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The macrophage is an essential part of the innate immune system and also serves

as the bridge between innate immunity and adaptive immune response. As the

initiator and executor of the adaptive immune response, macrophage plays an

important role in various physiological processes such as immune tolerance,

fibrosis, inflammatory response, angiogenesis and phagocytosis of apoptotic

cells. Consequently, macrophage dysfunction is a vital cause of the occurrence

and development of autoimmune diseases. In this review, we mainly discuss the

functions of macrophages in autoimmune diseases, especially in systemic lupus

erythematosus (SLE), rheumatic arthritis (RA), systemic sclerosis (SSc) and type 1

diabetes (T1D), providing references for the treatment and prevention of

autoimmune diseases.
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1 Introduction

According to whether tissues and organs are targeted by the damaging immune response,

autoimmune diseases classified into systemic autoimmune disease, such as systemic lupus

erythematosus (SLE) and systemic sclerosis (SSc) and rheumatoid arthritis (RA), or organ-

specific autoimmune diseases, such as thyroid disease, type 1 diabetes (T1D), myasthenia

gravis and multiple sclerosis (1, 2). The autoimmune diseases are clinically diverse but share a

fundamental etiology: the form of self-reactive antibodies, presence of self-reactive T cells,

and activation of the innate immune system (3). Although the exact pathogenesis remains

unclear, it is interesting to note that genetic, immunological, hormonal and environmental

factors are important triggers for autoimmune diseases (4).

However, it is difficult to precisely inhibit the abnormal immunity activation triggered by

pathogenic factors. The current treatment of autoimmune diseases is limited and relatively

conservative, which mainly depends on the overall inhibition of the immune response.
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However, blindly suppressing the immune response can cause

inevitable side effects such as infection. Therefore, there is an urgent

need to understand the pathological mechanism that causes the

initiation and development of autoimmune diseases so as to provide

new ideas for the prevention and treatment of autoimmune diseases.

The innate immune system exerts immune function independently

of antigens, which form the body’s immune defense system interacting

with the adaptive immune system. Abnormal innate immune response

is a significant reason for the breakdown of autoimmune tolerance,

which is closely related to the occurrence and development of

autoimmune diseases (5). Macrophage is a crucial part of the innate

immune system and participates in almost every biological process such

as tissue homeostasis, resisting infection, repairing after infection,

metabolism and inflammation, affecting the body’s development and

immune response (6, 7). This review summarizes the impaired

functions and abnormal macrophage activation and their roles in the

pathogenesis of autoimmune diseases showed in Figure 1, especially in

SLE, RA, SSc and T1D. In addition, the potential value of macrophages

in the treatment and prevention of autoimmune diseases is

also summarized.
2 Macrophage

2.1 The origin of macrophages

It has been universally accepted that macrophages in tissues are

differentiated from monocytes that originate in bone marrow (8).

However, studies in recent years have found that monocytes are not

the only source of macrophages. Tissue macrophages are also derived

from the yolk sac and fetal liver, which have self-renewal properties

independent of monocyte recruitment (9, 10). According to the tissue

distribution, macrophages can be divided into alveolar macrophages,
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intestinal macrophages, osteoclasts in bone, microglia in the brain,

Kupffer cells in the liver, Langerhans cells in the epidermis (10).

Secondary lymphoid organs also have distinct macrophages,

including marginal zone macrophages (MZMs) and metallophilic

macrophages in the spleen, which involved in clearance of apoptotic

cell and tolerance to auto-antigens (11). It is worth noting that

microglia and partial Langerhans cells are derived from yolk sac

progenitor cells as shown by pedigree tracing experiments. In

contrast, macrophages in other tissues, such as intestinal lamina

propria and dermis, are mainly derived from hematopoietic stem

cells (12–16). Macrophages are, therefore, key tissue sentinel cells that

react to tissue-specific signals, while retaining the ability to execute

physiological functions such as phagocytes. During chronic

inflammation such as autoimmune diseases, tissue-resident

macrophages fail to solve aggravated inflammation that leads to

immune system abnormal activation and damage. And peripheral

monocytes are recruited and differentiated into macrophages non-

homeostatically in combination with injury-associated signals

including pro-inflammatory cytokines, which are further activated

and participated in the body’s immune responses (17, 18). The tissue-

resident macrophages participate jointly in protecting tissue

homeostasis, and form the first line of defense against invading

pathogens. Miriam. et al. considered that embryonically derived

and monocyte-derived tissue-resident macrophages are likely to

promote the development of the disease through the maintenance

of tissue homeostasis through phagocytosis of cell fragments,

resistance to pathogen invasion, while recruited monocyte-derived

macrophages by disease-associated signals drives disease progression

(19). Similarly, recruited monocyte-derived macrophage also plays an

important role in autoimmune related diseases. For example,

infiltrated macrophages, especially proliferating macrophages was

seen in glomerulonephritis from patients with lupus, which may be

a potential diagnostic and prognostic indicator for renal injury (20).
FIGURE 1

The possible abnormal macrophage activation in autoimmune diseases. The phagocytic function of macrophages is weakened in autoimmune diseases,
which inhibits the clearance of apoptotic cells. Increased apoptotic cells promotes the production of autoimmune antigens and antibody, and further
exacerbates inflammatory inflammation. In addition, macrophages promote the migration and abnormal activation of T cells including increased Th1/
Th17 differentiation and downregulated Treg differentiation, and ultimately cause abnormal activation of B cells. Besides, the imbalance of M1/M2
macrophages also involved in autoimmune. Abnormal M1 macrophage activation promotes the production of proinflammatory cytokines such as IL-6,
iNOS, TNF-a and IL-1b, which promote inflammation in targeted organs. Decreased M2 polarization inhibited the production of anti-inflammatory
cytokines and the immune tolerance. Besides, abnormal M2 macrophage polarization also affects vascular proliferation, fibrosis in autoimmune disease
such as SSc.
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Ly6C is a marker for circulating monocytes in mice. Different

monocyte subpopulations Ly6Chi and Ly6Clo exist in mice, which

express different adhesion molecule and chemokine receptor and gene

expression profile. Response to inflammatory signals Ly6Chi

monocytes could rapidly infiltrate in inflamed tissues mostly

dependent on chemokine receptors C-C motif chemokine receptor

2 (CCR2), CCR6 and CCR8 and results in enhanced liver fibrosis (21).

Inhibiting migration of blood monocyte into liver alleviated

macrophage infiltration in liver, and decreased pro-inflammatory

cytokines such as interferon gamma (IFNg), IL-6 expression in

chronic hepatic injury (22). Besides, inhibiting monocyte

recruitment by blocking C-C motif chemokine ligand 24 (CCL24)

or CCL2 may be an appealing novel therapy to limit fibrotic

manifestations of SSc (23).

The complex origin of macrophages has caused great difficulties

in the study of macrophage functions in autoimmune diseases.

Although the construction of mice with myeloid knockout has

brought a lot of convenience for the study of macrophages in vivo,

it also has certain limitations. On one hand, there are many kinds of

myeloid cells, and it is difficult to accurately study the function of a

single macrophage. On the other hand, macrophages in different

tissue are heterogeneous and plastic, showing different morphologies

and surface molecules. With the development of scientific research,

especially in flow cytometry and single cell sequencing technology, the

macrophage markers in different tissues are gradually discovered, and

the research of macrophages ushers in new opportunities and

challenges. At present, the studies about macrophage from different

sources is limited, and mostly current studies focus on the abnormal

function and mechanism of macrophages infiltrated in targeted

organs and tissues. How to specifically distinguish unbalanced

macrophages, specially manufacture macrophages that promote

disease, and supplement and maintain tissue stable macrophages

are the key and difficult points in autoimmune disease research.
2.2 Regulation in innate and
adaptive immunity

Macrophages are vital participant of innate immunity, which

recognize and effectively respond to invading pathogens, thus

providing an early defense against external attack. Pattern

recognition receptors (PRRs) on the surfaces of macrophage

including toll-like receptors (TLRs) and the NOD-like receptors

(NLRs) recognize pathogen-associated molecular patterns (PAMPs)

and endogenous danger-associated molecular patterns (DAMPs)

presented in the invaders and promote macrophage activation.

Macrophages further release antimicrobial mediators to target the

invading pathogen, chemokines to recruit immune cells to the

inflammatory site, and pro-inflammatory cytokines to aggravate

further inflammation, and even induce the adaptive immune

response for the particular invading pathogen. Besides, macrophage

forms a bridge connecting innate and adaptive immunity by

presenting endogenous or exogenous antigen. It has been well

known that antigen cross-presentation is crucial for initiating of

adaptive immune responses against cancer, infection and immune

tolerance. During this process, antigen-presenting cells (APCs)

present intracellular and extracellular peptides derived from
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ingested antigens on primary histocompatibility complex class I

(MHCI) protein complex to T lymphocytes (24). Although the

cross-presentation of antigens by macrophages is not understood as

well as that by dendritic cells (DCs), it is becoming clear that the

cross-presentation by macrophages especially in spleen, liver and

lymph nodes may help activate CD8+ T lymphocytes (25).

Macrophage can participate in antigen presentation to Th1 cells

and proliferation of T cells by surface co-expression molecules CD86

and MHCII, which indicate the significant role of the macrophage in

the development of cancer, autoimmunity and viral infections (26–

29). The CD8+ T cells in mice with spontaneous autoimmune

peripheral neuropathy (APN) exhibit an effector/memory

phenotype required for the disease initiation. However, only

effector/memory CD8+ T (CD8+ TEM) cells are not sufficient to

induce autoimmune-mediated peripheral neuropathy and

macrophages are additionally required (30). The early depletion

of regulatory T cells (Tregs) in mice with acute cardiac injury

enhances the inflammatory activation of macrophages by increasing

the production of IFN-g, which restrains muscle regeneration (31).

Human macrophages activated by C1q can inhibit the T helper (Th)

17 and Th1 but promote Treg proliferation, orchestrating the

adaptive immune system to avoid autoimmunity (32). Hence, the

role of macrophage in connecting innate/adaptive immunity provides

opportunities to prevent disease onset, reduce relapses and develop

new therapeutic strategies. Intervening macrophage-T cell

communication signals to prevent excessive activation of T cells

may be an important research direction in the treatment of

autoimmune diseases
2.3 Phagocytic, efferocytosis and
secretory functions

Phagocytosis is an essential process for the uptake of particulate

matter, including microbes and dying cells. Dying cells can expose

and secrete signals that attract phagocytes and promote their

phagocytosis. Several studies have shown that macrophage

phagocytosis is affected by a variety of signaling pathways including

TLRs (26). Reactive oxygen species (ROS) generated by the

nicotinamide adenine dinucleotide phosphate oxidases (NADPH

oxidase-2, also known as NOX2) in macrophages is dispensable for

phagocytosis (33). The liver X receptors (LXRs) and the peroxisome

proliferator-activated receptors (PPARs), nuclear receptor families

that regulate genes involved in lipid metabolism and transport are

important components of macrophage phagocytosis (34). The

phagocytosis of dead and dying cells is a process known as

efferocytosis, which is performed by macrophages, other immune

phagocytes such as monocyte and DCs and non-phagocytes including

epithelial cells. Efficient efferocytosis limits the release of intracellular

PAMPs that drive inflammation and disrupting homeostatic

efferocytosis can also lead to accumulation of uncleared apoptotic

cells in autoimmune diseases. Efferocytosis mechanisms depends on

the signaling programs depicted: chemoattractant-mediated

recruitment of phagocytes, receptor-mediated recognition such as

PtdSer receptor cell immunoglobulin mucin receptor 4 (TIM4), TAM

family receptor tyrosine kinase receptor, engulfment of apoptotic

cells, and the processing of engulfed cellular material (35). Disrupted
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efferocytosis of macrophage promoted the accumulation of uncleared

apoptotic or necroptosis cells in autoimmune, which is a universal

feature of damaged tissues (36).

In response to exogenous danger signals or exogenous signals

recognized by pattern-recognition receptors (PRRs), macrophages

undergo physiological changes to initiate signal transduction cascades

and result in abnormal production of chemokines, cytokines and

toxic mediators, which can further enhance inflammation and

contribute to autoimmune pathologies (37). The anti-inflammatory

mediators by macrophages contribute to the dissolution of the

inflammatory response. Cytokines such as tumor necrosis factor

(TNF)-a, Interleukin (IL)-6, IL-1b, IL-12, IL-18, IL-23 and

chemokines such as CXC chemokine ligands (CXCL)1, CXCL3 are

secreted by macrophages, which are essential mediators and drivers of

chronic inflammation and autoimmune diseases (38–40). Besides,

macrophages contribute to angiogenesis by secreting proangiogenic

proteases such as matrix metalloproteinases (MMP)-9 and MMP-12

(41–43). TNF-a occupies a pivotal position in RA pathogenesis. The

TNF blockade reduced stromal cell activation, angiogenesis, and

sustain regulatory pathways by mediating cytokine and chemokine

and MMPs expression. And IL-6 signaling pathway promotes T cell

activation and migration by regulating chemokine expression (44). In

addition to clearing dead cells, macrophages significantly mediate

wound healing and tissue homeostasis by producing anti-

inflammatory molecules and tissue remodeling growth factors like

IL-10 and transforming growth factor beta(TGF-b) (45). Cytokines
including IL-6, IL-23, IL-10 and TGF-b all shaped Th17 cell

differentiation placed at the center of autoimmune inflammation

(46). IL-18 contributes to Th1/2 differentiation, participate in

cytotoxic T cells (CTLs) and natural killer (NK) cells activation,

and ultimately IgE production from B cells (47). Besides, tissue

macrophages synthesize chemokines CXCL1/CXCL2 to increase

neutrophil recruitment, which is an important early step in

controlling tissue infections or injury (48). Islet-resident and islet-
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infiltrating macrophages can exacerbate b-cell destruction by

synthesizing TNF-a, IL-12, IL-1b, and NOX2-derived ROS, which

mature autoreactive CD4 and CD8 T cell effector responses (49).
2.4 Regulation in metabolic processes

Macrophages are also involved in a variety of metabolic processes,

including arginine metabolism and glucose metabolism, which was

indicated in Figure 2. The M1 macrophages express nitric oxide

synthase (NOS) to metabolize arginine into NO and citrulline, which

further promotes the synthesis of downstream active nitrogen, finally

facilitating inflammatory response (50, 51). In addition, M2

macrophages regulate arginine metabolism and thus regulate cell

proliferation, tissue repair and inhibited inflammation by medicating

polyamine/proline synthesis (52). Macrophages maintain adaptive

responses to oxygen gradients and hypoxia by regulating their glucose

oxidative phosphorylation, glycolysis and fatty acid oxidation (53).

Based on the demands for energy and the production of specific

functional-associated factors, pro-inflammatory macrophages and

anti-inflammatory macrophages opt for distinct metabolic pathways

upon activation. Instead of M2 macrophage, M1 macrophages carry

out glycolysis and rely on fatty acid biosynthesis, and increased

glycolysis causes succinate accumulation and promote inflammation

by ROS/(hypoxia-inducible factor-1a) HIF-1a/IL1b pathway (54,

55). On the other hand, M2 macrophages possess a high basal

mitochondrial oxygen consumption rate (OCR), carry out oxidative

phosphorylation (OXPHOS), and require the induction of fatty acid

oxidation (55, 56). Different fatty acid metabolism, particularly

mitochondrial fatty acid oxidation in macrophage modulates

inflammatory signatures and macrophage phenotype, which

indicated the vital function of macrophage in hyperlipidemia-

associated autoimmune diseases include psoriasis, RA, and SLE.

Programmed macrophages by setting metabolic commitment for
FIGURE 2

Macrophages polarization and function in metabolism processes. Macrophage are also involved in a variety of metabolic processes, including arginine
metabolism glucose metabolism and fatty acid metabolism, to exert different immunological functions. The M1 macrophages express nitric oxide
synthase (NOS) to metabolize arginine into NO and citrulline, which further promotes inflammatory response. Instead, M2 macrophages inhibited
inflammation by medicating polyamine/proline synthesis. M1 macrophages carry out glycolysis, and causes succinate accumulation and promote
inflammation by ROS/HIF-1a/IL1b pathway. And M2 macrophages carry out oxidative phosphorylation (OXPHOS) could decrease IL-1b after pro-
inflammatory activation in macrophage, and promoted Treg differentiation to increase the regulatory function in immune system. M1 macrophage rely
on fatty acid biosynthesis and M2 macrophage require fatty acid oxidation. The function of macrophage on fatty acid metabolism modulates
inflammatory signatures and involved in hyperlipidemia-associated autoimmune diseases include psoriasis, RA, and SLE.
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OXPHOS increased programmed death ligand 1 (PD-L1) expression,

decreased IL-1b after pro-inflammatory activation in macrophage,

and promoted Treg differentiation to increase the regulatory function

in immune system (57). Moreover, macrophages resist parasite

infection by regulating glutathione and redox metabolism and

participate in tissue repair, tumor growth and anti-inflammatory

response by regulating iron metabolism (58–60). Furthermore, the

metabolites, in turn, mediate the macrophage response to

inflammation. Recent study has found that citrulline levels in

lipopolysaccharide (LPS) and IFNg-stimulated macrophages are

significantly reduced, which promotes inflammatory signals by

activating Janus kinase 2 (JAK2)- signal transducer and activator of

transcription 1 (STAT1) pathway (61). Citrulline can inhibit bacterial

load in the spleen and liver of Listeria monocytogenes-infected mice

by impeding pro-inflammatory macrophage activation (61).
2.5 Macrophage polarization

Macrophages display specific phenotypes and rapidly change their

functions under the local microenvironment, called macrophage

polarization (62). The phenotypes of macrophage polarization are

generally divided into two types: one is classically activated

macrophages (M1), which are pro-inflammatory and involved in the

elimination of pathogens and resist infection. The other is alternative

activation macrophages (M2) that are anti-inflammatory and involved

in tissue repair and reconstruction (63). The Th1 cytokine, such as IFNg
or LPS, can induce M1 polarization, while Th2 cytokines, such as IL-4,

can induce M2 polarization. Intracellular metabolite profiles of each

macrophage activation state presented a unique metabolic signature.

The 1D 1H NMR-based metabolomics identified increased adenosine

triphosphate (ATP) and decreased intracellular nicotinamide adenine

dinucleotide (NAD+) in M1 macrophage, and increased adenosine

diphosphate (ADP), guanosine triphosphate (GTP), adenosine

monophosphate (AMP) in M2 macrophage (64). The M1

macrophages express high levels of pro-inflammatory cytokines,

active nitrogen and oxygen intermediates, promote the responses of

Th1 and Th17 by secreting IL12 and IL23, and have strong bactericidal

and tumor-killing activity (63, 65). However, the M2 macrophages

indicate high phagocytic activity and high expression of scavenger

receptor (SR), macrophage mannose receptor (MMR), arginase-1(Arg-

1), IL10, TGF-b, which are mainly involved in parasite containment,

phagocytosis, promote tissue repair, wound healing, angiogenesis,

fibrosis and immune regulation (66, 67). In fact, depending on

induced agents, expressed markers, secreted mediators and functions,

M2 macrophages are further classified as M2a, M2b, M2c, as well as

M2d macrophages. The M2a macrophages induced by IL-4 or IL-13,

also known as wound healing macrophages, can increase endocytosis

activity and have immunity to parasites, tissue repair, collagen

formation and fibrogenesis (68). M2b macrophages stimulated by

immune complexes, TLR ligands or IL-1b, also known as regulatory

macrophages, have strong anti-inflammatory and immunosuppressive

effects (69). M2c macrophages induced by glucocorticoids, IL-10 or

TGF-b promote phagocytosis and clearance of dead cells (70). M2d

macrophages inducedmainly by TLR antagonists, also known as tumor

associated macrophages (TAM), can promote angiogenesis and tumor

progression (71). However, M1 and M2 macrophages are the two
Frontiers in Immunology 05
extremes of the activation state of macrophages which cannot fully

represent macrophages in the complex microenvironment in vivo. The

dynamic balance of M1/M2 is crucial to maintain homeostasis.

Response to foreign stimulation such as microbial infection or tumor,

M1 macrophage is activated and promote inflammation to perform

robust antimicrobial and anti-tumoral function. And to protect against

the chronic inflammatory response, M1 macrophage is inhibited by

regulatory mechanisms driven by anti-inflammatory function of

enhanced M2 macrophages differentiation and promote tissue

regeneration, angiogenesis and wound healing (72). And the

imbalance contributes to the occurrence and development of many

diseases including infection, tumor and autoimmune diseases (73–75).

Fortunately, the high degree of plasticity allows macrophage switch

from one phenotype to another depending on encountered micro-

environment signals in each specific tissue, which providing a potential

treatment target for autoimmune disease.
3 Macrophages in SLE

SLE is a chronic systemic autoimmune disease with diverse

clinical manifestations characterized by immune system infiltration

and inflammation in damaged organs covering skin, lungs, joints,

kidneys and central nervous system (76). The abnormalities in the

activation state of circulating and tissue macrophages in patients with

SLE are crucial factors in the occurrence and development of the

disease (77, 78). Depleting macrophage attenuated skin and kidney

disease severity, which suggested the vital function in SLE

pathogenesis (79, 80). The pro-inflammatory patrolling monocytes

(PMOS) accumulated in the glomeruli in SLE patients and lupus mice

are the main components of lupus glomerular or kidney

inflammation (81). Emerging evidence has demonstrated that

macrophage infiltration is associated with lupus nephritis in mice

and humans (82, 83). Renal macrophage infiltration appears in

spontaneous NZB/W nephritis and IFN-accelerated models of lupus

nephritis (84). The function and numbers of MZMs are also reduced

in autoimmune BXD2 mice (85). The absence of MZMs results in

retention of apoptotic cell debris within the marginal zone and drives

follicular Ag-transportation by marginal zone B (MZB) cells to

stimulate an autoimmune response (85). The abnormal functions of

macrophage in SLE are indicated in Figure 3.

The phagocytic ability of macrophages from SLE patients is

weakened, which results in the production of autoantibodies and

SLE-like autoimmune nephropahy (78, 85). Hence the dysfunction of

macrophage phagocytosis may partly explain the gathering of

apoptotic cells in the germinal center of lymph nodes in SLE

patients (86). The mechanism response to the reduced clearance

rate of macrophages has been widely demonstrated. It has been shown

that the absence of PPARg in macrophage cannot obtain an anti-

inflammatory phenotype in the presence of apoptotic cells, finally

resulting in glomerulonephritis and the autoantibodies production of

nuclear Ags (87). The transcription factors Kruppel-like factor 2

(KLF2) and KLF4 also control apoptotic cells clearance program in

tissue macrophage and maintain the homeostasis (88). Moreover, the

increased autophagy and apoptosis in macrophage also contribute to

the pathogenesis of SLE. The autophagy-related genes (Atg5, Atg12

and Beclin 1) were significantly upregulated in the splenic and renal
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macrophages in activated lymphocytes-derived DNA (ALD-DNA)

induced lupus mice and in the peripheral blood mononuclear cells

from SLE patients. And adoptive transfer of autophagy-suppressed

macrophages alleviated lupus symptoms in SLE mice (89). Increased

monocyte/macrophage apoptosis could contribute to autoantibody

formation and organ damage by increased apoptotic load and

impaired clearance of apoptotic material, finally exacerbated the

autoimmune phenotype in NZB x SWR lupus-prone mice (90).

Besides, research about lupus nephritis in NZB/W mice suggested

that macrophage infiltration in the kidney promoted glomerular cell

proliferation and early fibrosis by IL-10, MMP, osteopontin and

growth factors (91).

SLE is a prototype autoimmune disease in which genetics play a

major role. Researchers have identified many new loci which are

attributed to the pathogenesis of SLE by genomewide association

studies (GWAS). SLE susceptibility loci related to macrophages are

mainly concentrated in genes that affect type I interferon (IFNI)

signaling, NFkB activation, TLR signaling, phagocytosis and immune

tolerance. Currently, more than 100 genetic risk sites related to SLE

and more than half of them are closely related to the production or

response of IFNI (92). IFNI promotes monocyte differentiation and

the expression of MHCII and costimulatory molecules (such as CD40,

CD80 and CD86) of macrophages to promote T cell activation (93,

94). Besides, increased IFNI levels in SLE patients can further

promote the recruitment and adhesion of monocytes, and

accumulation of macrophages in kidney and vascular lesions of SLE

patients (95–97). In addition, IFNI enhances scavenger receptor SR-A

and reduces ATP binding cassette subfamily A 1 (ABCA1) expression

to promote cholesterol efflux, oxidation low lipoprotein (ox-LDL)

uptake in macrophage and foam cell formation, which increasing the
Frontiers in Immunology 06
risk of cardiovascular diseases (96). Abnormal increased IFNI

promotes the translocation of MZB cells to the follicular region of

the spleen and disrupts the interaction between MZBs and MZMs,

preventing clearance of apoptotic cells debris and follicular entry

deterrence of apoptotic cells by MZMs (98, 99). The amplified TLR7

signaling in macrophage activation during antiviral responses and

autoimmune diseases can occur product IFNI in turn by promoting

phosphorylation and activation of MAP kinase p38 and transcription

factor STAT1 (100). TNIP1(TNFAIP3-interacting protein 1, also

known as ABIN1), a characteristic susceptibility gene for SLE

identified by GWAS can regulate IFN-I production in DCs and

macrophages through the TLR7 pathway (101). Large numbers of

renal myeloid cells in patients with lupus nephritis, including

macrophages, are activated. Almost all known susceptibility genes

that affect innate immune signals may potentially affect the

progression of lupus nephritis by activating myeloid cells in the

kidney (102). Some genes such as ITGAM and FCR can potentially

affect the recruitment of myeloid cells to the glomerular matrix by

binding to the immune complexes in the glomerulus (103). DCs,

macrophages and endothelial cells engulf C1q-coated apoptotic cells,

and deficient in the complement protein C1q inhibit the clearance of

apoptotic material and intensify lupus-like skin manifestations in

mice and humans (100). ITGAM is an established SLE susceptibility

locus, which impairs phagocytosis of complement-opsonized targets

in monocytes, neutrophils and macrophages. In conclusion, these

susceptible genes promote SLE pathogenesis through IFN-I-

macrophage immune axis, and rebalancing macrophage functions

may resist the damage of highly expressed IFN-I.

Abnormal macrophage polarization also has been identified in the

occurrence and development of SLE. The overwhelming M1
FIGURE 3

The abnormal activation of macrophage in SLE. The abnormal microenvironment in SLE patients, such as the high expressed IFN-I, promotes monocyte
to recruit and differentiate into macrophages. In addition, increased antigen presentation of macrophage promotes B cell activation assisted with Th cells
and further promotes the production of autoantibodies. Macrophages can also cause cardiovascular risk by promoting foam cell formation with
increased SR-A and decreased ABCA1 expression. The dysfunction of macrophage phagocytosis may increase the gathered apoptotic cells and results in
retention of apoptotic cell debris in SLE patients. Increased macrophage apoptosis and autophagy could contribute to autoantibody formation and organ
damage by increased apoptotic load and impaired clearance of apoptotic material, finally exacerbated the production of autoantigens. Besides,
macrophage infiltration the kidney promoted glomerular cell proliferation and early fibrosis by IL-10, MMP, osteopontin and growth factors. Besides,
increased apoptotic cells serves as autoantigen to aggravate autoimmune reaction and may cause multiple targeted organs such as skin, joint, or blood.
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macrophages promote the exposure of autoantigens and the

occurrence of autoimmune reactions (104, 105). The gene

expression profiles of myeloid cells from active SLE patients

expressed higher M1-related genes and tend to promote

inflammation. In comparison, myeloid cells from inactive SLE

patients expressed higher M2-related genes and participated in

immune repair (106). Aberrantly expanding M1 macrophages were

dominating in MRL-Fas(Lpr) mice, hastened the onset of lupus

nephritis, mediated defective renal repair and non-resolving

inflammation (107). In the early stage of apoptosis, M2

macrophages can promote the production of anti-inflammatory

factors and phagocytize apoptotic cells in an anti-inflammatory way

called “bubble drink” (108, 109). Increased M2 macrophages reduced

pro-inflammatory cytokines expression and increased the secretion of

anti-inflammatory cytokines, which could be used for anti-

inflammatory therapy in SLE (110). TIPE2 overexpression by AAV-

TIPE2 induced M2 macrophage polarization, induced serum anti-

dsDNA autoantibody and pathological renal damage, increased urine

protein levels in the ALD-induced SLE mice (111). Adoptive

transplantation of M2 macrophages or stimulating monocytes to

differentiate into M2-like macrophages significantly reduced the

severity of SLE, while M1 macrophage metastasis aggravated the

development of SLE (112, 113). Virgin olive oil and its phenolic

components have been shown to prevent various inflammatory and

immune diseases, which may be related to inhibiting M1 and

promoting M2 macrophage polarization (114, 115). The above

studies show that the abnormal polarization of macrophages plays a

vital role in SLE, which will be a potential target for SLE therapy.

Current therapies for SLE are designed to resolve inflammation

with the goal of preventing permanent organ injury, and reduce

clinical symptoms. Mycophenolate mofetil (MMF), an inhibitor of

purine synthesis, inhibits the recruitment of monocytes and the

production of nitric oxide and superoxide in activated macrophages

to restrain tissue damage (116). The heterogeneity of disease

mechanisms in SLE suggests that cell- and cytokine- or pathway-
Frontiers in Immunology 07
specific therapies for macrophage would be effective in treatment

for SLE.
4 Macrophages in RA

RA is an autoimmune disease characterized by chronic

inflammation that eventually results in joint damage and even joint

dysfunction. It has been found that macrophage infiltration is

positively correlated with the degree of joint erosion, and increased

synovial macrophage infiltration in synovial tissue is an early sign of

RA (117–119). Clodronate could reduce knee swelling, inflammation

and joint destruction by eliminating synovial macrophages in rats

with antigen-induced arthritis (AIA) (120). Various mechanisms

generally lead to increased macrophage infiltration in inflammatory

sites, such as facilitating the expression of chemokines and pro-

inflammatory cytokines, local survival rate/reducing apoptosis

(121). Inhibited macrophage infiltration in synovial tissue may be a

protential target for RA treatment. Increased apoptosis of Ly6C+

monocyte derived macrophages, reduced monocyte migration into

the ankles and enhanced macrophage migration from the inflamed

synovial tissue to the draining lymph nodes are responsible for the

reduction of macrophages in synovial tissue after infliximab

treatment alleviated disease progress in hTNF-Tg mice (122).

The infi ltrated macrophage further mediated various

inflammatory cell states, significantly contributing to the initiation

and perpetuation of synovitis in RA by orchestrating cytokine

network (123), as shown in Figure 4. Macrophages expedite

inflammation by promoting the production of Th17 cells and

stimulating osteoclast differentiation by secreting cytokines

including IL-26 (124, 125). Besides, macrophages in synovial tissue

and synovial fluid mediate the chemotaxis and proliferation of

endothelial cells, promote the formation of pannus and infiltration

of inflammatory cells, and further expand the inflammatory response

in RA by producing vascular endothelial growth factor (VEGF) (126,
FIGURE 4

The function of macrophage in RA. The infiltrated macrophage further mediated various inflammatory cell states in synovitis by orchestrating cytokine
network. Macrophages promote inflammation by promoting Th17 cell differentiation and stimulating osteoclast differentiation by secreting cytokines
including IL-26. Besides, macrophages in synovial tissue and fluid mediate the chemotaxis and proliferation of endothelial cells, promote the formation
of pannus and infiltration of inflammatory cells, and further expand the inflammation in RA by producing endothelial growth factor (VEGF). And
macrophage-derived IL-8 also promote angiogenesis disorder in RA. The abnormally activated macrophage in RA patients show a proinflammatory
profile, which may be supported by activated B or T cells.
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127). And macrophage-derived IL-8 also promote angiogenesis

disorder in RA (128). The mechanism of abnormal activation of

macrophages is not clear at present. Burbano. et al. found that

increased circulating microparticles (MP) forming immune

complexes in SLE and RA patients favored the polarization of

monocyte-derived macrophages into a proinflammatory profile,

which promoted T and B cell activation, and B-cell survival (129).

Transcriptome profiles of highly inflamed RA synovial tissue (RA-ST)

also demonstrated that monocytes/macrophages show similar gene

patterns induced by bacterial and fungal, and activated B or T cells

also activate monocytes/macrophages (130).

Current conventional synthetic and biologic disease-modifying

anti-rheumatic drugs (DMARDs) used in the clinic to treat of RA are

related to adjusting macrophage activation and reducing synovial

macrophage infiltration. Methotrexate, leflunomide or sulfasalazine

reduces macrophage accumulation by promoting apoptosis and

inhibiting Th1 response (123). Besides, the anti-TNF biological

anti-rheumatic drugs such as etanercept, adalimumab decreased

inflammatory cytokines production and increased phagocytosis in

monocyte derived macrophages, which all alleviated inflammatory

reactions (131). In addition, various monoclonal antibodies targeting

biomolecules produced by macrophages are available for the

therapeutic options of RA. The therapeutic efficacy of blocking

granulocyte-macrophage colony stimulating factor receptor (GM-

CSF) pathway like anti-GM-CSFR monoclonal antibody

mavrilimumab is linked to inhibited production of pro-

inflammatory mediators such as VICM (citrullinated and MMP

degraded vimentin fragment) biomarker released by activated

macrophages (132, 133). A monoclonal antibody to folate receptor

b (FR-b) produced by macrophages specifically accumulates in

inflamed lesions of murine RA and peritonitis disease models,

facilitating immune cells, including T cells, B cells, neutrophils and

DCs, to exit from the inflamed lesions and allative disease

processes (134).

The imbalance of macrophage polarization also occurs in RA. The

blood monocytes from RA patients had a propensity for preferential

differentiate toward M1-like macrophages that contributed to

synovial inflammation (135). Transcriptional omics study showed

that synovial macrophages facilitate the expression of pro-

inflammatory genes (INHBA, FCER1A, SLC2A1, MMP12, EGLN3,

NOS and CCR2) but restrain anti-inflammatory genes (IGF1, HTR2B,

FOLR2 and CD36) expression (136, 137). Besides, M1 macrophages

are characterized by decreased heme uptake and iron output but

increased iron storage, which could partly explain the phenomenon of

anemia in RA patients (138). The M1-to-M2 macrophage re-

polarization can also serve as a promising treatment for RA.

Targeted biologics that selectively regulate the function of

macrophages have broad research prospects for the treatment of

RA and also could solve the adverse effects of non-targeted drugs to a

certain extent. Interfering with glycolytic pathways activated in M1

macrophages can reduce pro-inflammatory factors production and

IgG antibodies, finally alleviating joint inflammation and damage in

CIA mice (139). The administration of Wilforlide A reduced clinical

scores, joint swelling and histological damage of collagen-induced RA

mice by inhibiting the secretion of pro-inflammatory factors (MCP1,

GM-CSF and M-CSF) and iNOS in the synovium (140). Angiotensin

II type 2 receptor (AT2R) activation and a developed triamcinolone-
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go ld nanopar t i c l e (Tr i am-AuNP) complex promote s

proinflammatory synovial macrophages to differentiate into the

tolerogenic macrophage, finally attenuating the joint pathology in a

rat model of collagen-induced RA (141, 142). The above studies have

shown that M1 macrophages are dominant in RA synovium,

regulating abnormal macrophage polarization is one of the

important therapies of RA. Many new drug vectors and targets

have been found to regulate macrophage function selectively.

Encapsu la t ed p la smid DNA encod ing IL-10 and the

chemotherapeutic drug betamethasone sodium phosphate (BSP) in

biomimetic vector M2 exosomes derived from M2 macrophages,

folate-modified triptolide liposomes (FA-TP-Lips) and folic acid

modified silver nanoparticles(FA-AgNPs) all serve as a promising

biocompatible drug to facilitate M2 macrophages polarization

selectively, thereby treating RA safely and effectively (143–145).

However, macrophages are incredibly heterogeneous. The focus and

difficulty of RA drug development will be how to distinguish, identify

and act on specific activated pathogenic macrophages.
5 Macrophages in SSc

Systemic sclerosis (SSc) is a chronic multi-system disease

characterized by autoimmunity, immune cell infiltration and

activation, fibrosis and vascular lesions, often accompanied by skin

involvement and visceral dysfunction including heart and lungs caused

by fibrosis (146, 147). Vascular complications such as pulmonary

hypertension and scleroderma renal crisis have become the leading

causes of disability and death of SSc (148, 149). The infiltrating

inflammatory leukocytes in the new affected skin from SSc patients

are mainly CD14+ monocytes/macrophages (150). Transcriptomics

analysis found that monocytes continuously migrated and

differentiated into alveolar macrophages to promote fibrosis during

pulmonary fibrosis and selectively targeting the differentiation of

alveolar macrophages in the lung may improve fibrosis (151). These

researches suggested that monocytes/macrophages play an essential

role in the early pathogenesis of SSc, which was displayed in Figure 5.

Apoptotic cell clearance (efferocytosis) capacities of monocyte-

induced macrophage from SSc patients are significantly lower than

those in healthy donors, which partly explains the emergence of

circulating nuclear antigens (152). Besides, macrophage is a main

contributor for fibirosis. The CD14+ monocytes and CD14+

pulmonary macrophages in SSc patients have elevated profibrotic

fibronectin production and are considered extracellular matrix

producers (153). Activated macrophages produced a variety of

cytokines, such as high levels of CCL18, CCL2, and CXCL8 but low

IL-10 expression, which enriched in perivascular regions of highly

fibrotic SSc skin to favor pro-inflammatory fibroblasts (154, 155).

Additionally, the excessive production of CXCL13 and vascular

VEGF by macrophages can also promote tissue fibrosis, immune

activation and abnormal vascular morphology in SSc (156, 157). The

formation mechanism of fibrogenic macrophages is still unclear. It

has been demonstrated that fibrotic macrophage might be activated

by a dysfunctional B cell in mice with bleomycin-induced SSc, and

correlated with the severity of fibrosis in SSc patients (158). Besides,

Dysregulation of TGF-b and IL-4 signaling may also be responsible

for the pro-fibrotic function in SSc macrophages (159).
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The abnormal polarization of macrophages in SSc is relatively

complex. Studies have found that crystalline silica SiO or response gene

to complement 32 (RGC32) can promote macrophages to form anM1-

like phenotype and reduceM2 polarization, which caused the reduction

of macrophages efferocytosis in SSc (160, 161). However, the gene

expression profiles of affected skin, lung, esophagus and peripheral

blood in patients with SSc showed that the expression of M2-related

genes was significantly up-regulated in macrophages with pronounced

fibrogenic effect (162). Infiltrated macrophages in skin lesions from SSc

and local scleroderma were found to highly express CD163 (163–165),

indicating that M2 macrophage may also involve in skin fibrosis.

Besides, studies have found that some biological agents can inhibit

the process of SSc by reversing the polarization of M2 macrophages.

The PDE4 inhibition induced by nintedanib, rolipram and apremilast

and glycyrrhizin all ameliorate the fibroblast activation by impeding

M2 macrophage function in SSc-related mice (166–168). All the above

studies indicate that M2macrophage infiltration may be a target for SSc

treatment. However, researchers had found the number of M1 and M2

macrophages in the skin of SSc patients was significantly increased,

indicating that macrophages in different polarized states might

synergistically promote the pathogenesis of SSc (169). Skin biopsy

RNA examined by next-generation RNA sequencing suggested that

most early diffuse SSc patients had a concomitant M1 and/or M2

macrophage signature, suggesting co-occurrence of dysregulated

fibroblast and macrophage polarization (169). Studies about TLR

signaling in fibrosis in SSC and other fibrotic diseases hinted that the

conflicting results may be related to long-term inflammatory

stimulation (170). Furthermore, macrophages can acquire memory-

like characteristics to copy with antigen exposure, protection against re-

infection and more efficient vaccine strategies. Recent research found

that trained macrophage acquired memory-like characteristics in
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response to antigen exposure can be targeted to SSc treatment. Low-

dose LPS training and adoptive transfer alleviated fibrosis and

inflammation in SSc mice, while BCG-training aggravated disease in

this model (171). The long-term and complex in vivo

microenvironment may be an essential promoter of macrophage

activation that is unique to SSc patients. However, the function and

mechanism need to be further explored.
6 Macrophages in T1D

T1D is an autoimmune disease characterized by the continuous

destruction of islet cells caused by islet leukocyte infiltration (172).

The loss of pancreatic b cells can lead to uncontrolled blood glucose

and various complications such as cardiovascular disease,

nephropathy, retinopathy, heart attack and stroke, which require

lifelong dependence on exogenous insulin (173). Islet inflammation is

one of the main mechanisms of pancreatic b-cell injury and the

development of T1D. In diabetes-prone biological breeding rats (DP-

BB), it has been demonstrated that macrophages are the first immune

cells to infiltrate into islets (174). Furthermore, there were no

lymphocytes in the islets when macrophage infiltration was

prevented (175), suggesting that lymphocyte recruitment in islets

depends on the macrophage. In addition, the immunohistochemical

results of pancreatic specimens from newly diagnosed T1D patients

confirmed the presence of macrophages in early and advanced

inflammation (176). Various research about spontaneous T1D

animal models has shown that specific clearance of macrophages in

vivo can significantly inhibit Th1 but increase Th2 immune response

induced mainly by IL-12, and inhibited cytotoxic effector of CD8+ T,

even remaining selective acceleration of the recruitment of CD8+ T

cells into the islets (177–179). Depleting macrophage by liposomes

containing clodronate also selectly abolished diabetogenic CD4+ T

cells induced diabetes even with inflammation existence (180).

The microenvironment in T1D pancreas promote the recruitment

of macrophages and abnormal functions. It was found that islet resident

macrophages of non-autoimmune mice had immunomodulatory

phenotype and could promote Treg cell differentiation in vitro (181).

Deficiency of immunomodulatory function in macrophages may be an

essential mechanism of pathogenesis of T1D (181). In addition, the

migration and phagocytosis to target inflammatory cells of macrophage

in the streptozotocin (STZ) -induced T1D model weakened islet cell

immune defense (182). Diabetgenic CD4 T cells produce a variety of

inflammatory cytokines and chemokines such as CCL1, resulting in the

recruitment of macrophages into pancreas (183). Reduced integrin-

associated surface factor CD47 on islet cells promoted macrophage

migration and phagocytosis of endogenous cells (182). Instead of

clearing apoptotic cells silently without production of pro-

inflammatory cytokines, macrophages in T1D secret inappropriately

high amounts of IL-1b and TNF-a to contribute to the initiation or

continuation of an immune attack towards the pancreatic beta-cells

(184). Besides, previously research also showed that macrophages from

non-obese diabetic (NOD) mice are activated and engulf apoptotic cells

at a lower rate, which might result in secondary necrosis, inflammation

and self-antigen presentation in T1D (185).

And increased macrophage-derived cytokines including IL-12,

TNF-a and IL-1b selectively in spleen lymphocytes and pancreatic
FIGURE 5

The abnormal functions of macrophage in SSc. The efferocytosis
capacities of macrophage in SSc patients are significantly reduced,
which cause the emergence of circulating nuclear antigens and
promote proinflammatory fibroblasts. Activated macrophages
produced a variety of cytokines, such as high levels of CCL18, CCL2,
and CXCL8 but low IL-10 expression, which enriched in perivascular
regions of highly fibrotic SSc skin to favor pro-inflammatory
fibroblasts. Additionally, the excessive production of CXCL13, elevated
profibrotic fibronectin and VEGF by macrophages can also promote
tissue fibrosis, immune activation and abnormal vascular morphology
in SSc. The fibrotic macrophage might be activated by a dysfunctional
B cell or dysregulation of TGF-b and IL-4.
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islet are responsible for the inflammatory cascade of events leading to

the destruction of pancreatic b cells (186). Macrophages are involved

in regulating the infiltration and functions of immune cells in T1D.

Recruited macrophages in the pancreas by diabetes-derived T cell

produce IL-1b, TNF-a and NO, and express chemokine receptors

CCR5, CXCR3 and CCR8 to further recruit and active other

inflammatory cells (183). The interaction between inflammatory

macrophages and b-cells promote the production of CXCR2 ligands

(CXCL1 and CXCL2) in the pancreas of T1D mice, which further

recruit diabetogenic CXCR2+ neutrophils from the blood into the

pancreatic islets (187). Autoreactive CD4+ T cells destroyed b cells

through a Fas-dependent mechanism that was assisted by cytokines

IL-1a, IL-1b, and IFN-g (188). Besides, macrophge derived IL-12

might contribute to the development and activation of b cell–

cytotoxic Th1 and CD8 cells in NOD mice (189). And

macrophages selectively traffick autoimmune cytotoxic T cells into

the islets via IFN-I signaling even without entering the islets, and

ablation of IFN-I signaling on macrophages limits the onset of T1D

(190). The role of macrophage on the pathological process of T1D was

shown in Figure 6.

Macrophage polarization may act as a potential therapeutic agent

for T1D. M2 macrophages explicitly located in the inflammatory

pancreas could significantly inhibit the proliferation of T cells and

promote the survival of b cells after adoptive transfer into

spontaneous T1D mice, resulting in resistance to T1D in non-obese

resistant (NOR) mice (191). In addition, the survival of transplanted

islets was partly dependent on the content of M2 macrophages (192,

193). The early glycosylation products (EGPs) produced in the first
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step of Maillard reaction/glycosylation alleviated insulin resistance

and pancreatic immune infiltration by increasing the M2/M1 ratio

(194). Macrophage-specific knockout ubiquitin coupling enzyme E2

can weaken the energy metabolism and M2 type polarization of

macrophages, thus increasing the risk of diabetes T1D induced by

STZ (195). Hence, promoting M2 but inhibiting M1 macrophage

polarization may be an important target for preventing and

treating T1D.

Macrophage-derived proinflammatory cytokines, chemokines

and their receptors were identified the suitable targets for the

therapeutic interventions of T1D. The TNF-a inhibitor infliximab

could alleviate T1D, which might be related with the reduced

presentation of islet antigen to both effector CD4+ and CD8+ T

cells (196, 197). And IL-6 has also been suggested as a target for T1D

treatment (198). Multiple strategies blocking the CXCR1/2 pathway

main expressed in macrophage inhibited leucocyte recruitment and

prevent inflammation and autoimmune mediated islet damage, which

was new interventional approach for T1D (199).
7 Discussion

The possible functions of macrophages in autoimmune diseases

as described in Table 1. In brief, the scavenging ability of macrophages

was destroyed, leading to the accumulation of autoimmune

complexes in local tissues. Besides, the abnormal macrophage

activation induced a series of irrepressible pro-inflammatory

responses, and promoted the activation and recruitment of
FIGURE 6

The role of macrophages in the pathogenesis of T1D. The microenvironment in T1D pancreas promote the recruitment of macrophages and abnormal
functions. Islet resident macrophages in T1D had defected immunomodulatory phenotype and might inhibit Treg cell differentiation. In addition, the
migration and phagocytosis to target inflammatory cells such as apoptotic cells of macrophage in T1D are decrease. And macrophage secret
inappropriately high amounts of IL1b and TNFa to contribute to the initiation of an immune attack towards the pancreatic beta-cells. The unengulfed
apoptotic cells might result in secondary necrosis, inflammation and self-antigen presentation in islet. And increased macrophage-derived cytokines
including IL-12, TNF-a and IL-1b are responsible for the inflammatory cascade of events leading to the destruction of pancreatic b cells. The interaction
between inflammatory macrophages and b-cells promote the production of CXCR2 ligands (CXCL1 and CXCL2), which further recruit diabetogenic
CXCR2+ neutrophils. Autoreactive CD4+ T cells destroyed b cells assisted by cytokines IL-1a, IL-1b, and IFN-g. Besides, macrophage derived IL-12 and
IFN-I signaling might contribute to the development and activation of b cell–cytotoxic Th1 and CD8 cells.
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lymphocytes in local tissues, resulting in tissue damage. In

addition, the aberrant polarization of macrophages has been

identified to contribute to the pathogenesis of autoimmune diseases.

However, due to the significant heterogeneity of macrophages, the

polarization of macrophages varies significantly in different tissues

and even in different phases of the same disease. Systematically and

comprehensively understanding the polarization of macrophages in

autoimmune diseases will conduce to the prevention and treatment of

autoimmune diseases.

Currently anti-macrophage therapy in autoimmune diseases

mainly focuses on down-regulation the production of abnormal

macrophage-derived pro-inflammatory cytokines production,

elimination of dysfunctional macrophage from the inflammatory

regions such as inhibiting monocyte recruitment and differentiation,

and upregulation of anti-inflammatory cytokines. In recent years,

macrophage-derived extracellular vesicles composed of microvesicles

and exosomes have aroused increased interest in the treatment for

autoimmune disease. The macrophage-derived extracellular vesicles are

considered as optimal delivery vehicles for the minimal toxicity and

specific target effect. Macrophage-derived microvesicle-coated poly

(lactic-co-glycolic acid) (PLGA) nanoparticles to encapsulate

tacrolimus significant suppress the progression of RA in mice, which

is an efficient biomimetic vehicle for RA targeted treatment (200).

Besides, macrophage-derived extracellular vesicles efficiently delivered

dexamethasone into inflamed kidney and effectively suppress

inflammation and fibrosis in kidney (201).

Various new techniques such as single-cell sequencing,

metabolomics and other multi-omics research methods have been

applied in autoimmune diseases research and have achieved

considerable achievements. A single-cell sequencing result of a

mixed lung cell sample from bleomycin-induced lung injury mice

found a group of disease-related transitional macrophages that

specifically express CX3CR1 and PDGF-AA and are located in

fibrotic scars to promote fibrosis (202). This study provides an

effective target for preventing and treating pulmonary fibrosis-

related diseases. In addition, single-cell pseudo-time analysis infer

the transcription trajectory of macrophages when they gradually

change their gene expression profile during autoimmunity,

suggesting that we can find the molecular changes in the early stage
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of the disease and the most decisive target. The application of multi-

omics methods at the single-cell level will provide an effective means

for exploring the potential mechanisms of abnormal macrophage

phenotypes and offer a solid theoretical basis for preventing and

treating autoimmune diseases.
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TABLE 1 Possible function of macrophages in autoimmune diseases.

Macrophage function Macrophage polarization

SLE • Increased autophagy of macrophage
• Aggravating the inflammatory response
• Reduced phagocytosis to apoptotic cells

↑ M1: Increasing secretion of pro-inflammatory cytokines
↓ M2: Reducing anti-inflammatory factors and phagocytize apoptotic cells

RA • Increased anti-apoptosis
• Increaed migration of macrophages to local tissues
• Promoting Th17 differentiation and joint inflammation
• Promoting the formation of pannus and causes further infiltration of
inflammatory cells

↑ M1: Increasing iron storage and glycolysis, releasing pro-inflammatory cytokines to
promote inflammation

SS • Increased anti-apoptosis in macrophage
• Reduced phagocytosis to apoptotic cell
• Producing multiple cytokines to participate in fibrosis and angiogenesis

↑ M2: Increasing M2-related fibrotic phenotype

T1D • Promoting the inflammatory response in islets
• Mediating T cells recruitment and activation
• Promoting immune cell infiltration and autoimmune response in islets

↓ M2: Insulin resistance and pancreatic immune infiltration are related to reduced M2
polarization
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