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During atherogenesis, blood monocytes transmigrate into the subendothelial space
and differentiate toward macrophages and foam cells. The major driver of monocyte–
macrophage differentiation is macrophage colony-stimulating factor (M-CSF). M-CSF-
induced macrophages are important promoters of atherogenesis as demonstrated in
M-CSF and M-CSF receptor knock out mice. However, M-CSF is not the only relevant
promoter of macrophage differentiation. The platelet chemokine CXCL4 also prevents
monocyte apoptosis and promotes macrophage differentiation in vitro. It is secreted from
activated platelets and has effects on various cell types relevant in atherogenesis. Knock-
ing out the Pf4 gene coding for CXCL4 in Apoe−/− mice leads to reduced atherogenesis.
Thus, it seems likely that CXC4-induced macrophages may have specific pro-atherogenic
capacities. We have studied CXC4-induced differentiation of human macrophages using
gene chips, systems biology, and functional in vitro and ex vivo experiments. Our data
indicate that CXCL4-induced macrophages are distinct from both their M-CSF-induced
counterparts and other known macrophage polarizations like M1 macrophages (induced
by lipopolysaccharide and interferon-gamma) or M2 macrophages (induced by interleukin-
4). CXCL4-induced macrophages have distinct phenotypic and functional characteristics,
e.g., the complete loss of the hemoglobin–haptoglobin (Hb–Hp) scavenger receptor CD163
which is necessary for effective hemoglobin clearance after plaque hemorrhage. Lack of
CD163 is accompanied by the inability to upregulate the atheroprotective enzyme heme
oxygenase-1 in response to Hb–Hp complexes. This review covers the current knowledge
about CXCL4-induced macrophages. Based on their unique properties, we have suggested
to call these macrophages “M4.” CXCL4 may represent an important orchestrator of
macrophage heterogeneity within atherosclerotic lesions. Further dissecting its effects on
macrophage differentiation may help to identify novel therapeutic targets in atherogenesis.
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MACROPHAGES AND MACROPHAGE HETEROGENEITY IN
HUMAN ATHEROSCLEROSIS
During the development of atherosclerotic lesions, blood mono-
cytes adhere to the endothelium, transmigrate into the suben-
dothelial space, and differentiate toward macrophages and foam
cells (Galkina and Ley, 2009; Moore and Tabas, 2011). This differ-
entiation process is potentially driven by various factors including
cell–cell contact, components of the extracellular matrix, pro-
and anti-inflammatory cytokines, and chemokines as well as by
lipoproteins, most importantly oxidized low density lipoprotein
(oxLDL; Moore and Tabas, 2011). Macrophages are very ver-
satile, and depending on the local microenvironment they can
assume different phenotypes. In this context, one has to distin-
guish between the processes of “macrophage differentiation” and
“macrophage polarization” (Wolfs et al., 2011).

MONOCYTE–MACROPHAGE DIFFERENTIATION
The term macrophage differentiation describes the changes that
occur after monocytes have entered the arterial wall and transform
from free floating, spherical cells into adherent cells of irregular

shape that take up antigen and migrate within the arterial wall.
Macrophage differentiation is accompanied by substantial changes
in gene expression as demonstrated in a transcriptome analysis
of monocyte–macrophage differentiation induced by macrophage
colony-stimulating factor (M-CSF; Martinez et al., 2006). In vitro,
most changes occur within the first 3 days, even though the differ-
entiation process is not complete at this stage and some genes may
return to their initial expression levels later on (Martinez et al.,
2006).

The best studied inducer of monocyte–macrophage differen-
tiation is M-CSF (Stanley et al., 1978). In vitro, M-CSF pre-
vents monocyte apoptosis and drives macrophage differentiation
as demonstrated by downregulation of CD14 and upregulation
of macrophage markers like CD68 (Martinez et al., 2006). The
important role of M-CSF in atherogenesis and atherosclerosis
has been demonstrated by knocking out the CSF1 gene coding
for M-CSF as well as knocking out the CSF1R gene coding for
the M-CSF receptor (Yoshida et al., 1990; de Villiers et al., 1998).
Both knock outs resulted in significantly reduced atherogenesis in
atherosclerosis-prone Apoe−/− mice. M-CSF has become a widely
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used growth factor when generating monocyte-derived human
macrophages in vitro. Accordingly, monocyte macrophage differ-
entiation induced by M-CSF has been extensively studied at the
transcriptional and functional level (Martinez et al., 2006; Cho
et al., 2007).

Macrophage colony-stimulating factor is continuously present
in the circulation and thereby maintains survival of circulat-
ing monocytes as well as monocyte macrophage differentiation
(Tushinski et al., 1982; Hanamura et al., 1988). This distin-
guishes M-CSF from other growth factors that have been associ-
ated with macrophage differentiation, among them granulocyte–
macrophage colony-stimulating factor (GM-CSF) or the platelet
chemokine CXCL4. A role for the latter in monocyte macrophage
differentiation has been proposed in 2000 by Scheuerer et al.
(2000) and will be discussed in more detail below.

MACROPHAGE POLARIZATION
The term macrophage polarization describes the ability of fully dif-
ferentiated macrophages to respond to external stimuli by chang-
ing their phenotypic and functional characteristics. It was almost
two decades ago, that Gordon et al. for the first time described the
“alternative” polarization of macrophages induced by interleukin-
(IL-)4 (Stein et al., 1992). They identified expression of the man-
nose receptor as a key feature of these macrophages, which they
named “M2 macrophages” (as opposed to “classically” polarized
macrophages induced by lipopolysaccharide (LPS) or interferon-
gamma (IFN-γ), which currently are called “M1” macrophages).
Since then, macrophage polarization has been extensively stud-
ied resulting in the extended paradigm of M1/M2a–c macrophage
polarization (Gordon and Taylor, 2005; Martinez et al., 2008; Man-
tovani et al., 2009). Briefly, M1 macrophages can be induced by
LPS/IFN-γ and reflect the Th1 response of T cells, i.e., they are con-
sidered pro-inflammatory which is reflected by their expression of
IL-1β, IL-6, IL-8, or tumor necrosis factor-alpha (TNF-α). M2
macrophages can be induced by IL-4 (M2a), immune complexes
(M2b), or IL-13/IL-10 (M2c) and largely reflect the Th2 response
of T cells, i.e., they are considered rather anti-inflammatory
which is reflected by their expression of IL-10, CD36, scavenger
receptor-A, or mannose receptor.

Both macrophage differentiation and polarization may result
in similar phenotypes: Thus, GM-CSF may induce M1-like
macrophages (Stoger et al., 2010), while M-CSF induces M2-
like macrophages (Martinez et al., 2006). An important difference
between differentiation and polarization is the fact that, while in
many cases polarization may be a reversible process, differentiation
seems to be irreversible (Porcheray et al., 2005).

MACROPHAGE HETEROGENEITY IN HUMAN
ATHEROSCLEROSIS
Over the past years, it has become evident that macrophages within
human atherosclerotic plaques do not represent a homogeneous
cell population, but may consist of several subsets that have distinct
phenotypic and functional characteristics. The first report of evi-
dence for the presence M1 and M2 polarized macrophages within
human atherosclerotic plaques was published by Bouhlel et al.
(2007) who demonstrated expression of both M1 and M2 genes
within human atherosclerotic plaques. They furthermore found

both the M2 marker mannose receptor and the M1 chemokine
macrophage chemotactic protein-1 (MCP-1/CCL2) expressed in
plaques. Since then a number of other different macrophage
phenotypes have been described in human atherosclerotic lesions.

Waldo et al. (2008) have compared the transcriptomes
of M-CSF and GM-CSF-induced macrophages thus compar-
ing two types of macrophage differentiation. They found that
the latter were mostly CD68+CD14− and (unless activated
with PMA) tended to accumulate less cholesterol in vitro.
In human atherosclerotic lesions both CD68+CD14+ M-CSF-
induced macrophages and their CD68+CD14− GM-CSF-induced
counterparts were Oil red O positive suggesting that both types
may actually participate in lipid uptake and become foam cells
in vivo. When taking a closer look at the cytokine profile of the GM-
CSF-induced macrophages, there seems to be some overlap with
the “classically” polarized M1 macrophage (Stoger et al., 2010).
This is interesting for two reasons: Firstly, it demonstrates that – as
mentioned above – macrophage differentiation and polarization
may lead to similar phenotypes. Secondly, it suggests that there
may also be some overlap between macrophage and dendritic cells.
The latter is based on the finding that differentiation as GM-CSF
alone or in combination with IL-4 may promote dendritic cell dif-
ferentiation from human peripheral blood monocytes (Sallusto
and Lanzavecchia, 1994). This idea is supported by the fact that in
human macrophages oxLDL induces many genes that have been
associated with dendritic cell differentiation (Cho et al., 2007)
thus indicating that the strict distinction between macrophages
and dendritic cells may be somewhat contrived (Geissmann et al.,
2010).

Boyle et al. have studied macrophage polarization induced
by hemoglobin as potentially found associated with intra-plaque
hemorrhages. It was found that hemoglobin induces a poten-
tially atheroprotective macrophage polarization characterized by
expression of IL-10, high levels of the hemoglobin scavenger recep-
tor CD163 and low expression of HLA-DR (Boyle et al., 2011).
In a follow-up study, it could be demonstrated that induction
of this macrophage polarization type was mediated by the tran-
scription factor Nrf2 and upregulation of the atheroprotective
enzyme heme oxygenase-1 (Boyle et al., 2011). This hemorrhage-
associated macrophage type (M-HA) seems to be very similar to
M2c macrophages induced by IL-10 which is consistent with the
fact that hemoglobin-induced upregulation of IL-10 may have
auto- and paracrine effects leading to a M2c-like macrophage
polarization.

It is extremely likely that our current knowledge on macrophage
heterogeneity will significantly expand in the future. We have
recently described a novel macrophage differentiation type
induced by the platelet chemokine CXCL4 (Gleissner et al., 2010b).
This differentiation type will be discussed in further detail below.

CXCL4
Platelets do not only represent an important mediator of hemo-
stasis, but do also play an important role in inflammation
and immunity. Platelets represent an important reservoir of
chemokines (Gleissner et al., 2008; Gleissner, 2012). CXCL4 (for-
merly known as platelet factor 4, PF4) is one of the most abundant
platelet chemokines and is released from platelet α-granules upon
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platelet activation into the blood in micromolar concentrations
as determined in serum (Brandt et al., 2000). CXCL4 has been
described to have effects on various cell types relevant for
atherogenesis, among them endothelial cells, T cells, monocytes,
macrophages, and dendritic cells (Gleissner et al., 2008; Gleissner,
2012). Accordingly, there is considerable evidence suggesting that
CXCL4 plays an important role in atherosclerosis. The presence
of CXCL4 within human carotid atherosclerotic plaques could
be demonstrated to correlate with clinical parameters like lesion
grade or the presence of symptoms (Pitsilos et al., 2003). Also,
knocking out the Pf4 gene coding for CXCL4 in Apoe−/− deficient
mice led to reduced atherosclerotic lesion formation suggesting a
pro-atherogenic role of CXCL4 (Sachais et al., 2007).

POTENTIAL INTERACTIONS BETWEEN CXCL4 AND MACROPHAGES
DURING ATHEROGENESIS
It is unknown whether CXCL4 affects monocytes in the blood
stream. In vitro, monocytes treated with CXCL4 have been shown
to become cytotoxic for EC but not epithelial cells (Scheuerer et al.,
2000). This effect was mediated β2-integrin ICAM-1 interaction
and required generation of reactive oxygen species in monocytes.
The earliest known time point for interaction between CXCL4 and
blood monocytes is during monocyte adhesion to the endothe-
lium. Activated platelets have been demonstrated to deposit
CXCL4 on the endothelium of Apoe−/− deficient mice (Huo et al.,
2003). Also, CXCL4 has been demonstrated to promote monocyte
adhesion to the endothelium in conjunction with CCL5 (formerly
known as RANTES) to a larger extent than each of the chemokines
alone (von Hundelshausen et al., 2005). The fact that interrupting
this interaction using a CCL5 receptor antagonist (Met-RANTES)
reduces lesion size in Apoe−/− mice supports the pathophysiolog-
ical relevance of CXCL4 in this context (Koenen et al., 2009).

Based on the presence of CXCL4 in atherosclerotic lesions
(Pitsilos et al., 2003), it is possible that it may affect monocyte
macrophage differentiation during atherogenesis. To better under-
stand the potential role of CXCL4-induced macrophages in ath-
erosclerosis, we have recently performed a comprehensive analysis
of the transcriptome of human CXCL4-induced macrophages and
compared it to that of M-CSF-induced (M0) macrophages as well
as M1 and M2 polarized macrophages (Gleissner et al., 2010b).
As expected, we found that both M-CSF- and CXCL4-induced
macrophages share strong phenotypic similarities. They express
similar mRNA and protein levels of leukocyte and myeloid markers
like CD45, CD14, and CD68. Furthermore, their transcriptomes
show a very high level of correlation (r = 0.934, P < 0.0001).
By contrast, we also found significant differences between both
macrophage types. Three hundred seventy-five genes showed
significantly differential expression, 206 of them being overex-
pressed in CXCL4-induced macrophages. When comparing the
gene expression data with those of M1 and M2 macrophages pub-
lished earlier by Martinez et al. (2006), we found that CXCL4
neither induced M1-, nor M2 polarization in macrophages. This
was evident when looking at the expression levels of typical M1
or M2 markers, but could also be confirmed by statistical meth-
ods like gene set enrichment analysis (Subramanian et al., 2005),
modified principal components analysis (PCA), and hierarchical
clustering (Gleissner et al., 2010b).

These findings suggest that CXCL4 induces macrophage dif-
ferentiation resulting in specific phenotypic and functional char-
acteristics, which will be discussed in more detail below. Based
on these results, we have suggested calling these macrophages
M4, a nomenclature that we believe reflects both the fact that
these cells are distinct from M1 and M2 macrophages and that
they can be induced by CXCL4. Accordingly, in the following
paragraphs CXCL4-induced macrophages will be referred to as
M4 macrophages. Figure 1 summarizes how M4 macrophages
may fit in the monocyte macrophage network present in human
atherosclerosis. The following sections will discuss some specific
characteristics of the M4 macrophage with potential relevance to
atherosclerosis (Figure 2).

MATRIX METALLOPROTEINASE GENE EXPRESSION IN M4
MACROPHAGES
Matrix metalloproteinases (MMPs) play an important role in ath-
erosclerosis as they may degrade the extracellular matrix and
thereby promote plaque destabilization and adverse events caused
by plaque rupture including myocardial infarction and stroke
(Newby, 2008). Accordingly, inhibition of MMP expression and
activity may be considered atheroprotective as it may lead to sta-
ble plaques with low likelihood of plaque rupture and subsequent
atherothrombosis.

When comparing MMP gene expression in M4 macrophages
with that in M-CSF-induced macrophages, we found a very het-
erogeneous profile with some MMPs being significantly higher
expressed in M4 (e.g., MMP7 and MMP12) while others showing
significantly higher expression in M0 macrophages (e.g., MMP8;
Gleissner et al., 2010b). One has to keep in mind that MMPs are
tightly regulated including regulation of gene and protein expres-
sion as well as modulation of activity by cathepsins, which are
needed to activate some MMPs and which partly are also dif-
ferentially expressed in M4 and M0 macrophages (cathepsin B
and K significantly higher in M4 macrophages; Newby, 2008).
Accordingly, based on the currently available gene expression data,
it is not possible to definitively assess the functional effects of
CXCL4 on MMP expression. Further functional experiments are
needed to show whether M4 macrophages really contribute to
plaque destabilization to a larger extent then their M-CSF-induced
counterparts.

FOAM CELL FORMATION IN M4 MACROPHAGES
CXCL4-induced macrophages were expected to be more prone
to foam cell formation induced by modified (i.e., acetylated or
oxidized) low density lipoprotein (LDL) as this could represent
one mechanism by which CXCL4 may promote atherosclerosis.
Notably, CXCL4 has been shown to inhibit binding and uptake of
LDL through its receptor which might enhance oxidation of LDL
and has been shown to be related to about 10-fold increase in the
amount of esterified oxLDL in macrophages (Sachais et al., 2002;
Nassar et al., 2003). In these cell culture experiments, CXCL4 and
native or oxLDL were present at the same time and CXCL4 could
be shown to mediate binding and uptake of LDL suggesting that
CXCL4 may thereby promote foam cell formation in atheroscle-
rotic lesions. By contrast, by comparing gene expression of recep-
tors for native and modified LDL in M4 and M0 macrophages,
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FIGURE 1 | Schematic overview of macrophage heterogeneity within

atherosclerotic plaques. Monocytes entering the vascular wall may
develop differentially depending on the predominant micromilieu. Different
growth factors, chemokines, or lipoproteins may induce specific types of
macrophage polarization. Dotted arrows indicate monocyte–macrophage
differentiation, while solid arrows signify macrophage polarization (for details
see text). Arrows are labeled with the key drivers of differentiation or

polarization. Colors and distances indicate similarities and differences
between the different macrophage types. M-DC, dendritic cells; M-ox, foam
cells induced by oxidized low density lipoprotein (oxLDL); M-HA,
hemorrhage-associated macrophages. CXCL4, platelet factor 4; GM-CSG,
granulocyte–macrophage colony-stimulating factor; Hb/Hp
hemoglobin–haptoglobin complexes; IFN-γ, interferon-gamma; IL,
interleukin; LPS, lipopolysaccharide.

we found that CXCL4-induced macrophages expressed similar
levels of the LDLR gene coding for the LDL receptor, but signifi-
cantly lower levels of the CD36 and MSR1 genes coding for CD36
and scavenger receptor-A, which both account for the majority
of modified LDL uptake (Kunjathoor et al., 2002; Gleissner et al.,
2010b). In functional in vitro experiments, this resulted in reduced
uptake of DiI-labeled acetylated or oxLDL compared to M-CSF-
induced macrophages. It is likely that these discrepancies reflect
different experimental settings. Thus, Sachais et al. (2002) and
Nassar et al. (2003) studied the interactions of CXCL4 with native
and modified LDL, which were simultaneously present in the cell
culture. Also, while Nassar et al. (2003) looked at CXCL4 effects
on murine macrophages, our focus was on human macrophage
differentiation and CXCL4 was present during the entire process
of monocyte macrophage differentiation. It has been recently
demonstrated that murine and human monocytes differ in expres-
sion of numerous genes including those coding for receptors that
may be important for LDL metabolism including CD36 (Ingersoll
et al., 2010). Accordingly, species specific differences may also play
an important role regarding the effects of CXCL4 on macrophage
differentiation.

CD163 AND HEME OXYGENASE-1 IN M4 MACROPHAGES
One of the genes significantly downregulated by CXCL4 during
monocyte–macrophage differentiation is CD163 which codes for

the hemoglobin–haptoglobin scavenger receptor (Gleissner et al.,
2010a). Hemoglobin–haptoglobin complexes as well as free hemo-
globin are bound by CD163 resulting in upregulation of heme
oxygenase-1 (Schaer et al., 2006). Heme oxygenase-1 in myeloid
cells has been shown to be atheroprotective as demonstrated in
several mouse models (Juan et al., 2001; Yet et al., 2003; Orozco
et al., 2007). Thus, the inability to appropriately respond to hemo-
globin, e.g., as a consequence of intra-plaque hemorrhage may
be unfavorable in patients with atherosclerotic plaques. This is
also supported by data from Boyle et al. (2009, 2011) who have
demonstrated that intra-plaque hemorrhage induces a CD163+
(M2c-like) macrophage type that seems to be atheroprotective.

While M-CSF induces upregulation of CD163 gene und protein
expression during monocyte macrophage differentiation, CXCL4
treatment resulted in complete loss of CD163 expression on the
mRNA and protein level within hours (Gleissner et al., 2010a).
This effect was not caused by shedding as is seen after treatment
with LPS (Buechler et al., 2000), as culture supernatants did not
reveal increased levels of sCD163. Functionally, downregulation of
CD163 resulted in the loss of heme oxygenase-1 upregulation upon
exposure to hemoglobin–haptoglobin complexes confirming the
functional relevance of the in vitro findings. It is noteworthy that
once CD163 had been downregulated after exposure to CXCL4,
cells were unable to upregulate the receptor after CXCL4 had been
removed. Even strong inducers of CD163 like M-CSF or IL-10
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FIGURE 2 | Specific functional and phenotypic features of

CXCL4-induced M4 macrophages (blue/left) and M0 macrophages

(green/right). M4 macrophages lose the ability to take up
hemoglobin–haptoglobin (Hb–Hp) complexes via the receptor CD163 and
subsequently upregulate the atheroprotective enzyme heme oxzgenase-1 as
seen in M-CSF-induced macrophages. Furthermore, M4 macrophages

express lover levels of scavenger receptors CD36/SR-A leading to fewer
uptake of oxidized or acetylated low density lipoprotein (oxLDL/acLDL) as
compared to M0 macrophages. The lower part of the figure indicates a
selection of relevant cytokines, chemokines, chemokine receptors, surface
receptors, molecule involved in T cell activation, and matrix
metalloproteinases overexpressed in M4 or M0 macrophages (mRNA).

were unable to rescue CD163 expression suggesting that CXCL4
induces a regulatory program that irreversible.

Immunohistochemistry of human post mortem coronary
arteries revealed the presence of CD68+CD163+ as well as
CD68+CD163− macrophages, furthermore there was an inverse
correlation between message for CD163 and PF4 (the latter cod-
ing for CXCL4; Gleissner et al., 2010a). Considering that PF4 is
exclusively expressed in megakaryocytes and platelets and CD163
expression is restricted to myeloid cells, we concluded that the
presence of large amounts of CXCL4 is associated with low lev-
els of CD163 supporting the in vivo relevance of CXCL4-induced
downregulation of CD163.

MECHANISMS OF M4 INDUCTION
While there is a lot of evidence that CXCL4 induces a specific
macrophage type with phenotypic and functional characteristics
that may be of importance in vascular disease, the mechanisms by
which CXCL4 exerts its effects on monocytes and macrophages
have not been clarified in detail yet. Other than all other known
CXC-chemokines, CXCL4 lacks the ELR amino acid sequence at
its C terminus that mediates binding to the chemokines recep-
tors CXCR1 and CXCR2 (Gear and Camerini, 2003). Thus, while

in microvascular endothelial cells CXCL4 seems to bind exclu-
sively to the CXCR3B splice variant of the chemokine receptor
CXCR3 (Lasagni et al., 2003), in T cells both splice variants seem
to serve as receptors for CXCL4 (Mueller et al., 2008). By contrast,
we could not confirm substantial CXCR3 expression on human
monocytes by flow cytometry, nor did blocking CXCR3 prevent
CXCL4-induced monocyte macrophage differentiation (Gleissner
et al., 2010a). By contrast, treatment of cells with chlorate (which
prevents synthesis of glycosaminoglycans on the cell surface, Greve
et al., 1988) significantly attenuated the effects of CXCL4 on
CD163 expression suggesting a chondroitin sulfate proteoglycan
as potential receptor as previously demonstrated in neutrophils
(Brandt et al., 2000). Most likely, these proteoglycans are linked to
a thus far unknown core protein.

CXCL4-induced signal transduction has recently been reviewed
by Kasper and Petersen (2011). There is good evidence that CXCL4
signals via differential pathways in different cell types. It seems that
while CXCR3B-dependent signaling involves Gs proteins, signal-
ing via proteoglycans seems to differ between cell types. As men-
tioned above, CXCL4 signaling in monocyte is most likely medi-
ated by chondroitin sulfate proteoglycans (Gleissner et al., 2010).
Kasper et al. (2007) have shown that Src-kinases and GTPase Ras

www.frontiersin.org January 2012 | Volume 3 | Article 1 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Vascular_Physiology/archive


Gleissner Macrophage phenotype modulation by CXCL4

are essential for CXCL4 signaling in monocytes. Furthermore, it
could be demonstrated that CXCL4 induces increased activity of
JNK, Ras, Syk tyrosine kinase, PI3K, and in addition phosphory-
lation of p38 MAP kinase and Erk (Kasper et al., 2007). Most of
these events occur within minutes after exposure of monocytes
to CXCL4 and are associated with acute respiratory burst. Inter-
estingly, prevention of monocyte apoptosis is related to delayed
activation of Erk after 6 h suggesting that this delayed pathway
may be responsible for CXCL4-induced monocyte–macrophage
differentiation (Kasper et al., 2007). It is noteworthy that while
M1 and M2 polarization represent reversible processes (Porcheray
et al., 2005), as mentioned above CXCL4-induced macrophage
differentiation seems to be irreversible (Gleissner et al., 2010).

SUMMARY AND CONCLUSION
There is no doubt that CXCL4 is important in atherogenesis.
It has been convincingly demonstrated that the pro-atherogenic

effects of CXCL4 are most likely multifactorial, including effects
on leukocyte recruitment to the arterial wall as well as direct
effects on endothelial cells and various types of leukocytes. While
monocyte–macrophage differentiation induced by CXCL4 was
described more than 10 years ago, it was only recently that the spe-
cific characteristics of these CXCL4-induced macrophages have
been studied in more detail. Based on transcriptomic and experi-
mental data in vitro and ex vivo in human atherosclerotic lesions,
we suggest that monocyte-derived macrophages that have differ-
entiated under the influence of CXCL4 may represent a unique
macrophage set with relevance to atherosclerotic disease. We have
therefore suggested calling this macrophage type “M4.” Further
experiments are necessary to identify the receptor, the exact sig-
naling pathways involved, and the functional consequences of
CXCL4-induced macrophage differentiation. Future research will
be needed to establish whether M4 macrophages represent a
promising therapeutic target in human atherosclerosis.

REFERENCES
Bouhlel, M. A., Derudas, B., Rigamonti,

E., Dievart, R., Brozek, J., Haulon, S.,
Zawadzki, C., Jude, B., Torpier, G.,
Marx, N., Staels, B., and Chinetti-
Gbaguidi, G. (2007). PPARgamma
activation primes human monocytes
into alternative m2 macrophages
with anti-inflammatory properties.
Cell Metab. 6, 137–143.

Boyle, J. J., Harrington, H. A., Piper,
E., Elderfield, K., Stark, J., Lan-
dis, R. C., and Haskard, D. O.
(2009). Coronary intraplaque hem-
orrhage evokes a novel atheroprotec-
tive macrophage phenotype. Am. J.
Pathol. 174, 1097–1108.

Boyle, J. J., Johns, M., Lo, J., Chiodini,
A., Ambrose, N., Evans, P. C., Mason,
J. C., and Haskard, D. O. (2011).
Heme induces heme oxygenase 1
via nrf2: role in the homeostatic
macrophage response to intraplaque
hemorrhage. Arterioscler. Thromb.
Vasc. Biol. 31, 2685–2691.

Brandt, E., Petersen, F., Ludwig, A.,
Ehlert, J. E., Bock, L., and Flad, H. D.
(2000). The beta-thromboglobulins
and platelet factor 4: blood platelet-
derived CXC chemokines with diver-
gent roles in early neutrophil regula-
tion. J. Leukoc. Biol. 67, 471–478.

Buechler, C., Ritter, M., Orso, E.,
Langmann, T., Klucken, J., and
Schmitz, G. (2000). Regulation of
scavenger receptor CD163 expres-
sion in human monocytes and
macrophages by pro- and antiin-
flammatory stimuli. J. Leukoc. Biol.
67, 97–103.

Cho, H. J., Shashkin, P., Gleissner, C.
A., Dunson, D., Jain, N., Lee, J. K.,
Miller, Y., and Ley, K. (2007). Induc-
tion of dendritic cell-like pheno-
type in macrophages during foam
cell formation. Physiol. Genomics 29,
149–160.

de Villiers, W. J., Smith, J. D., Miyata,
M., Dansky, H. M., Darley, E., and
Gordon, S. (1998). Macrophage
phenotype in mice deficient in both
macrophage-colony-stimulating
factor (op) and apolipoprotein e.
Arterioscler. Thromb. Vasc. Biol. 18,
631–640.

Galkina, E. V., and Ley, K. (2009).
Immune and inflammatory mecha-
nisms of atherosclerosis. Annu. Rev.
Immunol. 27, 165–197.

Gear, A. R., and Camerini, D. (2003).
Platelet chemokines and chemokine
receptors: linking hemostasis,
inflammation, and host defense.
Microcirculation 10, 335–350.

Geissmann, F., Manz, M. G., Jung, S.,
Sieweke, M. H., Merad, M., and Ley,
K. (2010). Development of mono-
cytes, macrophages, and dendritic
cells. Science 327, 656–661.

Gleissner, C. A. (2012). Platelet-derived
chemokines in atherogenesis: what’s
new? Curr. Vasc. Pharmacol. (in
press).

Gleissner, C. A., Shaked, I., Erbel, C.,
Bockler, D., Katus, H. A., and Ley, K.
(2010a). CXCL4 downregulates the
atheroprotective hemoglobin recep-
tor CD163 in human macrophages.
Circ. Res. 106, 203–211.

Gleissner, C. A., Shaked, I., Little,
K. M., and Ley, K. (2010b). CXC
chemokine ligand 4 induces a
unique transcriptome in monocyte-
derived macrophages. J. Immunol.
184, 4810–4818.

Gleissner, C. A., von Hundelshausen,
P., and Ley, K. (2008). Platelet
chemokines in vascular disease.
Arterioscler. Thromb. Vasc. Biol. 28,
1920–1927.

Gordon, S., and Taylor, P. R. (2005).
Monocyte and macrophage het-
erogeneity. Nat. Rev. Immunol. 5,
953–964.

Greve, H., Cully, Z., Blumberg, P., and
Kresse, H. (1988). Influence of chlo-
rate on proteoglycan biosynthesis by
cultured human fibroblasts. J. Biol.
Chem. 263, 12886–12892.

Hanamura, T., Motoyoshi, K., Yoshida,
K., Saito, M., Miura, Y., Kawashima,
T., Nishida, M., and Takaku, F.
(1988). Quantitation and identifica-
tion of human monocytic colony-
stimulating factor in human serum
by enzyme-linked immunosorbent
assay. Blood 72, 886–892.

Huo, Y., Schober, A., Forlow, S. B.,
Smith, D. F., Hyman, M. C., Jung,
S., Littman, D. R., Weber, C., and
Ley, K. (2003). Circulating activated
platelets exacerbate atherosclerosis
in mice deficient in apolipoprotein
e. Nat. Med. 9, 61–67.

Ingersoll, M. A., Spanbroek, R., Lottaz,
C., Gautier, E. L., Frankenberger, M.,
Hoffmann, R., Lang, R., Haniffa, M.,
Collin, M., Tacke, F., Habenicht, A.
J., Ziegler-Heitbrock, L., and Ran-
dolph, G. J. (2010). Comparison
of gene expression profiles between
human and mouse monocyte sub-
sets. Blood 115, e10–e19.

Juan, S.-H., Lee, T.-S., Tseng, K.-W.,
Liou, J.-Y., Shyue, S.-K., Wu, K. K.,
and Chau, L.-Y. (2001). Adenovirus-
mediated heme oxygenase-1 gene
transfer inhibits the development
of atherosclerosis in apolipoprotein
e-deficient mice. Circulation 104,
1519–1525.

Kasper, B., Brandt, E., Brandau, S., and
Petersen, F. (2007). Platelet factor 4
(CXC chemokine ligand 4) differ-
entially regulates respiratory burst,
survival, and cytokine expression of
human monocytes by using distinct
signaling pathways. J. Immunol. 179,
2584–2591.

Kasper, B., and Petersen, F. (2011). Mol-
ecular pathways of platelet factor

4/CXCL4 signaling. Eur. J. Cell Biol.
90, 521–526.

Koenen, R. R., von Hundelshausen, P.,
Nesmelova, I. V., Zernecke,A., Liehn,
E. A., Sarabi, A., Kramp, B. K., Pic-
cinini, A. M., Paludan, S. R., Kowal-
ska, M. A., Kungl, A. J., Hackeng,
T. M., Mayo, K. H., and Weber, C.
(2009). Disrupting functional inter-
actions between platelet chemokines
inhibits atherosclerosis in hyperlipi-
demic mice. Nat. Med. 15, 97–103.

Kunjathoor, V. V., Febbraio, M., Podrez,
E. A., Moore, K. J., Andersson, L.,
Koehn, S., Rhee, J. S., Silverstein,
R., Hoff, H. F., and Freeman, M.
W. (2002). Scavenger receptors class
A-I/II and CD36 are the principal
receptors responsible for the uptake
of modified low density lipopro-
tein leading to lipid loading in
macrophages. J. Biol. Chem. 277,
49982–49988.

Lasagni, L., Francalanci, M., Annun-
ziato, F., Lazzeri, E., Giannini, S.,
Cosmi, L., Sagrinati, C., Mazzinghi,
B., Orlando, C., Maggi, E., Marra,
F., Romagnani, S., Serio, M., and
Romagnani, P. (2003). An alter-
natively spliced variant of CXCR3
mediates the inhibition of endothe-
lial cell growth induced by ip-10,
mig, and I-tac, and acts as functional
receptor for platelet factor 4. J. Exp.
Med. 197, 1537–1549.

Mantovani, A., Garlanda, C., and Locati,
M. (2009). Macrophage diversity
and polarization in atherosclerosis:
a question of balance. Arterioscler.
Thromb. Vasc. Biol. 29, 1419–1423.

Martinez, F. O., Gordon, S., Locati, M.,
and Mantovani, A. (2006). Tran-
scriptional profiling of the human
monocyte-to-macrophage differen-
tiation and polarization: new mol-
ecules and patterns of gene expres-
sion. J. Immunol. 177, 7303–7311.

Frontiers in Physiology | Vascular Physiology January 2012 | Volume 3 | Article 1 | 6

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Vascular_Physiology
http://www.frontiersin.org/Vascular_Physiology/archive


Gleissner Macrophage phenotype modulation by CXCL4

Martinez, F. O., Sica, A., Manto-
vani, A., and Locati, M. (2008).
Macrophage activation and
polarization. Front. Biosci. 13,
453–461.

Moore, K. J., and Tabas, I. (2011).
Macrophages in the pathogene-
sis of atherosclerosis. Cell 145,
341–355.

Mueller, A., Meiser, A., McDonagh, E.
M.,Fox, J. M.,Petit,S. J.,Xanthou,G.,
Williams, T. J., and Pease, J. E. (2008).
CXCL4-induced migration of acti-
vated t lymphocytes is mediated by
the chemokine receptor CXCR3. J.
Leukoc. Biol. 83, 875–882.

Nassar, T., Sachais, B. S., Akkawi, S.,
Kowalska, M. A., Bdeir, K., Leiters-
dorf, E., Hiss, E., Ziporen, L., Avi-
ram, M., Cines, D., Poncz, M., and
Higazi, A. A. (2003). Platelet fac-
tor 4 enhances the binding of oxi-
dized low-density lipoprotein to vas-
cular wall cells. J. Biol. Chem. 278,
6187–6193.

Newby, A. C. (2008). Metallopro-
teinase expression in monocytes and
macrophages and its relationship
to atherosclerotic plaque instability.
Arterioscler. Thromb. Vasc. Biol. 28,
2108–2114.

Orozco, L. D., Kapturczak, M. H., Bara-
jas, B., Wang, X., Weinstein, M. M.,
Wong, J., Deshane, J., Bolisetty, S.,
Shaposhnik, Z., Shih, D. M., Agar-
wal, A., Lusis, A. J., and Araujo, J. A.
(2007). Heme oxygenase-1 expres-
sion in macrophages plays a benefi-
cial role in atherosclerosis. Circ. Res.
100, 1703–1711.

Pitsilos, S., Hunt, J., Mohler, E. R., Prab-
hakar, A. M., Poncz, M., Dawicki,
J., Khalapyan, T. Z., Wolfe, M. L.,
Fairman, R., Mitchell, M., Carpenter,
J., Golden, M. A., Cines, D. B., and
Sachais, B. S. (2003). Platelet factor
4 localization in carotid atheroscle-
rotic plaques: correlation with clin-
ical parameters. Thromb. Haemost.
90, 1112–1120.

Porcheray, F., Viaud, S., Rimaniol, A.
C., Leone, C., Samah, B., Dereuddre-
Bosquet, N., Dormont, D., and Gras,
G. (2005). Macrophage activation
switching: an asset for the reso-
lution of inflammation. Clin. Exp.
Immunol. 142, 481–489.

Sachais, B. S., Kuo, A., Nassar, T., Mor-
gan, J., Kariko, K., Williams, K. J.,
Feldman, M., Aviram, M., Shah,
N., Jarett, L., Poncz, M., Cines,
D. B., and Higazi, A. A. (2002).
Platelet factor 4 binds to low-density
lipoprotein receptors and disrupts
the endocytic machinery, resulting
in retention of low-density lipopro-
tein on the cell surface. Blood 99,
3613–3622.

Sachais, B. S., Turrentine, T., Dawicki
McKenna, J. M., Rux, A. H., Rader,
D., and Kowalska, M. A. (2007).
Elimination of platelet factor 4 (PF4)
from platelets reduces atheroscle-
rosis in c57bl/6 and apoe-/- mice.
Thromb. Haemost. 98, 1108–1113.

Sallusto, F., and Lanzavecchia, A.
(1994). Efficient presentation of
soluble antigen by cultured human
dendritic cells is maintained by
granulocyte/macrophage colony-
stimulating factor plus interleukin
4 and downregulated by tumor
necrosis factor alpha. J. Exp. Med.
179, 1109–1118.

Schaer, C. A., Schoedon, G., Imhof,
A., Kurrer, M. O., and Schaer, D. J.
(2006). Constitutive endocytosis of
CD163 mediates hemoglobin-heme
uptake and determines the non-
inflammatory and protective tran-
scriptional response of macrophages
to hemoglobin. Circ. Res. 99,
943–950.

Scheuerer, B., Ernst, M., Durrbaum-
Landmann, I., Fleischer, J.,
Grage-Griebenow, E., Brandt,
E., Flad, H. D., and Petersen,
F. (2000). The CXC-chemokine
platelet factor 4 promotes monocyte
survival and induces monocyte

differentiation into macrophages.
Blood 95, 1158–1166.

Stanley, E. R., Chen, D. M., and Lin, H.
S. (1978). Induction of macrophage
production and proliferation by a
purified colony stimulating factor.
Nature 274, 168–170.

Stein, M., Keshav, S., Harris, N.,
and Gordon, S. (1992). Inter-
leukin 4 potently enhances murine
macrophage mannose receptor
activity: a marker of alterna-
tive immunologic macrophage
activation. J. Exp. Med. 176,
287–292.

Stoger, J. L., Goossens, P., and de
Winther, M. P. (2010). Macrophage
heterogeneity: relevance and func-
tional implications in atheroscle-
rosis. Curr. Vasc. Pharmacol. 8,
233–248.

Subramanian, A., Tamayo, P., Mootha,
V. K., Mukherjee, S., Ebert, B.
L., Gillette, M. A., Paulovich, A.,
Pomeroy, S. L., Golub, T. R., Lan-
der, E. S., and Mesirov, J. P.
(2005). Gene set enrichment analy-
sis: a knowledge-based approach for
interpreting genome-wide expres-
sion profiles. Proc. Natl. Acad. Sci.
U.S.A. 102, 15545–15550.

Tushinski, R. J., Oliver, I. T., Guilbert,
L. J., Tynan, P. W., Warner, J. R.,
and Stanley, E. R. (1982). Survival
of mononuclear phagocytes depends
on a lineage-specific growth factor
that the differentiated cells selec-
tively destroy. Cell 28, 71–81.

von Hundelshausen, P., Koenen, R. R.,
Sack, M., Mause, S. F., Adriaens,
W., Proudfoot, A. E., Hackeng, T.
M., and Weber, C. (2005). Het-
erophilic interactions of platelet fac-
tor 4 and RANTES promote mono-
cyte arrest on endothelium. Blood
105, 924–930.

Waldo, S. W., Li, Y., Buono, C., Zhao,
B., Billings, E. M., Chang, J., and
Kruth, H. S. (2008). Heterogeneity
of human macrophages in culture

and in atherosclerotic plaques. Am.
J. Pathol. 172, 1112–1126.

Wolfs, I. M., Donners, M. M., and
de Winther, M. P. (2011). Differ-
entiation factors and cytokines
in the atherosclerotic plaque
micro-environment as a trigger for
macrophage polarisation. Thromb.
Haemost. 106, 763–771.

Yet, S. F., Layne, M. D., Liu, X., Chen,
Y. H., Ith, B., Sibinga, N. E., and
Perrella, M. A. (2003). Absence of
heme oxygenase-1 exacerbates ath-
erosclerotic lesion formation and
vascular remodeling. FASEB J. 17,
1759–1761.

Yoshida, H., Hayashi, S., Kunisada, T.,
Ogawa, M., Nishikawa, S., Okamura,
H., Sudo, T., and Shultz, L. D. (1990).
The murine mutation osteopetro-
sis is in the coding region of the
macrophage colony stimulating fac-
tor gene. Nature 345, 442–444.

Conflict of Interest Statement: The
author declares that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 04 December 2011; paper
pending published: 26 December 2011;
accepted: 01 January 2012; published
online: 13 January 2012.
Citation: Gleissner CA (2012)
Macrophage phenotype modulation by
CXCL4 in atherosclerosis. Front. Physio.
3:1. doi: 10.3389/fphys.2012.00001
This article was submitted to Frontiers
in Vascular Physiology, a specialty of
Frontiers in Physiology.
Copyright © 2012 Gleissner . This is an
open-access article distributed under the
terms of the Creative Commons Attribu-
tion Non Commercial License, which per-
mits non-commercial use, distribution,
and reproduction in other forums, pro-
vided the original authors and source are
credited.

www.frontiersin.org January 2012 | Volume 3 | Article 1 | 7

http://dx.doi.org/10.3389/fphys.2012.00001
http://www.frontiersin.org
http://www.frontiersin.org/Vascular_Physiology/archive
http://creativecommons.org/licenses/by-nc/3.0/

	Macrophage phenotype modulation by CXCL4 in atherosclerosis
	Macrophages and macrophage heterogeneity in human atherosclerosis
	Monocyte–macrophage differentiation
	Macrophage polarization

	Macrophage heterogeneity in human atherosclerosis
	CXCL4
	Potential interactions between CXCL4 and macrophages during atherogenesis
	Matrix metalloproteinase gene expression in M4 macrophages
	Foam cell formation in M4 macrophages
	CD163 and heme oxygenase-1 in M4 macrophages

	Mechanisms of M4 induction
	Summary and conclusion
	References


