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Lambda interferons (IFN-λs) are a major component of the innate immune defense to

viruses, bacteria, and fungi. In human liver, IFN-λ not only drives antiviral responses,

but also promotes inflammation and fibrosis in viral and non-viral diseases. Here we

demonstrate that macrophages are primary responders to IFN-λ, uniquely positioned

to bridge the gap between IFN-λ producing cells and lymphocyte populations that

are not intrinsically responsive to IFN-λ. While CD14+ monocytes do not express the

IFN-λ receptor, IFNLR1, sensitivity is quickly gained upon differentiation to macrophages

in vitro. IFN-λ stimulates macrophage cytotoxicity and phagocytosis as well as the

secretion of pro-inflammatory cytokines and interferon stimulated genes that mediate

immune cell chemotaxis and effector functions. In particular, IFN-λ induced CCR5 and

CXCR3 chemokines, stimulating T and NK cell migration, as well as subsequent NK

cell cytotoxicity. Using immunofluorescence and cell sorting techniques, we confirmed

that human liver macrophages expressing CD14 and CD68 are highly responsive to

IFN-λ ex vivo. Together, these data highlight a novel role for macrophages in shaping

IFN-λ dependent immune responses both directly through pro-inflammatory activity and

indirectly by recruiting and activating IFN-λ unresponsive lymphocytes.

Keywords: macrophage, interferon lambda, innate immunity, liver, Kupffer

INTRODUCTION

Lambda interferons (IFNL and IFN-λ), also known as type III IFNs, are a family of cytokines
comprising four members: IFN-λ1 (IL29), IFN-λ2 (IL28A), IFN-λ3 (IL28B), and IFN-λ4.While all
IFN-λs signal through a unique IFNLR1:IL10Rβ receptor complex, they activate a gene signature
similar to type I IFNs, IFN-α, and IFN-β (1). Both type I and III IFNs activate the transcription of
hundreds of interferon stimulated genes (ISGs) (1) that exhibit numerous autocrine and paracrine
antiviral roles. Although IFNs are required to clear most viral infections, prolonged expression
due to environmental or genetic factors can stimulate sustained immune activation, driving tissue
damage, and fibrosis (2, 3).
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Elevated IFN-λ3 production has demonstrated a strong
association with IFNL genotype and hepatic inflammation,
increasing the risk of both viral (HBV and HCV) and non-
viral (non-alcoholic steatohepatitis, NASH) related progressive
liver inflammation and fibrosis (4). Furthermore, these effects
appear to be independent of IFN-λ4 activity, suggesting that
IFN-λ3 may be a primary mediator of inflammation (5).
While the precise mechanisms remain uncertain, peripheral
and hepatic immune cell populations vary according to the
IFNL polymorphism in patients with chronic HCV infection,
suggesting that IFN-λs can prompt immune cell migration to
tissues (5, 6).

IFN-λ activity is restricted to specific tissues due to selective
IFNLR1 expression. In humans, epithelial cells within the lung,
intestine and liver among others, are uniquely IFN-λ sensitive.
In particular, IFN-λs have been shown to protect against
pulmonary influenza and human metapneumovirus (HMPV)
(7, 8), gastrointestinal rotavirus and norovirus (9, 10) and
hepatic HBV and HCV (11, 12). While the majority of human
studies have been performed in vitro, murine studies have
shown potent antiviral effects of IFN-λs against numerous
viruses including influenza and SARS coronavirus (13, 14),
rotavirus, norovirus, and reovirus (15–17). It should be noted
that IFNLR1 expression may differ between humans and mice,
as exemplified in murine hepatocytes that do not respond
to IFN-λ (18). Immune cells also demonstrate very restricted
IFN-λ responsiveness with myeloid immune cell populations
harboring the strongest responses: Human dendritic cells (DC)
and neutrophils are highly responsive to IFN-λs (19–23), whereas
natural killer (NK) and T cells have consistently demonstrated
minimal responsiveness (21, 24, 25). Investigation of monocyte
and B cell responsiveness has produced conflicting results (21,
24, 26–30), perhaps confounded by studies utilizing co-culture
models in the presence of IFN-λ responsive cells (31–33). As
such, isolation of pure immune cell subsets is required to
unequivocally define IFN-λ sensitivity.

Here, we demonstrate that human macrophages, not
monocytes, are a dominant, physiologically relevant IFN-
λ responsive population capable of orchestrating tissue
inflammation. This is achieved through a direct immuno-
stimulatory response to IFN-λ and subsequent NK and T cell
chemotaxis and activation. In vivo, macrophages are responsive
to IFN-λ3 and accumulate in inflamed human liver. These data
suggest a novel role of macrophages as key players in modulating
the IFN-λ response in acute infection, as well as chronic disease.

RESULTS

Macrophages Not Monocytes Are
Responsive to IFN-λ
To address the uncertainty surrounding monocyte and
macrophage (Mφ) IFN-λ-responsiveness, we measured mRNA
expression of the IFN-λ receptor, IFNLR1, in blood leukocytes
by digital droplet PCR (ddPCR). DdPCR enables the precise
quantification of RNA transcripts by performing the PCR
reaction within >10,000 oil droplets, and calculating transcript

copies using Poisson’s law of small numbers (34). IFNLR1
expression in freshly isolated monocytes and in Mφs cultured for
7 days with GM-CSF was compared to IFN-λ responsive cells
(pDCs) and “unresponsive” cells (NK and T cells). Similar to NK
and T cells, monocytes expressed minimal IFNLR1 transcript.
Mφ and pDC IFNLR1 expression was significantly increased
compared to other populations, suggesting IFN-λ responsiveness
(Figure 1A). Increased abundance of IFNLR1 was confirmed
following monocyte to macrophage differentiation using
seven datasets from the NCBI Gene Expression Omnibus (35)
(Figure S1). To assess IFNLR1 expression during differentiation,
IFNLR1 expression was quantified over 24 h (qPCR, no
differentiation stimulus) and 7 days (flow cytometry, GM-CSF
differentiation) following monocyte plating. Expression of
the IFNLR1 transcript was quickly increased as early as 16 h
post-plating, reaching a 30-fold increase at 24 h (Figure 1B).
IFNLR1 surface expression was significantly increased at day 3
(monocyte IFNLR1 MFI 927 vs. day 3 Mφ 3199) and further
increased at day 7 (day 7 Mφ IFNLR1 MFI 10,412) (Figure 1C).

To test monocyte and Mφ responsiveness to IFN-λ, cells
isolated and cultured as in Figure 1Awere treated with 100 ng/ml
IFN-λ3 for 8 h. This concentration is not a saturation dose,
but is high enough to evoke a strong interferon response in
Mφs (Figure S2). Consistent with increased IFNLR1 expression,
Mφ and pDC mRNA expression of viperin and ISG15 were
markedly increased (Figure 1D), whereas monocytes and NK
cells demonstrated negligible responses.

Differentiation Method Regulates IFN-λ
Responsiveness
Mφ differentiation medium containing IFN-γ and LPS or
interleukin 4 (IL-4) and IL-13 are often used to generate
pro-inflammatory (M1) or anti-inflammatory (M2) Mφs,
respectively, but do not reflect the spectrum of macrophage
activation in vivo (36). To avoid generating Mφs whose IFN-λ
sensitivity is influenced by phenotype skewing, monocytes were
differentiated for 7 days with GM-CSF or M-CSF alone, as
previously described (37, 38). The resulting Mφ populations
are differentially responsive to inflammatory stimuli, and are
thus M1- or M2-shifted while maintaining some baseline
characteristics of polarized Mφs (Figure S3).When compared
to monocyte derived DCs (MDDCs) generated using IL-4 and
GM-CSF, the resulting Mφs express elevated surface expression
of CD14 and CD16, reduced CD1C, and unlike MDDCs, adhere
strongly to culture dishes (Figure S4). M1- and M2-shifted
Mφs will be termed GM-Mφs and M-Mφs for the remainder of
the manuscript.

IFN receptor expression and response to type I and III
IFNs was examined in monocytes and Mφs. Mφ differentiation
increases the abundance of the type I IFN receptor, IFNAR1
transcript (Figure 2A), and protein (Figure 2B) ∼2-fold as
compared to monocytes irrespective of stimulus. IFNLR1
transcript abundance was increased in M-Mφs and GM-Mφs
over 30- and 60-fold, respectively. The IFN-λ co-receptor
IL10RB was also measured, and was not significantly modulated
following macrophage differentiation (Figure S5). Consistent
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FIGURE 1 | Macrophages but not monocytes are highly IFN-λ3 responsive. To investigate IFN-λ responsiveness, immune cell subsets were magnetically isolated and

IFNLR1 expression was quantified by ddPCR (A). Mφ and pDC IFNLR1 expression was significantly higher than monocyte, NK and T cell populations (p < 0.05, n =

8). Time course analysis demonstrated that IFNLR1 expression quickly rises following monocyte plating, reaching a 30× increase at 24 h even in the absence of

GM-CSF addition (p < 0.001, n ≥ 5) (B). Similarly, IFNLR1 surface expression during macrophage differentiation (MFI) increased at days 3 and 7 (p < 0.001, n ≥ 5)

(C). Isolated immune cell subsets were treated with 100 ng/ml IFN-λ3 for 8 h and the expression of ISGs viperin and ISG15 were examined (n ≥ 7) (D). Consistent with

IFNLR1 expression, Mφs and pDCs were highly responsive to IFN-λ3, whereas monocytes and NK cells were not (n ≥ 5). Data are representative of two (B,C) and

three independent experiments (A,D). One-way ANOVA (A), Mann–Whitney test (B,D), paired t-test (C), *p < 0.05, **p < 0.01, ***p < 0.001 (mean ± SE).

with gene expression, IFNLR1 protein was absent in monocytes,
and increased in GM-Mφs compared to M-Mφs. The IFNLR1
bands at 70 and 45 kDa represent the full length and soluble
isoforms of IFNLR1, respectively (24).

To confirm that elevated IFNLR1 expression confers response
to IFN-λs, monocytes and Mφs from three healthy subjects were
treated with IFN-λ3 for 15min and STAT1 phosphorylation
(Y701) was examined by Western blot. Monocytes did not
phosphorylate STAT1 in response to IFN-λ3, whereas both
M-Mφs and GM-Mφs were highly sensitive (Figure 2C). All
cells demonstrated no STAT1 phosphorylation pre-treatment
(Figure S6).

Mφs were subsequently treated with either interferon-alpha

(IFN-α) or IFN-λ3 to determine whether cognate receptor

expression defines sensitivity. Following 8 h of IFN-α or IFN-

λ3, all measured ISGs were significantly increased by both
IFNs (Figure 2D). M-Mφs were more sensitive to IFN-α,
demonstrating stronger induction of all ISGs, particularly CD80
and TRAIL. In contrast, GM-Mφs weremore sensitive to IFN-λ3,
increasing the expression of both ISG15 and viperin compared
to M-Mφs. To confirm that macrophage differentiation and

not treatment with M- or GM-CSF specifically induce IFNLR1
expression, monocytes were also differentiated using 10%
autologous human serum from healthy individuals. Compared
monocytes, human serum differentiated macrophages (HS-Mφs)
possess increased IFNLR1 transcript abundance and possessed
similar IFN-λ3 responsiveness as MDDCs and GM-Mφs, both
of which express high levels of IFNLR1 (Figure S7).

IFN-λ3 Drives a Pro-inflammatory
Macrophage Phenotype
The robust induction of IFNLR1 following monocyte plating
suggests that monocytes quickly become IFN-λ responsive upon
differentiation and transmigration into tissues. Consequently, in
the context of chronic antigen exposure, IFN-λ expression at sites
of inflammation will likely influence monocyte differentiation
and subsequent Mφ phenotype due to their prolonged exposure
throughout the differentiation process. To test this hypothesis,
we differentiated monocytes for 7 days with either M-CSF or
GM-CSF alone (differentiation stimulus), or in combination with
IFN-λ3 (activation stimulus), followed by transcriptional and
functional assessment of Mφ phenotype (Figure 3A).
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FIGURE 2 | M-CSF and GM-CSF differentiated macrophages respond differently to IFN-α and IFN-λ3. Following M- and GM-CSF stimulated differentiation, IFN-λ

responsiveness of Mφ populations was examined, and compared to IFN-α. M-CSF and GM-CSF Mφ subsets both increased the expression of IFNAR1 ∼2-fold

following differentiation from monocytes, and IFNLR1 transcripts ∼30- and 60-fold, respectively (A) (n ≥ 9). Western blot of IFNAR1 and IFNLR1 from four healthy

subjects confirmed these findings (B) (n = 7, total). Supporting these findings, phosphorylation of STAT1 was detected by Western blot in both monocytes and

macrophages following 15min of IFN-α treatment and macrophages only following IFN-λ3 (C). ISG transcripts for ISG15, viperin, CD80, and TRAIL were examined to

measure Mφ sensitivity to IFN-α (50 U/ml) and IFN-λ3 (100 ng/ml) (D) (n = 8). M-CSF differentiated Mφs were more responsive to IFN-α, whereas GM-CSF

differentiated Mφs, IFN-λ3. Data are representative of two independent experiments. Paired t-test */#p < 0.05, **/##p < 0.01, ***p < 0.001 (mean ± SE). *Mock vs.

IFN treatments, #M-Mφ vs. GM-Mφ.

RNA sequencing of M-Mφs and GM-Mφs from three
donors was undertaken followed by paired analysis of
transformed gene counts (Log 2) between untreated and
IFN-λ3 treated Mφs (Tables S1, S2). The resulting smear
plot demonstrates significantly up and down-regulated genes
following differentiation of M-Mφs (blue) and GM-Mφs
(red) with IFN-λ3 (Figure 3B). GM-Mφs were significantly
more responsive to IFN-λ3, up-regulating 463 genes ≥2-fold
compared to 184 genes in M-Mφs. Similarly, GM-Mφs down-
regulated 467 genes ≥2-fold compared to 252 genes in M-Mφs.
IFN-λ driven ISG induction was also collectively higher in
GM-Mφs as demonstrated by the heat map of gene expression
LogFC (Figure 3C).

Functional analysis of data fromMφs differentiated with IFN-
λ3 revealed numerous well defined ISGs (e.g., IFI27, MX1, and
TLR3) and transcription factors (STAT and IRF gene families)
responsible for ISG gene transcription (Figure 3D). In addition,

a Th1 chemokine profile (CCL3, 4, and 5 and CXCL9, 10, and
11) responsible for CCR5 and CXCR3 mediated immune cell
chemotaxis (39) was found in response to maturation with
IFN-λ3, with stronger induction in GM-Mφs. Up-regulation
of immune cell interaction and activation (CD80, CD86, and
IL15) as well as antigen presentation [major histocompatibility
complex (MHC) class I HLA genes] was also observed. Using
transcriptomic markers of M1 and M2 Mφ differentiation, IFN-
λ3 was found to induce the expression of the majority of M1,
but not M2 markers, in both M and GM-differentiated Mφs,
supporting the movement toward an M1 phenotype (GM-CSF
p < 0.001, M-CSF p < 0.05, Sign test null hypothesis of 0.5)
(Figure S8).

Gene induction was confirmed by qPCR from a larger
group of donors including individuals used for RNA sequencing
data, and compared to the effects of IFN-α differentiation.
M-Mφs were considerably more sensitive to IFN-α, whereas
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FIGURE 3 | Monocyte differentiation with IFN-λ3 drives a pro-inflammatory macrophage phenotype. Monocytes were cultured with M- or GM-CSF ± IFN-λ3 for 7

days to examine the effect of IFN-λ3 on Mφ differentiation, followed by phenotypic and functional characterization (A). RNA sequencing (n = 3/treatment)

(Continued)
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FIGURE 3 | demonstrated that GM-CSF Mφs were significantly more responsive to IFN-λ3, as demonstrated by smear plot and Venn diagram of genes regulated

above 2-fold (B). GM-CSF Mφ ISG induction was significantly stronger, as demonstrated by heat map of gene log 2-fold change (logFC) (C). IFN-λ3 increased

transcript abundance of numerous ISGs and transcription factors (TFs) in both Mφ sets, as well as numerous chemokines, cytokines, and genes responsible for

antigen (Ag) presentation and co-stimulation, particularly in GM-CSF Mφs (D). IFN-λ3 stimulated genes were confirmed by qPCR, using IFN-α differentiated Mφs as a

comparison (E) (n = 8). Quantitative PCR data are representative of three independent experiments. Paired t-test */#p < 0.05, **/##p < 0.01, ***p < 0.001 (mean ±

SE). *Mock vs. IFN treatments, #M-Mφ vs. GM-Mφ.

TABLE 1 | Metacore gene networks up-regulated by IFN-λ3.

M-CSF+IFN-λ3 Mφ networks p-value

Interferon signaling 9.25E-28

Antigen presentation 2.69E-10

Innate immune response to RNA viral infection 4.08E-08

Inflammasome 1.26E-07

NK cell cytotoxicity 1.26E-06

Chemotaxis 2.72E-06

Lymphocyte proliferation 3.60E-06

IL-10 anti-inflammatory response 4.45E-06

Phagosome in antigen presentation 4.37E-05

IFN-gamma signaling 4.57E-05

GM-CSF+IFN-λ3 Mφ networks p-value

Interferon signaling 9.63E-22

Antigen presentation 3.95E-17

Lymphocyte proliferation 7.30E-14

IL-4 signaling 7.17E-10

Innate immune response to RNA viral infection 6.34E-09

NK cell cytotoxicity 1.59E-08

Phagosome in antigen presentation 6.91E-08

Inflammasome 5.37E-07

IFN-gamma signaling 2.07E-07

Leucocyte chemotaxis 2.55E-07

GM-Mφs responded strongly to IFN-λ (Figure 3E). In addition
to chemokines identified by RNA sequencing, inflammatory
mediators including CCL2, IL1B, and TNF transcripts were
increased by IFN-λ in both Mφ subsets. To assess the role of
differentiation (M- vs. GM-CSF), interferon treatment (IFN-α
and -λ3), and their subsequent interaction, a 2-way ANOVA
was additionally performed. As expected, all ISGs measured were
significantly affected by IFN treatment (p < 0.01), however only
CD80 expression was influenced by differentiation (p < 0.01).
In agreement with RNA-Seq analysis, a significant interaction
between IFN treatment and differentiation was observed for all
measured genes (CXCL10, CCL8, IL15; p < 0.001, CD80; p <

0.01, TRAIL, TNF; p < 0.05) apart from IL1B and CCL2.
Analysis using Metacore functional annotation software

demonstrated that similar networks were activated by IFN-λ3
in both M-Mφs and GM-Mφs (Table 1). Immune activation was
considerably stronger in GM-Mφs, with highly significant p-
values in networks such as antigen presentation and lymphocyte
proliferation. Down-regulated gene networks were primarily
associated with the cell cycle and protein translation (Table S3).

This analysis is consistent with Mφ BrdU assays, which
demonstrated a reduction in BrdU incorporation following IFN-
α (p < 0.05) and IFN-λ3 (NS) treatment (Figure S9).

Interferon Lambda Promotes Lymphocyte
Migration and NK Cell Degranulation
To determine the extent at which Mφs differentiated with IFN-λ
can drive immune cell migration, transwell migration assays were
performed using autologous PBMCs. Following 24 h transwell
incubation, migrated cells were removed from the lower chamber
and analyzed by flow cytometry (Figure 4A). IFN-λ stimulated
lymphocyte migration solely in GM-Mφs by ∼25% more than
M-Mφs (Figure 4B), with NK, T, and NKT cell populations
being most affected. Separate measurement of GM-Mφ media
demonstrated that IFN-λ3 stimulated a significant increase in
CCL2 (1.8×), CCL3 (3×), CCL4 (2.75×), and CXCL10 secretion
(∼5×), with minimal effect on M-Mφs (Figure 4C).

Co-culture experiments were next performed to assess the
capacity of IFN-λ matured Mφs to stimulate NK cells in vitro.
NK cells were incubated with Mφs overnight, removed, and co-
cultured with K562 cells. K562 cells lack MHC class I expression,
making them targets for NK cell killing. A significant increase
in NK cell degranulation (CD107a), particularly within the
CD56dim population, was observed following co-culture with
IFN-λ3 treated GM-Mφs (Figure 4D). NK cell IFN-γ production
was also increased following co-culture with IFN-λ3 treated
GM-Mφs, but significance was lost within subgroup analysis.
Minimal effect on NK cell function was observed following
M-Mφ co-culture.

IFN-λ Stimulates Macrophage
Phagocytosis and Cytotoxicity
To examine the effect of IFN-λ3 on Mφ effector function that
is not associated with an inflammatory phenotype, phagocytosis
was examined by flow cytometry. Tissue resident Mφs that
demonstrate anM2 phenotype are highly phagocytic and efficient
at presenting antigen (40), a phenotype that can be replicated
in vitro (41, 42). UV induced apoptotic K562 cells stained with
Zombie Yellow viability stain or DAPI labeled E. coli were
incubated with Mφs for 1 h at a ratio of 2:1 and 4:1, respectively.
The ratio of double-fluorescent (phagocytic, CD14+) cells to
mono-fluorescent (non-phagocytic, CD14+) cells, as measured
by flow cytometry (Figure 5A) was calculated to determine the
phagocytic Mφ percentage (Figure 5B). Confocal microscopy
was additionally used to confirm cell engulfment. IFN-λ3
increased phagocytosis of K562 cells (30% increase) and E. coli
bacteria (10% increase) in M-Mφ alone. Mφ MFI, indicating
of the number of engulfed target cells, was consistent among
populations when K562 cells were used as targets, likely reflecting
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FIGURE 4 | Macrophages differentiated with IFN-λ3 induce lymphocyte chemotaxis and NK cell activation. Transwell inserts containing autologous PBMCs were

placed into wells containing 6-day differentiated Mφs ± IFN-λ3 to examine immune cell chemotaxis (n = 6). Migrated cells were analyzed by flow cytometry using

CD14, CD19, CD3, and CD56 antibodies to identify the number of migrated monocytes, B, NK, and T cells (A). The addition of IFN-λ3 to GM-CSF Mφs alone,

stimulated lymphocyte migration, with significant increases in NK, NKT, and T cell migration (B). Consistent with migration data, GM-Mφ CCL2, CCL3,CCL4, and

CXCL10 secretion were significantly increased by IFN-λ3, with no significant effect on M-Mφs (C) (n = 7). To assess the role of IFN-λ3 on Mφ activation of NK cells,

autologous NK cells were incubated with Mφs for 16 h a ratio of 1:1, removed and incubated with K562 target cells for a further 6 h to measure cytotoxicity by

degranulation and IFN-γ expression (n = 4). GM-Mφs differentiated with IFN-λ3 significantly increased NK cell cytotoxicity as measured by CD107a expression, as

well as IFN-γ production (D). Data are representative of two (B,D) and three (C) independent experiments. Paired t-test *p < 0.05, **p < 0.01 (mean ± SE). NE, No

expression.
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FIGURE 5 | IFN-λ3 stimulates macrophage phagocytosis of apoptotic cells. To examine the role of IFN-λ3 on macrophage phagocytosis, apoptotic K562 cells or E.

coli were added to Mφ cultures for 1 h at a ratio of 2:1 and 4:1, respectively. Phagocytic Mφs were defined as cells double fluorescent for CD14 (BV711), and

(Continued)
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FIGURE 5 | ZombieYellow viability stain/DAPI, representing target cell engulfment (A). M-Mφs were more phagocytic than GM-Mφs toward K562 cells (2-fold

increase, p < 0.05), a phenotype that was further increased by IFN-λ3 (B) (n = 6). Similarly, IFN-λ3 increased E. coli engulfment in M-Mφs only. Mφ MFI, representing

the number of cells engulfed remained unchanged in response to IFN-λ3. To assess cytotoxicity toward virus infected cells, Mφs were co-cultured with JFH1 infected

Huh-7 cells, and apoptosis was quantified in Epcam+ Huh-7 cells using propidium iodide (PI) and Annexin V (C) (n = 7). IFN-λ3 stimulated GM-Mφ cytotoxicity,

increasing the percentage of early (Annexin V+ ) and late (Annexin V+, PI+) apoptotic cells, whereas early apoptosis alone was affected in M-Mφs (D). TRAIL

expression was up-regulated by IFN-λ3 in GM-Mφs only, providing a possible mechanism of cytotoxicity (E). Data are representative of two independent experiments.

Wilcoxon matched pairs signed rank test (B,E), paired t-test (D) *p < 0.05, **p < 0.01 (mean ± SE).

their large size in comparison to Mφs. Conversely, M-Mφ

DAPI MFI, representing bacterial engulfment, was significantly
higher than M-Mφs, representing an increase in the number of
phagocytosed bacteria. To determine the mechanism by which
IFN-λ3 stimulates apoptosis, RNA-Seq data was queried, with a
focus on Mφ receptors responsible for pathogen and apoptotic
cell recognition. Consistent with an M2 phenotype, M-Mφs
possessed higher expression of PRRs (TLR2, TLR4, and CD163),
apoptotic ligand receptors (CD36 andMERTK) and complement
transcripts (C1Q and C2) (Figure S10A). IFN-λ3 had minimal
effect on the expression of most phagocytic receptors, but
significantly increased key members of the complement cascade
(C1S and C1R) (Figure S10B). These data suggest that activation
of the complement system by IFN-λ3 may stimulate M-Mφs
phagocytosis of both bacterial and apoptotic cells (43, 44),
however further functional analysis is required.

To quantify the ability of Mφs to kill virus infected cells
(cytotoxicity), Mφs were co-cultured with HCV infected (JFH1
strain) Huh-7 cells for 24 h. Following incubation, Huh-7 cells
were labeled with Epcam, Annexin V, and propidium iodide (PI)
to quantify cells undergoing apoptosis (Figure 5C). Additionally,
Huh-7 and JFH1 infected Huh-7 cultures were used as controls
to confirm HCV mediated Huh-7 cell apoptosis, as previously
described (45). M- and GM-Mφs differentiated with IFN-λ3
stimulated an increase of early apoptotic (Annexin V+, PI−)
cells, by ∼20 and 90%, respectively, compared to mock treated
controls (Figure 5D). GM-Mφs alone increased Annexin V+,
PI+ cells, representing late apoptosis by ∼20% following IFN-
λ3 treatment. The cytotoxic mechanism by which Mφs killed
infected cells has not been determined, but is likely mediated by
soluble factors such as TRAIL that is highly inducible following
IFN-λ3 treatment in GM-Mφs in particular (Figure 5E). Low
expression of TRAIL in untreated Mφs may explain the apparent
lack of apoptosis following co-culture. In addition, no nitric oxide
production by M- or GM-Mφs was found in response to IFN-
λ3, bacterial or infected cell stimulus. To validate Huh-7 cell
apoptosis results, qPCR for apoptosis markers Caspase 3 (Casp3),
Caspase 7 (Casp7), and Bax were performed (Figure S11). Co-
culture with IFN-λ3 differentiated GM-Mφs increasedCasp3 and
7 expression by ∼6-fold in addition to increasing the antiviral
response of Huh-7 cells as demonstrated by strong induction of
ISGs viperin and ISG15.

Liver Macrophages Are IFN-λ3 Responsive
in vivo
To assess IFN-λ production in vivo, we measured the expression
of IFNL genes in liver biopsies of chronic HBV, HCV, and
NAFLD/NASH patients and compared them to normal liver

tissue from benign liver resections. IFNLs were increased in
both viral (>10-fold IFNL1, IFNL2/3 HCV vs. healthy) and non-
viral (e.g., ∼2-fold IFNL1, IFNL2/3 NAFLD/NASH vs. healthy)
liver disease (Figure 6A), indicating that chronic inflammatory
conditions can increase hepatic IFN-λ expression to facilitate the
generation of inflammatory macrophages in vivo.

To demonstrate the presence of IFN-λ responsive Mφs in
vivo, we performed immunofluorescent labeling of liver tissue
from a patient with autoimmune hepatitis (AIH), chronic HCV
infection, and normal liver obtained from a cancer resection.
Biopsies were labeled with IFNLR1 and CD68 or CD11b
antibodies to identify IFN-λ responsive liver Mφs (Kupffer cells)
or myeloid populations (monocytes/macrophages/neutrophils),
respectively. As demonstrated in Figure 6B, all CD68+ and a
fraction of CD11b+ cells were labeled with IFNLR1.

Immuno-labeling was also performed using CD68 or CD11b
in combination with CD3 to demonstrate immune cell proximity
in inflamed tissue (Figure S12). CD3+ T cells localized in
proximity to CD68 Mφs, supporting a role for Mφ derived
chemokines as mediators of immune cell trafficking.

To confirm that liver Mφs are responsive to IFN-λs,
CD68+ Mφs were harvested from liver resection tissue by
cell sorting (Figure 6C), and treated with 100 ng/ml IFN-λ3 ex
vivo. Consistent with our in vitro findings, liver Mφs highly
express IFNLR1 compared to liver NK (CD3− and CD56+),
NKT (CD3+ and CD56+), and T cells (CD3+ and CD56−)
(Figure 6D). In addition, Mφ IFNLR1 MFI negatively correlated
with blood white blood cell count (r = −0.678, p < 0.05)
and positively correlated with hepatic T cell enrichment as a
percentage of CD45 cells (r = 0.712, p < 0.05).

To compare IFN-λ3 sensitivity, T cells and Mφs from each
individual were cultured for 10 h in media alone or with IFN-
λ3, followed by quantification of ISG expression. T cells were
unresponsive to IFN-λ3 as demonstrated by a lack of ISG15 and
viperin induction (Figure 6E). Conversely, IFNLR1 expressing
Mφs were highly responsive to IFN-λ3, increasing the abundance
of both transcripts∼6-fold.

DISCUSSION

The cellular and molecular mechanisms by which IFN-
λ modulates host responses to viral infections and
tissue inflammation remains unclear. Here we undertook
comprehensive functional characterization to demonstrate
both in vitro and ex vivo, that macrophages are likely
immune cell drivers of IFN-λ mediated hepatic antiviral
and inflammatory activities. Unlike monocytes, macrophages
are highly sensitive to IFN-λ through the induction of IFNLR1

Frontiers in Immunology | www.frontiersin.org 9 November 2019 | Volume 10 | Article 2674

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Read et al. Macrophage Response to Interferon Lambda

FIGURE 6 | Hepatic IFN-λ3 responsive macrophages are present in vivo. IFNL1, IFNL2/3, and IFNLR1 mRNA expression was measured in healthy, NAFLD/NASH,

HBV, and HCV infected liver tissue (n ≥ 9/group) (A). To examine IFNLR1 expression in vivo, biopsy sections obtained from healthy, autoimmune hepatitis, and HCV

(Continued)
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FIGURE 6 | infected liver tissue were labeled with monocyte/Mφ markers CD11b and CD68 as well as IFNLR1 antibodies, and examined by confocal microscopy (B).

To assess the responsiveness of liver Mφs to IFN-λ3, immune cells were isolated from fresh liver tissue, sorted by FACS and cultured in the presence of IFN-λ3. Live

CD45+ immune cells were sorted based on the expression of CD3 and CD56 into NK and T cell subsets, and CD14 and CD68 into Mφ subsets (C). IFNLR1

expression, as determined based on IFNLR1 MFI was compared among liver immune cell subsets, and was significantly higher in CD14+, CD68+ liver Mφs, as

compared to NK (CD56+), NKT (CD3+, CD56+), and T cells (CD3+, CD56−) (D) (n = 6). Sorted T cells and Mφs were cultured with 100 ng/ml IFN-λ3 for 10 h and

ISG mRNA expression was compared to mock treated cells (E) (n = 8). Scale bars represent 100µm. Data are representative of one cell sorting experiment. Wilcoxon

matched pairs signed rank test, *p < 0.05, **p < 0.01, and ***p < 0.001 (mean ± SE).

FIGURE 7 | Macrophage orchestration of the IFN-λ immune response. In response to TLR stimulation by viral, bacterial, or fungal pathogens, IFN-λ produced by

epithelial (e.g., hepatocytes) or immune cells (e.g., DC) can stimulate the expression of hundreds of Mφ ISGs. The subsequent effects of IFN-λ on Mφs can be

categorized into direct and indirect effects: Mφs cytotoxicity and phagocytic ability is increased, as is antigen recognition and presentation, and cytokine/chemokine

secretion. Subsequent indirect effects include NK and T cell chemotaxis and increased NK cell cytotoxicity and IFN-γ production.

expression. As such, monocytes likely become IFN-λ responsive
upon movement into tissue and subsequent differentiation.
Upon IFN-λ stimulation, macrophages develop a robust
immune-stimulatory gene signature, expressing hundreds of
ISGs, cytokines, chemokines, and co-stimulatory molecules
to stimulate both autocrine and paracrine immune cell
activation (Figure 7).

IFN-λs are inducible cytokines that drastically increase
in abundance upon viral infections, but can also effectively
protect against bacterial and fungal insults (46, 47). Activation
of TLRs 3, 4, 5, 7, 9 (48, 49) can drive IFN-λ expression,

which is dependent factors including cell type and cellular
environment. IFN-λs are necessary for epithelial barrier
protection in the lungs, liver and gastrointestinal tract,
however their dysregulation has been associated with a
number of diseases that lack an obvious association with
microbial infection. These include chronic inflammatory
diseases such as psoriasis (50), systemic lupus erythematosus
(51), and asthma (52). Consequently, it is important to
understand the direct and indirect molecular mechanisms
by which IFN-λs are induced, as well as the responding
cellular identities.
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The effectiveness of direct acting antiviral therapy for chronic
HCV infection has ultimately overshadowed the antiviral role
of IFN-λs in the liver, however there remains much to be
understood regarding the immuno-stimulatory and potentially
destructive roles of these unique cytokines. Recent evidence
suggests that IFNL genotype influences IFN-λ expression in
the liver to facilitate immune cell migration and subsequent
inflammation (4, 5). Unlike IFN-λ4 which is weakly secreted
by hepatocytes (53, 54), IFN-λs 1–3 are highly expressed, and
can exert paracrine effects on surrounding immune cells. This
is consistent with reports showing increased Mφ activation
in patients possessing the favorable IFNL genotype (55). The
importance of the Mφ response is additionally underscored by
the fact that Mφ but not hepatocyte ISG expression is positively
associated with both the favorable IFNL genotype that produces
increased IFN-λ3 and antiviral response (56, 57).

Both PCR and RNA-Seq analysis support the IFN-λ sensitive
nature of GM-Mφs and highlight the stimulatory role of IFN-
λ3. Increased expression of pattern recognition receptors [TLR3,
IFIH1 [MDA5], DDX58 [RIG-I]] in response to IFN-λ can
increase antigen recognition, as we have shown in Figure 5.
Numerous pro-inflammatory transcription factors including
STATs 1–3, IRFs 1, 7, and 9, AP-1, and NFκB components
were activated in response to IFN-λ, as demonstrated by
an enrichment of their respective target genes (Table S4).
Inflammatory cytokines TNF and IL1B that are knownmediators
of hepatocyte apoptosis and liver injury were moderately, albeit
significantly induced by IFN-λ treatment alone (Figure 3E),
though our data supports additional inflammatory effects of
IFN-λ. By strengthening Mφ recognition and response to
pathogen associated molecular patterns, IFN-λs likely sensitize
Mφs to inflammatory stimuli, thus amplifying the strength
and/or duration of the inflammatory cascade. This has been
demonstrated by Liu et al. who showed that IFN-λ1 can promote
IL-12 production in TLR7 stimulated Mφs (28).

In response to IFN-λ, GM-Mφs potently express Th1
chemokines including CXCL 9, 10, and 11 as well as IL-15
and IL-27, notable drivers of T and NK cell activation and
proliferation. In agreement with RNA-Seq gene expression data,
we demonstrated that IFN-λ3 treated GM-Mφs stimulate T
and NK cell chemotaxis and subsequent NK cell cytotoxicity.
These data suggest that IFN-λs are strong mediators of the
Th1 response and provides a rationale for works by Morrow
et al. who showed that IFN-λ3 can increase IFN-γ secretion
and degranulation despite T cell insensitivity to IFN-λ (58). A
similar phenotype has been observed in tumor model NK cells,
where IFN-λ signaling drives NK cell cytotoxicity, suppression
of tumor growth and metastases (33, 59). This Th1 skewing
effect has been further validated using murine models of Th2
diseases where IFN-λ alleviated symptoms of airway disease (60),
intestinal inflammation (61), and conjunctivitis (62).

Interestingly, GM-Mφs were significantly more responsive to
IFN-λ, whereas M-Mφs where more responsive to IFN-α. These
data suggest that while type I and type III IFNs induce a similar
gene signature, their respective response is dependent not only
on the cell type, but also, the inflammatory phenotype of the
responsive cell. This data is consistent with work by Fleetwood et

al. that demonstrate a strong dependence on type I IFN signaling
in M-CSF over GM-CSF cultured Mφs (37). Consistent with
an M2 phenotype (63), M-Mφs were not particularly efficient
at driving immune cell chemotaxis and activation upon IFN-λ3
stimulation, but were significantly more phagocytic than GM-
Mφs both at baseline and in response to IFN-λ3. These data
suggest that IFN-λs are perhaps not inherently inflammatory, but
instead promotemacrophage effector functions based on location
or developmental phenotype.

Our data fills a current gap in knowledge concerning the
cellular identities and mechanisms that regulate local IFN-
λ mediated inflammation. Because IFN-λ signaling is longer
lasting and unlike IFN-α does not become refractory following
chronic exposure (64), continuous IFN-λ expression from
chronic infections can drive prolonged immune activation.While
DCs have a strong IFN-λ response, they are a small population in
the liver and migrate toward proximal lymph nodes in response
to infection (65). Liver Mφs (Kupffer cells) on the other hand
consist of the ∼3/4 of hepatic immune cells, and remain locally
to become crucial drivers of localized tissue inflammation (65).
Neutrophils are the only other immune cell subset with a
defined IFN-λ response, and respond with reduced migration
and suppression of inflammation (22, 23, 66).

In summary, we have demonstrated a novel concept whereby
Mφs gain IFN-λ sensitivity quickly following differentiation
from monocytes. These data support a pro-inflammatory role
for IFN-λs, particularly via recruitment of NK and T cells,
chief promoters of inflammation in chronic liver disease. Mφs
bridge the gap between IFN-λ responsive and non-responsive
effector cells, and are likely implicated in the elimination of acute
infection and the promotion of tissue damage in chronic disease.

METHODS

Patient Cohort
Blood samples were obtained from healthy volunteers at
the Westmead Institute of Medical Research. Data points
represent individual donors from a cohort of ∼20 healthy
individuals. Different cohorts of donors were used for individual
experiments based on availability. Liver tissue was obtained
at Westmead Hospital, Sydney, at the time of needle biopsy
[chronic HBV/HCV infection, non-alcoholic fatty liver disease
(NAFLD)/NASH, autoimmune hepatitis] or from patients
undergoing liver resections (normal tissue). Ethics approval
was obtained from the Sydney West Area Health Service and
University of Sydney. Informed consent was obtained for all
subjects [HREC2002/12/4.9(1564)].

Immune Cell Isolation, Culture, and IFN
Treatment
Peripheral blood mononuclear cells (PBMCs) were isolated
from volunteer blood using Ficoll Paque Plus (GE Healthcare).
Immune cell isolations were performed using StemCell EasySep
Kits, resulting in immune cell purity of >90%. CD14+
monocytes were cultured at 37◦C and 5% CO2 in RPMI medium
containing 10% fetal calf serum (FCS) and 50 ng/ml macrophage
colony-stimulating factor (M-CSF, Peprotech) or granulocyte
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macrophage colony-stimulating factor (GM-CSF, Peprotech) for
7 days, replacing media and removing non-adherent cells at day
4. Mφ populations were treated with IFN-α (50 U/ml) or IFN-
λ3 (100 ng/ml) purchased from R&D Systems. All cytokines were
confirmed LPS free.

RNA Sequencing and Bioinformatics
RNA was extracted using the Favorgen Tissue Total RNA Kit
and the sequencing library was prepared using the TruSeq
Stranded mRNA Library Prep Kit (Illumina). Single ended RNA
sequencing (RNA-Seq) was performed at the Australian Genome
Research Facility using the Illumina HiSeq 2500 platform (50
bp read length; minimum of 107 reads per sample). Sequence
alignments and gene counts were performed using STAR
RNA-Seq aligner version 2.5.1b (67) and paired comparisons
were performed using EdgeR version 3.16.2(68). Heat map
visualization of RNA-Seq data was performed using GITools (69).
Functional analysis of IFN-λ3 mediated gene expression was
conducted using Metacore version 6.29 (Thomson Reuters).

Quantitative PCR
cDNA synthesis was performed using MMLV reverse
transcriptase (Promega) and 500 ng of RNA. Gene transcripts
were quantified using the Corbett Research Rotorgene
3000 or 6000 thermocyclers with TaqMan primer probes
(Applied Biosystems) or custom primers. Quantification
of CD80, CXCL10, IFNLR1, and TRAIL were performed
using primer probes (Applied Biosystems). Custom primers
sets are as follows: CCL2 (CTGCTCATAGCAGCCACCTT,
GCACTGAGATCTTCCTATTGGTG), CCL8 (TCCCAAG
GAAGCTGTGATCTT, ATGGAATCCCTGACCCATCT),
IFNAR1 (TCAGGTGTAGAAGAAAGGATTGAAA, AGACAC
CAATTTTCCATGACGTA), IFNL1 (AGGGACGCCTTGGA
AGAGT, GAAGCCTCAGGTCCCAATTC), IFNL2/3 (GCCAC
ATAGCCCAGTTCAAGTC, GGCATCTTTGGCCCTAAA)
IL1B (TCGCCAGTGAAATGATGGCT, GGTCGGAGATTCG
TAGCTGG), IL15 (GTGATGTTCACCCCAGTTGC, CATCTC
CGGACTCAAGTGAAA), ISG15 (CGCAGATCACCCA
GAAGATC, GCCCTTGTTATTCCTCACCA), TNFα (CCCGA
GTGACAAGCCTGTAG, TGAGGTACAGGCCCTCTGAT),
and viperin (CTTTTGCTGGGAAGCTCTTG, CAGCTGCTG
CTTTCTCCTCT). All transcripts were normalized to 18s
ribosomal RNA (Applied Biosystems, 4319413E). Standard
curves derived from combined assay RNA were used to
determine relative expression of genes.

Digital Droplet PCR (ddPCR)
Immune cell RNA was quantified using the Qubit fluorometer
and RNA BR assay kit (Thermo Fisher), and cDNA was
synthesized from ≥10 ng of RNA per sample using qScript
cDNA supermix (Quantabio). cDNA was combined with
ddPCR supermix and droplet generation oil for probes
(Bio-Rad), and droplets were generated using the Bio-
Rad QX200 Droplet Generator. PCR was performed using
IFNLR1 and GAPDH probes according to the manufacturer’s
instructions, and droplet fluorescence was analyzed using the
Bio-Rad QX200 Droplet Reader. Absolute quantification of

transcript number was determined using QuantaSoft Analysis
Pro software.

Western Blotting
Mφs were lysed at 4◦C using a denaturing buffer containing
protease and phosphatase inhibitors. Protein was quantified
and subject to sodium dodecyl sulfate poly-acrylamide gel
electrophoresis. Gels were transferred to nitrocellulose
membranes, blocked and probed with: IFNAR1 (Abcam,
ab45172), IFNLR1 (Sigma Aldrich, HPA017319), STAT1 (Santa
Cruz Biotechnology, SC-345), p-STAT1 (Cell Signaling, 9167),
and β-actin (Sigma-Aldrich, A1978). Protein bands were
visualized on X-ray film using horseradish peroxidase (HRP)
conjugated secondary antibodies and the Supersignal West Pico
chemiluminescence kit (Pierce Endogen).

Chemotaxis Assays and ELISAs
Immune cell chemotaxis assays were performed using 1 × 106

autologous PBMCs placed in 5µM pore size transwell inserts.
Assays were performed for 24 h at 37◦C and 5% CO2. Migrated
cells present in the lower chamber were removed by pipetting
and characterized by flow cytometry. Zombie Aqua viability
stain (BioLegend 423101) and antibodies directed toward
CD19 (BioLegend, 302218), CD3 (BioLegend, 300424), CD56
(Becton Dickinson, 335791), and CD14 (Becton Dickinson,
563372) were used to identify immune cell populations. All
samples examined by flow cytometry have been treated with
Fc block (BD, 564219) prior to staining. ELISAs for CCL2
(R&D Systems, DY279), CCL3 (R&D Systems, DY270), CCL4
(R&D Systems, DY271), CXCL10 (BioLegend, 439904), and
TRAIL (Abcam, ab46074) were performed according to the
manufacturers’ protocols.

Phagocytosis Assays
To stimulate apoptosis, K562 cells were exposed to UV light for
15min. Apoptotic K562 cells were stained with ZombieYellow
viability stain (Biolegend), after which apoptosis was confirmed
with >90% of cells staining positive. Culture media was removed
from Mφ cultures and target cells in RPMI + 10% FCS were
added at a ratio of 2:1 (K562). Culture plates were centrifuged
at 450 g for 2min to synchronize phagocytosis. Following 1 h
of incubation at 37◦C, cells were washed and labeled with
BV711 mouse anti-human CD14 antibody (BD Biosciences),
and analyzed using the BD Biosciences LSR Fortessa
cell analyzer.

Cytotoxicity Assay
Huh-7 cells were electroporated with JFH1 RNA, a genotype 2
strain of HCV as previously described (70). Upon confirming
>85% infection rate by HCV NS5A immunofluorescence,
Huh-7 cells were plated in 48 well plates. Day 6 Mφs were
spun down onto Huh-7 cells at 400× g for 5min at a ratio of
2:1. Following 24 h incubation, macrophages were removed
by pipetting, and Huh-7 cells detached using Accutase
(Sigma-Aldrich). Huh-7 cells were labeled with Annexin V
(Becton Dickinson, 550474), Epcam (Miltenyi Biotec, 130-
091253) and propidium iodide (Sigma Aldrich, P4864) in 1×
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Annexin V binding buffer according to the manufacturers
protocol. Cells were washed thoroughly, fixed with 2%
paraformaldehyde and analyzed on the BD Biosciences LSR II
cell analyzer.

NK Cell Degranulation and Interferon
Gamma Production
Following 6 days of culture, freshly isolated autologous NK cells
were added to Mφs at a ratio of 1:1. Cells were centrifuged
at 300 g for 3min and incubated for 16 h at 37◦C with 5%
CO2. Following stimulation by Mφs, NK cells were removed by
pipetting, and incubated±K562 cells (1:1 ratio) with an antibody
against the degranulation marker CD107a (BD Biosciences
328620), GolgiStop and GolgiPlug transport inhibitor for 6 h
at 37◦C with 5% CO2. NK cell degranulation and interferon
gamma (BioLegend, 502509) production was examined by flow
cytometry, identifying live NK cell populations using Zombie
Aqua viability stain (BioLegend 423101), APC-CY7 CD19
(BioLegend, 302218), Alexafluor 700 CD3 (BioLegend, 300424),
PE-CY7 CD56 (Becton Dickinson, 335791), and BUV395 CD16
(Becton Dickinson, 563785).

Immunofluorescence
Frozen biopsy tissue sections were fixed with acetone,
blocked and labeled with primary antibodies against
CD11b (Bio-Rad MCA74A488), CD68 (Abcam, AB955),
and IFNLR1 (all 1:100 dilution) overnight at 4◦C.
Secondary fluorescent antibodies (Alexafluor 488/594
anti-rabbit/mouse, Life Technologies, 1:1,000 dilution)
and DAPI were applied for 1 h at room temperature,
and imaged by confocal microscopy (Olympus FluoView
FV1000). The IFNLR1 antibody was validated using siRNA
knockdown of IFNLR1 on macrophage cultures, as well
as gastrointestinal biopsy tissue to ensure specific labeling
(Figure S13).

Immune Cell Sorting
Liver tissue was diced and incubated for 30min at 37◦C in
a dissociation buffer consisting of RPMI medium containing
1µg/ml DNAse, 0.1 mg/ml Collagenase type IV, and 100
U/ml penicillin/streptomycin. Cells were filtered through
a 70µm cell strainer and centrifuged at 50 g for 5min to
pellet hepatocytes (71). The supernatant containing liver
immune cells was washed, pelleted at 400 g and frozen at
−80◦C until a sufficient number of samples were obtained.
Fluorescence-activated cell sorting (FACS) was performed
using the Becton Dickinson Influx Cell Sorter using the
following panel: Zombie Aqua viability stain (BioLegend,
423102), APC CD45 (BioLegend, 304012), BUV395 CD3
(Becton Dickinson, 563546), PE-CY7 CD56 (Becton
Dickinson, 335791), BV711 CD14 (Becton Dickinson, 563372),
Alexafluor 488 CD68 (BioLegend, 333812), and PE IFNLR1
(BioLegend, 337804). A cell sort purity of >90% was measured
during sorting.

Statistics
Statistics were performed using GraphPad Prism and were
chosen based on the normality of the data, with p <

0.05 deemed significant. Student t-tests or Mann–Whitney
tests were performed on unpaired samples based on data
normality. Paired t-tests and Wilcoxon matched pairs signed
rank test were performed on paired samples based on
Gaussian distribution.
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