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ABSTRACT
◥

Adoptive cell therapy with genetically modified T cells has
generated exciting outcomes in hematologic malignancies, but
its application to solid tumors has proven challenging. This gap
has spurred the investigation of alternative immune cells as
therapeutics. Macrophages are potent immune effector cells
whose functional plasticity leads to antitumor as well as pro-
tumor function in different settings, and this plasticity has led to

notable efforts to deplete or repolarize tumor-associated macro-
phages. Alternatively, macrophages could be adoptively trans-
ferred after ex vivo genetic modification. In this review, we
highlight the role of macrophages in solid tumors, the progress
made with macrophage-focused immunotherapeutic modalities,
and the emergence of chimeric antigen receptor macrophage cell
therapy.

Adoptive Cell Therapy for Solid
Tumors: T Cells and Beyond

The adoptive transfer of immune cells has been established as a
promising approach for the treatment of cancer. While initial studies
focused on the transfer of autologous tumor-infiltrating lymphocytes
with endogenous antitumor activity (1, 2), advances in viral vector
design, molecular biology, and lymphocyte cell culture have contrib-
uted to the rapidly growing field of genetically engineered T-cell
therapy. Genetic integration of synthetic genes into lymphocytes
allows for the generation of large quantities of T cells, which uniformly
target a specific tumor antigen, overcoming reliance on endogenous T-
cell receptor–mediated antitumor function and expanding the scope of
targetable tumor antigens.

One method used for treatment of malignant disease is the intro-
duction of a chimeric antigen receptor (CAR) into bulk peripheral
autologous T cells (3). Clinical efficacy with CAR T-cell therapy has
thus far been largely restricted to hematologic malignancies. As of
August 2020, there are three FDA-approved products for B-cell
malignancies, and over 200 active/enrolling clinical trials targeting a
variety of hematologic malignancies worldwide.

In contrast, progress in CAR T-cell treatment of solid tumors has
been slow to date (4–7). There are several potential causes for poor
responses to CAR T-cell therapy in the solid tumor setting. First,
effector cellsmust traffic to and penetrate into the tumor, a process that
requires extravasation, chemotaxis, and stromal tissue penetration.
Engineered lymphocytes have to traverse abnormal tumor vasculature
with reduced adhesion molecules, experience chemokine/chemokine
receptor mismatch (8), and must migrate through dense cellular and
stromal barriers. Upon ingress into the tumor microenvironment
(TME), effector cells encounter unfavorable conditions such as a

hypoxic and acidic environment (9), expression of immune checkpoint
ligands (10, 11), and an abundance of immunosuppressive cells such as
tumor-associated macrophages (TAM), myeloid-derived suppressor
cells, and regulatory T cells (Treg; ref. 12). In addition, chronic antigen
engagement can lead to T-cell exhaustion, decreasing the effector
function of CAR T cells (13). Even if the engineered cells survive in the
TME, solid tumors often have heterogeneous surface antigen expres-
sion, which can lead to evasion of CAR T-cell detection, incomplete
tumor clearance, and eventual outgrowth of antigen-negative tumor
cells. This was clearly shown in the treatment of glioblastoma using
EGFRvIII-targeting CAR T cells, where expression of EGFRvIII
declined in 5 of 7 patients posttreatment (14). Finally, the identification
of target antigens with minimal shared normal tissue expression
presents an additional hurdle for solid tumor cell therapy (15).

Novel engineering approaches are under investigation to circum-
vent some of these challenges, such as genetic removal of checkpoint
molecules (16), expression of chemokine receptors for tumor hom-
ing (17, 18), expression of heparanase to degrade the extracellular
matrix (19), or the creation of universal immune receptors capable of
targeting multiple tumor antigens to overcome antigen escape (20).
While these examples provide somehope that highly engineeredT cells
could one day prove reliably effective in the treatment of solid tumors,
they also highlight the importance of looking beyond T cells for
potentially more suitable effector cells.

Although bulk peripheral T cells have been the primary focus of
CAR research, the use of chimeric receptors for cancer therapy has
been expanded into other lymphoid immune cell types, such as gd T
cells, natural killer T (NKT) cells, and natural killer (NK) cells (21).
These lymphocyte subsets possess innate immune functions that
can potentially broaden their tumor-killing capabilities beyond
those of standard CAR T cells, while additionally providing an
avenue toward the production of “off-the-shelf” allogeneic cell
products (22–25). In the case of gd T cells and NKT cells, preclinical
studies have demonstrated the feasibility of redirecting effector
function with CARs, while also maintaining desirable properties
innate to the cells (26, 27). NK cells have been extensively evaluated
for CAR-directed cancer therapy. The potential advantages of NK
cells over conventional ab T cells include their endogenous rec-
ognition of tumor-associated stress ligands and a reduced risk of
cytokine release syndrome (24, 25). Numerous clinical trials have
been initiated using CAR NK cells against both solid and hema-
tologic tumor antigens, with complete responses being demonstrat-
ed against CD19þ heme malignancies (28, 29).
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Though most research in the field to date has focused on the
development of cellular therapies from lymphocyte-derived cells, their
efficacy in the treatment of solid tumors remains elusive. Using cells of
the myeloid lineage—such as monocytes and macrophages—offers a
possible solution to the solid tumor-homing challenge, as these cells
actively accumulate in tumors and penetrate the dense stromal tissue
surrounding tumors. In addition, while lymphocytes provide direct
antitumor cytotoxicity, cells of the myeloid lineage combine direct
tumoricidal means with the ability to boost endogenous immunity via
antigen presentation, making them a unique avenue for antitumor cell
therapy development.

Macrophages in Cancer
Macrophages are highly plastic cells that serve a multitude of

functions, including tissue development and homeostasis, clearance
of cellular debris, elimination of pathogens, and regulation of
inflammatory responses (30). Postnatal development of macro-
phages occurs through the MCSF– or GMCSF–dependent differ-
entiation of circulating monocytes. These cells originate in the bone
marrow from myeloid-derived progenitor cells (31). The resulting
macrophage can encompass a broad spectrum of phenotypic states,
dictated by the makeup of the cytokine milieu and the surrounding
tissular niche (32, 33). While the scope of macrophage activation
states is complex, it is generally simplified into two categories: M1
classically activated macrophages or M2 alternatively activated
macrophages (34).

M1macrophage polarization is driven by exposure to factors such as
GMCSF, IFNg , TNFa, lipopolysaccharide (LPS), or other pathogen-
associated molecular patterns (35, 36). M1 macrophages promote a
proinflammatory Th1 response through the secretion of cytokines
such as TNFa, IL1b, and IL12, and enhance recruitment of Th1 cells to
the site of inflammation through secretion of the chemokines CXCL9
and CXCL10 (37). In addition, M1 macrophages upregulate genes
involved in antigen processing and presentation as well as costimu-
latory molecules to enhance T-cell responses (38). These functions are
critical in the response to bacterial and viral pathogens and have the
potential to participate in antitumor immunity (39).

M2 macrophage polarization occurs in the presence of MCSF, IL4,
IL10, IL13, TGFb, glucocorticoids, or immune complexes (39). While
M2 macrophages have a critical role in normal immune function and
homeostasis, such as stimulating Th2 responses, eliminating parasites,
immunoregulation, wound healing, and tissue regeneration, certain
subsets ofM2macrophages also play a critical role in promoting tumor
progression (40). Tumors recruit both circulating monocytes and
tissue resident macrophages to the TME and polarize them toward
an M2 phenotype, creating TAMs, via a variety of soluble and
mechanical factors. TAMs function to enhance tumor progression by
promoting genetic instability, angiogenesis, fibrosis, immunosuppres-
sion, lymphocyte exclusion, invasion, and metastasis. TAMs are
capable of promoting an inflammatory environment by secreting
cytokines such as IL17 and IL23, which is believed to increase genetic
instability (41, 42). TAMs also play a key role in suppressing
endogenous antitumor immunity through upregulation of immu-
nosuppressive surface proteins, secretion of reactive oxygen species,
production of cytokines to suppress T-cell function, and secretion
of chemokines that recruit Treg cells (42–45). In addition, TAMs
promote tumor angiogenesis and metastasis through the secretion
of factors such as VEGF and matrix metalloproteinase enzymes that
remodel the TME, increase blood vessel formation, and promote
tumor cell migration (42).

Thus, a central goal of macrophage-based cancer therapeutics is,
stated simply, to reduce antiinflammatory macrophages and increase
proinflammatory (antitumor) macrophages.

Targeting TAMs in Cancer: Reduction
and Reprogramming

Given the tumor-promoting role of TAMs, a number of strategies
have been developed to combat the effects of these cells. Broadly, the
strategies can be divided into two groups: reducing the number of
TAMs or altering their functionality within the TME. These
approaches have been reviewed recently, and hence are briefly sum-
marized here (46, 47).

Limiting the number of TAMs within a tumor can be accomplished
via elimination of existent TAMs or inhibition of further TAM
recruitment. The most established method of reducing TAM survival
is through the blockade of the CSF1 (also known as MCSF)/CSF1R
axis, an important ligand-receptor pair for the differentiation and
survival of macrophages (48). This approach reduces the number of
TAMs by blocking monocyte differentiation while also reducing the
survival of existing TAMs. In addition, blockade using a small-
molecule inhibitor of CSF1R induces repolarization of TAMs from
anM2 toward anM1 phenotype (49). CSF1/CSF1R blockade has been
shown to increase tumor sensitivity to other immunotherapies, such as
PD-L1 blocking antibodies (50). However, these treatments are not
uniformly effective, as CSF1/CSF1R blockade can be compensated for
by increasing signaling through other prosurvival pathways (51) or
increasing the activity of Tregs in the TME (52). Finally, CSF1/CSF1R
blockade can result in the depletion of tissue resident macrophages,
which are important for maintaining tissue homeostasis, due to their
requirement forCSF1R signaling for survival (53). Recent clinical trials
involving CSF1 signaling blockade in combinationwith anti-PD1 have
not shown significant efficacy. Of 88 patients with melanoma or other
solid tumors enrolled in a phase I combination study of small-molecule
CSF1R inhibitor PLX3397 and pembrolizumab showed a partial
response in only 5 of the 88 patients dosed, with another 15 achieving
stable disease (NCT02452424). A separate study using the CSF1R
targeting antibody cabiralizumab in combination with nivolumab
failed to show benefit over standard-of-care chemotherapy in a 160
patient phase II study in pancreatic cancer (NCT03336216), highlight-
ing the difficulty of translating the promising preclinical results of this
approach.

Given the role of the chemokine CCL2 in the recruitment of
circulating monocytes to tumors, there has been substantial effort in
drugging the CCL2/CCR2 axis (54). Multiple studies have shown that
blocking CCL2 signaling via either small-molecule inhibitors or
neutralizing antibodies can decrease established tumor burden along
with the number of metastatic sites in a variety of tumor
models (55–57). Despite success in preclinical models, CCL2/CCR2
blockade has failed to demonstrate a similar level of efficacy in clinical
trials (58). Computational modeling suggests that CCL2 blockade
becomes less effective in vivo due to a combination of alterations in
the KD (the ratio of off-rate to the on-rate of ligand-receptor binding)
of CCR2 between in vitro and in vivo contexts (59) and increased
production of alternative chemokines in the TME (55, 59). CCL2/
CCR2 blockade has no impact on established TAMs, which can still
promote tumor progression despite inhibition of further monocyte
recruitment (60). Finally, removal of CCL2 blockade therapy causes
resumed tumor progression as TAMs are again recruited to tumor
sites (61).
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Although CSF1/CSF1R and CCL2/CCR2 blockade are the most
widely studied axes for TAM depletion, other cytokines have also been
shown to have a role in this process. Monocytes have been shown to be
recruited to tumors through the interaction of CCL5 with CCR5 (62).
Inhibiting the CCL5 axis has been shown to reduce tumor growth and
metastasis (62, 63). IL8 (also known as CXCL8) is known to recruit
myeloid cells to tumors (64) and inhibition of its signaling through
CXCR2 can reduce TAM trafficking (65). Finally, the angiogenic and
chemotactic factor CXCL12, which signals through CXCR4, can be
targeted to reduce TAM infiltration (66).

In addition to altering TAM recruitment, there is significant interest
in “reprogramming”TAMs from tumor supporting to tumor-rejecting
cells. These approaches are based on increasing tumor cell phagocy-
tosis, blocking “do not eat me” signals, or triggering proinflammatory
signaling pathways in TAMs.

Macrophages are professional phagocytic cells that express both
activating and inhibitory receptors for the phagocytosis of opsonized
or apoptotic cells (67). Mouse model studies have shown that macro-
phages are an integral part of the response to antibody-based treatment
of hematologic and solid cancers (68). Depletion of macrophages in
mice decreased survival during antibody therapy (69), but the loss of
NK cells or neutrophils showed no impact (69–71). Antibody-
mediated therapy was also found to be more effective when inhibitory
Fc receptors, such as CD32b, were knocked out or inhibited (72, 73). In
addition to direct killing of tumor cells, macrophages also act as
professional antigen-presenting cells. Macrophages can present tumor
cell–derived antigens on both MHC class I (74) and MHC class II
molecules (75), allowing for activation of an endogenous antitumor T-
cell response, amplifying therapeutic efficacy and reducing the risk of
tumor cell escape through antigen loss (76). Macrophage antigen
presentation is not limited to the tumor site, as macrophages in
tumor-draining lymph nodes are also able to prime an adaptive
immune response (77).

In contrast to increasing prophagocytic “eatme” signals through the
use of opsonizing antibodies, phagocytosis can also be enhanced by
reducing antiphagocytic “do not eat me” signals. The most important
antiphagocytic axis is based on the binding of CD47 on tumor cells to
SIRPa on macrophages. CD47 is highly overexpressed on both heme
and solid tumors, reducing the ability of macrophages to phagocytose
these cells. Administration of anti-CD47 antibodies can be used to
block the interaction between CD47 and SIRPa to increase phagocy-
tosis. This approach has demonstrated efficacy in a variety of heme and
solid tumor preclinical models (78–83). A recent clinical trial com-
bining the anti-CD47 antibody 5F9 with the anti-CD20 antibody
rituximab demonstrated a 36% complete response rate in patients
with B-cell lymphomas (84). In addition to increased direct tumor cell
killing, anti-CD47 treatments have been shown to alter TAM pheno-
types toward an M1 phenotype (85). Other studies have also shown
efficacy by blocking SIRPa on the macrophage (86) or by engineering
SIRPa variants with higher binding affinities for CD47 than the WT
SIRPa (87). It is imperative to note, however, that CD47/SIRPa
blockade does not induce phagocytosis on its own and thus must be
combined with an opsonizing agent (87).

Additional therapeutics targeting other important receptors have
also been developed in an attempt to reprogram TAMs within the
TME. Toll-like receptors (TLR) are a family of receptors involved in
innate immune sensing that can alter macrophage phenotype. These
pattern recognition receptors can respond to bacterial particles (such
as LPS) or bacterial and viral genomes (such as DNA or RNA) to
trigger the release of proinflammatory cytokines (88). Intratumoral
injection of TLR agonists has been shown to increase monocyte

recruitment and infiltration, and to induce repolarization of macro-
phages away from an M2 TAM phenotype (89). TLR agonists have
shown promise in preclinical solid tumor models (90–92). Another
target of interest for the reprogramming of TAMs is CD40, which
binds to CD40L expressed on activated T cells. CD40 signaling results
in the upregulation of costimulatory molecules and proinflammatory
cytokines (93). CD40 agonist antibodies can slow tumor progres-
sion (94) and sensitize previously resistant tumors to chemothera-
py (95). Another molecule of interest for targeting TAMs is TGFb,
which has an antiinflammatory effect and is typically expressed by
macrophages during injury resolution. Because macrophages are both
a source and a sink for TGFb, this causes a positive feedback loop for
TAMs, which helps to maintain the immunosuppressive environment
in the TMEby promoting the secretion of additional TGFb (96). TGFb
reduces the sensitivity of TAMs to type I IFNs and STING agonists,
increasing the difficulty of converting TAMs toward an inflammatory
phenotype. Blockade of TGFb, along with treatment with STING
agonists, has been shown to mediate tumor regression in mouse
models by upregulating expression of type I IFNs (97). Combination
therapy of anti-PDL1 and TGFb blockade mediated durable rejection
of tumors in animal models (98). In addition, in situ TAM repro-
gramming has been demonstrated in preclinical models using nano-
particles carrying innate immune stimuli, such as STING agonists or
mRNA encoding IRF5 and IKKb (99, 100).

Despite the successes achieved by the strategies targeting TAMs
in situ, there are significant drawbacks to pursuing this paradigm. First
and most importantly, the TME is made of a multitude of immuno-
suppressive cells with functional redundancy. These cells all play a role
in the progression of disease and it is unlikely that there exists a single
cell type that, when targeted, will alter the TME sufficiently as to allow
tumor eradication. In addition, any benefits that accrue during the
course of treatment may only be transient in nature and not reflect a
fundamental alteration of the TME. For example, withdrawing anti-
bodies targetingmonocyte trafficking to tumors causes the resumption
of this trafficking and increased disease progression (61). Finally, all of
the techniques mentioned in this review have only showed limited
effectiveness in clinical trials against solid tumors (46), suggesting that
a new paradigm is needed for this patient population.

Macrophages as Therapeutics
As an alternative to altering TAMs in situ, other groups have

attempted to modify macrophages ex vivo, with the idea that these
“educated”macrophages would naturally traffic to the tumor and alter
the TME to allow for an endogenous immune response. The first group
to use ex vivo cultured macrophages as an anticancer therapeutic was
the Andreesen group in Germany. In the late 1980s, they treated 15
patients with advanced cancers, who had failed standard of care, with
monocyte-derivedmacrophage cell therapy.Monocytes were collected
via leukapheresis and were cultured with autologous serum for 7 days
to allowdifferentiation intomacrophages. Before administration to the
patients, the macrophages were “educated” with IFNg to induce the
M1phenotype. Thesemacrophages were then introduced into patients
either via intravenous or intraperitoneal injection—with doses up to
1.7 � 109 cells per injection. Although there was no measurable
regression of the primary tumor site, some patients showed stable
disease for up to 6 months post therapy. Out of the 7 patients with
peritoneal carcinomatosis that received intraperitoneal macrophages,
disappearance of ascites was seen in 2. Increased serum IL6 was seen in
7 of 15 patients, suggesting induction of an inflammatory response.
Critically, there were no reported side effects other than low-grade

Macrophage-Based Approaches for Cancer Immunotherapy

AACRJournals.org Cancer Res; 81(5) March 1, 2021 1203

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/81/5/1201/2806342/1201.pdf by guest on 27 August 2022



fever and, in the case of intraperitoneal injections, abdominal dis-
comfort (101). Later studies utilizing a similar procedure for the
manufacturing of IFNg activated macrophages, termed macro-
phage-activated killer (MAK) cells, demonstrated antitumor activity
against cell lines in vitro and in preclinical models (102). Notably,
Ritchie and colleagues have shown via 111In-oxine radiolabeling of
MAK cells that these educated macrophages will actively migrate to
sites of metastasis in patients with metastatic ovarian carcinoma.
Trafficking occurred for both intravenous and intraperitoneal injec-
tions, although it occurred in a higher proportion of patients following
intraperitoneal injections. Administration of themacrophages appears
to be safe, with no reported high-grade toxicities associated with
treatment (103). However, in a head-to-head comparison trial with
Bacillus Calmette-Guerin vaccine for bladder cancer, MAK therapy
failed to demonstrate improved tumor control (104, 105).

Despite a lack of notable clinical efficacy, these studies have been
highly informative for the development of macrophage cell therapies.
First, dose-escalation studies have not shown any significant toxicities
associated with injection of M1 macrophages. The most frequently
reported side effects were low-grade fevers and discomfort at the
injection site.However, due to the lack of clinical response, it is possible
that the therapeutic level of MAKs is higher than the limit that was
administered in these studies. While the cause of limited efficacy in
these trials is not well studied, it is plausible that the endogenous
antitumor activity of IFNg-activated macrophages was insufficient to
drive meaningful responses. Notably, these nonengineered macro-
phages did not have a means to recognize tumor-associated antigens
and phagocytose cancer cells. In addition, because macrophage polar-
ization is a continuum that changes in response to external cues, it is
possible that the TME converted the adoptively transferred macro-
phages from the IFNg-primed M1 phenotype toward an M2 TAM
phenotype. Together, these results suggest that the addition of targeted
activating receptors, together with more permanent methods of
macrophage M1 polarization, are required.

CAR Macrophage Cell Therapy for
Cancer

To address some of these shortcomings, several groups have
published work using genetically engineered monocytes and macro-
phages for use as antitumor therapeutics (106–110). De Palma and
colleagues developed an approach in which the gene for IFNa, which
has known antitumor function, was lentivirally transduced into
CD34þ hematopoietic stem cells under a Tie2-driven promoter sys-
tem. The Tie2þ monocyte progeny localized to the tumor site, where
they produced IFNa and induced antitumor activity. In addition, these
monocytes did not seem to alter normal myelopoiesis or wound
healing, suggesting limited off-target effects (111).

More recent work has focused on the engineering of monocyte-
derived macrophages. Macrophages are highly resistant to genetic
engineering with standard vectors such as lentivirus, retrovirus, and
adeno-associated virus. The Landau group developed a modified
lentiviral vector, Vpx-LV, which carries viral protein X, which
depletes SAMHD1 and permits lentiviral transduction of primary
macrophages and dendritic cells (112, 113). The Crane group has
published work on macrophages transduced with Vpx-LV, termed
genetically engineered macrophages (GEM), and demonstrated
robust expression of transgenes such as IL21 and a TGFb decoy
receptor. GEMs persisted in vivo and expressed transgenes for
extended periods of time (stably for >1 month). GEMs maintained
responsiveness to external stimuli such as LPS (109).

To address some of the challenges associated with CAR-T and
nonengineered macrophage adoptive cell therapy for solid tumors,
we reported the initial development of human CAR macrophages
(CAR-M) in 2016 (114).We found that a CD3z-based CARwas highly
active in human macrophages, capable of driving phagocytosis and
killing of target bearing tumor cells in a Syk-dependent manner
without the addition of any soluble opsonizing factors (114, 115).
CAR-mediated phagocytosis was confirmed against both heme and
solid tumor targets. Elegant work published by Morrissey and collea-
gues in 2018 demonstrated CAR-mediated phagocytosis of antigen-
bearing beads and tumor cells utilizing anti-CD19 and anti-CD22
CARs in murine macrophage cell lines and murine bone marrow–
derived macrophages—confirming the ability of CARs to induce
phagocytic pathways (116).

To establish a translational method for human CAR-M cell
therapy, we found that the chimeric adenoviral vector Ad5f35 was
able to efficiently and reproducibly transduce primary human
monocytes and macrophages, delivering the CAR gene with
>75% efficiency and high viability (115). Notably, CAR-M gener-
ated with Ad5f35 were shown to eliminate tumor cells more
effectively than control or M1 macrophages in vitro and
in vivo (115). CAR-M were able to traffic to established tumors
and colocalized with metastatic foci in the lung after intravenous
administration without a preconditioning regimen (115). CAR-M
treatment induced a significant reduction in tumor burden and
improved overall survival compared with mice treated with control
macrophages in xenograft models (115).

Transduction of macrophages with Ad5f35 led to the induction
of a durable M1 phenotype. Surprisingly, despite the purported
plasticity of macrophage phenotype, Ad5f35 transduced macro-
phages did not convert to M2 upon stimulation with IL4, IL10, IL13,
or tumor conditioned media. CAR-M maintained an immunosti-
mulatory M1 phenotype in humanized mice engrafted with tumors,
while control donor matched macrophages were converted to M2.
In addition, CAR-M induced a proinflammatory signature in the
surrounding TME, characterized by upregulation of TNF and MHC
genes. Given that solid tumors are rich in TAMs, we evaluated the
bidirectional interaction of CAR-M and M2 macrophages. While
M2 macrophages failed to convert CAR-M from M1 to M2, CAR-M
converted M2 macrophages to M1. In addition, the presence of M2
macrophages did not impact the tumor-killing capacity of CAR-M,
highlighting their resistance to the immunosuppressive components
of the TME (115).

Finally, CAR-M were shown to interact with cells of the adaptive
immune system. CAR-M upregulated antigen presentation path-
ways and demonstrated heightened T-cell stimulation capacity as
compared with control macrophages. Notably, CAR-M were able to
present antigens to T cells following phagocytosis. In addition,
CAR-M recruited both resting and activated T cells in chemotaxis
experiments. Combined, these results demonstrate that CAR-M
have the potential to overcome some of the key challenges cell
therapies encounter in the solid tumor setting and represent a novel
immunotherapeutic platform that can be broadly applied to diverse
tumor antigen targets. Notably, while the direct antitumor activity
of CAR-M is target dependent, the M1 phenotype is target inde-
pendent and thus CAR-M have the potential to reprogram the
TME and exert antitumor activity in tumors with heterogenous
target antigen expression. Given that CAR-M have the ability
to induce epitope spreading by priming T-cell responses against
tumor neoantigens, CAR-M may reduce the likelihood of antigen
escape and antigen-negative relapse. In addition, given the direct
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interaction between CAR-M and the adaptive immune system,
rational combinations with T-cell checkpoint inhibitors are under
investigation (115). These engineered monocyte-derived macro-
phages combine the tumor-trafficking abilities of myeloid cells, a
permanent proinflammatory M1 phenotype, CAR-mediated tar-
geted antitumor activity, and professional antigen presentation to
mount a multimodal antitumor response (Fig. 1; ref. 115).

A critical component for the successful translation of cell therapies
to the clinic is the development of a scalable and reproducible
manufacturing process. CAR-M therapy is based on a 1-week
manufacturing process that starts with a patient’s own blood. In brief,
monocytes are mobilized with subcutaneous G-CSF administration
prior to leukapheresis and CD14þmonocyte selection. Monocytes are
differentiated to macrophages ex vivo and transduced with Adf535

Enhanced

Resistance to
TME

chemokines

Tumor antigen
presentation to

T cells

Targeted tumor
phagocytosis and killing

Production of proinflammatory cytokines and

Figure 1.

The pleiotropic antitumor mechanism of CAR-M therapy. CAR-M mount antitumor immunity in numerous ways, which are summarized graphically here. CAR-M
leverage the natural tumor-homing ability of myeloid cells to enter solid tumors. Once within the tumor, CAR-M directly kill antigen-expressing tumor cells through
phagocytosis and secretion of cytotoxic factors. Given their M1 phenotype, CAR-M secrete cytokines and chemokines that promote a proinflammatory environment
and lead to the recruitment of T cells and other leukocytes. When transduced with Ad5f35, CAR-M resist the immunosuppressive TME. Finally, CAR-M serve as an
antigen-presenting cell to T cells, allowing for the induction of an adaptive immune response.

Macrophage-Based Approaches for Cancer Immunotherapy

AACRJournals.org Cancer Res; 81(5) March 1, 2021 1205

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/81/5/1201/2806342/1201.pdf by guest on 27 August 2022



encoding the CAR transgene. Finally, CAR-M are cryopreserved in
infusible media and undergo release testing prior to initiation of
therapy.

Macrophages are highly pliable cells, capable of adjusting their
identity and function in response to external stimuli. Given their
abundance in the TME and established role in tumor progression,
there has been significant effort to reduce, reprogram, or disinhibit
TAMs. Although macrophages are well known to promote tumor
growth and progression, their ability to traffic to both primary tumors
and metastases offers a unique opportunity for utility as a “Trojan
horse” for cellular therapy. As professional antigen-presenting cells,
macrophages bridge innate effector function with adaptive immunity.
Advances in gene engineering, such as the discovery of Vpx-LV and
Ad5f35 as effective vectors for primary human macrophage engineer-

ing, have opened the possibility to using synthetic biology to redirect
macrophage effector function against tumors.
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