead

focus on the scientific utility of assigning intelligence to microbes.

We review how the mathematical perspectives of complex adap-

tive systems and recent data-intensive developments in systems

biology offer insight and help structure this problem. Finally, we

consider whether viewing microbes through the lens of “intelli-

gence” can help us better describe their behavior, harness their

intelligence to perform valuable actions and, in the end, possibly

extend our understanding of the systems biology underlying the

functions of the human brain.

WHAT IS “INTELLIGENCE”?

The modern biological perspective on “intelligence,” even at its

most fundamental level, tends to associate it with the human

brain. In this context, “intelligence” is a property of the human

brain, or a feature that somehow emerges from its activity.

Accepting that intelligence may not be exclusively a feature of

the human brain, but rather it may be present – at least to a

degree – in all creatures possessing brains or nervous systems,

already helps refine the general features of intelligence. How-

ever, intelligence may not have to be associated solely with a

certain biological organ, such as a brain or a nervous system.

Brains and nervous systems may be highly adapted conduits for

expressing and integrating multiple intelligent behaviors. Some

of these behaviors may be exhibited by other complex adap-

tive systems present in living organisms that do not have a

brain or nervous system. As early as 1995, Hellingwerf et al.

(1995) suggested that some two-component systems in bac-

teria comply with the requirements for elements of a neural

network. More recently, the so-called biogenic approach of cog-

nition has gained momentum by focusing on the biological

origin of cognition and intelligence, abandoning a strict anthro-

pocentric perspective (Lengeler, 2000; Lyon, 2006; van Duijn,

2012). This is the central paradigm around which we base our

analysis.

HOW DOES INTELLIGENCE EMERGE?

A small molecule at room temperature cannot be intelligent; it

cannot store information about its past with implications for

its behavior in some future. Large macromolecules, such as

proteins and polynucleotides, may store information as, for exam-

ple, Gibbs free energy in metastable states, where interactions

between their structural components can differ depending on the

way they were folded some time ago. The primary difference

between small and large molecules with respect to informa-

tion storage is that small molecules have a sufficiently small

number of structural microstates (i.e., conformations) such that

all of these states are visited by the molecule on time scales

relevant for biochemistry (∼10 ms), i.e., they are “ergodic”

(Westerhoff and Van Dam, 1987). However, large molecules

may not visit all of their microstates, even on equivalent or

greater time scales. In principle, phosphorylation, dephospho-

rylation and other chemical modifications may increase the

possible number of microstates (Kamp and Westerhoff, 1986).

High energy nucleic acid and protein complex states called chro-

matin, for example, may take hours, if not days, to relax after

refolding.

Information storage within an object requires that the object

be away from its equilibrium state for a sufficient period of

time. This can be achieved transiently by bringing the object

into a high free energy state, with the relaxation back to the

equilibrium state being slow. Or, it may be achieved per-

manently by making this process permanent (at the cost of

Gibbs free energy), such as in the terminal phosphoryl bond

in ATP. More generally, in open systems, Gibbs free energy

harvested from the environment can be used to maintain the

non-equilibrium state. Such free-energy transductions require

non-linear interactions of multiple components: they require

complexity (Westerhoff and Van Dam, 1987) – and so does

intelligence.

Vis-à-vis memory, intelligence is an emergent property of a

complex system; a feature that is not reducible to the parts of

the system in isolation. Intelligence emerges when system com-

ponents interact. For example, the intelligence (or intelligent-like

behavior) we observe inside a single cell emerges from interactions

among thousands of non-intelligent macromolecules. Similarly,

the intelligent behavior of a microbial society is not simply the

sum of the behavior of intelligent cells; rather, it is a property

that emerges from the interactions amongst many of them. In

the human brain, intelligence emerges from interactions of nearly

90 billion neurons.

While, in practice, it is not trivial (or yet possible) to spec-

ify the interactions leading to intelligence, a promising start

would be to catalog all of the interacting components (molecules,

microorganisms, neurons), thereby defining the topology of the

interactions as a network. Experimentally, this would correspond

to performing Chip-on-chip, yeast two-hybrid experiments or

antibody pull-down experiments. However, as we will show,

this does not suffice to establish a basis for intelligence. It

is not the mere existence of a network that begets intelligent

behavior – a rock can be full of networked structures in the

form of bonds among its component molecules and ions, yet

it is not intelligent. Rather, it is the dynamics of the interac-

tions in a system that generate the system-level property we call

intelligence. Somehow, non-linearities in the interactions and

their indirect and incomplete, yet non-zero, reciprocities are

important.

Although we have discovered many of the components of liv-

ing systems, e.g., neurons and their connectivity in the brain

(Alivisatos et al., 2012; Ahrens et al., 2013) and macromolecules

and their interactions in the cell, we still have no clear view

on how they collectively contribute to intelligence. One rea-

son for this failure is that the complete picture may be too

complex to be perceived fully by our human brains. With com-

puter simulation, however, it should be possible to reconstruct

the emergence of these properties. Even then, it is debatable

whether our brain, biased by its very human nature, will be

able to identify and appreciate all forms of intelligence, espe-

cially those that are dissimilar to our own. Identifying unfamiliar

forms of intelligence is the transcendental challenge of this

paper – one that would have enormous implications for syn-

thetic biology and engineering. We start by describing features of

microbial systems that are analogous to familiar forms of human

intelligence.
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SYSTEMS BIOLOGY OF INTELLIGENCE: RECONSTRUCTING

THE EMERGENCE OF INTELLIGENCE FROM COMPONENT

PROPERTIES OF THE SYSTEM

Systems biology can be defined as a science that aims to understand

how biological function that is absent from macromolecules in

isolation emerges when these macromolecules exist as compo-

nents of a system (Alberghina and Westerhoff, 2005; Westerhoff

et al., 2009). The concepts of System, Function and Emergence are

central in this context.

The notion of function plays an important role in (systems)

biology. Yet, often this concept is ill-defined. Because the word

“function” has strong teleological connotations, many biologists

hasten to clarify that they invoke neither purpose nor inten-

tion when they use the notion of function. The subtle reasoning

that accompanies these notions, however, is often overlooked

(Wouters, 1999; Looijen, 2000), not in the least because the

term “function” is used in various ways. Here, we adopt the

perspective of Wouters (1999), who distinguished four prin-

cipal kinds of biological function. In short, he argues that

the term “function” is used to refer to: (i) function as activ-

ity; (ii) function as role; (iii) function as advantage; and (iv)

function as selected effect (Wouters, 2003, 2013). Mahner and

Bunge (2001) arrived independently to a similar set of func-

tions. Considering the “cognitive” functions that are discussed

in this study (decision-making, robust adaptation, association,

anticipation, self-awareness and problem solving), the first three

definitions are the most useful. The fourth definition is used in

evolutionary biology and it features in historical evolutionary

explanations.

Defining “function” is important to understand the explana-

tions of biological systems we craft. We need, for instance, to

distinguish mechanistic explanations and design explanations.

Mechanistic explanations categorize a system into a number of

functional components; they describe how these components are

arranged, how their activities are organized in time, and relate

these features to some phenotype (Boogerd et al., 2013). Mech-

anistic models are mathematical models related to the activities

of cellular reaction networks involving transport, metabolism,

signal transduction, or gene expression. However, mechanisms

only suffice to explain how the features are brought about

(how they work). Understanding why certain mechanisms exist

(rather than other, alternative organizations) requires design

explanations (Wouters, 1995, 2007). These explanations typically

contrast observed organizations with conceivable alternatives in

an attempt to identify invariances (or “laws”) that can account

for our observations. Delineating the difference between these

two types of explanations relates to how we attribute function

to systems (e.g., “function as an activity” versus “function as an

advantage”).

A human brain comprised by neurons, a microbial community

comprised by different species and individual organisms or an

individual cell comprised by molecules are all semi-open systems.

They all selectively interact with their environments by way of mass

and energy exchange, where the decrease of free energy in the envi-

ronment is coupled to the increase of the order of the biosystem

itself (decreasing its own entropy), or with the maintenance of the

biosystem against the activity of the many processes that tend to

dissipate it (Westerhoff and Van Dam, 1987). Systems of artificial

intelligence are semi-open as well. They all need an external energy

source to maintain their existence. In other words, there is always

a flow of mass and energy through the system, and then a certain

function emerges.

The function in which we are interested here is “intelligence.”

Intelligence consists of many features that allow a system to

adapt to its environment. Together with other functions of the

system, intelligence emerges from interactions among system com-

ponents. As an emergent property, it satisfies three theses, as

expounded by Stephan: (i) physical monism; (ii) synchronic deter-

minism; and (iii) systemic (organizational) property (Stephan,

1999). The thesis of physical monism restricts the nature of

the system’s elements and states, so that the system consists of

only physical entities and interactions, denying any supernatural

influences – this is how we describe our system ab initio: we

neglect all supernatural influences de juro. The thesis of synchronic

determinism restricts the way systemic properties and the system’s

microstructure are related to each other and states that there can be

no difference in systemic properties without changes in the struc-

ture of the system or in the properties of the components: features

of intelligence are underlined exactly by the changes in the system

(firing between neurons, chemical reactions between molecules,

electrical current between components of a computer); in other

words, differences in systemic properties should be measurable

at least in principle and, with the advent of genomics and the

other -omics, also in practice. It is noteworthy that this thesis also

implies that the inverse statement is invalid: a change in a system’s

microstructure or properties does not necessarily yield a change in

its behavior or properties. The thesis of being a systemic property

means that a property is not exhibited by elements in isolation;

interactions must keep the elements out of their non-informative

equilibrium state.

If emergence is weak, it simply satisfies just the three theses

stated above. According to Stephan (Stephan, 1999, 2006), strong

emergence would satisfy one additional criterion – irreducibility.

In general, there are three conditions for irreducibility, but it has

been argued that for biochemical networks only one condition

is relevant (Boogerd et al., 2005): if the properties of parts (say

A, B, and C) in their relationship (RABC) within the system as a

whole (together constituting an explanation of the systemic prop-

erty at hand) do not follow from the properties of parts (A, B, C)

or simpler subsystems (AB, BC, AC) in isolation, it is a strongly

emergent property. It should be noted that in this definition of

strong emergence, the deduction base does not include systemic

knowledge, such as the state of the system. Cognitive-like capabili-

ties of a single microbial cell might then be irreducible in the sense

that these properties cannot be deduced from the full knowledge

of the behavior of the parts of the system in isolation or in config-

urations simpler than the one prevailing within the whole system.

In fact, all features of microbial intelligence described in this study

are expected to be irreducible in this sense, and therefore strongly

emergent.

It is worthwhile to compare our notion of strong emer-

gence with that from philosophy of mind. In philosophy of

mind, mental properties like human intelligence are considered

strongly emergent; contrary to our contention here, however,
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the underlying reason for this limitation is that the property

does not follow from the behavior of the parts and their inter-

actions within the system. By contrast, we assert that microbial

intelligence, or in principle any systemic property, can be mecha-

nistically explained if the properties and behaviors of the parts

and their relationship within the system are fully known, i.e.,

when full knowledge of the state of the system is available.

For this reason, any microbial property can, in principle, be

mechanistically explained and, thus, can also be reconstructed

in mathematical models of the underlying mechanism provided

that knowledge of the system is fully available. Properties that

are declared strongly emergent – because of a limited deduction

base – are still calculable if the behavior of all relevant compo-

nents and their mutual interactions within the system are available

(Boogerd et al., 2005).

The limited deduction base of strong emergence provides the

opportunity to rank emergent systemic properties according to

the strength of emergence, which can be clarified as follows:

in principle, every single component of the system, albeit indi-

rectly, interacts with all other components. Let us consider an

example of two abstract proteins A and B binding to each other

inside the cell. The binding reaction between proteins A and B

might depend on the presence of other proteins. For example,

transporters and structural proteins forming intracellular com-

partments keep proteins A and B together or separate. Other

proteins (e.g., chaperones) might modulate the interaction directly

by chemical modification of the interacting proteins. Binding

between proteins A and B can also depend on environmental

parameters, like intracellular pH. However, the pH is the result

of proteins that regulate the uptake and pumping out of ions

and different buffering molecules. In turn, ion transport pro-

cesses are coupled to ATP hydrolysis and thus are dependent on

the Gibbs free energy flux through the cell. Thus, the interac-

tion between two components in the cell depends to a variable

extent on the state of the whole system. In other words, system

component properties are state dependent. The greater their state

dependency is, the greater the degree of irreducibility of the system

(non-deducibility), implying stronger emergence (Kolodkin et al.,

2012a,b).

The ability of a system to“choose the best option to solve a ques-

tion and to anticipate the future” and, thus, to be intelligent might

be state-dependent to a very high extent. Nevertheless, the intel-

ligent response can be reconstructed in a computer model if we

have complete knowledge of the properties of and the interactions

between all components in the system. Similarly to other forms

of emergence, intelligent behavior is somehow predetermined

by the system itself and by applied stimuli. Theoretically, with

precise mathematical description of all system components, all

interactions among the components and with appropriate bound-

ary conditions, the emergent intelligent behavior reconstructed

with a model should become an accurate description of the man-

ifestation of intelligence of a real system. But in practice, we

do not possess the extremely accurate information necessary to

model a real system precisely, because there is a large degree of

uncertainty involved in measuring or even acquiring all system

parameters, or the extreme complexity of the system makes it dif-

ficult to understand or even know the mechanisms of all system

processes. So, intelligent response may not be 100% reproducible

in a simulation, not because of the “free will” of the system, but

rather because of the limitations of our current knowledge and

abilities.

A description of how components interact with and affect each

other can be represented as a network: metabolic networks, sig-

nal transduction networks, gene expression networks, anatomical

networks, microbial ecological networks, etc. One can gener-

ate and model these networks using various approaches. For

example, one can determine the kinetic rules of how network

components interact and express the rates of these interactions

in terms of mathematical relationships, e.g., differential equa-

tions. Then, one can integrate all equations and solve them for

the whole system. As a result, one may be able to simulate the

dynamic behavior of the network and, thus, reconstruct its emer-

gent properties in silico. For example, the response of the nuclear

receptor network to the cortisol signal has been modeled in a

kinetic ODE-based model (Kolodkin et al., 2013a). The intelli-

gent properties of the physiological network were reconstructed

in the computer model; for instance, the modeled system was

able to learn from previous stress and anticipate the next cortisol

pulse.

The example above shows how intelligent behavior can emerge

from just one feedback and one feedforward loop. In reality, the

network can be much more complicated and contain many such

loops. Biologically inspired “intelligence” models and algorithms

have been extensively developed in the fields of artificial intelli-

gence and optimization with many real-world applications, such

as artificial immune systems (Smith and Timmis, 2008), evolu-

tionary algorithms, artificial neural networks (Rolls and Treves,

1998) and the Kirdin kinetic machine (Gorbunova, 1999). For

instance, feedback and feedforward loops, based on the architec-

ture of neurons (including synapses and dendrites), are crucial

for understanding the functional connectivity in the brain that

is usually modeled by the artificial neural networks (Rolls and

Treves, 1998). Neural networks are mainly classified into two

groups, i.e., (i) the feedforward neural networks (FFNNs) where

data is propagated from input to output using “combinatorial

machines,” e.g., radial basis function (RBF), multilayer percep-

tron (MLP), self-organizing map (SOM); and (ii) the recurrent

neural networks (RNNs). Several important feedforward loop

motifs have been identified in both neuronal connectivity net-

works and transcriptional gene regulation networks (Milo et al.,

2002), despite these networks operating on different spatial and

temporal scales. This similarity in motifs may reflect a fundamen-

tal similarity in the evolved designs of both types of networks:

to reject transient input fluctuations/noises and activate output

only if the input is persistent, a so-called persistence detector

(Alon, 2007). In addition, a multi-input feedforward structure

is identified in the neuronal network of the nematode Caenorhab-

ditis elegans, which serves as a so-called coincidence detector: the

output is activated only if stimuli from two or more different

inputs occur within a certain period of time (Kashtan et al., 2004;

Alon, 2007). Another biological example appears in the retina,

where a hierarchical feedforward cortical architecture is used for

the pre-processing of visual information (Sanger, 1989). Although

successful in practical applications, pure FFNNs are expected to be
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rare in the human neural system. On the other hand, RNNs have

immediate biological application (i.e., self-organizing dynamic

systems) and can describe complex non-linear dynamics, includ-

ing both feedforward and feedback structures. Nevertheless, very

few real applications have been studied based on RNNs. Until

recently, RNNs have been employed to study short-term mem-

ory and brain-like memory (Salihoglu, 2009). This is because

RNNs allow the output of a neuron to influence its input, either

directly or indirectly, via its effect on other neurons. This allows

the network to reflect the input presented to it, but also its own

internal activity at any given time. In intracellular macromolecular

network organization, a distinction has been made between dic-

tatorial and democratic hierarchies, where only in the latter case

the metabolite concentrations close to the systems output are able

to influence gene expression (Westerhoff et al., 1990; Snoep et al.,

2002). The two types of hierarchy may affect FFNNs and RNNs,

respectively.

Learning and memory are two important, counterposed fea-

tures of “intelligence.” The former assimilates new information,

requiring flexibility in the network to produce complex dynam-

ics; the latter retains old information, requiring stability in the

network with sufficient storing capacity. Tradeoffs between the

two can be modeled and observed using neural networks. A

recent study (Hermundstad et al., 2011), for example, investi-

gated the relationship between the neural network architecture

(e.g., parallel and layered networks) and performance mediated

through FFNNs. Another study (Salihoglu, 2009) indicated that

classical feedforward networks with gradient descent learning

algorithms are not sufficient to describe complex memory and

learning dynamics, because real brain dynamics (e.g., memory)

are more complex than fixed point attractors, i.e., characterized

by cyclic and chaotic regimes. Hence, classical feedforward net-

works with gradient descent learning algorithms may not converge

when complex non-linear dynamics (e.g., bifurcation) exist. In

this case, RNNs may be a more appropriate choice for describ-

ing memory-like structures. In addition, feedback structures can

increase network stability and exhibit the paradoxical property

of near-perfect adaptation, where many properties of the system

remain constant even when the system is subject to an environ-

mental challenge or strong change in other network properties

(He et al., 2013).

These examples provide a high-level overview of how to

reconstruct and understand the emergence of intelligence using

information about component relationships, even when intelli-

gence is strongly emergent. In the next section, we refine our

understanding of intelligence in microbes by detailing exam-

ples of microbes exhibiting specific characteristics of intelligence

(Figure 1).

MANIFESTATIONS OF INTELLIGENCE IN THE MICROBIAL

WORLD

DECISION-MAKING

Decision-making in humans is a vital process undertaken on a

daily basis. It is a complex process that involves the coordinated

activity of an extended neural network, including several different

areas of the brain. Making a decision requires the execution of

several subtasks, such as outcome appraisal, cost–benefit analysis,

and error perception, before finally selecting and implement-

ing the optimal action. These processes can also be influenced

by several factors such as personal preference, reward evalua-

tion, reinforcement learning and social cooperation (Assadi et al.,

2009; Gleichgerrcht et al., 2010). In the microbial world, deci-

sions are made by monitoring the current state of the system, by

processing this information and by taking action with the abil-

ity to take into account several factors such as recent history,

the likely future conditions and the cost and benefit of making

a particular decision. At the population level, microbes are also

capable of hedging their bets, by having individuals of an isogenic

population in different states even when experiencing the same

environmental conditions, and they are also able to make collective

decisions that cause the entire population to respond in a partic-

ular way. Microbes are able to make decisions based on different

criteria of information and also to perform the decision-making

using different mechanisms, utilizing different types of molecular

networks.

It can be argued that even simple biological systems like viruses

are capable of decision-making when interacting with their host

under certain conditions. A well-studied example is the bacterio-

phage lambda lysis/lysogeny decision upon infection of Escherichia

coli. The decision is regulated at the genetic level by a bistable

switch, formed by mutual repression (Wegrzyn and Wegrzyn,

2005). The decision is made based on the conditions of the host

cell and the number of phages present. However, stochastic effects

are also thought to play a role, either through stochasticity in the

expression and regulation of the lambda switch system (Arkin

et al., 1998) or through differences between host cell environ-

ments prior to infection (St-Pierre and Endy, 2008). The fact that

microbes experience stochasticity, due in part to low molecule

numbers and the probabilistic nature of molecular interactions,

adds layers of complexity to the decision-making process, for

example the need to discriminate between signal and noise. With

relatively recent technological advances, experimental measure-

ments of stochasticity are more readily obtained and it has been

found to affect some decision-making systems. This should be of

no surprise, as stochasticity is at the basis of all time dependent

processes – high molecule numbers and linearity being the forces

that remove stochasticity from observation (Westerhoff and Van

Dam, 1987).

One of the earliest known systems where a microbe makes

decisions is that of ammonia transport and assimilation in E. coli

(van Heeswijk et al., 2013). The ammonium transporter (AmtB),

the ammonium assimilating enzymes glutamate dehydrogenase

(GDH) and glutamine synthetase (GS), and the helper enzyme

glutamate synthase (GOGAT) are the main players in ammonium

transport and assimilation at low environmental ammonium

availability. A decision needs to be made between high-cost,

high-accumulation transport by AmtB, low-cost, low-affinity

assimilation by GDH, and high-cost, high-affinity assimilation by

GS/GOGAT. In making this decision, E. coli balances several trade-

offs: (i) maintaining intracellular ammonium at levels sufficient

for growth; keeping in check energy costs (ii) of transport and

(iii) of assimilation; (iv) minimizing a futile cycle generated by

ammonium-ammonia movement across the membrane; and (v)

preventing or minimizing the wastage of ATP by the simultaneous
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FIGURE 1 | Microbial intelligence vs. human intelligence. Microbes exhibit

similar characteristics of intelligence as higher organisms and humans, such

as decision making, robust adaptation, association and anticipation,

self-awareness and problem solving capabilities. (A) Overview of metabolism

as a molecular circuit; Taken from www.genome.ad.jp/kegg/kegg.html on

September 23, 2002; (B) Supplementary Information for: “Topological

network alignment uncovers biological function and phylogeny” from

bio-nets.doc.ic.ac.uk/home/software/graal/; (C) Hippocampal Neurons, from

learn.fi.edu/learn/brain/proteins.html; (D) www.humanillnesses.com;

(E) Problem solving, from www.kaizen-factory.com; (F) tamar.tau.ac.

il/∼eshel/html/Bacteria_art_gallery.html; (G) www.getupanddosomething.org;

(H) Baumel bacterial cartography, from www.nextnature.net; (I)

shperspectives.wordpress.com; (J) Infusoria, from ikanrainbowfish.blogspot.

com/2013/07/kultur-infusoria.html; (K) Sherpa mountaineer crossing the

Khumbu icefall – Wikimedia Commons en.wikipedia.org/wiki/File:Pem_

dorjee_sherpa_(2).JPG; (L) www.nyas.org/image.axd?id=a0d6067c-80c6-

4a30-9a8d-3c319b199796&t=633845693265270000; (M) Chess, from

corporate-games.ro.

action of biosynthetic GS and degradative GDH. This delicate deci-

sion is made in E. coli through the action of a complex hierarchical

regulatory network, simultaneously involving gene expression, sig-

nal transduction, metabolic regulation and transport (Kahn and

Westerhoff, 1991; Bruggeman et al., 2005; Boogerd et al., 2011; van

Heeswijk et al., 2013).

Many prokaryotic cells are able to move through liquids or

over moist surfaces by using a variety of motility mechanisms

(swimming, swarming, gliding, twitching, floating) and mostly

use complex sensory devices to control their movements (Jarrell

and McBride, 2008). The decision of microbes to move toward

nutrient sources or away from toxic compounds is another obser-

vation that appears “intelligent.” The most studied system is

that of chemotaxis in E. coli, with common features in other

prokaryotes and eukaryotes. In order to make this decision, the

cell monitors the environment by means of multiple receptors

in the cell membrane. The information of the ligand binding

to the receptor, and the processing of this information inside

the cell, is achieved by means of a signaling pathway involv-

ing methylation and phosphorylation, as opposed to the genetic

switch seen in the lysis/lysogeny decision (Bourret and Stock,

2002). The level of phosphorylated CheY, the downstream pro-

tein of the signaling pathway, determines which movements the

cell undertakes: when phosphorylated CheY is bound to the flag-

ellar motor (i.e., when an attractor ligand is present) it rotates

counter-clockwise, resulting in a straight swimming movement;

in the absence of phosphorylated CheY the unbound flagellar

motor rotates clockwise, resulting in a tumbling motion. Using

this mechanism, organisms make a biased-random walk, with

the length of the periods of straight swimming dependent on

the signal, resulting in movement toward or away from different

stimuli.
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Pseudomonas aeruginosa has been shown to make its decisions

about which of its two siderophore-dependent iron acquisition

systems to use when faced with iron limitation based on the cost-

to-benefit ratios of the two options (Dumas et al., 2013). The

two mechanisms have different costs and benefits to the cell: one

mechanism, using the pyoverdine siderophore, has a high iron

scavenging efficiency (since pyoverdine has a high iron affinity,

Ka = 1024
− 1032 M−1), but comes at a high cost, requiring

the expression of at least 14 genes, hence utilizing high amounts

of nucleotides, amino acids, ATP, and other cellular resources.

The other mechanism, using the siderophore pyochelin, has a

lower cost to the cell because of a reduced biosynthetic pathway

consisting only of seven genes, hence requiring the utilization

of few cellular resources, but has a much reduced efficiency

of iron-acquisition (since its affinity to iron is relatively low,

Ka = 105
− 106 M−1). Here, information processing and deci-

sion making is achieved by the finely tuned parameters of the

two systems’ feedback loops that enable them to exhibit differ-

ent sensitivities. The parameters of the feedback loop for the

high-cost, high-efficiency system limit its use to extreme iron lim-

itation conditions and the parameters of the feedback loop for the

low-cost, low-efficiency system enable it to be utilized in more

moderate iron limitation, thereby optimizing the cost–benefit

ratio.

The decision of Bacillus subtilis to become transformation-

competent (i.e., able to take up DNA) is made at an indi-

vidual level; yet, the mechanism by which it occurs results in

a reproducible portion of the population making the decision

to become competent. The decision making regulatory sys-

tem is a bistable switch that operates near a critical threshold

that, once passed, leads to a committed decision to become

competent (Maamar et al., 2007; Leisner et al., 2008). Due to

this system operating close to the threshold, stochastic fluctu-

ations in the levels of one protein, ComK, are able to push

the cell over the threshold to begin the transition to compe-

tence (Maamar et al., 2007). As this is based on stochasticity, it

will only occur in a portion of the cells in a population. Since

this results in different phenotypes from an isogenic population

of cells in the same environment, it is considered to be a bet-

hedging strategy (Veening et al., 2008). Although each individual

may not be in the optimal state for the given conditions, the

population as a whole gains an advantage by becoming more

adaptable.

Through the above examples of decision-making in microbes,

it can be seen that there are several common features that

are analogous to processes involved in human decision-making.

Although the network components may vary (gene-expression

regulation, signaling pathways, metabolism, transport), the

networks involved and the parameters controlling their interac-

tions allow the microbes to monitor their environment, process

the information and react, effectively making a decision in

an “intelligent” manner by taking into account such factors as

the cost–benefit ratio and population survival strategies. We

note, however, that decision-making in microbes is not lim-

ited to the examples contained here. More importantly, the

mechanisms for generating decision-making behaviors are not

confined to the particular mechanisms described. Recent work

aimed at constructing genome-wide protein interaction net-

works, for example, has revealed many additional molecules

and interconnections that play important roles in these processes

(Noirot and Noirot-Gros, 2004).

ROBUST ADAPTATION

An important feature of “intelligence” in microbes is the robust

adaptation to changes in environments. Such robust adaptions

include homeostasis, as well as adaptive tracking of nutrient

sources (Patnaik, 2000) and evasion of harmful compounds (e.g.,

bacterial chemotaxis, mentioned previously). Almost all adap-

tation mechanisms involve feedback or feedforward regulation

structures (or motifs). These can be relevant for signaling, gene

regulatory and metabolic networks, where homeostasis can be

introduced via fine-tuning of rate constants in feedback and feed-

forward motifs. Relatively long-term adaptations often involve

changes in genetic expression, such as gene mutations, tran-

scription/translation activities or rewiring of gene regulatory

networks – for a review see (Brooks et al., 2011). Examples include

adaptation to salt conditions, temperature or asymmetric cell divi-

sion. Short-term adaptation, on the other hand, typically involves

regulation mediated by (i) protein–protein interactions and cova-

lent modifications (e.g., phosphorylations) in signal transduction

pathways; or (ii) allosteric or more direct substrate–product effects

in metabolic networks. Of all the adaptive regulations, robust per-

fect adaptation is of particular interest. It describes an organism’s

response to an external perturbation by returning state variables

to their original values before perturbation. For example, perfect

adaptation has been reported in bacterial (e.g., E. coli) chemotaxis

(Berg and Tedesco, 1975; Alon et al., 1999; Yi et al., 2000; Hansen

et al., 2008), osmotic-stress adaptations (Muzzey et al., 2009), and

MAP-kinase regulation (Hao et al., 2007; Mettetal et al., 2008).

Such perfect adaption behaviors are thought to be introduced

through a time integral on the “controlled variable” in the net-

work, which corresponds to a specific control system structure,

i.e., an integral feedback control (Csete and Doyle, 2002). A recent

in silico study (Ma et al., 2009) identified an alternative topology

that can also ensure perfect adaptation through an incoherent

feedforward structure, where a positive regulation cancels out the

effect of a simultaneous negative regulation, hence the overall out-

put is insensitive to the input signal. Because it has been difficult

to experimentally discriminate between perfect and strong adap-

tation and because at least some of the proposed mechanisms

for perfect adaptation require biochemically unrealistic features

[including zero order degradation of proteins (He et al., 2013)],

the evidence for truly perfect adaptation needs to be revisited. In

many cases, adaptation may be less perfect, with robustness being

strong, but limited. Here, it would help if robustness were quanti-

fied (Quinton-Tulloch et al., 2013). In non-robust “proportional”

(He et al., 2013) regulations, the appearance of a specific signal or

environmental condition can be a direct indicator/predictor of a

particular response. The feedforward regulatory mechanism, then,

is introduced to respond directly to the signal rather than to the dis-

turbance. Feedforward regulatory structures were observed in gene

regulatory networks in the regulation of membrane lipid home-

ostasis (Mangan and Alon, 2003; Albanesi et al., 2013), in bacterial

photosynthesis genes for optimal free-energy supply (Mank et al.,

www.frontiersin.org July 2014 | Volume 5 | Article 379 | 7

http://www.frontiersin.org/
http://www.frontiersin.org/Microbiotechnology,_Ecotoxicology_and_Bioremediation/archive


Westerhoff et al. Microbial intelligence

2013), and in the heat shock response in E. coli (Shudo et al.,

2003).

Different regulation mechanisms in living cells often occur

at multiple levels simultaneously with a hierarchical structure

(Westerhoff, 2008). For example, in a microbial metabolic net-

work, the regulation of a reaction rate can be achieved by the

modulation of (i) enzyme activity through a substrate or product

effect, or through an allosteric effect, i.e., metabolic regulation; (ii)

enzyme covalent modification via signal transduction pathway; or

(iii) enzyme concentration via gene expression, gene-expression

regulation. Such multi-level regulation corresponds to different

control loops in a control system, which may ensure the robustness

versus perturbations at various frequencies, as employed in engi-

neering system design. Let us consider an unbranched metabolic

pathway, with the first enzyme inhibited by the end-product via

both allosteric/metabolic and gene-expression regulation. If the

flux demand on the end-product module increases rapidly, the

concentration of the end-product decreases rapidly. Often, as a

result of the allosteric effect of the end-product directly on the

first enzyme, the activity of that first enzyme increases quickly

too. This metabolic control of enzyme activity is a fast “actu-

ator” of the system. However, if there is a further increase in

the flux demand, the first enzyme may lose its regulatory capac-

ity since its activity may be approaching its maximum capacity

(kcat). At this stage, the system has a second “adaptation” through

gene expression that is slow but leads to an increase in the con-

centration of the first enzyme, which then decreases the direct

stimulation of the catalytic activity of the first enzyme. The

regulation of the first enzyme is then bi-functional in dynamic

terms (Csete and Doyle, 2002): the metabolic regulation rapidly

buffers against high frequency perturbations, but possibly with

small amplitude or capability, while the gene-expression reg-

ulation is slow to adapt, but may be able to accommodate

very large constant perturbations (Ter Kuile and Westerhoff,

2001).

When interpreting metabolic and gene-expression regulation

separately as specific “control system structures,” the former was

recently identified as more of a “proportional control” action

(Yi et al., 2000; El-Samad et al., 2002) with limited range and

the latter as more of an “integral control” action with poten-

tially a wider range, but acting more slowly (He et al., 2013).

Such control engineering interpretations can also be linked

with classical Metabolic Control Analysis (MCA; Fell, 1997)

and Hierarchical Control Analysis (HCA; Kahn and Wester-

hoff, 1991). The relatively fast metabolic regulation is related to

the direct “elasticities” of MCA, while the slow gene-expression

regulation corresponds to the indirect “elasticities” of HCA

(He et al., 2013).

ASSOCIATION AND ANTICIPATION

Associative learning allows one to model how two or more fea-

tures in the world co-vary and respond accordingly. This type

of learning provides context, in the sense that it specifies how

several features in the environment, or within cells, change

together. It implies that the learner has a mechanism to encode

mutual information. In humans and animals, this type of learn-

ing has been associated with experimental settings where, for

example, a subject is conditioned (often through an auditory

or visual cue) to activate unconditioned responses (like saliva-

tion) after presenting the subject with a conditioned stimulus

(e.g., a bell) simultaneous to the unconditioned stimulus (e.g.,

dinner) that usually elicits the unconditioned response. After a

period of learning the association, the unconditioned response

(salivation) can be achieved in the absence of the uncondi-

tioned stimulus (simply ringing the bell). Conditioned behaviors

like this have been well studied in humans and other animals

since the pioneering work of Ivan Pavlov (Pavlov and Anrep,

1927). Recently, the molecular mechanisms responsible for encod-

ing these behaviors in neurons have been defined (Maren et al.,

2013). In general, these mechanisms rely on the plasticity of

neurons to reinforce electrochemical couplings, such as chang-

ing the localization and abundance of glutamate and NMDA

receptors at synapses (Nakazawa et al., 2002; Rumpel et al., 2005).

The development of recurrent artificial neural networks, for

example Hopfield networks (Hopfield, 1982), has provided a

computational model for studying the processes of associative

memory.

Associative learning allows learners to structure dependencies

that exist in the world. Pavlov’s dog, for example, salivates because

of the linkage the dog has learned between bell and dinner; even

though the association is entirely manufactured in this case. Out-

side of contrived laboratory conditioning, associative learning

occurs when environmental variables are physically coupled, or

somehow co-vary non-randomly. For example, the increase in

the level of light (photons) at sunrise, signals associated changes

in the environment, such as increase in temperature, change in

O2 availability, etc. Organisms leverage these physical associa-

tions to better adjust their physiology in specific environments

(Bonneau et al., 2007), to employ easily measured proxies as indi-

cations for other phenomena (like the bell for Pavlov’s dog) and,

in some cases, even use the cues themselves to prepare or “antic-

ipate” subsequent alterations to the environment. Investigators

have asked recently whether organisms like microbes, which do

not have nervous systems, can also exhibit associative learning

and anticipation.

Several experimental studies and modeling efforts have sug-

gested that, indeed, microbes can learn associations, both as

communities and individually. Studies, furthermore, suggest that

gene regulatory networks can encode associative learning. One

of the most comprehensive examples of this phenomenon comes

from a study of the bacterium E. coli (Tagkopoulos et al., 2008).

As a microbe that lives both in the soil and the guts of mam-

mals, E. coli has to adjust its physiology to environments that vary

with respect to important biological parameters, such as temper-

ature and oxygen availability. Since many of these environmental

parameters do not change randomly, but rather in coupled ways

(e.g., increase of temperature in the oral cavity and correspond-

ing decrease in oxygen availability in the gut), E. coli is able to take

advantage of this predictable physical association to direct its phys-

iology accordingly. In this study, the authors demonstrated that

transcriptional responses in elevated temperatures are highly sim-

ilar to those observed in oxygen perturbation experiments, even

though the second stimulus is absent (much in the same way that

Pavlov’s dog can be stimulated to salivate simply by ringing a bell).
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More impressively, they showed that E. coli can “re-learn” these

associations. Relative to ancestral E. coli, evolved strains grow bet-

ter in environments where temperature and oxygen are decoupled

(in this case inverted). This study demonstrates (1) that microbes

have both the capacity for associative learning, and (2) that the

learned associations are plastic. A similar study in yeast suggested

that previous lifestyle plays an important role in adaptation to

severe stress, re-emphasizing the existence of associative learning

in microbes (Berry et al., 2011).

It is important to note, however, that time-scale for this

“learning” is on the order of evolutionary processes and most

likely involves genetic changes. This has an analogy in the devel-

opment of “fixed” hard-wired neuronal connections in a brain

or cultural learning in human society. In the example, it took

many generations for E. coli to learn about the altered associ-

ation between oxygen and temperature and, presumably, much

longer for the natural situation to be canalized. Critical ques-

tions for future studies will include whether gene regulatory

networks encode associations that are capable of being learned

within the lifetime of an individual bacterium; a case in point

was made for ammonia assimilation in E. coli (Hellingwerf et al.,

1995; Bruggeman et al., 2000). A recent modeling study suggested

that gene regulatory networks composed of bistable elements with

stochastic dynamics can exhibit associative learning, although

the number of learnable associations may scale as the square

root of the number of bistable elements (Sorek et al., 2013).

Similar results have been obtained in the context of chemical

networks (McGregor et al., 2012) and other transcriptional net-

works (Carrera et al., 2012). Additional experiments, however, are

required to evaluate whether the dynamics of cellular networks

with multiple stable states are sufficient to encode and retrieve

contextual associations. Hellingwerf et al. (1995) showed learn-

ing behavior should be possible in realistic mono-stable E. coli

networks.

Among microbial populations, associative learning seems to be

commonplace. Mechanisms and examples of associative learn-

ing in microbial communities have been discussed extensively

elsewhere (Ben Jacob et al., 2004; Xavier, 2011). Typically, asso-

ciative learning in microbial populations involves some sort of

social communication (such as quorum sensing, discussed in see

Quorum Sensing and Self-awareness in Microbial Populations

and Communities). This type of networked communication is

highly plastic and eminently reminiscent of neuronal activities.

Other examples of association and anticipation in the microbial

world are exhibited by pathogenic bacteria such as P. aeruginosa,

which is an important human, animal, and plant opportunistic

pathogen and, perhaps, the bacterial species that has most genes

devoted to regulatory purposes (Stover et al., 2000). In the context

of human digestive tract infections, this bacterium senses several

compounds released by the host tissues, such as interferon, opi-

oids, and metabolites like adenosine, which are all released into

the intestinal tissues and lumen during surgical injury, ischemia

and inflammation. In addition, it senses the extracellular levels of

phosphorus, which decrease severely when the patient’s condition

deteriorates. Hence, when the bacterium senses high concentra-

tions of host-released compounds together with a decrease in

phosphate levels, it anticipates the vulnerability of the patient and

turns on several virulence determinants that frequently lead to

lethal sepsis (Zaborin et al., 2009). Recently, it was demonstrated

that in the genus Burkholderia, quorum sensing allows the activa-

tion of cellular enzymes required for production and secretion of

oxalic acid, which serves to counteract ammonia-mediated alka-

line toxicity during the stationary phase, hence anticipating a stress

situation and triggering a preventive strategy that helps cells bet-

ter adapt to the oncoming harsh environmental conditions (Goo

et al., 2012).

The capacity for associative learning among microbes may be

one of the reasons why we are able to reverse engineer them. Since

microbes do not respond to stimuli independently, but rather

their internal networks direct common responses to diverse but

related environmental signals, regulatory networks in microbes

can be reconstructed by simply measuring their response across a

broad range of conditions. Gene regulatory networks, for exam-

ple, can be inferred in three simple steps: (i) perturb cells across

a broad range of relevant conditions; (ii) measure their transcrip-

tional response in each environment; and (iii) cluster similar gene

expression patterns observed reproducibly across environments.

Mining for genetic similarities among genes sharing a particu-

lar expression pattern, such as common cis-regulatory elements

in their promoter regions, in turn helps link these transcrip-

tional modules to some of the molecular mechanisms responsible

for regulating them. In practice, such approaches allow the

construction of gene regulatory networks directly from transcrip-

tome measurements (Reiss et al., 2006). It should be recognized,

however, that the networks thus reconstructed are incomplete,

as they forego the signal transduction and metabolic networks

that are part of the actual regulation (Ter Kuile and Westerhoff,

2001).

ASSOCIATIVE LEARNING IN PROTOZOA

Early investigation of intelligent traits in microbes, such as asso-

ciative learning and memory, occurred in ciliated protozoa. While

early studies concluded that ciliates are capable of associative learn-

ing, several experimental design flaws have led to skepticism about

these conclusions. For example, Soest (1937) reported that the cil-

iate Stentor contracts if exposed to light after conditioning with

simultaneous luminous stimuli and electrical shock. The author

concluded that Stentor exhibited classical condition response; the

study, however, lacked important controls, such as training Sten-

tor with the administration of shocks alone (Corning and Von

Burg, 1973). A similar study suggested that paramecia perform

instrumental conditioning (Gelber, 1952). The author observed

that paramecia attached preferentially to a bare wire that had been

baited previously with bacteria compared to a wire that had not

been baited. It was demonstrated later, however, that the behav-

ior likely resulted from increased bacterial concentration near the

wire rather than as a consequence of associative learning (Jensen,

1957). Even the paradigmatic example of learned escape from the

bottom end of narrow capillary vertically positioned tubes into

a larger volume of media by Stentor and Paramecium has been

refuted. Subsequent to the initial report of this behavior, it was

noticed that the strategy simply entailed decreased upward swim-

ming. In fact, the same behavior was observed when the task was

reversed, demonstrating that this behavior is unlikely to be the
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result of associative learning (Hinkle and Wood, 1994). Further-

more, fixing the capillary in a horizontal position could be a better

experimental set-up for examining associative learning (Kunita

et al., 2014). It should be noted, however, that these examples may

have been insufficient to meaningfully test associative learning,

since they did not reflect abilities required by protozoa in their

natural environments.

Contemporary research has focused instead on ecologically

salient intelligent behaviors, such as mate selection, foraging

and hunting (Clark, 2010a,b, 2012, 2013). This new wave of

research has renewed interest in ciliate intelligence. More signif-

icantly, it has reinforced the claim that ciliate protozoa indeed

have remarkable learning abilities, including complex cooperation

and competition behaviors usually attributed to higher organisms.

The observations imply an ability to learn and adjust mat-

ing strategies using Hebbian-like associative learning behavioral

heuristics.

The ciliate Spirostomum ambiguum, for example, learns to

advertise mating fitness to suitors and rivals during the pre-

conjugal courtship. Fitter suitors – “conspicuous consumers” –

advertise their status by avoiding exchange of preconjugal touches,

despite the metabolic cost of swimming away. Less fit individuals –

“prudent savers” – on the other hand, wait for favorable opportu-

nities for partner conjugation, conserving energy and exhibiting

lower avoidance frequencies. Interestingly, both “conspicuous

consumers” and “prudent savers” learn to switch between the

two strategies, apparently tuning their behavioral heuristics and

switching frequencies to optimize mate selection (Clark, 2010c).

Less fit individuals are even capable of “cheating” in this sys-

tem. These individuals take advantage of a fit suitor’s“conspicuous

consumer” behavior. A less fit individual positioned between a fit

suitor and potential mate may, for example, corrupt the “con-

spicuous consumer’s” contraction-reversal movements (e.g., flip

the signal from avoidance to conjugation). The “cheater” can

physically interact with these signals, since they are spread as

vibrations through viscous media. As a result, the “cheater” can

conjugate with a mating partner that has been “aroused” by the fit

suitor’s actions. The signal would be easy to take advantage of if

it were scripted in a binary encoding (e.g., 0 – no contraction, 1 –

contraction); however, suitors appear to encode a low probability

of contracting and reversing simultaneously, in addition to sim-

ple contraction and reversal behaviors. This would make ciliate

mating signals resemble a quantum bit flip channel used in quan-

tum computing (Clark, 2010b). Encoding mating communication

with a contraction-reversal qubit would make it far more robust

to “cheating” behaviors of competitors.

Evolution of error-correction systems that counteract degra-

dation of mating signals is quite remarkable. These mechanisms

must account for non-random color noise created by mixing of

vibrations emitted by mating rivals and suitors, as well as random

ecological white noise (Clark, 2010b). It would seem that ciliates

have developed coding schemes to diagnose, decrease, and coun-

teract mating-signal errors due to noisy information processing

(Clark, 2013).

These findings suggest that quantum computing concepts may

be required to understand emergence of intelligent communica-

tion in microbes. Without the concept of qubits, for example, we

would have been unable to describe the complex encoding of ciliate

mate selection behaviors. Quantum computing was first proposed

in the 1980s (Manin, 1980; Feynman, 1982), so one has to wonder

how the expansion of our knowledge horizons may influence our

understanding of intelligence in all forms of life in the future.

QUORUM SENSING AND SELF-AWARENESS IN MICROBIAL

POPULATIONS AND COMMUNITIES

Quorum sensing is a widespread type of bacterial cell–cell com-

munication between individuals of the same or different species

(Waters and Bassler, 2005; Lee et al., 2007; Hosni et al., 2011). The

accepted paradigm for this kind of communication is that indi-

vidual cells steadily produce and release several kinds of small

diffusible molecules (signals), called auto-inducers. In parallel,

each cell has the ability to sense the presence of those molecules, by

means of receptors/transcriptional modulator proteins that bind

the auto-inducers and, once complexed with them, trigger a global

transcriptional response that leads to crucial changes in the expres-

sion of several phenotypes and behaviors. An important property

of quorum sensing communication is that the response is only

achieved after one specific signal (i.e., cell number) threshold is

exceeded. The response is mediated by a positive feedback loop of

auto-inducer production, since genes for the enzymes that biosyn-

thesize the signals are under their own control. There is a plethora

of behaviors and phenotypes controlled by quorum sensing sys-

tems, including light production by several species of the Vibrio

genus, competence (i.e., the ability to uptake and incorporate for-

eign DNA), biofilm formation, synthesis of secondary metabolites

and the production of virulence factors.

Self-awareness can be described as the ability to recognize one-

self as an individual separate from the environment and other

individuals. Quorum sensing provides the entire bacterial net-

work with the ability to recognize and adjust itself collectively

once a specific population threshold is exceeded. This is specific

for all individuals of a certain organism and even strain. Quorum

sensing, therefore, can be viewed as a kind of self-awareness among

isogenic bacterial populations.

Signaling related to specific environmental cues is interwoven

with quorum sensing signaling; for example in P. aeruginosa, the

iron availability signal network and the quorum sensing system

communicate and influence each other (Juhas et al., 2004). In addi-

tion, bacteria can sense quorum sensing signals of other species

(Federle, 2009) and act in accordance with the population sizes

of competing or mutualistic species, including cells of eukary-

otic or pluricellular organisms, such as their hosts (Bansal et al.,

2010; Hosni et al., 2011; Ma et al., 2012). Thus, microbial networks

have the ability to distinguish themselves from similar networks

in other species. Most of the bacterial cell–cell communication

described to date exclusively involves the release of autoinducers

to the extracellular medium and the sensing of those molecules

by other cells; phenomena that depend on the diffusion of signals

and therefore lack directionality. Since, in a well-mixed environ-

ment such as a stirred liquid culture of planktonic cells, one cell

can sense the auto-inducer produced by any other cell, commu-

nication among network components should be uniform. This

is in contrast to communication among molecule types in sig-

nal transduction networks and among cells in neuronal networks.
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In the latter cases, each member interacts directly with a limited

set of other network components, creating clusters and functional

domains that, together, form a structured network with non-trivial

topological features and a higher-than-random complexity. The

situation changes in more realistic environments, such as in bac-

terial biofilms, which are known to be the preferred lifestyle of

several bacterial species (Costerton et al., 1995). Those biofilms

can be composed of a single bacterium species, but more often

are complex ecologies of single-cell organisms that may include

hundreds of different species of algae, bacteria, protozoa, fungi

and viruses. They collectively generate and embed themselves in

an extracellular polymeric matrix that provides structure and pro-

tection. In such environments, cell–cell communication could be

more specifically performed among clusters of cells organized in

different spatial and functional biofilm domains. Recently, the

discovery of bacterial communication networks of multiple cells

of B. subtilis that are directly connected to others by bacterial

nanotubes was reported (Dubey and Ben-Yehuda, 2011). These

structures are able to mediate the exchange of non-conjugative

plasmids, metabolites and even enzymes, and can be formed

in an interspecies manner between B. subtilis and Staphylococ-

cus aureus or even the phylogenetically more distant E. coli. The

authors speculated that these kinds of networks may represent

a major form of bacterial communication in nature. If so, they

may constitute complex and intricate structured bacterial com-

munication networks with high potential to exhibit intelligent

behavior.

Some features of self-awareness can be manifested already at

a lower level of social organization of microorganisms. Thus,

bacteria of the same species are capable of assembling together

and isolating themselves from other species. This advanced social

organization would be reflected in cooperation; for example in

swarming motility (coordinated translocation of many bacterial

cells), in collective repairing of holes in biofilm, in collective cap-

ture and digestion of food, etc. Microorganisms can cooperate

for collective aggression through the coordinated production of

antibiotics. There are even“bacteria-altruists,” who sacrifice them-

selves to become food for their brethren (Oleskin, 2009). However,

at the opposite extreme, there also exist “microbe-cheaters,” which

can disrupt cooperative systems by acquiring a disproportionate

share of group-generated resources while making relatively small

contributions (Velicer, 2003).

Gram negative bacterial pathogens, such as P. aeruginosa, E. coli

enteropathogenic strains and several Vibrio species, and Gram pos-

itive pathogens, such as S. aureus, use QS to coordinate expression

of several virulence determinants (Antunes et al., 2010). Beyond

prokaryotes, QS is also used by eukaryotic pathogens, like the

fungi Candida albicans (Nickerson et al., 2006), and even more

complex microbes, such as parasitic protozoa like Trypanosoma

brucei (Mony et al., 2014).

Although QS systems have been studied mostly in microbial

pathogens, it has been discovered recently that several harmless

free-living bacteria, such as cyanobacteria (Sharif et al., 2008; Zhai

et al., 2012) and methanogenic Archaea (Zhang et al., 2012), also

possess QS communication systems. Unlike pathogenic organ-

isms, however, these microbes appear to use QS to achieve robust

adaptation to environmental change. This is accomplished by

redirecting metabolic fluxes at high cellular densities to optimize

energy and resource consumption. In this sense, QS allows com-

munities of related microbes to anticipate and prepare for nutrient

scarcity (Sharif et al., 2008; Zhang et al., 2012). QS may even play

a key role in establishing biofilms and initiating cellular blooms of

cyanobacteria (Zhai et al., 2012).

In free living bacteria, QS contributes to cell differentia-

tion and establishment of multicellular populations. A clas-

sic example of QS-mediated cell differentiation in bacteria

is starvation-induced reproductive fruiting body development

in myxobacteria. In Myxococcus xanthus, for example, solu-

ble quorum-sensing A-signal assesses starvation and mediates

the initial stages of cell aggregation (Kaiser, 2004). Further-

more, filamentous cyanobacteria exhibit one of the most com-

plex cell differentiation processes observed in bacteria. These

microbes can differentiate into four different cell types, includ-

ing: (i) multicellular filaments that branch in multiple dimensions

(trichomes); (ii) specialized nitrogen fixing cells called hetero-

cysts; (iii) spore-like cells called akinetes; and (iv) hormogonia,

which are small motile filaments that are important for dis-

persal (Flores and Herrero, 2010; Schirrmeister et al., 2011).

So far, calcium cell signaling has been implicated in devel-

opment of heterocysts (Torrecilla et al., 2004). Given that QS

was recently discovered in these organisms (Sharif et al., 2008),

it will be interesting to see what, if any, role QS plays in

these differentiation pathways. Multicellularity, even in micro-

bial populations, is an adaptation that allows cells to perform

complex tasks and exhibit intelligent behaviors, like coordinat-

ing community-wide responses to environmental change. QS

clearly plays a role in establishing multicellularity in microbes,

but may also be the chemical language for communication of that

intelligence.

The complexity of bacterial biofilms is equally striking. These

rich ecosystems provide an environment for microbes to demon-

strate their individual and collective intelligences. The human

oral cavity, for example, contains hundreds of different bacte-

rial, viral and fungal species. These species establish complex

relationships, including both competitive and cooperative behav-

iors. We call the biofilm formed by these microbes the “dental

plaque.” While many plaque species are commensal, some may

become pathogenic in response to environmental triggers. A

sudden shift in biofilm composition or dynamics may lead to

dental caries and several other periodontal diseases (Avila et al.,

2009). Among the dental plaque residents, Porphyromonas gin-

givalis is of particular concern. This species is a predominant

contributor to human periodontitis. It employs several intricate

mechanisms to subvert the innate immune system of the host.

In fact, these evasive strategies are so clever that they have been

compared to military tactics used in “guerilla” wars (Hajishengal-

lis, 2009). Complex microbial communities are located in the gut

of mammals as well. These highly dynamic, species-rich com-

munities help modulate the host’s immune system. They are

implicated in several human diseases, including chronic inflam-

matory diseases, such as Crohn’s disease (Macfarlane et al., 2011;

Clemente et al., 2012), as well as obesity (Ridaura et al., 2013)

and diabetes (Everard and Cani, 2013). Some evidence even

suggests that microbes may alter human brain function and
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behavior (Cryan and Dinan, 2012). The ability of the micro-

biome to influence human intelligence has earned it the title,

“the forgotten organ” (Relman and Falkow, 2001). Together, these

results suggest that symbiotic microbiota may have played an

important role in the evolution of plants and animals, lead-

ing some to contend that the unit of selection in evolution

may be the holobiont, i.e., “the animal or plant with all of its

associated microorganisms” (Zilber-Rosenberg and Rosenberg,

2008).

Finally, it is worthwhile to note that philosophers of biology are

beginning to appreciate the remarkable microbial capacities for

cooperation and communication (O’Malley and Dupré, 2007a;

O’Malley, 2007b; O’Malley, 2013).

PROBLEM SOLVING

An essential feature of any intelligent system is that, in addition

to storing information and incorporating new knowledge from

experiences, it must have the ability to use that knowledge to solve

new problems. Generally, the more complex a problem a system

can solve, the more intelligent it is considered. In this regard, some

microorganism networks show problem solving abilities that can

even match or surpass those shown by human beings: the slime

mold Physarum polycephalum in its plasmodium configuration –

a large multi-nuclear amoeba-like cell consisting of a dendritic

network of pseudopodia – has the ability to connect two different

food sources located at different points using the minimum-length

pathway in a labyrinth, which optimizes its foraging efficiency

(Nakagaki et al., 2000). The mold is able to create solutions with

comparable efficiency, fault tolerance and cost to those of human

infrastructure networks, such as the Tokyo rail system, but, unlike

humans, the mold achieves optimal solutions solely by a process

of selective reinforcement of the preferred routes and the simulta-

neous removal of redundant connections, without any centralized

control or explicit global information. This striking mold abil-

ity was captured in a mathematical model, which the authors

claim can provide a starting point to improve routing protocols

and topology control for self-organized networks used for human

transport and communication systems (Tero et al., 2010). This

is a perfect example of applied microbial intelligence with the

potential to improve human engineering.

LEARNING FROM INTELLIGENCE IN THE MICROBIAL WORLD

Given the examples of the previous section, it is likely that, at

least for some specific tasks, microbial “intelligence” can be com-

pared to human intelligence, and microbial networks could be

considered formally as “intelligent.” Recognizing microbial intel-

ligence can allow us to potentially modify microbial networks or to

develop new microbial networks capable of intelligent solutions to

specific human problems de novo. If intelligence (or components

thereof) emerges from the dynamics of complex adaptive systems

and the human brain is an evolved organ for the encapsulation of

intelligent characteristics, it is possible that there are features of

intelligence that remain undiscovered.

A DEEPER UNDERSTANDING OF THE MICROBIAL WORLD

One important and exciting domain of synthetic biology is the

manipulation and design of microbial metabolism for chemical

production in the energy, biomedicine and food industry (Pur-

nick and Weiss, 2009). Such design relies on effective control

and adaptation of metabolism (e.g., pathway flux) in response

to intracellular or environmental perturbations. In an engineered

genetic-metabolic circuit, there are many parameters that can

be used for design purposes. Promoter characteristics, such as

tightness, strength or regulatory sites, can be engineered in the

transcriptional control, and the engineering of ribosome binding

sites or RNA degradation can be used to control the expres-

sion levels of proteins. Well-known examples are the genetic

control of lycopene production in E. coli (Farmer and Liao,

2000) and the design of gene-metabolic oscillators (Fung et al.,

2005; Stricker et al., 2008). Designing scaffold proteins in the

protein–protein interaction domain has been studied for the

control of metabolic flux (Dueber et al., 2009). Recent studies

(He et al., 2013; Westerhoff et al., 2014) showed that although

gene-expression regulation can increase the robustness of an inter-

mediate metabolite concentration, it rarely makes the metabolic

pathway infinitely robust. For perfect adaptation to occur, the

protein degradation reactions should be zero-order in the concen-

tration of the protein or the living cell should enter stationary

phase after a period of growth. The former scenario is rarely

observed biologically; nevertheless, in some situations, protein

degradation rates can be controlled by adding or removing a

degradation tag to the gene sequence (McGinness et al., 2006).

In this way, a relatively small degradation rate may be obtained in

an engineered gene-metabolic network, and near-perfect adap-

tation behavior can be achieved with a quasi-integral control

structure.

MICROBIAL VS. HUMAN INTELLIGENCE

Our paper collects various examples of the intelligent features dis-

covered in the microbial world (Figure 1). Microbial intelligence

emerges from the dynamic interactions among macromolecules.

Intelligence is a strong form of emergence; its reconstruction

requires information of state-dependent component properties.

The more state-dependent information we need, the stronger

the emergence is. The degree of state-dependency of the compo-

nent property is determined by the presence of other components

in the system affecting this property, on the flux of matter

through the system and on the history of the system (Kolod-

kin et al., 2012a,b, 2013b). In this context, we can scale and

compare the strength of emergence of intelligence for different

complex adaptive systems, e.g., for microorganisms, animals or

humans.

In bacteria, there are many potential intracellular interactions

that can affect the state-dependent property of a certain molecule.

For example, the ability of a single transcription factor to bind

a response element might depend on the presence of other tran-

scription factors and their ligands, on components involved in

intracellular trafficking of these ligands, on molecules providing

ATP-convertible free energy for this trafficking and for receptor

synthesis and even on molecules maintaining pH, viscosity, macro-

molecular crowding, etc. Thus, the emergence of intelligence that

is raised due to interactions in an intracellular microbial network

can be very strong indeed. On the other hand, the number of neu-

rons affecting the firing of a single neuron in the human brain is
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tremendously high; and this is before we consider the intracellu-

lar interactions occurring in each and every neuronal cell, all of

which contribute to the strength of the emergence of intelligence

in our brains. Are these intelligences even comparable? We intu-

itively feel that the intelligence in microorganisms and in humans

is different.

The physiological adaptive behavior of microorganisms is not

stable and disappears when the environment does not support

this behavior. Programs of adaptive behavior are imprinted on

the population genome. When adaptation is lost, new training is

required to regain this adaptation. Microorganisms exhibit some

features of elastic behavior, but they do not have the conditional

reflexes of higher animals. In an evolutionary context, in ani-

mals the elementary reflection of the environment is replaced by

perceptive reflection and animals gain different forms of individ-

ually adapted behavioral changes co-tuned to the changes in the

environment. Animal activity toward objects develops depending

on the objects animals have already dealt with. This correlates

with anatomical changes; the cerebral cortex emerges in addi-

tion to basal ganglia that cause a crucial shift in animal behavior.

Basal ganglia enable signal reception and turn on inherited behav-

ioral programs. The cerebral cortex, in its turn, enables analysis

and integration of external signals, reflection on external objects

and situations, building up of new connections and, ultimately,

development of the behavior that is based, not on the inherited

programs, but rather on the animal’s perception of external reality.

With the development of the cerebral cortex, new forms of indi-

vidual behavior based on objective reflection of the environment

are formed.

Further development of the cerebral cortex takes place in

humans. Aside from both inherited programs and individually

gained experience, humans develop a third form of behavior: the

ability to transfer collective experience from one human being to

another. The transfer of collective experience includes the knowl-

edge gained at school, at work, in life, etc. Animals are born

with the inherited programs and enrich these programs through

individual experience. Humans might be born with the poorest

instinctive inborn programs, but can develop their mental pro-

cesses, not only through personal experience, but also through

learning from collective experience. Human individuals are able

to communicate with each other and even, through the media of

oral tradition and written history, with their predecessors. Nev-

ertheless, in the context of scaling the degree of the strength of

emergence, the complexity of the human brain does not change

immensely compared to the brain of an animal. Rather, the new

behavior emerges from the changes in the design, and not from a

tremendous increase of interacting components.

Intelligence is a strongly emergent property in both microor-

ganisms and animals, including humans. Still, there is a difference

in the way these intelligences are manifested. Thus, humans study

microorganisms and debate about microbial intelligence, and bac-

teria, while supremely adapted and aware of their environments,

are probably not even aware of us and our endeavors.

THE WAY FORWARD

Most aspects of human intelligence are also exhibited by microor-

ganisms at least to some degree, except those that depend on

reading, writing and listening. The examples we presented regard-

ing quorum sensing and problem solving were from multicellular

networks. The question remains whether networks at any sin-

gle, more molecular level, such as intracellular signaling, also

exhibit most aspects of intelligence. It has been proposed that

intracellular quorum sensing occurs during mitochondrial apop-

tosis (Brady et al., 2006). The hierarchy of regulatory networks

involved in ammonia assimilation is a candidate for rich intel-

ligent behavior. The molecular information is now so complete

(van Heeswijk et al., 2013) that it may well be possible to develop

the existing replica models (Bruggeman et al., 2005) into a full

representation. These may then be used to determine the extent

to which our present molecular network understanding suffices

to demonstrate that these networks should be expected to exhibit

almost all types of intelligent behavior (Hellingwerf et al., 1995;

Bruggeman et al., 2000). This could then also help with experi-

mental design driving subsequent experimental testing. Similarly,

such mathematical representations may also be used to search

for new aspects of intelligence that we, as humans, do not

recognize as such, for example adjustable robustness, random

creativity facilitated by deterministic chaos in the networks, pro-

ductive noise thereby, and read-only memory. Many of these

aspects may be useful for synthetic biology; a synthetic biol-

ogy that will give rise to much more sustainable, productive

systems.
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