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Ovarian cancer is the most lethal gynecological malignancy worldwide. Most patients are

diagnosed at late stages because of atypical symptoms and the lack of effective early

diagnostic measures. The mechanisms underlying the oncogenesis and development of

ovarian cancer are not clear. Macrophages, immune cells derived from the innate immune

system, have two states of polarization (M1 and M2) that develop in response to different

stimuli. The polarization and differentiation of macrophages into the cancer-inhibiting

M1 and cancer-promoting M2 types represent the two states of macrophages in the

tumor microenvironment. The interaction of polarized macrophages with cancer cells

plays a crucial role in a variety of cancers. However, the effects of macrophage M1/M2

polarization on ovarian cancer have not yet been systematically and fully discussed.

In this review, we discuss not only the occurrence, development and influences of

macrophage polarization but also the association between macrophage polarization and

ovarian cancer. The polarization of macrophages into the M1 and M2 phenotypes plays a

pivotal role in ovarian cancer initiation, progression, and metastasis, and provides targets

for macrophage-centered treatment in the cancer microenvironment for ovarian cancer

therapy. We also addressed the regulation of macrophage polarization in ovarian cancer

via noncoding RNAs, exosomes, and epigenetics.
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INTRODUCTION

Ovarian cancer is the most lethal malignancy of the female reproductive tract, and its mortality
rate is reported to be the fifth highest among all female cancers (1). The pathogenesis and
development of ovarian cancer is associated with various biological and molecular factors,
dysfunctional expression or mutation of genes, dysregulation of host immune responses, ovulation
frequency, activation of oncogenes or inactivation of suppressor genes, reactions to growth
factors, and cytokines in the tumor microenvironment (TME), etc.(2). The progression-free
survival (PFS) and overall survival (OS) rates of ovarian cancer patients tend to be poor
due to the lack of early testing methods. Seventy percent of ovarian cancer patients will
eventually experience recurrence and develop chemoresistance, although most patients accept
effective treatments, including cytoreductive surgery and taxane/platinum-based chemotherapy
(3). Macrophages are important innate immune system cells that have many physiological
functions, and tumor-associated macrophages (TAMs) exist in the cancer microenvironment and
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influence the formation, growth, and metastasis of cancers
by interacting with cancer cells (4). With different stimuli,
macrophages can be polarized into classically activated M1
macrophages or alternatively activated M2 macrophages. In
cancers, TAMs are considered M2-like and support almost all
hallmarks of cancer by producing a large number of growth
factors, extracellular matrix (ECM) remodeling molecules, and
cytokines to regulate cancer growth, migration and angiogenesis
(5). According to previous reports, M2 macrophage polarization
is associated with hepatoma (6), prostate carcinoma (7), colon
cancer (8), pancreatic cancer (9), thyroid cancer (10), and brain
tumors (11), among others.

MACROPHAGES AND MACROPHAGE
POLARIZATION AND CLASSIFICATION

Macrophages, which are present in almost all tissues and
can infiltrate infected or damaged tissue, were discovered by
Metchnikoff in 1908 (12). Monocytes develop from embryonic
hematopoietic precursors during fetal development and from the
stem cells of the hematopoietic system in the bonemarrow during
adult life (13). Monocytes migrate from the blood to tissues
and grow into specific macrophages to adapt to local tissues,
such as the bones (osteoclasts), kidneys (mesangial cells), central
nervous system (microglial cells), connective tissue (histiocytes),
alveoli (dust cells), spleen, liver (Kupffer cells), peritoneum, and
gastrointestinal tract (14). The TME is composed of fibroblasts,
endothelial cells, myofibroblasts, adipose cells, neuroendocrine
cells, immune and inflammatory cells, the blood and lymphatic
vascular network, extracellular matrix, etc.(15), andmacrophages
are an immune cell type in the TME. Macrophages isolated from
tumors are named TAMs and are similar to macrophages found
in developing and regenerating tissues (16). According to the
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different functional abilities demonstrated in response to stimuli
in the microenvironment, macrophages can be divided into two
subsets: classically activated M1 macrophages and alternatively
activated M2 macrophages (17). In most cases, prognosis
is associated with the proportions of the two macrophage
subsets (18).

Macrophages have a strong plasticity and exhibit functional
diversity. Macrophages were initially assumed to be involved in
antitumor immunity, but they can promote cancer initiation,
stimulate angiogenesis, and suppress antitumor immunity during
malignant progression (19). The phenotypes of polarized
macrophages, including M1 macrophages and M2 macrophages,
can be separately altered by the cytokine repertoires of
Th1 and Th2 helper cells (20). Microbial stimuli, such as
lipopolysaccharide (LPS), and Th1-related cytokines, such
as interferon (IFN)-γ, polarize macrophages into the M1
phenotype (21). M1 macrophages function in proinflammatory,
microbicidal and tumor resistance processes. M1 macrophages
are characterized by the following characteristics: capacity for
antigen presentation (22); high production of interleukin (IL)-
6, IL-12, and IL-23 (23); high production of toxic intermediates,
including nitric oxide (NO) and reactive oxygen intermediates
(ROI) (24); and expression of matrix metalloproteinase 12
(MMP12) (25) (Figure 1). Th2 cytokines, such as IL-4 and IL-
13, can polarize macrophages into the M2 phenotype, and M2
macrophages function in anti-inflammatory processes, tissue
repair and remodeling, parasite clearance, tumor-promoting
processes and immunoregulatory processes (26). According to
the signal stimuli inducing polarization, M2 macrophages can
be classified into three types as follows: the M2a type is induced
by IL-4 or IL-13 (promotes tissue repair through the secretion
of ECM); the M2b type is induced by exposure to immune
complexes (ICs) and agonists of Toll-like receptors (TLRs) or
interleukin-1 receptor (IL-1R) (participates in anti-inflammatory
responses and functions in immunoregulation); and theM2c type
is induced by glucocorticoid hormones and IL-10 (suppresses
immune responses and tissue remodeling) (27). TAMs affected
by the TME are tumor-promoting cells that play a vital role in
cancer growth, invasion and metastasis. TAMs are one type of
alternatively activatedM2macrophages (19). Some TAMs appear
similar to the M2b phenotype (IL-10high, IL-12low) (28), while
others have been shown to have a tumor necrosis factor (TNF)-
αlow phenotype similar to the M2c phenotype in some studies on
murine and human tumors (26). However, some scholars classify
TAMs asM2dmacrophages, which express high levels of vascular
endothelial growth factor (VEGF) and IL-10. M2d macrophages
induced by adenosine, leukemia inhibitory factor (LIF) and IL-6
are believed to induce angiogenesis to regulate tumor progression
and enhance tumor survival (29, 30) (Figure 2).

EXPRESSION MARKERS, CYTOKINES
AND CHEMOKINES OF MACROPHAGES

Different receptors and distinctive secretion patterns exist for
circulating monocytes and tissue macrophages. M1 macrophages
highly express MHC-II, IL-1R, TLR2, TLR4, CD80, CD86,
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FIGURE 1 | Activated factors and functions of M1 macrophages. Microbial stimuli, such as LPS, and Th1-related cytokines, such as IFN-γ, polarize macrophages into

the M1 phenotype. M1 macrophages function in proinflammatory, microbicidal and tumor resistance processes under high production of IL-6 IL-12, and IL-23, high

production of toxic intermediates, including NO and ROI, and expression of MMP12. LPS, lipopolysaccharide; IFN, interferon; IL, interleukin; NO, nitric oxide; ROI,

reactive oxygen intermediates; MMP12, matrix metalloproteinase 12.

FIGURE 2 | Activated factors and functions of M2 macrophages. The M2a type is induced by IL-4 or IL-13 (promotes tissue repair through the secretion of ECM); the

M2b type is induced by exposure to ICs and agonists of TLRs or IL-1R (participates in anti-inflammatory responses and functions in immunoregulation); the M2c type

is induced by glucocorticoid hormones and IL-10 (suppresses immune responses and tissue remodeling). M2d (TAMs) macrophages induced by adenosine, LIF and

IL-6 are believed to induce angiogenesis to regulate tumor progression and enhance tumor survival. IL, interleukin; ECM, Extracellular matrix; ICs, immune complexes;

TLRs, Toll-like receptors; IL-1R, interleukin-1 receptor; TAM, tumor-associated macrophage; LIF, leukemia inhibitory factor.
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and other stimulatory molecules (31). M1 macrophages secrete
proinflammatory cytokines, such as TNF-α and IL-1, and some
chemokines, such as CCL2, CCL3, CCL5, CXCL8, CXCL9,
CXCL10, CXCL11, and CXCL16 (32), and they produce high
levels of important inflammatory cytokines, including IL-23,
IL-6, and IL-12 (33).M1macrophages are also associated with the
synthesis of reactive oxygen species (ROS) and NO release (34).
M2macrophages express manyMHC-II molecules; however, this
expression is insufficient for effective antigen presentation (35).
They also express high levels of Arginase 1 (Arg1). Arg1 can
promote the synthesis of polyamines and stimulate tissue repair,
cell growth, collagen formation, etc. (36). M2a macrophages
express high levels of surface molecules and receptors, such as
CD163, CD23, CD209, Fizz1, Arg1, Ym1/2, IL-4R, FcR, CXCR1,
CXCR2, and Dectin-1, in addition to producing CCL17, CCL18,
CCL22, and CCL24 (37). M2b macrophages express high levels
of the surface molecules CD80 and CD86 and produce TNF-α,
CCL1, IL-1, IL-6, and IL-10 (38). M2c macrophages express high
levels of surface receptors andmolecules, including CD14, CD50,
MR, and SR, and produce IL-10, CCL16, CCL18, CXCL13 and
transforming growth factor-β (TGF-β) (39). M2d macrophages
(TAMs) express high levels of VEGF and CD163 (40), produce
cytokines (such as IL-10, IL-12, TNF-α, and TGF-β), and secrete
chemokines (CCL5, CXCL10, CXCL16, CCL18) (30) (Table 1).

CELLULAR SIGNALING PATHWAYS

The status of macrophage polarization (M1 and M2) can be
further polarized or reversed by cellular signaling pathways.
Activation of the JNK signaling pathway polarizes macrophages
to the M2 type, while inhibition of JNK activity skews
macrophages to the M1 phenotype (41). Th2 cytokines,
such as IL-13 and IL-4, whose promoters are regulated by
signal transducers and activators of transcription-6 (STAT-
6) produce M2-like activation in macrophages by inducing
peroxisome proliferator-activated receptor (PPAR) expression
(42). AMP-activated protein kinase (AMPK) and factors
deriving from adipocytes increase the content of angiotensin-
converting enzyme (ACE) in macrophages, polarizing them
toward the M2 phenotype (43). Macrophage polarization can
be altered by different Akt kinases. Akt1 induces an M1
phenotype, while Akt2 induces an M2 phenotype (44). Notch
activation promotes M1 macrophage polarization but inhibits
M2 polarization (45). IFN-γ, a potent endogenous macrophage-
activating factor, can activate STAT-1 predominantly and induce
M1-like macrophage polarization by signaling through the
IFN-γ/JAK/STAT-1 pathway (46). PPARγ is a lipid-activated
transcription factor in macrophages that can regulate lipid
metabolism and the inflammatory response. STAT-6 combines
with PPARγ to promote DNA binding and regulate genes,
leading to the expression of M2 macrophage markers (47). In
addition, interferon regulatory factor (IRF)-1, IRF-5, and IRF-8
are correlated with polarization to the M1 phenotype, while IRF-
3 and IRF-4 polarize cells to the M2 phenotype (48). C/EBPβ is
a C/EBP family member that has been reported to contribute to
macrophage activation and polarization toward the expression of

M2-specific genes (49, 50). Because the pathways described above
can sometimes interact with each other, studying the signaling
pathways of macrophage polarization associated with theM1 and
M2 phenotypes plays a crucial role in understanding and creating
treatments for the prevention of tumor development (Figure 3).

ROLES OF MACROPHAGE POLARIZATION
IN THE DEVELOPMENT AND
PROGRESSION OF OVARIAN CANCER

Macrophages play a crucial role in not only host defense against
bacteria, viruses, and parasites but also in defense against tumor
cells. Ovarian cancer is the most lethal malignancy of the female
reproductive tract. Over 190,000 new cases are diagnosed each
year worldwide, and approximately 21,880 new cases and 13,000
deaths occur each year in the United States (51, 52). Most ovarian
cancer patients are diagnosed at an advanced stage, and there are
three large categories of ovarian cancer: epithelial, germ cell and
sex cord. Approximately 80–85% of all ovarian cancers are of the
epithelial type, for which the histological subtypes include clear
cell, mucinous, endometrioid, and serous carcinoma according
to the 2014 WHO classification (53–55). The TME plays an
important role in the evolution and progression in cancers.
Macrophages are a type of infiltrating immune cell in the TME
that have vital physiological and pathological functions. TAMs,
which belong to the M2 macrophage phenotype, are related to
poor outcomes in solid cancers and play important roles in cancer
growth, progression, metastasis, and angiogenesis (56). A high
density of CD163+ M2-macrophages is associated with poor
prognosis in epithelial ovarian cancer (EOC)(57). High M1/M2
ratios in ovarian tumor tissue are correlated with extended
survival (58), while low M1/M2 ratios are correlated with poor
overall survival (59).

M2 macrophages may release immunosuppressive factors
to support immune evasion in ovarian cancer. For example,
macrophages exposed to IL-4, IL-10, and IL-13 differentiate into
the M2 phenotype during tumor progression and secrete IL-
4, IL-5, and IL-6 to enhance angiogenesis, immunosuppression,
and matrix remodeling (60). TAM cells secrete epidermal growth
factor (EGF) and TNF-α, while tumor cells secrete colony-
stimulating factor-1 (CSF-1). TAMs and tumor cells interact
with each other to control the migration of cells in the
microenvironment (61). TAMs can also promote cancer cell
invasion by augmenting c-Jun and NF-κB activity as well as
upregulating scavenger receptor A (SR-A) expression in ovarian
cancer (62, 63). The stemness of ovarian cancer cells can
be induced by coculturing these cells with macrophages (64).
Conversely, cytokine and chemokine production derived from
ovarian cancer cells can also affect macrophages by promoting
their recruitment and changing their polarization. For example,
LIF and IL-6 derived from ovarian cancer ascites can promote
monocyte differentiation into M2 macrophages (65). EOC cells
release CCL2, a chemokine, and CCL2/MCP-1 can recruit and
polarize monocytes to TAMs in the TME (66). Ovarian cancer
cell lines and tumor biopsy specimens express TNF, CCL22, and
CXCL12, which induce macrophage polarization into the M2
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TABLE 1 | The phenotypes, cytokines, and chemokine secretions of M1 macrophage and M2 macrophage.

Subtypes Expression marker Cytokines Chemokine secretion

M1 CD80, CD86, MHC-II, CCR7, IL-1R1, TLR2, TLR4 IL-12, IL-1, IL-6, IL-23, TNF CXCL8, CXCL9, CXL10, CXCL11, CXCL16, CCL2,

CCL3, CCL5

M2a CXCR1, CXCR2, MHC-II, FcR, IL-4R, CD23, CD163, MR

(CD206), SR, Ym1/2, Fizz1, Arg-1

IL-10, TGF-β, IL-1R CCL17, CCL18, CCL22, CCL24

M2b CD80, CD86, MHC-II IL-1, IL-6, IL-10, TNF CCL1

M2c CD14, CD150, MR (CD26), SR, CCR2 IL-10, TGF-β CCL16, CCL18, CXCL13

M2d(TAM) VEGF, CD163 IL-6, IL-10, IL-12, TNF-α, TGF-β CCL5, CXCL10, CXCL16, CCL18

FIGURE 3 | Signaling pathways of macrophage polarization associated with the M1 and M2 phenotypes.

phenotype in the TME (67). Periostin from ovarian cancer cells
was shown to be a key factor in M2 macrophage recruitment
(68). SEMA4D is a member of the transmembrane or secretory
signaling protein IV subfamily. SEMA4D expression was higher
in ovarian cancer cell lines and supernatant than in primary
cultured human ovarian cells and supernatant. After stimulation
with human recombinant soluble SEMA4D protein, peripheral
blood monocytes tended to polarize into M2 macrophages (69).
The polarization of M2 macrophages can also be regulated by
COX-2 derived from ovarian cancer stem-like cells, which can
activate the JAK and COX-2/PGE2 pathways (70).

Macrophages also play special roles in different histological
subtypes of ovarian carcinoma. TAM infiltration was reported
to be more frequent in ovarian serous and mucinous carcinoma
than in other histological subtypes of ovarian cancer, and M2
macrophage infiltration in ovarian serous carcinoma indicates
a poor prognosis (71, 72). Low- and high-grade serous ovarian
cancers account for ∼70% of all epithelial ovarian tumors
and for a majority of deaths. Ciucci et al. (73) found that
compared to high-grade serous ovarian cancer patients, low-
grade patients had a lower density of tumor-infiltrating CD68+

macrophages and a subdued M2-skewed (CD163+) phenotype.
This previous result may indicate that the differential activation
of M2 macrophages may stimulate the development and spread
of different subsets of ovarian cancer. In women, smoking
increases the risk of only the mucinous subtype of ovarian cancer
(74). Cigarette smoke can also activate nicotinic acetylcholine
receptors, and this activation event has been demonstrated
to polarize macrophages into the M2 phenotype (75). The
relationship among smoking, macrophage polarization and
ovarian mucinous cancer requires more research and discussion.
Most ovarian endometrioid and clear cell carcinomas are caused
by endometriosis (76). One study considered the possibility that
CDC42-positive macrophages may inhibit the transformation
of endometriosis into ovarian endometrioid and clear cell
carcinomas (77). Glypican-3, which is specifically expressed in
ovarian clear cell carcinoma, can increase the proportion of M1
macrophages and suppress the growth of mouse ovarian tumors
(78). B7-H4 expressed on the surface of ovarian carcinoma
cells is inversely associated with the infiltration of T cells
and CD14+ macrophages in ovarian clear cell carcinoma but
not serous or endometrioid carcinoma (79). Currently, studies
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on the role of macrophages in ovarian cancer subtypes are
insufficient, and more studies are needed to explore more
important functions of different types of macrophages in various
ovarian cancer subtypes.

However, many studies have focused on the antitumor
influences of M1 macrophages; interestingly, Untack Cho et al.
showed that M1 macrophages promote metastasis in ovarian
cancer by activating the NF-κB signaling pathway (80). These
findings suggest that as macrophages are a member of the
immune cell population in the cancer microenvironment,
macrophage polarization plays a key role in the development,
progression, and prognosis of ovarian cancer.

TARGETING TREATMENT TO
MACROPHAGES IN OVARIAN CANCER

Cancer-related inflammation is one of the hallmarks of
cancer, and some evidence shows that an inflammatory
microenvironment promotes chemoresistance and genetic
instability in tumor epithelial cells while also affecting resident
or infiltrating immune cells, including macrophages (81, 82).
These studies suggest that TAMs act as a “bridge” or mediator
during the initiation and promotion of cancers by interacting
with cancer cells. Four cancer therapy strategies involving
tumoricidal effectors acting on TAMs exist: disturb TAM cell
survival, inhibit the recruitment of macrophages, repolarize
M2-like TAMs to M1-like macrophages, and deliver drugs
with nanoparticle and liposome-based systems (83). It has
been demonstrated that human recombinant antibodies
(scFv) can be used to block mesothelin in combination with
macrophages, which prevents the cancer-induced polarization of
CD206low macrophages toward the TAM phenotype. In addition,
potential therapeutic agents for ovarian cancers that control
the polarization of tumor-infiltrating innate immune cells have
also been developed (84). Currently, some therapeutic drugs
targeting TAMs are available for clinical use and experimental
treatments. For example, the agent trabectedin interferes with
the survival of TAMs (85), and alemtuzumab lowers the number
of TAMs by targeting a surface protein on TAMs (86). Polymer
nanoparticles loaded with cisplatin can be engulfed by TAMs
and then act on cancer cells (87). By promoting antitumor
immune responses and vessel normalization, host-produced
histidine-rich glycoprotein (HRG) has been demonstrated to
inhibit the growth and metastasis of tumors by controlling the
polarization of TAMs from the M2 to the M1 phenotype (88).
Drugs targeting macrophages could be useful in the treatment
of ovarian cancer. Paclitaxel, an antitumor agent, is used to
treat ovarian cancer and can reduce tumor growth by polarizing
M2 into M1 macrophages in a TLR4-dependent manner (89).
Some research has reported that the relationship between
macrophage polarization and ovarian cancer is influenced by
platinum. This study found that macrophages induced epithelial-
to-mesenchymal transition (EMT) and the expression of some
EMT genes in cisplatin-sensitive cells, while this response did
not occur in cisplatin-resistant cancer cells (90).

TAMs also express immune checkpoint molecules, including
B7-H4 and PD-L1, in ovarian cancer cells, which causes T cell

exhaustion and an inactivated cytotoxic T cell response. High B7-
H4 expression on the TAM surface correlates with high grades
of ovarian cancer and poor survival rates for ovarian cancer
patients (91). The use of some PDL-1 and PD-1 antibodies has
been studied clinically in ovarian cancer patients. For example,
in a clinical trial on the use of nivolumab as an anti-PD-
1 antibody in platinum-resistant ovarian cancer patients, the
disease control rate was 45%, and the median OS time was
20.0 months (UMIN Clinical Trials Registry UMIN000005714)
(92). Authorization of pembrolizumab, another type of anti-
PD-1 antibody, for the treatment of metastatic non-small-
cell lung cancer has been accelerated by the Food and Drug
Administration (FDA). A phase Ib study on pembrolizumab
was performed using PDL-1-expressing advanced ovarian cancer
patients, revealing that the safety and toxicity of its antitumor
activity were manageable, and a phase II trial on pembrolizumab
is ongoing (NCT02054806) (93). Furthermore, several clinical
trials involving ovarian cancer patients are focused on the
combined use of PDL-1/PD-1 antibodies and poly-ADP-
ribose polymerase inhibitors (PARPi) or VEGF inhibitors; for
example, the combinations of pembrolizumab and niraparib
(NCT02657889), nivolumab and bevacizumab (NCT02873962),
nivolumab and rucaparib (NCT03522246), and atezolizumab
and bevacizumab (NCT038100) are being studied. CSF-1R is
expressed in macrophages in ovarian cancer, and some clinical
trials on antibodies and inhibitors of CSF-1R in addition to
PDL-1 or PD-1 antibodies are also occurring (NCT02452424,
NCT02526017, NCT02718911).

Results of a phase Ib clinical trial involving the combined
use of a CCL2 antibody and four chemotherapy strategies for
the treatment of solid tumor patients showed that carlumab,
a CCL2 antibody, could be safely used (10 or 15 mg/kg)
in combination with standard chemotherapy and had a good
tolerating effect (NCT01204996). In addition, some natural
plant products can inhibit tumor growth by changing the
polarization of macrophages. For example, neferine from green
seed lotus embryos exerts an antitumor effect on angiogenesis
by regulating the polarization of TAMs in ovarian cancer
(94). Deoxyschizandrin, a phytochemical, from berries can
inhibit the activity of M2 macrophages, and onionin A not
only increases cytotoxicity against ovarian cancer cells but
also suppresses the activation of M2 macrophages (95). TAM
repolarization can also be mediated by the natural compound
baicalin (96).

OUTLOOK OF MACROPHAGE
POLARIZATION IN OVARIAN CANCER

Noncoding RNAs
Noncoding RNAs are transcripts with no protein-coding
capacity, and microRNAs (miRNAs) are small noncoding RNAs
that are ∼22–25 nucleotides long and bind to 3′-untranslated
regions to inhibit gene expression at the posttranscriptional
level by targeting mRNAs for cleavage or suppressing the
expression of proteins (97). miRNAs have been implicated
in many biological processes related to cell proliferation,
differentiation, carcinogenesis, chemoresistance and metabolism
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(98, 99), and some miRNAs are also expressed in polarized
macrophages. For example, miR-125a/b, miR-155, let-7e, and
miRNA-378, induced by LPS and IFN-γ, are engaged in
M1 phenotype polarization, while miR-223, induced by LPS,
suppresses the activation of M1 macrophages. Some miRNAs,
including miRNA-9, miRNA-21, miRNA-146, and miRNA-147,
take part in M1 polarization via forming a negative feedback
loop by interacting with NF-κB (30). miRNA-9, miRNA-21,
miRNA-146, miRNA-147, miRNA-187, and miRNA-let-7c are
involved in M2 polarization (100). M1 macrophages (classical
activation) are characterized by microbicidal and tumoricidal
activity, while M2 macrophages (alternative activation) are
characterized by tumor progression and tissue remodeling
(101). miRNAs regulate not only gene expression (via mRNA
degradation) but also transcription factors in macrophage
polarization (102). Long noncoding RNAs (lncRNAs), once
regarded as “transcriptional noise,” range in length from 200
to 100,000 nucleotides (103) and can be located in the
nucleus or cytoplasm. With the increasing knowledge regarding
lncRNAs, they are now recognized as important factors in
a variety of biological and pathological activities, including
cancer processes, and have been demonstrated to impair the
function and development of monocyte macrophages (104).
Reduction in the expression of the lncRNA GAS5 has previously
been linked to M2b macrophage polarization (105), and the
lncRNA PCA3 promotes EOC tumorigenesis by disrupting
gene expression by sponging miR-106b (106). Circular RNAs
(circRNAs) form covalently closed loops by linking the 3′

and 5′ ends during RNA splicing (107, 108). Because of
this loop structure, circRNAs are more stable than circulating
tumor DNAs and linear RNAs in tissues, serum, saliva, and
urine. As reported, circRNA molecules in eukaryotes derive
from splicing, a cellular process mediated by the spliceosome
machinery or by group I and group II ribozymes (108). CircRNAs
are also widely associated with physiological and pathological
processes, as they bind to RNA, RNA-binding proteins (RBPs),
and translated peptides (109). A previous study showed that
189 circRNAs are differentially expressed between M1 and
M2 macrophages (110). In cancers, circRNAs may regulate
cell growth by sponging multiple miRNAs and changing the
polarization of M1 and M2 macrophages (110, 111). Elucidating
the roles of noncoding RNAs in macrophage polarization in
ovarian cancers will provide promising information for the
early diagnosis of tumors, evaluation of treatment, prediction of
prognosis, and identification of potential targets for gene therapy
in ovarian cancer.

Exosomes
Exosomes, ∼40–100 nm in size, are small membrane-bound
vesicles that originate from multivesicular bodies (MVBs) and
exist in extracellular fluids, such as the blood, cerebrospinal
fluid, urine, amniotic fluid, seminal fluid, malignant ascites,
breast milk, and saliva (112). As vehicles for intercellular
communication, exosomes can transfer proteins, lipids, genomic
materials and bioactive molecules, such as phosphatidyl-
serine (PS), glycans, and glycoproteins (113, 114). Therefore,
they have comprehensive biological functions. Compared

with normal cells, tumor cells can more vigorously secrete
exosomes and remodel immune cells to promote tumor
initiation, invasion and metastasis by secreting exosomes
into the TME (115). Exosomal noncoding RNAs, such as
lncRNAs (116), microRNAs (117), and circRNAs (118), could
be promising noninvasive biomarkers for ovarian cancers. EOC
secretion of exosomal miR-222-3p can induce macrophages
to polarize into a TAM-like phenotype (119). According to
the functions of cargo molecules, exosomes can also promote
the invasion of ovarian cancer (120). Exosome-mediated
macrophage reprogramming to the M1 phenotype may be a
promising therapy for cancer (121), and exosomes can also be
predictors of treatment effectiveness and prognosis in ovarian
cancer patients.

Epigenetic Regulation
Epigenetic regulation does not change the genetic code
but does control how information is encoded by DNA
(122). The mechanisms of epigenetics are also mediated
by posttranslational modifications, including methylation,
acetylation, phosphorylation, β-N-glycosylation, and
carbonylation of histones that bind DNA (123). The epigenetic
markers histone modification and DNA methylation (DNAm)
are reportedly more studied than the others. Histone
modifications can function as epigenetic markers of the
chromatin state and are related to multifarious macrophage
survival, differentiation and activation processes (124, 125). The
acetylation and deacetylation of histone proteins are achieved
by histone acetyltransferases (HATs) and histone deacetylases
(HDACs), and abnormal expression of HDACs has been found
in many cancer types (126). HDAC3 can act as a brake for M2
polarization while promoting M1 responses (127). HDACs are
a promising cancer treatment target, and more researchers are
encouraged to study and develop HDAC inhibitors in clinical
research. DNAm alters the expression of M1/M2 genes (128),
and miRNAs can also be integrated by DNAm, contributing to
macrophage heterogeneity and tumor processes. For instance,
hypomethylated CpG sites with abnormal miRNA expression
are associated with monocyte aging at CpG sites in the regions of
the miR-29b-2, NRP1, and NRXN2 genes (129). The epigenetic
silencing of miRNA expression by DNA hypermethylation
promotes ovarian cancer aggressiveness (130). The functions of
DNA methyltransferases (DNMTs) catalyze not only epigenetic
silencing but also inappropriate activation of gene expression
by DNAm, and DNMT1 and DNMT3b can mediate M1
macrophage polarization. The expression of Reprimo (RPRM)
can be inhibited by DNMTs, and the RPRM tumor suppressor
function can be restored by treatment with DNAm inhibitors
(131). Sergey K et al. reported the development of a novel
therapeutic strategy for methyltransferase by inhibiting the
histone methyltransferase EZH2 in CARM1-expressing EOC
(132). A DNAm inhibitor that resensitizes patients to traditional
chemotherapy has been tested in a completed phase II clinical
trial aimed at recurrent ovarian cancer patients (133). Changes
in macrophage polarization and functional states need to
accurately regulate the expression of target genes, which can be
accomplished by epigenetic modifications (134).
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CONCLUSION

Because of the absence of curative treatment for advanced stages
and relapsed disease, new therapeutic strategies for ovarian
cancer are urgently needed. There are many classifications
of ovarian cancer tissues. Currently, the suppression and
eradication of cancer cells by activation of the innate immune
system has shown inspiring results in some cancer treatments.
As an important member of the TME infiltrating immune
cell population, macrophages participate in the development
and progression of ovarian cancers. In most cases, M1
macrophages play a role in antitumor immunity, while M2-
like TAMs play a role in immunosuppression and tumor
immune escape. The regulatory mechanisms of macrophage

polarization may be contrary to one another. The work
summarized in this review elaborates on the important roles of
macrophage polarization in the development and progression
of ovarian cancers. The polarization of macrophages is not
only connected to the development, progression and prognosis
of ovarian cancers but also provides some strategies for
macrophage-centered ovarian cancer treatment to improve
long-term survival.
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