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The immunology of pregnancy is complex and poorly defined. During the complex

process of pregnancy, macrophages secrete many cytokines/chemokines and play

pivotal roles in the maintenance of maternal-fetal tolerance. Here, we summarized

the current knowledge of macrophage polarization and the mechanisms involved in

physiological or pathological pregnancy processes, including miscarriage, preeclampsia,

and preterm birth. Although current evidence provides a compelling argument that

macrophages are important in pregnancy, our understanding of the roles and

mechanisms of macrophages in pregnancy is still rudimentary. Since macrophages

exhibit functional plasticity, they may be ideal targets for therapeutic manipulation during

pathological pregnancy. Additional studies are needed to better define the functions and

mechanisms of various macrophage subsets in both normal and pathological pregnancy.
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INTRODUCTION

At the maternal-fetal interface, macrophages are the second largest group of cells and comprise
20–30% of all leukocytes (1). These cells display important roles in the pregnancy process
as their plastic characteristics. Plastic characteristics refer to macrophage polarization, through
which macrophages differentiate into specific phenotypes and have specific biological functions
in response to microenvironmental stimuli. By simplified classification, macrophages have
been divided into M1 and M2 subtypes based on their activation states (2). Actually, the
properties of M1-like/M2-like macrophages are similar to those of Th1/Th2 cells (3). M1
macrophages are functionally pro-inflammatory and antimicrobial, while M2 macrophages are
anti-inflammatory (4, 5).

At the maternal-fetal interface, both the number and proportion of M1/M2 macrophages
are changed during different gestation periods to protect the fetus from the maternal immune
microenvironment and establish foetomaternal tolerance. To sustain foetomaternal tolerance,
more macrophages are polarized into alternatively activated (M2-like) macrophages, implying
that the immunosuppressive properties of M2 macrophages are necessary for normal pregnancy.
In abnormal pregnancy, more classically activated (M1) macrophages have been observed at
the maternal-fetal interface. The balance of polarization between M1 and M2 macrophages
is important for various processes of normal pregnancy, such as trophoblast invasion, spiral
artery remodeling, and apoptotic cell phagocytosis. Conversely, the dysregulated polarization of
macrophages was associated with inadequate remodeling of the uterine vessels and defective
trophoblast invasion and finally led to spontaneous abortion, preeclampsia and preterm birth (6–8).
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Although increasing evidence has indicated the critical roles
of macrophages in pregnancy-related diseases, the molecular
mechanisms of dysregulated macrophage polarization are still
poorly understood. Here, we summarize the current knowledge
of macrophage polarization and the mechanisms involved in
physiological or pathological pregnancy processes. A deeper
understanding of the roles of macrophages in gestation might
allow us to develop therapies to improve pregnancy outcomes.

THE POLARIZATION OF MACROPHAGES

M1 and M2 Macrophages
Macrophage polarization is crucial for tissue repairing and
homeostasis maintenance (9). Macrophage polarization refers to
the process by which macrophages produce distinct functional
phenotypes as a reaction to specific microenvironmental stimuli
and signals (3, 10–12). Macrophages can be polarized into
classically activated (M1) and alternatively activated (M2)
macrophages. M2 macrophages are divided into M2a, M2b, M2c,
and M2d subcategories. These macrophages differ in their cell
surface markers, secreted cytokines and biological functions.
However, studies have indicated that the induction routes and
regulated biological processes are complex interlacing network
systems rather than simplistic schema (13). M1/M2 polarity
arises from arginine metabolism via two antagonistic pathways:
M1-like macrophages are the products of the iNOS pathway,
which produces citrulline and NO from arginine, whereas M2-
like macrophages are the products of the arginase pathway, which
produces ornithine and urea from arginine (14).

Following the activation by lipopolysaccharide (LPS) and Th1
cytokines (such as IFN-γ and TNF-α), macrophages are polarized
into M1 macrophages and characterized by TLR-2, TLR-4,
CD80, CD86, iNOS, and MHC-II surface phenotypes. These
cells release various cytokines and chemokines (for example,
TNF-α, IL-1α, IL-1β, IL-6, IL-12, CXCL9, and CXCL10) which
exert positive feedback on unpolarized macrophages. That is,
these factors attract more unpolarized macrophages to M1 state.
Key transcription factors, such as NF-kB, STAT1, STAT5, IRF3,
and IRF5 have been shown to regulate the expression of M1
genes. It seems that NF-κB and STAT1 are the two major
pathways involved in M1 macrophage polarization and result in
microbicidal and tumouricidal functions (2, 4, 5, 15, 16).

M2 polarization occurs in response to downstream signals of
cytokines such as IL-4, IL-13, IL-10, IL-33, and TGF-β (5, 16).
Notably, only IL-4 and IL-13 directly induce M2 macrophage
activation, whereas other cytokines (such as IL-33 and IL-25)
amplify M2 macrophage activation by producing Th2 cytokines
(17). M2 macrophages can be additionally identified by their
expression of surface markers, such as mannitol receptor, CD206,
CD163, CD209, FIZZ1, and Ym1/2. Up-regulation of cytokines
and chemokines, such as IL-10, TGF-β, CCL1, CCL17, CCL18,
CCL22, andCCL24 (16, 18) also attract unpolarizedmacrophages
to polarize into the M2 state (19). Key transcription factors,
such as STAT6, IRF4, JMJD3, PPARδ, and PPARγ have been
shown to regulate the expression of M2 genes. Thus far, the
STAT6 pathway has been considered to be the pathway to
activate M2 macrophages (2). Macrophages contribute to the

process of infection prevention, tissue repairing, angiogenesis
and immunomodulation (5, 20). The main differences between
M1 and M2 macrophages were shown in Figure 1.

The Subsets of M2 Macrophages and Their
Characteristics
As mentioned above, M2 macrophages are subgrouped into
M2a, M2b, M2c, and M2d. Activated by IL-4 or IL-13, M2a
macrophages lead to the increased expression of IL-10, TGF-
β, CCL17, CCL18, and CCL22. These macrophages enhance
the endocytic activity, promote cell growth and tissue repairing.
M2b macrophages are activated by immune complex, Toll-
like receptor (TLR) ligands and IL-1β and release both pro-
and anti-inflammatory cytokines, such as TNF-α, IL-1β, IL-
6, and IL-10. Based on the expression profiles of cytokines
and chemokines, M2b macrophages regulate the breadth and
depth of immune responses and inflammatory reactions (21).
M2c macrophages, also known as inactivated macrophages, are
induced by glucocorticoids, IL-10 and TGF-β. These cells secrete
IL-10, TGF-β, CCL16, and CCL18 and play crucial roles in the
phagocytosis of apoptotic cells process (12, 22). Induced by the
TLR antagonists, M2d macrophages lead to the release of IL-10
and vascular endothelial growth factors (VEGF) and promote
angiogenesis and tumor progression (23). The characteristics of
the M2 subtypes were summarized in Figure 2.

The Common and Different Characteristics
Between Macrophages and Dendritic
Cells (DCs)
Although both macrophages and DCs are members of the
mononuclear phagocyte system, these cells are often considered
distinct cell types based on their morphology and functions.
Macrophages are defined as large vacuolar cells that are highly
phagocytic and modulate immune responses by releasing various
immune mediators, while DC are characterized as stellate
migratory cells that act as sentinels in non-lymphoid tissues and
migrate into lymphoid tissues upon antigen encounter, present
antigen, and activate native T lymphocytes subsequently (24–26).

In vitro, macrophage colony-stimulating factor (M-CSF)
induces the differentiation of monocytes into macrophages
(27), while the combination of granulocyte/macrophage colony-
stimulating factor (GM-CSF) and interleukin 4 (IL4) induces
the differentiation of monocytes into DCs (28). Macrophages
are classified into 2 subgroups (M1 and M2 [M2a, M2b, M2c,
M2d]) depending on their anti- or pro-inflammatory properties
(29). DCs comprise two functionally distinct populations:
plasmacytoid (pDC) and myeloid (mDC). mDCs have been
further subdivided into 2 subsets based on their expression
of BDCA3/CD141 (mDC1) and BDCA1/CD1c (mDC2) (30).
Although macrophages and DCs originate from a common
myeloid precursor, these cells are distinct cell types with
individual and specific transcriptional profiles (29, 31–33). Of all
the different cell characteristics, surface markers are often used
to distinguish DCs from macrophages, but phenotypic analysis
has considered as insufficient to define DC subsets, as there are
some common phenotypic markers of the cells, such as F4/80,
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FIGURE 1 | The different stumili, surface markers, secreted cytokines, and biological functions between M1 and M2 macrophages were summarized. CCL,

chemokine (C-C motif) ligand; cMaf, c-musculoaponeurotic fibrosarconna; CXCL, chemokine (C-X-C) ligand; FIZZ1, resistin-like α; HIF, hypoxia inducible factor; iNOS,

inducible nitric oxide synthase; IFN-γ, interferon-gamma; IL, interleukin; IRF, interferon regulatory factor; JMJD, Jumonji doman-containing protein; KLF, Kruppel-like

factor; NF-κB, nuclear factor κB; KLF, Kruppel-like factor; LPS, lipopolysaccharides; MHC, major histocompatibility complex; PPAR, peroxisome proliferator-activated

receptors; STAT, signal transducer and activator of transcription; TLR, Toll-like receptor; TNF-α, tumor necrosis factor alpha; TGF-β, transforming growth factor beta;

VEGF, vascular endothelial growth factor; Ym1, chitinase 3-like 3.

CD11b, CD11c, CD80, CD 86, CD163, CD209, and MHCII (34).
These unspecific markers may result in the misinterpretation
of DCs and macrophages. Here, we summarized the common
and different characteristics between DCs and macrophages
in Figure 3.

THE ROLES OF MACROPHAGES IN
NORMAL PREGNANCY

The Roles of M1 and M2 Macrophages in
Normal Pregnancy
Macrophages comprise approximately 20–30% of all human
decidual leukocytes during pregnancy (35). A study on the
classification of maternal-fetal macrophages was first performed
in the Stein laboratory (36). Mills et al. divided macrophages
into M1 and M2 subsets based on the consistency of the
Th1/Th2 immune response and their pro-inflammation or
anti-inflammation properties (37). Houser et al. divided decidual
macrophages into CD11chigh and CD11clow subsets because
the genes expressed in CD11chigh decidual macrophages are
associated with lipid metabolism and inflammation, whereas
the genes expressed in CD11clow decidual macrophages
are associated with extracellular matrix formation, muscle
regulation, and tissue growth (38). In addition, some researchers
have also categorized macrophages as CD209high and CD209−

macrophages based on their differential CD209 expression levels
(39). GM-CSF and M-CSF are two members of the CSF family,
and these factors induce macrophages to polarize into M1-like
and M2-like macrophages, respectively (14).

The polarization patterns of decidual macrophages vary
with gestational age. During the peri-implantation period of
gestation, macrophages polarize into M1 macrophages based
on the fact that the ratio of M1/M2 macrophages in the
uterus was 1.6 on the 1st day and 1.45 on the 4th day after
female mice were inseminated. The a2V (a2 isoform of V-
ATPase)-mediated induction of CCL2 (MCP-1), which is a
macrophage chemoattractant, promoted the recruitment of M1-
like macrophages during the peri-implantation period (40).
When trophoblasts attach to the endometrial lining and invade
the uterine stroma, decidual macrophages begin to transform
to mixed M1/M2 profiles, and these mixed M1/M2 polarization
patterns remain until mid-pregnancy. These macrophages are
involved in extensive remodeling of the uterine vasculature,
which is required to supply adequate placental–fetal blood (40,
41). After the placental development is completed, decidual
macrophages shift toward a predominantlyM2 phenotype, which
promotes maternal immune tolerance to semiallogenic fetuses
and protects fetal growth until parturition (39, 42). Although
decidual macrophages show higher expression of M2 markers,
such as CD206, CD163, and dendritic cell-specific ICAM-
grabbing non-integrin (DC-sign) (39, 43, 44), these cells do not
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FIGURE 2 | The different stumili, surface markers, secreted cytokines, and biological functions of the M2 macrophage subsets were summarized.

FIGURE 3 | The common and different characteristics between macrophages and dendritic cells were depicted according to their surface markers, transcription

factors, and biological functions. BATF3, basic leucine zipper ATF-like transcription; BDCA, blood dendritic cells Ags; CLEC9A, C-type lectin 9A; E2-2, basic

helix-loop-helix transcription factor; ID-2, inhibitor of DNA binding 2; XCR1, chemokine XC receptor 1; ZBTB46, zinc finger and BTB domain containing 46; ZEB2,

Zinc finger E box–binding homeobox 2. Adapted from Rogers et al. (138) with permission from the publisher of Springer Nature.
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seem to be typical M2 macrophages, as they are induced by
M-CSF and IL-10 rather than by Th2 cytokines, such as IL4
(39). At term labor, the number of M1 decidual macrophages
is higher than that at term without labor (45), which suggests
that pro-inflammatory macrophages may play important roles
in the onset of term labor. Term decidual macrophages are
involved in the initiation of labor because these cells have higher
expression of CD80, CD86, CD83, HLA-DR, and CD16 and
secrete higher IL-12 and lower IL-10 and TGF-β levels than
decidual macrophages from mid-pregnancy (46). A previous
study observed that the concentration of IL-6 was significantly
higher than that of IL-10 in placental macrophages at term
pregnancy (47). This observation is consistent with the findings
of Osman I et al., showing that the mRNA expression of IL-6
is significantly higher during spontaneous labor in myometrium
and cervical tissues than that in non-laboring tissues (48).
Recently, some researchers have proposed a hypothetical model
for labor. In this model, the increased levels of circulating cell-
free fetal DNA activate the innate immune system by stimulating
pattern-recognition receptor 9 (TLR9) in maternal macrophages
and releasing a number of inflammatory cytokines, eventually
triggering parturition (49).

The Regulation Mechanisms of
Macrophages in Normal Pregnancy
During pregnancy, macrophages exist in the maternal-fetal
interface. Macrophages play a positive role in embryo
implantation, placental formation, embryonic development,
and delivery processes. In all stages of pregnancy, the maternal
uterus provides a microenvironment for embryo growth
by producing various cytokines, promoting trophoblast cell
invasion, remodeling of spiral arteries and phagocytose
apoptotic cells (50–53) (Table 1).

Trophoblast Invasion
It was reported that decidual macrophages can inhibit NK
cell-mediated lysis of human cytotrophoblasts (CTB) via TGF-
β1 secretion (51). IL-1β secreted by activated macrophages
facilitates trophoblast invasion by degrading the extracellular
matrix. It has been shown that the enzymatic activity of matrix
metalloproteinase (MMP)-9 and MMP-2 in trophoblastic cells
is positively correlated with the concentration of IL-1β (54, 55).
Immunoglobulin-like transcription factor inhibitory receptors,
such as ILT2 and ILT4, can bind to HLA-G, which is highly
expressed in extravillous trophoblast cells (EVT) (72). Recent
work has also revealed that sHLAG5 can reduce the expression of
CD86 and increase the expression of CD163. sHLAG5-polarized
macrophages promote the secretion of IL-6 and C-X-C motif
ligand 1, which induce trophoblast invasion (56).

Angiogenesis and Spiral Artery Remodeling
Angiogenesis and spiral artery remodeling of the decidua are
essential to ensure sufficient blood flow to the uterus and placenta
during healthy pregnancy. A previous study has shown that
macrophages are involved in the early stages of the decidual
spiral artery remodeling process (67). It was reported that
decidual macrophages regulate vascular remodeling by secreting

vascular endothelial growth factor (VEGF), placental growth
factor (PlGF) and their receptors fms-like tyrosine kinase
(Flt-1) (57, 58). During the embryo implantation window, the
expression of iNOS and VEGF in the endometrium of pregnant
mice was significantly higher than that in pseudopregnant
mice. The number of macrophages was correlated with the
expression levels of iNOS and VEGF in the endometrium,
implying that macrophages may be involved in vascular bed
development before implantation by regulating the expression
of iNOS and VEGF (59). Soluble fms-like tyrosine kinase-1
(sFlt-1) is a VEGF antagonist that inhibits angiogenesis (60).
An in vivo study showed that the macrophage M2 phenotype
has a higher angiogenic potential than other macrophage
subsets in C57BL/6 J mice (73). Phosphorylation of protein
kinase C (PKC) is necessary for the induced expression of
VEGF in various cells (74, 75). GF109203X (a general PKC
inhibitor) significantly decreased LPS-induced sFlt-1 secretion
and significantly enhanced LPS-induced VEGF secretion in the
murine macrophage RAW264.7 cell line compared with the
LPS-only treated group (62). Pregnancy-specific glycoproteins
(PSG) are members of the carcinoembryonic antigen family
of immunoglobulin-like genes. They are highly homologous
proteins secreted by the placenta and are the most abundant fetal
proteins in the maternal blood at the end of pregnancy (76, 77).
Ha et al. demonstrated that the expression levels of VEGFA were
upregulated by PSG1 (the most abundant member of the human
PSG family) both in a mouse macrophage cell line (RAW 264.7)
and in human macrophages derived from blood monocytes (63).
PSG22 (the most abundant PSG expressed during mouse early
pregnancy) was found to upregulate the expression of VEGFA
in mouse uterine macrophages (64). These findings suggest that
PSG familymembers inmacrophagesmay play important roles in
vascular modifications. Further studies should elucidate the exact
mechanisms for M2-induced angiogenesis.

Phagocytose Apoptotic Cells
Macrophages phagocytose apoptotic cells to promote trophoblast
invasion and spiral artery remodeling and provide a balanced
microenvironment at the maternal-fetal interface during the
process of pregnancy (78). It has been proposed that apoptotic
cells have immunosuppressive effects (79). When trophoblast
debris were phagocytosed, the levels of pro-inflammatory
cytokines, such as IL-12, p70, IL-1β and IL-8, were significantly
decreased, whereas the anti-inflammatory cytokines, such as
IL-10, IL6, IL1Ra and IDO, were upregulated in macrophages
(65, 66). Moreover, the decidual macrophages phagocytose
vascular smooth muscle cells (VSMCs) to participate in spiral
artery remodeling based on the fact that the expression levels
of fractalkine and calreticulin were increased dramatically in
VSMCs undergoing apoptosis (67, 68). Trophoblast-secreted
factors, such as TGF-β, induce monocyte differentiation into
M2-like macrophages and enhance the capacity of phagocytosis
(69). sHLAG5-induced macrophages have also been shown to
be polarized into an M2 phenotype with enhanced phagocytic
activity (56). T-cell immunoglobulin and mucin domain protein
3 (Tim-3) is constitutively expressed on macrophages and
is a receptor specialized for phosphatidylserine exposed on
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TABLE 1 | The regulation mechanisms of macrophages in normal pregnancy.

Samples Mechanisms References

Trophoblast invasion Human Decidual macrophages can inhibit NK cell-mediated lysis of CTB via TGF-β1

secretion;

(51)

Human IL-1β facilitates trophoblast invasion by degrading the extracellular matrix, the

enzymatic activity of MMP-2, 9 is positively correlated with the level of IL-1β;

(54, 55)

Human sHLAG5-polarized macrophages promote the secretion of IL-6 and C-X-C motif

ligand 1 to induce trophoblast invasion;

(56)

Angiogenesis and spiral

artery remodeling

Human Decidual macrophages regulate vascular remodeling by secreting VEGF, PlGF, Flt-1; (57, 58)

Mice The expression of iNOS and VEGF is higher; (59)

Human The sFlt-1 inhibits angiogenesis; (60)

THP1 cell line VEGF promotes macrophages polarization into the M2 phenotype; (61)

RAW264.7 cell line PKC inhibitor enhances the VEGF secretion and decreases the sFlt-1 secretion; (62)

RAW264.7 cell line and

human

PSG1 upregulates the VEGFA secretion; (63)

Mice PSG22 upregulates the VEGFA secretion; (64)

Phagocytose apoptotic

cells

Human IL-12, p70, IL-1β, IL-8 are decreased, whereas IL-10, IL6, IL1Ra, IDO are

upregulated;

(65, 66)

Human Fractalkine and calreticulin are increased in VSMCs; (67, 68)

Human TGFβ induces monocyte differentiation into M2-like macrophages and enhances the

capacity of phagocytosis;

(69)

Human sHLAG5-induced macrophages polarize into an M2 phenotype with enhanced

phagocytic activity;

(56)

Mice and RAW264.7

cell line

Tim-3 blocking antibodies cause macrophages failed to phagocytose apoptotic and

dying cells;

(70)

Human Decidual macrophages secrete IL-1β and TNF-α to induce M-CSF expression, which

initiates caspase-dependent EVT apoptosis.

(71)

FIGURE 4 | The similarities and differences between Hofbauer cells and maternal macrophages in the placenta were depicted according to the origin, resident tissue

and related diseases. Adapted from Coyne et al. (139) with permission from the publisher of Springer Nature.
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the surface of apoptotic cells (80). Treating pregnant mice
with Tim-3 blocking antibodies caused the failure of uterine
macrophages in mice to phagocytose apoptotic and dying
cells. Thus, Tim-3 was considered to play a significant role
in the process of phagocytose apoptotic cells and dying cells
by macrophages (70). Decidual macrophages secrete various
pro-infammatory cytokines (such as IL-1β and TNF-α) to
induce M-CSF expression, which initiates caspase-dependent
EVT apoptosis (71).

The Roles of “Hofbauer Cells” in Normal
Pregnancy
Hofbauer cells refers to fetal placental macrophages within the
chorionic villi (81). Hofbauer cells have different origins at
different stages of pregnancy. At the early stages of pregnancy,
Hofbauer cells may originate from villous mesenchymal stem
stromal cells or monocyte progenitor cells from the hypoblast-
derived yolk sac; at later stages of pregnancy, Hofbauer cells may
originate from fetal haematopoietic stem cells (82–84). Yolk sac-
derived macrophages may participate in the tissue development
and morphogenesis processes, while haematopoietic stem cell-
derived macrophages may be important for haematopoiesis and
antigen presentation processes.

Hofbauer cells have been found to play critical roles in
maternal-fetal immune tolerance since the 1990s. Bockle found
that Hofbauer cells highly express CD163 and DC-SIGN/CD209
in the term placenta. Thus, Hofbauer cells have been suggested
to be M2 macrophages (85). However, CD163, DC-SIGN, and
CD206 (M2 markers) were not clearly detected in the term
placenta in the study by Joerink et al. whereas CX3CR1, IL-
7R or CCR7 (M1 markers) were observed in the term placenta
(86). Studies have also shown that Hofbauer cells are positive for
CD209 (M2amarker), CD86 (M2bmarker), HLA-DR (M2a/M2b
marker), CD206 (M2a/M2c), and CD14 (M2c marker) (82).
Recently, Kim SY et al. demonstrated that the genes encoding
markers of M1 macrophages, such as TLR9, IL1B, IL12RB2,
CD48, and FGR, were hypermethylated in Hofbauer cells,
whereas the genes encoding markers of M2macrophages, such as
CCL2, CCL13, CCL14, CD209 and A2M, were hypomethylated
in Hofbauer cells (87). Hofbauer cells may promote placental
angiogenesis, chorionic villus growth, and stromal fluid balance,
absorb immune complexes and function as antigen presenting
cells (88). Perturbed Hofbauer cells function is a common

occurrence in chorioamnionitis, spontaneous abortion and fetal
metabolic storage disease. Although both of Hofbauer cells
and maternal macrophages are predominantly M2 phenotypes,
they have different origins, resident tissues, biological functions,
and associated complications. We depicted these differences in
the Figure 4.

THE ROLES OF MACROPHAGES IN
PREGNANCY COMPLICATIONS

The Roles of Macrophages in Miscarriage
Miscarriage, especially recurrent spontaneous miscarriage, is an
immune-related reproductive disorder (89). The WHO defines
3 or more consecutive miscarriages before the 20th week of
gestation as recurrent miscarriage (90). The definition from
American College of Obstetricians and Gynecologists is “just 2
consecutive miscarriages” (91). The study on human decidual
tissues reported that the number of CD68+ macrophages
is higher in recurrent miscarriage patients than in artificial
abortions patients (92). Similarly, it has also been observed
that macrophage depletion could rescue CpG ODN (CpG-
Oligodeoxynucleotides)-induced fetal resorption in the CBA/J
x DBA/2 mice model (93). Cathepsins belong to the family of
lysosomal cysteine proteases and play important roles in the
degradation of matrix molecules and intracellular proteolysis. It
has been shown that the expression of cathepsin B, D, H was
upregulated and cathepsin E was downregulated in the decidual
tissues of spontaneous miscarriage patients compared to normal
pregnancy patients (94). Cathepsin-deficient (CatE−/−) mice
were fertile, but the litter sizes were smaller than those of wild-
typemice (95). The percentage of FasL+/CD68+ cells is increased
in spontaneous abortion patients compared to normal pregnancy
subjects. These results implied that Fas/FasL mediated apoptosis
of macrophages involved in the occurrence of abortion (6).

Macrophages are skewed toward the M1 phenotypes in
spontaneous abortion (96). The ratio of M1/M2 on day 16 was
3.9–4.2 in the abortion-prone mice, while the number was 1.2–
1.6 on both day 12 or 16 in the non-abortion-prone mice (97). In
decidual macrophages from patients with spontaneous abortion,
the expression levels of CD80, IL-12, and IL-13 were increased,
while the expression levels of CD163, CD206, IL-10, and ARG-1
were decreased (98, 99). PPARγ is essential for the differentiation
of alternatively activated (M2) macrophages (100). PPARγ was

TABLE 2 | The roles of macrophages in miscarriage.

Samples Mechanisms References

Human Cathepsin B, D, H are upregulated and cathepsin E is downregulated in the decidual tissues; (94)

Mice The litter sizes of CatE−/− mice are smaller; (95)

Mice The Fas/FasL mediated apoptosis is increased; (6)

Human CD80, IL-12, IL-13 are increased, while CD163, CD206, IL-10, ARG-1 are decreased; (98, 99)

Human Reduced the expression of PPARγ may skew macrophages to the M1 phenotype; (101)

Human and U937 cell line Dysregulation of the IL-33/ST2 signaling pathway may skew macrophages into the M1

phenotype;

(103)

Human and mice The decreased expression of RANKL could switch macrophages into M1 phenotype through

the Akt/STAT6-Jmjd3/IRF4 signaling pathway.

(104)
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TABLE 3 | The roles of macrophages in preeclampsia.

Samples Mechanisms References

Human TNF-α, IL-6 and IL-8 are increased, IL-10 is decreased; (114)

Human Amniotic MSCs could skew macrophages toward a M2 phenotype; (119)

Human TGF-β3 promotes the expression of miR-494 in dMSCs and downregulates the effect of dMSCs switching the

macrophages toward a M2 phonetype;

(117)

Human Macrophages produce TNF-α and IFN-γ to affect trophoblast invasion by the reconstitution of the ECM; (120, 121)

Human TNF-α increases the expression of MMP-1, 3, 9 by activating p38 MAPK phosphorylation in decidual cells,

whereas IFN-γ blocked TNF-α-induced p38 phosphorylation to protect against MMP-mediated ECM degradation.

(122)

Human TNF-α and IFN-γ increase the sensitivity of trophoblast cells to apoptosis; (111, 123)

Human TNF-α and IFN-γ increase the XIAP expression and initiate the caspase-dependent pathway; (124)

Rats More activated macrophages and impaired spiral artery remodeling are observed in the mesometrial triangle of the

ATP-infused rats.

(127)

TABLE 4 | The roles of macrophages in preterm birth.

Samples Mechanisms References

Mice Macrophages induce the release of MMPs and collagen degradation in the cervix; (133)

Mice Progesterone decreases the expression of C5aR and then inhibits the release of MMP-9 to

protect against the PTL;

(8)

Mice HCG stimulates the production of progesterone and prevents endotoxin-induced PTL; (134)

Mice Macrophages polarize into the M1 subtype by activating the Notch signaling pathway, which

could be blocked by a2V;

(137)

Human and mice The activation of PPARγ attenuates the macrophage-mediated pro-inflammatory response and

prevents PTL.

(45)

significantly downregulated in placental tissues from women
with recurrent miscarriages. This implies that downregulation of
PPARγ expression may skew macrophages to the M1 phenotype
and lead to miscarriages (101). IL-33, a member of the IL-1
family, induced the proliferation of cytotrophoblasts (CTB) and
triggered the migration of EVT by interacting with the IL-33
ligand ST2L (102). Dysregulation of the IL-33/ST2 signaling
pathway may skew normal pregnancy-derived dMφs and U937
cells into the M1 phenotype (103). Meng et al. observed that
the levels of RANKL/RANK were reduced in villi and decidua
from miscarriage patients compared to those from normal
pregnancy patients. Downregulation of nuclear factor-κ B ligand
(RANKL) caused murine fetal loss. The abnormal expression
of RANKL may switch macrophages into M1 phenotype
through the Akt/STAT6-Jmjd3/IRF4 signaling pathway
(104) (Table 2).

The Role of Macrophages in Preeclampsia
Preeclampsia, a pregnancy-specific disorder characterized by
hypertension in combination with proteinuria, occurs at 20
weeks after gestation (105). With a prevalence of 6–8% of
pregnancies, preeclampsia is a major cause of maternal and
fetal morbidity and mortality (106). The pathophysiological
mechanism of preeclampsia has not been elucidated in detail;
however, preeclampsia is associated with impaired spiral
artery remodeling and with changes in the numbers of
trophoblasts and immune cells in the placenta. Decreased
numbers of decidual macrophages were reported in patients
with preeclampsia (107, 108). However, various studies have
found increased numbers of macrophages in the placenta

of patients with preeclampsia (109–111). Conflicting findings
across studies may be due to the use of different cell makers
or methodologies and different locations of the placenta
being studied.

The numbers of macrophages were changed in preeclamptic
patients, and the polarization states of macrophages were

different in preeclamptic patients compared to normal pregnancy

patients. A decreased number of M2 macrophages and an
increased number of M1 macrophages in the placenta may

be related to preeclampsia (112, 113). This finding is in

concordance with an increase in pro-inflammatory cytokines
(such as TNF-α, IL-6, and IL-8) and a decrease in anti-

inflammatory cytokines (such as IL-10) in the placenta of
preeclamptic patients (114). Various tissue-derivedmesenchymal

stem cells (MSCs) regulate the polarization of macrophages

(115–118). Human placental MSCs can shift macrophages from

an M1-like to an M2-like phenotype (115). In line with
this finding, human amniotic MSCs have anti-inflammatory
properties and skew macrophages toward a M2 phenotype
(119). In patients with preeclampsia, TGF-β3 in decidua could
promote the expression of miR-494 in dMSCs and downregulate
the effect of dMSCs switching the macrophages toward M2
phonetype (117).

The altered amount and polarization phenotypes of uterine
macrophages may account for the defective trophoblast
invasion and spiral artery remodeling observed in preeclampsia.
Aberrantly activated macrophages are capable of producing
various molecules (such as TNF-α and IFN-γ) that may affect
trophoblast invasion by the reconstitution of the extracellular
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matrix (ECM) (120, 121). Lockwood CJ et al. demonstrated that
TNF- α bound to TNF-αR and caused the increased expression
of MMP-1, MMP-3, and MMP-9 by activating p38 MAPK
phosphorylation in decidual cells, whereas IFN-γ bound to
IFN-γR and blocked TNF-α-induced p38 phosphorylation
to protect against MMP-mediated ECM degradation (122).
There is evidence that placental apoptosis was increased in
preeclampsia. The elevated levels of pro-inflammatory cytokines
secreted by aberrantly activated macrophages (such as TNF-α
and IFN-γ) may increase the sensitivity of trophoblast cells to
apoptosis and restrict trophoblast invasion (111, 123). TNF-α
and IFN-γ have been shown to increase the expression of the
pro-apoptotic factor X-linked inhibitor of apoptosis (XIAP) in
trophoblast cells and initiate the caspase-dependent pathway
(124). Deficient spiral artery remodeling is hypothesized to
account for the major pathogenesis of early-onset preeclampsia
(125). It has been proven that macrophages were associated with
impaired spiral artery remodeling in patients with preeclampsia
(126). In addition, it has been speculated that ATP-induced
activated macrophages may prevent spiral artery remodeling in
preeclampsia based on the fact that more activated macrophages
were observed in the mesometrial triangle of ATP-infused rats,
and spiral artery remodeling in the rat mesometrial triangle was
impaired (127) (Table 3).

The Role of Macrophages in Preterm Birth
Preterm birth, the birth of a baby at fewer than 37 weeks of
gestational age (128), is the most common cause of death among
infants worldwide (129). Inflammation has been considered to
be associated with preterm birth (130). An increased number
of macrophages have been observed in the cervix of women
in preterm labor (131). Studies have been reported that the
depletion of F4/80+ macrophages could rescue the CpG-
induced preterm birth of mice to term (132). Studies have
shown that macrophages induce the release of MMPs and
collagen degradation in the cervix of mice that deliver at
preterm (133). The interaction of C5a, a chemotactic factor
and activator of macrophages, with C5aR is necessary for
macrophages to release MMP-9 and to be involved in the
cervical remodeling process. Progesterone was reported to
decrease the expression of C5aR and inhibit preterm birth
in mice (8). Human chorionic gonadotropin (HCG) has been
confirmed to stimulate progesterone production (134), thus
having anti-infammatory capacity and preventing endotoxin-
induced preterm birth in mice. The numbers of M1macrophages
in decidual tissue from spontaneous preterm labor patients
were much greater than those in term without labor patients.
Studies have also proposed that both M1 (CD11c+) and

M2 (CD206) macrophages participate in preterm birth since
the expression levels of both pro-inflammatory (IL-6, IFN-
γ) and anti-inflammatory cytokines (IL-10) were significantly
increased in the uterus of PGN+poly (I:C)-treated preterm
labor mice (135). The Notch signaling pathway has been
considered to promote the M1 polarization of macrophages
(136). During inflammation-induced preterm labor in mice,
decidual macrophages were polarized into the M1 subtype by
activating the Notch signaling pathway, which could be blocked

by a2V (137). Xu Y et al. demonstrated that decidual M1-
like macrophages were associated with spontaneous preterm
labor patients. The activation of PPARγ via rosiglitazone could
attenuate the macrophage-mediated pro-inflammatory response
and prevent preterm birth in mice (45) (Table 4).

CONCLUSIONS

Altogether, this review summarized the current knowledge
of the polarization of macrophages and their regulatory
mechanisms at different stages of pregnancy, as well as
the roles of these cells in pathological processes. Although
current evidence provides a compelling argument that
macrophages are important in pregnancy, our understanding
of the roles and mechanisms of macrophages in pregnancy
is still rudimentary. Since macrophages exhibit functional
plasticity, they may be ideal targets for therapeutic
manipulation during pathological pregnancy. Additional
studies are needed to better define the functions and
mechanisms of various macrophage subsets in both normal
and pathological pregnancy.
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