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S u m m a r y  

Recombinant mouse interleukin 10 (IL-10) was exceedingly potent at suppressing the ability of 
mouse peritoneal macrophages (mOb) to release tumor necrosis factor a (TNF-o~). The ICs0 of 
IL-10 for the suppression of TNF-ol release induced by 0.5 #g/ml lipopolysaccharide was 0.04 
_+ 0.03 U/ml, with as little as 1 U/ml suppressing TNF-ot production by a factor of 21.4 + 
2.5. At 10 U/ml, II.-10 markedly suppressed mOb release of reactive oxygen intermediates (ROI) 
(ICso 3.7 _+ 1.8 U/ml), but only weakly inhibited mOb release of reactive nitrogen intermediates 
(RNI). Since TNF-a  is a T cell growth and differentiation factor, whereas ROI and RNI are 
known to inhibit lymphocyte function, it is possible that mOb exposed to low concentrations 
of IL-10 suppress lymphocytes, mOb deactivated by higher concentrations of IL.10 might be permissive 
for the growth of microbial pathogens and tumor cells, as TNF-ot, ROI, and RNI  are major 
antimicrobial and tumoricidal products of mob. Ibl0's effects on mOb overlap with but are distinct 
from the effects of the two previously described cytokines that suppress the function of mouse 
mOb, transforming growth factor fl and macrophage deactivation factor. Based on results with 
neutralizing antibodies, all three mOb suppressor factors appear to act independently. 

I I.-10, originally termed cytokine synthesis inhibitory factor 
(CSIF), 2 was discovered as a product of Th2 cells that 

suppresses IFN-3, production by Thl  cells (1-3). Ib l0  joins 
TGF-fl as one of the few lymphocyte suppressor factors to 
be purified and cloned (4, 5). The mechanisms by which sup- 
pressor factors affect lymphocyte function are not well un- 
derstood. Ib l0  inhibits Thl  cells only in the presence of ac- 
cessory cells, especially macrophages (mOb) (6). This raises 
the possibility that II.-10 might act primarily on mOb to alter 
the balance between their lymphocyte-stimulating and 
lymphocyte-inhibiting secretory products (7), thereby affecting 
lymphocytes secondarily. 

As is the case for lymphocytes, only a f~w purified cytokines 
are known to suppress the function of mOb (8-14). In fact, 
only two cytokines are known to block or reverse the activa- 
tion of mouse mOb: TGF-3 (induding TGF-~-I, -2, and -3) 
and mOb deactivating factor (MDF) (8-10, 15-18; for review 
see reference 19). The present experiments were designed to 
test whether 1I.-10 is a new mOb deactivation factor, and if 
so, whether it mediates the mOb-deactivating effects of TGF~ 
or MDE 

1 Christian Bogdan and Yoram Vodovotz contributed equally to the 
experiments described in this paper. 

2 Abbreviations used in this paper. CSIF, cytokine synthesis inhibitory factor; 
MDF, macrophage deactivating factor; m~, macrophage; RNI, reactive 
nitrogen intermediates; ROI, reactive oxygen intermediates. 

Materials and Methods 
Mice. Female CD1 mice (8-12 wk old) were from the Charles 

River Breeding Laboratories (Wilmington, MA). 
Cytokines and Other Reagents. Supernatants from COS7 cells 

transfected with mlL-10 eDNA (1,000 U/ml, where 1 U caused 
half-maximal response of the MC/9 mast cell line as described [20]; 
LPS content at 100 U/ml < 10 pg/ml) and control supernatants 
from mock transfected cells (LPS content at a 1:10 dilution < 10 
pg/ml) were kindly provided by Dr. K. Moore (DNAX, Palo Alto, 
CA; 1 MC/9 U/ml is equal to 1 CSIF U/ml, personal communi- 
cation). MDF was purified from the culture supernatants of P815 
mouse mastocytoma cells as described (10) or directly extracted from 
these cells following a similar procedure (Y. Vodovotz, C. Bogdan, 
and C. Nathan, unpublished results). A unit of MDF is defined 
as that amount of MDF in a final culture volume of 0.125 ml that 
causes 50% suppression of PMA-triggered mO HzO2-releasing ca- 
pacity after a 48-h incubation (10). rmlFN~ (protein concentra- 
tion 1.1 mg/ml; sp act 5.2 x 106 U/mg; LPS content <10 pg/ml) 
and rmTNF-c~ (protein concentration 0.98 mg/ml; sp act 1.2 x 
107 U/mg; LPS content <52 pg/ml) were kindly provided by 
Genentech (South San Francisco, CA). rhTGF~I was a gift of 
Amgen, Inc. (Thousand Oaks, CA). Ascites fluid containing a neu- 
tralizing rat IgM mAb against mlL-10 (SXC1 [21]; LPS content 
<10 pg/ml at a 1:100 dilution) was a gift from Dr. S. Reed (Seattle, 
WA). A 1:1,000 dilution of this antibody preparation completely 
neutralized the effect of Ibl0 at concentrations ~100 U/nil and 
was used in all experiments. Purified rat IgM as an isotype control 
antibody was obtained from Calbiochem-Behring Corp. (La Jolla, 
CA). Turkey anti-TGF-B1 IgG and nonimmune turkey IgG were 
kindly provided by Dr. M. Sporn (National Cancer Institute, 
Bethesda, MD). LPS, prepared by phenol extraction from Esche- 
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rickia coli Ol11:B4, was from List Biological Laboratories (Camp- 
bell, CA). 

Mck Cultures. Periodate- and thioglycohte-didted m~ were har- 
vested from the peritoneal cavity with c~MEM medium (JRI-I Bio- 
sciences, Cambridge, MA) and cultured as published (22). 

1-1202 Release Assay. 1.5 x 10 s Periodate-elicited peritoneal 
cells were triggered for HzOz release by PMA. HzO2 secretion/mg 
adherent cell protein was determined as described (10). 

Reactive Nitrogen Intermediates (RNI) Production and NO2- De- 
termination. Monolayers ofthioglycolate-elicited mO were stimu- 
lated for RNI production by IFN-% IFN-3dTNF, or IFN-~//LPS 
for 48 h. Nitrite concentration in the cell-flee mO supernatants 
served as a reflection of nitric oxide production and was measured 
by the colorimetric Griess reaction as described (18, 22). 

TNF~c~ Production and TNF-oL Assay. Monolayers of thiogly- 
calate-elicited mO were obtained by seeding the ceils in 24-well 
plastic tissue culture plates (Costar, Cambridge, MA) at 10~/well 
(final volume of 0.5 ml) for 2-3 h at 37~ in 5% COz/95% air. 
Nonadherent cells were removed by three washes with PBS (37~ 
and the monolayers were then stimulated with LPS (+ rmIFN-3,) 
either in the presence or absence of rmIL-10 as indicated in the text. 
20 h later, the supernatants were harvested and stored at -20~ 
The TNF-o~ content of the test supernatants was determined in 
a bioassay with the highly specific and sensitive subdone 13 of the 
WEH1164 fibrosatcoma line (23) (kindly provided by Dr. S. Kunkel, 
Ann Arbor, MI, with permission of Dr. T. Espevik, Trondheim, 
Norway) as published previously (24). Data from at least 10 serial 
twofold dilutions per supernatant were subjected to probit analysis 
using a rmTNF-c~ standard curve as described (25). Finally, the fold 
suppression of TNF release in the test supernatants was determined 
[(ng/ml TNF in medium control)/(ng/ml TNF in test superna- 
tant)]. Use ofa polyclonal rabbit anti-TNF-ot antiserum (Genzyme, 
Boston, MA) demonstrated that the cytotoxic activity was com- 
pletely dependent on TNF-oc 

SDS-PAGE and Western Blot. Ibl0-containing and mock con- 
trol COS cell supematants and partially purified MDF were sepa- 
rated on 20% SDS-PAGE and transferred to nitrocellulose mem- 
branes (26, 27). 

Protein Synthesis. Monolayers (2 x 106/we11) of periodate- 
elicited m~ were incubated for 48 h in complete ILPMI 1640 in 
the presence or absence of rmIL-10. During the last 6 h of incuba- 
tion, the medium was exchanged for methionine-free RPMI 1640 
with 1% FCS (Gibco, NY), and 50/~Ci [3sS]L-methionine (> 
1,000 Ci/mmol; Amersham Corp., South Clearbrook, IL) was added 
per 2 x 106 mqL The cells were then washed and lysed in 1% 
triton X-100 and processed for determination of radiolabded pro- 
tein as described (15). Additional aliquots of the lysates were sub- 
jected to SDS-PAGE autoradiography. 

Results 

TGF-B and MDF can prevent mO from releasing all three 
of their major cytotoxic products: TNF-c~ (28, and Bogdan, 
C., Y. Vodovotz, and C. Nathan, manuscript in preparation), 
reactive oxygen intermediates (ROI) (8, 10, 15-17), and RNI 
(18, 29). Accordingly, we tested the effects of IL-10 in each 
of these assays. 

Suppression of TNF-ol Release. IL-10 was an exceedingly 
potent inhibitor of m~ TNF-o~ release (Fig. 1; Fig. 2 A). 
The inhibitory effect was concentration dependent, reaching 
its plateau upon exposure of m~ to 10 U/m1 II.-10, which 
cause 32.4 (_+ 2.8)-fold (97%) suppression (mean _+ SEM 
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Figure 1. Ib10 suppresses TNF-o~ release by monolayets of thioglycohte- 
elicited mO. (,4) MS were stimulated with LPS (0.25/Lg/ml) or LPS (0.25 
/~g/ml) plus IFN-3, (10 ng/ml) in the absence or presence of IL-10 or an 
identical amount of COS-cell control supernatant (mock tramfectant). (B) 
MO were stimulated with LPS (0.5 #g/ml) alone or together with IL-10 
or an identical amount of COS-cell control supernatant (mock transfec- 
rant) in the absence or presence of anti-IL-10. (A and B) After 20 h, the 
TNF content in the cell-flee supernatants and the fold suppression of TNF-~ 
release were determined as described in Material and Methods. The TNF 
release in the medium controls was 4.6 ng/ml (LPS alone) and 41.6 ng/ml 
(LPS plus IFN-~/) in the e~periment shown in A and 43.3 ng/ml (LPS 
alone) in B. 

of three experiments) of mO TNF-c~ release induced by 0.5 
#g/ml LPS. 50% suppression required only 0.044 _+ 0.031 
U/ml (mean _+ SD from four experiments). Preincubation 
of the m~ with Ibl0 before stimulation by LPS was not neces- 
sary. Anti-II.-10 mAb abolished the suppression afforded by 
IL-10-containing COS cell supernatant (Fig. 1 B), whereas 
a rat IgM control antibody failed to do so (not shown). Mock- 
transfected COS cell supernatant had no effect (Fig. 1 B). 
IL-10 abolished TNF-ol release induced by LPS at concentra- 
tions of 0.25 or 0.5 #g/ml (Fig. 1), I or 10 #g/ml (not shown), 
or when TNF-c~ release was induced by the combination of 
LPS (0.25 #g/ml) and IFN-~/(10 or 20 ng/ml) (Fig. 1 A). 
In control experiments, ID10 did not stimulate the indicator 
cells in the TNF bioassay; protect them from inhibition by 
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Figure 2. Comparison of the effect oflL-10 on m~ TNF-cx production, 
H202 secretion, and RNI release. (A) Adherent thioglycolate-dicited m~6 
(106/weU) were stimulated with LPS (0.5/zg/ml) for TNF-~x release in 
the presence of IL-10 or a mock-transfectant control supernatant as de- 
scribed in the legend to Fig. 1. (B) Periodate-elicited cells (1.5 x 105/we11) 
were incubated in medium alone, Ilrl0, or a mock-transfectant control 
supernatant. After 48 h, H202 release was triggered, the adherent cell 
protein determined, and the H202 release/rag adherent cell protein cal- 
culated. (C) Adherent thioglycolate-elicited m~6 (2 x 105) were stimu- 
lated with IFN-~/(1 ng/ml), IFN-3, (I ng/ml) plus TNF-c~ (20 ng/ml), 
or IFN-3, (1 ng/ml) plus LPS (100 ng/ml) in the presence of IL-10, super- 
natant of mock transfectants, TGF-B (10 ng/ml), or medium. After 48 h, 
the call-free supernatants were processed for ]qO2- determination (nmol 
release per 2 x 105 rock) (22). The mean NO2- release in the control 
cultures was 6.2 (IFN-3,), 7.8 (IFN-3, + TNF-c~), and 12.0 (IFN-3' + 
LPS) nmol/2 x 105 m~. The symbols next to the y-axis denote the values 
for the TGF-13-treated cultures. The remaining symbols are all for cells 
treated with the indicated concentration of Ib-10. The mock-transfectant 
supernatant-treated cultures revealed <10% suppression and the values are 
not shown here for the sake of clarity. (A, B, and C) The fold suppression 
of TNF-,v, H202, and NO2- release was calculated by comparing the 
values of the IL-10-, mock-transfectant control supernatant-, or TGF-B- 

exogenous TNFc~; nor induce mS to release a factor that 
could block the action of TNF-ot (not shown). 

Suppression of 1-1202 Release. Concentrations of IL-10 
50-100-fold higher than those suppressing TNF-ot release sup- 
pressed the ability of PMA-triggered m~6 to release H2Oz 
(ICso = 3.7 _+ 1.8 U/m1, mean _+ SD, three experiments) 
(Fig. 2 B). The range of suppression caused by 10 U/ml IL-10 
was 55-79% with a mean (_+ SEM) of 65% (_+ 4.1; four 
experiments). This action of II~10-containing COS cell su- 
pernatant was abolished by anti-Ibl0 mAb and was lacking 
in mock-transfected COS cell supernatant (Fig. 3). 

Relation between 11.,I0 and MDF or TGF-[3. Since suppres- 
sion of mouse peritoneal rock H202 releasing capacity has 
been the cardinal assay for characterization of MDF (10, 15-17), 
it was important to test whether MDF consists in, or acts 
through the induction of, IL-10. As shown in Fig. 3, anti- 
Ibl0 mAb had no effect on the respiratory burst-suppressing 
action of MDF. Moreover, anti-Ibl0 mAb immunoblotted 
IL-10 in COS cell supernatant, but not a preparation of semi- 
purified MDF containing a twofold higher bioactivity as de- 
termined in the H202 release assay (Fig. 4). 

Likewise, the suppressive action of TGFq3 on the mck re- 
spiratory burst (8, 17) or TNF-ot release (28) was unaffected 
by anti-IL-10 mAb (not shown). Finally, abs that neutralize 
TGF-B but not MDF in the H202 release assay (10) had no 
effect on suppression by IL-10 (Fig. 5). Anti-MDF abs are 
not yet available. 

Effect of lL, lO on RN I  Release. The above results indicated 
that Ibl0 appears to act independently of TGF43 and MDF. 
Thus, the spectrum of action of IL-10 on m~ may differ from 
that of TGF-B and MDF. Indeed, unlike TGF-B and MDF 
(18), IL-10 only variably and weakly inhibited the induction 
of RNI release by IFN-3~ (range of suppression by 10 U/ml 
in six experiments: 0-60%; mean _+ SEM = 37 _+ 15%) 
and was unable to suppress RNI release induced by the com- 
bination of IFN-3, and TNF-c~ (Fig. 2 C). Higher concen- 
trations of IL-10 (100 U/m1) did not further increase the sup- 
pression of RNI release (three experiments; data not shown). 
As found for MDF and TGF43, Ibl0 also failed to inhibit 
RNI release induced by the combination of IFN-3' plus LPS 
(Fig. 2 C). 

Effect of ll.,IO on mc~ Protein Synthesis. The selectivity of 
Ibl0 effects on m~ was further demonstrated by its inability 
to alter the incorporation of 3SS-methionine into protein, or 
to affect the overall pattern of protein synthesis as evaluated 
by one-dimensional SDS-PAGE (not shown). 

Discussion 

IL-10 appears to be even more potent as a suppressor of 
mS TNF-c~ release than as a suppressor of Thl cell IFN-3, 
synthesis (1). A concentration of II.-10 (1 U/ml) that almost 
completely suppressed mS TNF-c~ release (95.4% suppres- 

treated cultures with those of the medium control. Data represent mean 
values (+ SEM) of three (TNF-ot release), four (H202 release) or five 
(NO2- release) experiments, respectively. 
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Figure 3. IblO suppresses mS H202 
release, but does not appear to account 
for the activity of MDF. 1.5 x 10 s 
periodate-elicited cells were incubated 
either in medium alone or in IL-10, 
mock COS cell superuatant, or in MDF 
(C18-RPHPLC-purif~) in the presence 
or absence of anti-IL-10. After 48 h, 
H202 release was triggered with PMA 
and the adherent cell protein (V) was 
determined to exclude toxicity. H202 
release is expressed as nmol H202/mg 
adherent cell protein (Q). Control 
values are given on the y-axis of each 
panel. Data represent mean (_+ SD) 
from triplicate cultures of a representa- 
tive experiment. Where error bars are 
not visible, they fall within the symbols 
denoting the means. 

sion) had little effect on H202 release (42% suppression) and 
on the secretion of R.NI (36% suppression). TNF-c~ is a po- 
tent growth and differentiation factor for mouse T cells 
(30-32). In contrast, KOI and RNI suppress lymphocyte func- 
tion (33-35). Thus, activated mS exposed to low concentra- 
tions of I1-10 are likely to produce ROI and RNI but not 
TNF-a, and thus may display a suppressor phenotype to- 
ward lymphocytes. This may contribute to the CSIF activity 
of I1-10. 

Figure 4. Anti-Ib10 mAb fails to recognize MDE Ib10 containing COS 
cell supernatant (50 U, corresponding to ,~100 U in the standard H202 
release assay) (lane I), an equivalent amount of mock transfectant superna- 
tant (lane 2), and MDF (200 U in the H202 release assay) (lane 3) were 
separated on 20% SDS-PAGE, electrotransferred to nitrocellulose, immuno- 
blotted with anti-IL-10 mAb (1"100 dilution), and developed with a goat 
anti-rat IgM antiserum conjugated to alkaline phosphatase. The arrows 
indicate rmII:10 in its expected size heterogeneity (2, 21). 

On the other hand, at higher concentrations (10 U/ml), 
Ibl0 markedly suppressed not only mS TNF-o~ release but 
also the release of ROI. Finally, although Ibl0 only weakly 
suppressed RNI release induced by IFN-7, II-10 might be 
more effective at suppressing I~NI release indirectly in situa- 
tions where RNI release depends on an autocrine action of 
TNF-o~. Ingestion of pathogens is a strong stimulus for mS 
to release TNF-ol (24, 36), which in turn helps to induce 
RNI by interacting synergistically with IFN- 7 (22, 37). Since 
I~OI, RNI, and TNF-a are among the major antimicrobial 
(for review see references 38 and 39) and antitumor products 
of mS (for review see reference 40), a second phenotype of 
the IL-10-treated mS may be that of a cell permissive for the 
growth of pathogens and tumor cells. I1.10, therefore, may 
suppress the antimicrobial and tumoricidal function of mS 
in two ways: first, indirectly through inhibition of IFN-7 
production by Thl cells, which then impairs mS activation; 
and second, directly through deactivation even in the pres- 
ence of IFN-7. 

I1.10's actions on mS function were selective and nontoxic. 
At the same time that II-10 abolished TNF-a release and 
decreased H202 release, it had only little effect on their re- 
lease of RNI. I1-10 did not affect the number of mS remaining 
adherent to vigorously washed plates (Fig. 3), their overall 
synthesis of protein, nor their synthesis of major proteins. 

I1-10, TGF-fl, and MDF appeared to act independendy, 
since abs that neutralized either I1-10 or TGF-fl had no effect 
on the actions of the other two proteins in the same assays. 
Although MDF remains to be cloned, it appears to be dis- 
tinct from 11-10 by the following criteria. MDF migrates at 
~13 kD on denaturing SDS-PAGE and is purified on the 
basis of its acid stability (10), while II.,10 migrates at 16-21 
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Figure.5. HzOz suppression by Ibl0 
is not mediated through TGF-/31. 
Periodate-elicited cells (1.5 • 10S/well) 
were cultured in medium alone (con- 
trol) or in TGF-31 (10 ng/ml) or in Ib10 
(10 U/ml), in the presence of preim- 
mune (PS) or immune (IS) anti-TGF- 
/51 antiserum or in the absence of an- 
tiserum (no Ab). After 48 h, HzOz re- 
lease was triggered and the adherent cell 
protein determined. Data represent 
mean (• SD) from triplicate cultures 
of a representative experiment. 

kD on SDS-PAGE and is acid labile (2). MDF (Vodovotz, 
Y., C. Bogdan, and C. Nathan, manuscript in preparation) 
but not II.-10 inhibits lymphocyte proliferation (1, 2, 41). 
Moreover, MDF is much more potent in suppressing RNI 
release (18). Like TGF-/3 (8) but unlike MDF (10, 15), IL-10 
tends to cause adherent m~ to round up in culture (not 

shown). Finally, anti-IL-10 mAb neither neutralizes nor im- 
munoblots MDF. 

Several cytokines activate mqb in ways that are overlapping 
but distinct, giving rise to diverse phenotypes. The same can 
now be said of cytokines that deactivate m~. 
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Note added in proof After this paper was submitted, we learned of other studies in press or in preparation 
describing deactivating effects of IL-10 on mouse macrophage or human monocyte MHC class II expres- 
sion, cytokine release, nitrite production, or killing of parasites (de Waal Mahfyt, K., J. Haanen, H. 
Spits, M.-G. Roncaro]o, A. te Velde, C. Fidgor, K. Johnson, R. Kastelein, H. Yssd, and J. E. de "Cries. 
1991. f Extx Med. 174:915; de Waal Malefyt, R., J. Abrams, B. Bennett, C. Fidgor, and J. E. de Vries. 
1991.f Ext2 Med. 174:1209; Fiorentino, D. F., A. Zlotnik, T. K. Mosmann, M. Howard, and A. O'Garra. 
1991. f Iramunol. In press: Silva, J. S., P. J. Morrissey, K. H. Grabstein, K. M. Mohler, D. Anderson, 
and S. G. Reed. 1992. J. Ext~ Med. In press; Gazzinelli, K. T., I. P. Oswald, S. L. James, and A. Sher, 
personal communication). 
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