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Macrophage sensing of single-
walled carbon nanotubes via Toll-
like receptors
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Carbon-based nanomaterials including carbon nanotubes (CNTs) have been shown to trigger 

inflammation. However, how these materials are ‘sensed’ by immune cells is not known. Here we 
compared the effects of two carbon-based nanomaterials, single-walled CNTs (SWCNTs) and graphene 
oxide (GO), on primary human monocyte-derived macrophages. Genome-wide transcriptomics 

assessment was performed at sub-cytotoxic doses. Pathway analysis of the microarray data revealed 

pronounced effects on chemokine-encoding genes in macrophages exposed to SWCNTs, but not in 
response to GO, and these results were validated by multiplex array-based cytokine and chemokine 

profiling. Conditioned medium from SWCNT-exposed cells acted as a chemoattractant for dendritic 
cells. Chemokine secretion was reduced upon inhibition of NF-κB, as predicted by upstream regulator 

analysis of the transcriptomics data, and Toll-like receptors (TLRs) and their adaptor molecule, MyD88 
were shown to be important for CCL5 secretion. Moreover, a specific role for TLR2/4 was confirmed by 
using reporter cell lines. Computational studies to elucidate how SWCNTs may interact with TLR4 in the 
absence of a protein corona suggested that binding is guided mainly by hydrophobic interactions. Taken 

together, these results imply that CNTs may be ‘sensed’ as pathogens by immune cells.

Carbon-based nanomaterials including carbon nanotubes (CNTs) and graphene oxide (GO) are potential candi-
dates for various applications in medicine such as drug delivery and imaging1. However, the successful translation 
of nanomaterials for biomedical applications requires a detailed understanding of the biological interactions 
of the materials. In particular, interactions of nanomaterials with the immune system, the �rst line of defense 
against foreign intrusion, are of key importance2. �e innate immune system is deployed in defense against 
microorganisms and involves the recognition of pathogen-associated molecular patterns (PAMPs) by (PRRs) 
on the surface of phagocytic cells. �e immune system also responds to tissue damage, a process that is triggered 
by so-called danger or damage-associated molecular patterns (DAMPs)2. We previously hypothesized that nan-
oparticles might be recognized directly as nanoparticle-associated molecular patterns or NAMPs by cells of the 
immune system3. However, experimental evidence to support this idea was largely lacking. Hence, while there 
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is an emerging body of literature on nanomaterial e�ects on the immune system, there are few if any studies in 
which evidence for speci�c ‘sensing’ of nanoparticles by immune-competent cells has been provided. Previous 
work has shown that proteins adsorbed onto the surface of nanoparticles can activate macrophages via surface 
receptors, resulting in the secretion of pro-in�ammatory cytokines4, but whether nanomaterials themselves are 
recognized by immune cells through speci�c receptors is not known.

Single-walled and multi-walled CNTs as well as carbon nanofibers have been shown to induce 
pro-in�ammatory and pro-�brotic responses, especially following pulmonary exposure5. Speci�cally, exposure 
to SWCNTs was shown to elicit acute in�ammation and early-onset �brosis in the lungs of mice, with neutrophil 
accumulation, followed by macrophage in�ux, and an early elevation of pro-in�ammatory cytokines followed 
by production of pro-�brotic cytokines6. Moreover, elevated numbers of dendritic cells (DCs) are found in the 
lungs of mice following pharyngeal aspiration of SWCNTs7. Furthermore, based on the literature available at 
the time, certain rigid and ‘needle-like’ MWCNTs were classi�ed by the International Agency for Research on 
Cancer (IARC) as being potentially carcinogenic to humans8, and a more recent, in-depth examination of in vivo 
and in vitro studies has a�rmed the original evaluation that some MWCNTs are potentially carcinogenic, while 
the data are inconclusive for others9. For graphene-based materials, a consensus on toxicity or health risks has 
yet to emerge, although considerable e�orts are being invested in order to address this question in a systematic 
fashion10,11. In a recent study, so-called graphene nanoplatelets were shown to induce pulmonary toxicity in mice 
at high doses, but no lung �brosis12. In another recent inhalation study in rats, graphene nanoplatelets showed 
low toxicity, with no distinct pathology or in�ammation; the materials were ingested by lung macrophages13. 
In a study on single-layer GO sheets with lateral dimensions below 500 nm, no signi�cant cytotoxic responses 
were noted using A549 lung carcinoma cells, and no in�ammation or granuloma formation was observed in 
vivo following intraperitoneal injection14, while a more recent study suggested that the impact of GO on human 
peripheral blood-derived cells was dependent on the lateral dimensions of GO15.

Here we present detailed mechanistic in vitro studies to address the impact of well-characterized and 
endotoxin-free SWCNTs and GO on primary human macrophages. Guided by global transcriptomics analysis 
of macrophages exposed to these materials, we focused our studies on chemokine signaling and could show that 
SWCNTs, but not GO, induced chemokine secretion in macrophages. Our experimental results suggested that 
SWCNTs were sensed by Toll-like receptors (TLRs), PRRs on the surface of phagocytic cells16. Cellular uptake of 
SWCNTs was not required for chemokine signaling in exposed macrophages. Molecular docking suggested that 
SWCNTs may interact with TLR4 both via the tip and the side-walls. �ese studies indicate that immune cells are 
able to ‘sense’ SWCNTs through speci�c immune receptors and as such are relevant for our understanding of the 
impact of these materials on human health.

Results
Characterization of carbon-based nanomaterials. SWCNTs, produced by the high pressure CO dis-
proportionation process (HiPco) technique, and GO, synthesized by a modi�ed Hummer’s method, were charac-
terized using an array of analytical techniques. Transmission electron microscopy (TEM) revealed that SWCNTs 
had an average diameter of 1–4 nm and an average length of 0.5–2 µm, whereas GO had an average diameter 
(lateral size) of 1.1 ± 0.3 µm. The surface charge (ζ-potential) was −42.3 ± 0.9 mV and −42.0 ± 1.2 mV for 
SWCNTs and GO, respectively. �e samples were also characterized following dispersion in cell culture medium 
(i.e., DMEM) with and without 10% FBS (Fig. S3a–e). �e ζ-potential remained negative in DMEM + FBS, 
though less negatively charged when compared to samples dispersed in water. DLS measurements suggested that 
SWCNT and GO were less agglomerated in DMEM + FBS than in medium without FBS, though DLS results for 
non-spherical objects should be interpreted with caution.

Nanomaterials are frequently contaminated with lipopolysaccharide (LPS) or endotoxin, the cell wall com-
ponent of Gram-negative bacteria17. �erefore, both materials were tested by using the conventional limulus 
amoebocyte lysate (LAL) assay and found to be endotoxin-free (data not shown). Moreover, in order to exclude 
potential artefacts due to interference with the assay, which could skew the interpretation of the biological data, 
we also performed a macrophage activation test based on the evaluation of TNF-α secretion by primary human 
monocyte-derived macrophages (HMDM) in the presence and absence of a speci�c LPS inhibitor18. LPS (100 ng/
mL) was included as a positive control. Using this approach, the CNTs were con�rmed to be endotoxin-free, as 
macrophage secretion of TNF-α in response to CNTs was very low and not a�ected by polymyxin B (Fig. S1a–c).

Cytotoxicity assessment and cellular uptake. We then assessed both nanomaterials for cytotox-
icity using the lactate dehydrogenase (LDH) release assay. ZnO nanoparticles (100 µg/mL) which are known 
to be cytotoxic for macrophages19, were included as a positive control. SWCNT exposure resulted in a slight, 
dose-dependent increase in LDH release at 24 h (14–16% more LDH release compared to the control at con-
centrations 30 and 100 µg/mL, respectively; p < 0.05), whereas GO did not yield any cytotoxicity in HMDMs 
(Fig. S1d). Next, we assessed for cellular uptake of the nanomaterials. TEM imaging con�rmed that both nano-
materials were internalized by HMDM at 24 h (Fig. S2). SWCNTs and GO were mostly found within membrane 
enclosed vacuoles, suggesting that the uptake had occurred through an active, most likely endocytic process. 
Engulfment of GO changed its appearance from a 2D structure to a densely packed structure (Fig. S2).

Microarray analysis of macrophage responses. To further evaluate the impact of the two nanomaterials 
on macrophages, we performed transcriptomics analyses following exposure for 6 h or 24 h to 10 or 30 µg/ml (i.e., 
sub-cytotoxic doses) of SWCNT or GO. A�ymetrix® GeneChip® Human Genome U219 arrays were employed 
for global assessment of gene expression. �e microarray data have been submitted to the Gene Expression 
Omnibus Database (GEO accession no. GSE83516). Few di�erentially expressed genes were noted at 6 h (data not 
shown) and we therefore focused our analysis on the 24 h exposure time-point. �e nanomaterial exposure at the 
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latter time-point resulted in a speci�c transcriptional response with 52 di�erentially expressed genes in response 
to SWCNTs, while 7 genes were di�erentially expressed in response to GO (multigroup analysis by two-way 
ANOVA, p < 0.05, > 1.5-fold change compared to controls) (Fig. 1a, and Supplementary Table 1). Interestingly, 
the di�erentially expressed genes showed no overlap between the two nanomaterials. Subsequent canonical path-
way enrichment analysis of di�erentially expressed genes using the Molecular Signatures Database showed that 
the three biological pathways with the most signi�cant enrichment were those involved in cytokine-cytokine recep-
tor interaction, chemokine signaling pathway and chemokine receptor binding pathway (multiple testing corrected 
p-values lower than 10−25) (Fig. 1b, and Supplementary Table 2). In addition, our analysis showed enrichment 
of the NF-κB pathway (comprising 7 genes, q-value 10−5.7). Indeed, analysis of transcriptional regulation net-
works showed that NF-κB was a central network connecting upregulated chemokines, and, moreover, that sev-
eral members and targets of the NF-κB pathway were signi�cantly modulated in response to SWCNTs (Fig. 2a). 
Furthermore, upstream regulator analysis using the Ingenuity Pathway Analysis (IPA) so�ware showed that the 
most signi�cantly modulated NF-κB pathway network members were RELA (p65), IRF7 and NFKBIA (IκBα) 
(Z-scores 3.4, 2.9 and 2.4, respectively) (Fig. 2b). Notably, according to a recent bioinformatics study, RELA and 
NFKBIA are both among the �ve key genes mediating NF-κB pathway-related in�ammatory responses and mac-
rophage activation20. Taken together, the transcriptomics analysis suggested that chemokine signaling pathways 
are prominently deregulated by SWCNTs, but not by GO, and that NF-κB is a potential upstream regulator of the 
transcriptional responses to SWCNTs.

Validating the transcriptomics results. To validate these results, we assessed for macrophage produc-
tion of chemokines. To this end, a multiplexed immunoassay for the detection of a de�ned set of cytokines/
chemokines following exposure to SWCNTs or GO (10–100 µg/mL) was applied. We focused the analysis on four 
chemokines (CCL3/MIP-1α, CCL5/RANTES, CXCL9 and CXCL10) based on the signi�cant upregulation of the 
corresponding genes according to our transcriptomics analysis (above). As shown in Fig. 3a–d, SWCNT-exposed 
cells produced high levels of all four chemokines, while GO-exposed cells failed to secrete these chemokines, 
which is thus in accordance with the microarray results. �e secretion of CCL3 and CCL5 in SWCNT-exposed 
HMDM was dose-dependent (Fig. 3e–h). �ese data thus corroborated the transcriptomics results. To further 
control for any potential endotoxin contamination, the CNTs were subjected to calcination at 250 °C to remove 

Figure 1. Transcriptomics analysis of macrophages exposed to carbon-based nanomaterials. Global gene 
expression pro�ling of human monocyte-derived macrophages (HMDM) was conducted a�er 24 h exposure to 
single-walled carbon nanotubes (SWCNTs) or graphene oxide (GO) (see Supplementary Table 1). (a) Heatmap 
of di�erently expressed genes in response to 10 and 30 µg/mL GO (line 1 and 2, respectively) or 10 and 30 µg/
mL SWCNTs (line 3 and 4, respectively). Upregulated transcripts are presented in red and downregulated 
transcripts in green (log2 fold change > 0.75). �e genes a�ected upon exposure to SWCNTs (n = 52) and 
GO (n = 7) did not overlap. (b) Canonical pathways modulated in HMDM a�er exposure to SWCNTs (see 
Supplementary Table 2); ranking was performed according to multiple testing corrected p-value.
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any residual endotoxins. �e samples were recharacterized (in cell culture medium) and shown to display similar 
ζ-potential values while DLS measurements showed no signi�cant changes (i.e., no agglomeration) (Fig. S4a,b). 
We then monitored the production of CCL5 in macrophages following exposure for 12 h to calcined SWCNTs 
(30 µg/mL) and found that the SWCNTs were still capable of triggering CCL5; moreover, this was not a�ected by 
polymyxin B, indicating that the observed e�ect is intrinsic to the SWCNTs and not a result of microbial contam-
ination (Fig. S5a).

Dissecting the signaling pathway. As noted above, upstream regulator analysis of the microarray data 
indicated that the NF-κB signaling pathway was involved in the transcriptional regulation of chemokine expres-
sion by SWCNTs. To validate this in silico prediction, HMDM were pretreated with the NF-κB inhibitor, Bay 
11-7082, and chemokine secretion in response to SWCNT exposure was determined. SWCNT-induced produc-
tion of CCL3 (Fig. 4a) was signi�cantly reduced upon preincubation with Bay 11-7082 (10 µM) and the secretion 
of CCL5 was completely blocked by the inhibitor (Fig. 4b), thus con�rming a role for NF-κB. Next we aimed to 
address how NF-κB is activated by SWCNTs.

Figure 2. Upstream regulator analysis of the transcriptomics results. (a) �e NF-κB network was identi�ed 
as a potential upstream regulator of SWCNT-triggered responses in HMDM according to upstream regulator 
analysis (p < 0.01; Z-score > 2 S.D.). (b) Upstream regulator analysis73 of the data identi�ed the modulation of 
NF-κB network members in HMDM exposed to SWCNTs for 24 h. Data were analyzed through the use of IPA 
(QIAGEN Inc., www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis).

http://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
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Figure 3. SWCNTs, but not GO, trigger macrophage secretion of chemokines. Secretion of chemokines by 
primary human macrophages (HMDM) a�er a 24 h exposure to SWCNTs or GO as measured by a multi-plex 
immunoassay. (a–d) Exposure of HMDM to 30 µg/mL SWCNTs showed a signi�cant increase in CXCL9, 
CXCL10, CCL3/MIP-1α, and CCL5/RANTES, while there was no response in cells exposed to GO at the same 
concentration. (e,g) Dose-dependent secretion of CCL3/MIP-1α, and CCL5/RANTES in cells exposed to 
SWCNTs, while there was no response to GO at any of the concentrations tested (f,h). Data are shown as mean 
values ± S.D. of three independent experiments using cells from di�erent donors; p-values by Student’s t-test, 
* < 0.05; *** < 0.001.
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�e recognition of so-called PAMPs by di�erent families of evolutionarily conserved PRRs (PRRs) initiates a 
signaling cascade that leads to the transcription of in�ammatory cytokines and chemokines to eliminate patho-
gens and attract other immune cells to the site of infection21. In particular, Toll-like receptors (TLRs) play a key 
role in innate immunity16. TLRs activate multiple signaling pathways by recruiting adaptor proteins, such as 
myeloid di�erentiation factor 88 (MyD88), which initiate signal transduction pathways that culminate in the acti-
vation of transcription factors, eg., NF-κB, with ensuing cytokine/chemokine production. TLR4 is a receptor for 
bacterial LPS while TLR2 has speci�city for multiple microbial components derived from bacteria, fungi, viruses, 
and mycoplasma21. �e oxidized phospholipid, 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine 
(oxPAPC) is known to inhibit LPS signaling via TLR2 and TLR422. To assess whether SWCNTs are capable 
of activating NF-κB via TLRs, we preincubated HMDM with oxPAPC (30 or 60 µg/mL) prior to exposure to 
SWCNTs (30 µg/mL). LPS (100 ng/mL) was included as a positive control. As shown in Fig. 5a, oxPAPC signi�-
cantly reduced LPS-induced secretion of CCL5. Moreover, SWCNT-induced production of CCL5 was completely 
blocked. Next, we tested whether inhibition of the adaptor protein, MyD88 would suppress NF-κB activation. To 
this end, cells were preincubated with Pepinh-MYD, a 26 aa peptide that blocks MyD88 signaling by inhibiting its 
homodimerization23. Pepinh-Control, a control peptide, was included as a negative control. Pepinh-MYD (25 µM) 
signi�cantly reduced LPS-induced NF-κB activation, as determined by the quanti�cation of p65 phosphoryla-
tion, and SWCNT-induced activation of NF-κB was also blocked by Pepinh-MYD, but not by Pepinh-Control 
(25 µM) (Fig. 5b). Moreover, inhibition of MyD88 impeded chemokine production in cells exposed to SWCNTs. 
�us, Pepinh-MYD (25 µM) signi�cantly reduced LPS-induced CCL5 secretion, and SWCNT-triggered release 
of CCL5 was also reduced by Pepinh-MYD, but not by the control peptide (Fig. 5c). �ese data thus provided evi-
dence for TLR2/4-MyD88-NF-κB signaling in SWCNT-induced chemokine production in human macrophages.

SWCNTs are internalized by HMDM at 24 h (Fig. S2) and we recently provided evidence that macrophage 
uptake of SWCNTs may occur already after a few hours24. To assess whether cellular uptake of SWCNTs is 
required for chemokine responses, we determined the secretion of CCL5 in HMDM exposed to SWCNTs (30 µg/
mL) following preincubation with or without cytochalasin D (10 µM), an inhibitor of actin polymerization that 
blocks endocytosis24. As shown in Fig. 5d, cytochalasin D did not a�ect LPS-induced or SWCNT-induced pro-
duction of CCL5, suggesting that this event is relayed via cell surface signaling. We also cultivated macrophages 
in medium with or without 10% FBS in order to test whether the e�ect of SWCNTs on chemokine secretion was 
in�uenced by the presence of serum proteins. As shown in Fig. S5b, SWCNT-triggered production of CCL5 was 
comparable in the presence or absence of serum. LPS was included as a positive control.

To con�rm the �ndings obtained in monocyte-derived macrophages, and in order to address the role, if any, 
of speci�c TLRs for the ‘sensing’ of SWCNTs, we used HEK293 cells stably transfected with human TLR2 or TLR4 
and an NF-κB-inducible reporter gene25. Furthermore, in order to ascertain whether SWCNTs are capable of TLR 
activation per se, or whether the interaction is due to serum proteins adsorbed on the surface of the nanomate-
rials26, we performed the experiments in reporter cell lines cultured in medium supplemented or not with 10% 
fetal bovine serum (FBS). LPS (100 ng/mL) was used as a positive control. LPS triggered pronounced activation 
of TLR4 and a signi�cant activation of TLR2 (Fig. 6a). Interestingly, SWCNTs also activated TLR4 and, to a lesser 
degree, TLR2, and the level of activation in the presence and absence of FBS was indistinguishable. �e latter 
�nding suggested that SWCNTs are sensed directly by TLRs (Fig. 6b).

Functional role of chemokine secretion. Chemokines (Greek: kinos, movement) are named for their role 
in inducing directed migration or chemotaxis in neighboring responsive cells. We therefore addressed whether 
the conditioned medium of macrophages exposed to SWCNT versus GO would act as a chemoattractant for other 
immune cells. Considering that CCL3 and CCL5 are the most e�ective chemoattractants for immature DCs27, we 
studied cell migration using primary human monocyte-derived DCs versus non-di�erentiated primary human 
monocytes. Surface expression of the chemokine receptor, CCR5 was higher for DCs than monocytes (Fig. 7a), 

Figure 4. SWCNT-triggered chemokine secretion is NF-κB-dependent. Pretreatment with the NF-κB inhibitor, 
Bay 11-7082 (10 µM) of HMDM exposed to 30 µg/mL SWCNTs or medium alone reduced the secretion of 
CCL3 (a) and completely blocked the secretion of CCL5 (b), by multi-plex assay. Data are mean values ± S.D. 
of three independent experiments using cells from di�erent donors; p-values by Student’s t-test, * < 0.05; 
*** < 0.001.
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in line with published results28. Furthermore, conditioned medium of SWCNT-exposed HMDM was a weak 
chemoattractant for monocytes, but promoted the migration of DCs (p < 0.05) (Fig. 7b). �us, the conditioned 
medium served as a chemoattractant for cells expressing CCR5 and did not remarkably a�ect the migration of 
cells that expressed low levels of CCR5. However, conditioned medium of GO-exposed HMDM did not promote 
cell migration (Fig. 7b), in line with the observation that only SWCNTs triggered chemokine secretion.

Molecular docking studies. Previous theoretical studies have suggested that C60 fullerenes and CNTs may 
block K+ channels29,30. In addition, recent computational studies suggested that the internal hydrophobic pockets 
of some TLRs might be capable of binding carbon-based nanostructures31. We performed molecular modelling 
of the TLR4:CNT complex to further elucidate how TLRs can interact with the CNTs; the studies were done in 
the absence of a protein corona. To better reproduce the experimental conditions, both pristine and carboxylated 
CNTs were modelled. �e O:C atom ratio corresponding to the experimental zeta potential was set to 0.1532, 
which resulted in 84 carboxyl groups. Docking simulations of pristine CNTs gave rise to a unique cluster of 
very similar poses within the pre-de�ned energy range (10 kcal/mol). Conversely, carboxylated CNTs showed 
diverse binding modes, with interaction free energies di�ering only slightly (~1 kcal/mol). �e best scoring bind-
ing mode, observed in both pristine and carboxylated CNTs, revealed two regions in TLR4, one interacting with 
the tip of the CNT and another in contact with its side-walls (Fig. 8a,b). While the �rst region is localized in a 
highly hydrophobic area, which encompasses residues from Ile108 to Asn265, the second is found in the loops 
around Ile412 and Leu434 (Fig. 9a,b). In oxidized CNTs, His159 and Arg264 are also within a distance to the 
carboxyl groups that is compatible with salt bridge formation. Alternatively, in the second region, Arg382, His431 
and His458 are close enough to form ion-pair interactions with carboxyl groups on the CNT side-walls. Overall, 
the best binding mode is essentially guided by hydrophobic contacts between TLR4 and CNTs, but in the case 
of carboxylated CNTs the intermolecular interaction is strengthened by short-range electrostatics. �e second 
and third top binding modes of carboxylated CNTs correspond to a completely di�erent con�guration, in which 
side-walls are in close contact with a large portion (from residue 87 to 289) of the TLR parallel beta-sheet pattern 

Figure 5. TLR2/4- and MyD88-dependent secretion of chemokines. (a) Signi�cant reduction of CCL5 
secretion in HMDM a�er 12 h exposure to SWCNT (30 µg/mL) in the presence of the TLR2/4 inhibitor, 
oxPAPC (30 or 60 µg/mL). oxPAPC also blocked CCL5 secretion triggered by LPS (0.1 µg/mL) in a dose-
dependent manner. Furthermore, the MyD88 inhibitor, Pephinh-MYD (25 µM), but not Pepinh-Control 
(25 µM), reduced NF-kB p65 phosphorylation (b) and CCL5 expression (c) in cells exposed to SWCNT (30 µg/
mL) for 12 h. Pephinh-MYD (25 µM) also reduced NF-kB activation and CCL5 secretion by LPS (0.1 µg/mL). 
NF-kB p65 phosphorylation and CCL5 expression was determined by ELISA. (d) Cytochalasin D (10 µM), an 
inhibitor of actin polymerization, does not a�ect CCL5 secretion in HMDM exposed for 12 h to SWCNT (30 µg/
mL). LPS (0.1 µg/mL) was included as a control. CCL5 levels were determined by ELISA. Data shown in panels 
a to d are reported as mean values ± S.D. of at least three independent experiments using cells from di�erent 
donors. p* < 0.05; ** < 0.01; *** < 0.001 (one-way ANOVA with post-hoc tukey’s test).
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in the inner part of the protein (Fig. 8c–f, Fig. 9a,b). Interestingly, the area of interaction of these poses intersects 
one of the two regions already observed for the best pose. �is �nding is consistent with the negligible energy 
di�erence of these binding modes with respect to the best scoring mode. Nevertheless, as opposed to the latter, 
these two classes of poses are clearly dominated by electrostatic interactions, as shown by the distances between 
the carboxyl groups and some charged residues (His179, Arg257, Arg289, Arg355), which are compatible with the 
presence of stabilizing ion-pair interactions.

Discussion
�e innate immune system does not respond to microbes in a nonspeci�c manner; in fact, pathogen recogni-
tion by the innate immune system is speci�c, relying on PRRs that have evolved to detect molecular signatures 
known as PAMPs21. �us, a relatively small number of immune receptors are employed by macrophages and 
other immune cells to detect a vast array of microorganisms; it is intriguing to speculate that similar principles 
or mechanisms might be deployed for immune recognition of various classes of nanoparticles33. However, to 
date, there are few if any examples of speci�c immune sensing of engineered nanomaterials and the problem 
is confounded by a number of factors. First, many studies are performed using nanoparticles that are not well 

Figure 6. SWCNTs trigger TLR2 and TLR4 activation. (a) HEK 293 cells co-transfected with human TLR2 
(HEK-Blue™ hTLR2) or TLR4 (HEK-Blue™ hTLR4 cells) and an NF-κB/AP-1-secreted embryonic alkaline 
phosphatase (SEAP) reporter gene were exposed to SWCNT (30 µg/mL) for 12 h in the presence or absence 
of 10% FBS. LPS (0.1 µg/mL) was included as a positive control. SWCNTs activated TLR2/4 independently 
of the presence of serum in the culture medium. Data are shown as mean values ± S.D. of three independent 
experiments. (b) Schematic diagram showing the ‘sensing’ of SWCNTs by HMDMs via TLR receptors resulting 
in MyD88-dependent activation of NF-kB leading to nuclear translocation of NF-kB with transcription and 
secretion of CCL5. �e secreted chemokine(s) induce chemotaxis of immune cells bearing the corresponding 
receptor(s).

Figure 7. Macrophage secreted factors promote migration of DCs. (a) Expression of the chemokine receptor 
CCR5 in primary human monocytes (Mo) and monocyte-derived dendritic cells (DCs) was determined by �ow 
cytometry. �e average expression of CCR5 in cells from three di�erent donors is depicted. (b) Migration of 
monocytes (Mo) and DCs in response to conditioned medium (CM) of human monocyte-derived macrophages 
(HMDM) exposed to 100 µg/mL SWCNT (CM-SWCNT) or 100 µg/mL GO (CM-GO). Cell migration (3 h 
period) was determined by using transwell chemotaxis microchambers. Data are shown as mean values ± S.D. 
of three independent experiments; p* < 0.05, Student’s t-test.
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characterized, or not uniform in appearance within the same sample, making it di�cult to draw conclusions 
regarding speci�c properties of nanoparticles and their biological behavior34. In addition, nanoparticles are fre-
quently contaminated with bacterial endotoxin, as may be the case for other biomaterials, leading potentially to 
erroneous results, especially when studying interactions with immune-competent cells17. Furthermore, nanopar-
ticles are known to rapidly adsorb proteins and other biomolecules, and this is thought to endow the nanoparti-
cles with a new, biological ‘identity’ such that these adsorbed biomolecules could dictate biological interactions: 
cells may not ‘see’ the pristine nanoparticle surfaces35. In addition to these considerations, it has been argued 
that there are no nano-speci�c (i.e., size-dependent) biological e�ects of nanoparticles, and therefore no novel 
e�ects are to be expected36. However, it is worth noting that many biological processes transpire at the nano-scale. 
�us, it follows from this argument that nanoparticles, as a function of their small size, may interfere with bio-
logical processes in a manner not seen for larger particles37. Park et al.29 showed that puri�ed SWCNTs blocked 

Figure 8. Molecular docking of CNTs and TLR4. Results of docking simulations of pristine and carboxylated 
CNTs and TLR4. (a) �e best binding mode for pristine CNT. (b) best binding mode for carboxylated CNT. (c) 
lateral view of the second top binding pose for carboxylated CNT. (d) lateral view of the third top binding pose 
for the same CNT. (e) top view of the same con�guration as in (c). (f) top view of the same con�guration as in 
(d). �e mechanism involves interactions of the target protein with both the tip and side-wall of CNTs.
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K+ channel subunits in a dose-dependent manner, presumably by ‘plugging’ the channel, by virtue of the small 
(nano-scale) diameter of the CNTs. Similarly, theoretical studies of C60 fullerenes have indicated that K+ channels 
are blocked by fullerenes through a mechanism that is governed purely by shape complementarity30. Moreover, 
C60 fullerenes were found to interact with and modulate the function of the Ca2+/calmodulin-dependent protein 
kinase II (CaMKII), a serine/threonine kinase central to Ca2+ signal transduction38. �e latter study provides a 
compelling example of an inorganic nanoparticle that acts like a cellular signaling protein, or protein ‘mimic’. �e 
present study suggests that SWCNTs may interact with speci�c PRRs on the cell surface, leading to chemokine 
secretion. �us, the response to SWCNTs apparently mimics the immune response to pathogens. Interestingly, 
it was suggested previously that nanoparticle-induced dysregulation of macrophage responses could be due to 
shared uptake pathways for nanoparticles and bacteria; however, whether or not this was mediated via direct 
receptor binding of the nanoparticles was not disclosed39. Our results have shown that endotoxin-free SWCNTs 
and GO are taken up by primary human macrophages, but only the SWCNTs triggered chemokine production, 
and we also noted that chemokine production did not depend on cellular internalization of the SWCNTs. Using 
global gene expression analyses, we could show that SWCNTs induced transcriptional upregulation primarily of 
chemokine signaling pathways and these observations were borne out at the protein level. We could also validate 
the in silico prediction that the transcription factor, NF-κB was an important regulator of chemokine production 
in SWCNT-exposed cells. Furthermore, our studies provided evidence for a role of the TLR2/4-MyD88-NF-κB 
signaling pathway in SWCNT-induced chemokine production in macrophages (Fig. 6b). Indeed, using speci�c 
reporter cell lines, we demonstrated that SWCNTs per se are capable of activating TLRs, in the absence of a 
protein corona. �is is the �rst study to show that SWCNTs can trigger TLRs and the �ndings thus provide 
some support for the proposal that ‘nanoparticle-associated molecular patterns’ or NAMPs could serve as lig-
ands for PRRs on immune cells40. Quantum dots were previously shown to trigger chemokine expression via 
MyD88-dependent TLR signaling pathways, either at the cell surface or inside the cells, but whether or not the 
particles were directly ‘sensed’ by TLRs was not disclosed41. Furthermore, DCs were shown to respond to vari-
ous synthetic biomaterials (polymers) through MyD88/TLR-dependent pathways, possibly through recognition 
of certain hydrophobic amino acids in the adsorbed proteins, or through a direct ‘recognition’ of hydrophobic 
material surfaces42. Remarkably, as the present study was under way, computational results suggesting that the 
internal hydrophobic pockets of some TLRs might be capable of binding carbon-based nanostructures, such as 
SWCNTs and C60 fullerenes were reported31. �e latter theoretical studies are in line with the experimental data 
reported here, and are also concordant with our own molecular docking studies, as we shall discuss in more detail 
below. Taken together, TLR-dependent signaling could constitute a mechanism by which nanomaterials trigger 
in�ammation. �e present results also suggest that size-dependent, receptor-mediated e�ects may underlie some 
aspects of the toxicity of carbon-based nanomaterials37. However, if these e�ects are understood, immune activa-
tion by nanomaterials may also be harnessed for biomedical applications43.

One may ask why GO did not trigger chemokine production, or cell death, in HMDM, in particular in 
light of recent studies suggesting a role for TLR signaling in GO-induced cell death44. Aside from technical, yet 
non-trivial explanations, including the possibility of endotoxin contamination, it is also conceivable that GO 
could trigger cellular responses through a di�erent mechanism: not via speci�c ligand-receptor interactions, 
but instead through a direct e�ect on the cell membrane, as shown previously for silica and uric acid crystals45. 
Indeed, the fact that GO sheets with large lateral dimensions show stronger e�ects on macrophages when com-
pared to smaller GO sheets appears to argue against a speci�c receptor interaction and in favor of a non-speci�c 
membrane binding or masking e�ect46. Furthermore, previous studies using primary human macrophages have 
shown that graphene and CNTs di�er signi�cantly in their uptake mechanisms47. We entertained the possibil-
ity that the di�erences between SWCNTs and GO could be explained by di�erences in the adsorbed layer of 
serum proteins (or, bio-corona), although our characterization results showed that both nanomaterials have a 

Figure 9. Identi�cation of interaction sites. �e molecular surface of TLR4 is shown with two di�erent coloring 
schemes: (a) hydrophobicity scale (hydrophobic residues are depicted in green) and (b) electrostatic potential 
(coloring scale runs from red to blue in the interval of values [−16.89:16.89] kT/e). Circled areas represent the 
regions of TLR4 that directly interact with CNTs by hydrophobic contact (a) and by electrostatic interaction (b).
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near-identical surface charge. However, even if the composition of the adsorbed protein layer were found to be 
similar for SWCNTs and GO (this remains to be studied), the manner in which the proteins are displayed on 
the surface could also impact on subsequent cellular responses. Hence, protein display on a �at surface as in the 
case of GO may di�er from the presentation of the same protein(s) on SWCNTs with a diameter of a few nm and 
a more pronounced surface curvature. Interestingly, recent studies have shown that the secondary structure of 
the corona proteins, exempli�ed by serum albumin, determines cell surface receptor usage by polystyrene nan-
oparticles48. However, in the present study, a role for adsorbed proteins was apparently excluded insofar as the 
experiments using reporter cell lines showed a similar degree of TLR2 and TLR4 activation in the presence and 
absence of FBS. In addition, SWCNT-triggered CCL5 secretion by primary macrophages was not in�uenced by 
the presence or absence of serum. �us, while it is clear that nanomaterials may adsorb proteins when incubated 
in FBS-containing cell culture medium49, and while this layer of proteins may impact on cell uptake or cytotox-
icity, this does not mean that the material itself is unavailable for interactions with cell surface receptors. Recent 
work has shown that the protein corona composition on the surface of nanoparticles changes with increasing 
plasma concentrations50,51, and it was suggested that while the surface is “relatively well covered” when nanopar-
ticles are immersed in 10% plasma, the so-called ‘hard’ corona continues to evolve at increasing concentrations 
of plasma50. In addition, in a previous study of dextran-coated superparamagnetic iron oxide, Simberg et al.52 
reported that both the dextran coating and the iron oxide core remained accessible to speci�c probes a�er incu-
bation in plasma, suggesting that the nanoparticle surface could be available for recognition by macrophages, 
regardless of protein coating. To further address if and how SWCNT are able to interact directly with TLRs, 
we performed molecular docking simulations of model nanotubes and TLR4. Overall, these studies suggested 
two potential mechanisms of interactions between CNTs and TLR4. While the �rst, shared by both pristine and 
carboxylated CNTs, involves interactions of the target protein with both the tip and the side-wall of CNT, the 
second class of binding modes, peculiar for carboxylated CNT, requires only interactions along the carboxylated 
side-walls. For this reason, at least in principle, only the second class of mechanisms seems to be compatible with 
long CNTs. Moreover, the second class of poses is formed by interactions localized in an area with longitudinal 
length of about 3.5 nm, which is a rather small portion of the overall length of the CNTs that were studied experi-
mentally. �is characteristic makes the binding to TLR4 compatible with CNTs partially bound to serum proteins. 
Indeed, the e�ciency of the protein corona binding is well-known to be proportional to the radial dimensions of 
the CNT53–55. �us, the small diameter of the CNTs may hinder the binding of serum proteins and limit the por-
tion of surface e�ectively covered by corona, hence leaving enough space for the direct interaction between the 
CNT and TLR4. In addition, it cannot be excluded that the tips of the CNTs are spared from coating with serum 
proteins, thus allowing the CNTs to engage with receptors tip-�rst.

Chemokines are a family of secreted signaling proteins that induce chemotaxis (migration) of responsive cells 
bearing the corresponding receptor(s). In the present study, we found that CCL3 and CCL5, along with several 
other chemokines, were upregulated and secreted by macrophages exposed to SWCNTs, but not GO. CCL3 and 
CCL5 both bind to CCR5, a receptor that is expressed by T cells, macrophages and DCs and plays a pivotal role in 
in�ammatory responses to infections56. �e current observation that conditioned medium of SWCNT-exposed 
macrophage cultures – but not GO-exposed cultures – promoted migration of DCs suggests a mechanism for the 
recruitment of immune cells into the lungs following exposure to SWCNTs. Pulmonary exposure to SWCNTs is 
known to result in the accumulation of di�erent types of immune cells, including neutrophils, eosinophils and 
macrophages57, much like an infection. In addition, and more directly linked to the current ex vivo results, we 
demonstrated previously that pharyngeal aspiration of SWCNTs induced the in�ltration of antigen-presenting 
DCs into the lungs of mice7. Further to this point, it is pertinent to ask whether the current results obtained 
using isolated human macrophages show any correlation to published in vivo results on CNTs. Given the fact 
that chemokine signaling pathways were found to be among the most prominently a�ected pathways at the tran-
scriptional level, one may ask whether this aligns with the in vivo e�ects of SWCNTs or of related nanomaterials. 
Indeed, this seems to be the case. In a recent study, the resolution of in�ammatory responses was shown to be 
delayed in CCR5 knockout mice exposed to SWCNTs when compared to WT mice58, pointing to a key role of 
CCR5 and its corresponding ligand(s) for immune responses to SWCNTs. As already mentioned, CCL3/MIP-1α 
and CCL5/RANTES, along with CCL4/MIP-1β, are known ligands of CCR5, and CCR5 plays a pivotal role in 
in�ammatory responses to infections56. �ese observations suggest, again, that SWCNTs are sensed as pathogens 
by the immune system. �is also means that conserved mechanisms and pathways are elicited in response to 
nanomaterials. �us, while biological responses to nanomaterials may be size-dependent, this does not neces-
sarily mean that the responses are ‘novel’. �is, therefore, suggests that attempts to mitigate the adverse e�ects of 
such nanomaterials can be focused on well-known and conserved pathways. Furthermore, using a cell-speci�c 
depletion and repopulation approach in mice, Frank et al.59 could show that MyD88 mediated the e�ector func-
tions of alveolar macrophages (AMs) in the acute in�ammatory responses to MWCNTs. Hence, MyD88 inhibi-
tion in donor AMs abrogated their capacity to reconstitute MWCNT-induced in�ammation when adoptively 
transferred into AM-depleted mice. �e latter in vivo results are in line with the present in vitro studies showing 
a role for MyD88/TLR-dependent signaling in human macrophages in response to SWCNTs. Moreover, several 
gene expression studies have been published showing that chemokine signaling pathways are upregulated in vivo 
in the lungs of animals (mice or rats) exposed to CNTs, thus lending further support to the validity of the present 
�ndings. Fujita et al.60 reported that a single intratracheal instillation of SWCNTs in rats elicited upregulation of a 
large number of genes involved in in�ammatory responses until 90 or 180 days post-instillation including several 
genes encoding for chemokines, among them CCL3/MIP-1α. More recently, Kinaret et al.61 reported that genes 
involved in chemokine signaling and cytokine-cytokine receptor interaction pathways were signi�cantly upreg-
ulated following exposure of mice to MWCNTs, using two alternative airway exposure procedures, pharyngeal 
aspiration (a single dose per day for 4 days) and inhalation (4 h per day for 4 days) with collection of samples a�er 
24 h; interestingly, both procedures elicited a very similar in�ammatory response. Additionally, we have recently 
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conducted a study in which mice were exposed twice a week for 3 weeks to SWCNTs through pharyngeal aspira-
tion followed by collection of samples at several di�erent time-points. Detailed analyses of the microarray sam-
ples obtained at di�erent time-points post-exposure from di�erent tissues including the lungs will be reported 
elsewhere (Tuomela et al., manuscript in preparation), but we noted that the pathways a�ected by SWCNTs in 
vivo overlapped signi�cantly with the pathways triggered in human macrophages. �e analysis showed that a 
greater number of genes were di�erentially expressed in the lungs of exposed mice relative to HMDM, including 
several interleukins, cytokines and chemokines, and corresponding receptors, perhaps re�ecting the fact that 
the lungs represent a more complex mix of di�erent cell types. Indeed, it is likely that several di�erent cell types, 
including neutrophils, eosinophils, macrophages and lung epithelial cells are involved in the orchestration of the 
in�ammatory response to nanomaterials. Chen et al.62 concluded in a recent study that alveolar epithelial cells, 
and not macrophages, are the major producers of cytokines/chemokines in mice exposed to small, spherical 
carbon nanoparticles, and Katwa et al.63 showed that mast cells are required for certain pulmonary and cardio-
vascular responses to MWCNTs. On the other hand, other recent studies have unambiguously demonstrated that 
alveolar macrophages are major e�ector cells in MWCNT-induced acute in�ammation59. Overall, a common 
feature, as evidenced from this survey of the literature, is that chemokine signaling pathways are prominently 
upregulated following pulmonary exposure to CNTs.

In sum, our study showed that SWCNTs induce chemokine secretion in macrophages through a 
TLR2/4-MyD88-NF-κB signaling pathway. GO, on the other hand, did not elicit chemokine responses. �ese 
studies shed light on the interactions of nanomaterials with the immune system and suggest that nanomaterials 
might be sensed as pathogens or NAMPs.

Methods
Reagents. Lipopolysaccharide (LPS) (E. coli serotype O111:B4), polymyxin B, and cytochalasin D were 
obtained from Sigma-Aldrich. Bay 11-7082 was from Calbiochem. Pepinh-MYD, Pepinh-Control, and 1-palmi-
toyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (oxPAPC) were all from InvivoGen (Toulouse, France). ZnO 
nanoparticles (ZincoxTM 10) were from IBU-Tec Advanced Materials AG (Weimar, Germany)64.

Nanomaterial preparation. SWCNTs (CNI, Inc., Houston, TX) produced by the high pressure CO dispro-
portionation process (HiPco) technique, employing CO in a continuous-�ow gas phase as the carbon feedstock 
and FeCO5 as the iron-containing catalyst precursor, and puri�ed by acid treatment to remove metal contami-
nates65, were used. GO was synthesized by a modi�ed Hummer’s method, as previously described66. �e synthe-
sized GO was washed several times by a mixture of water and ethanol, and the obtained slurry was dialyzed for 
3 days to exclude any contamination with cations. Both nanomaterials were dispersed in dH2O. Before use, the 
materials were diluted in cell culture medium to 100 µg/ml and sonicated in a water bath for 10 min (Branson 
1510, 40 kHz).

Nanomaterial characterization. �e SWCNTs were previously characterized with respect to purity, sur-
face area, size and shape7. �e �nal dispersion comprised of 0.23 wt% iron according to inductively coupled 
plasma mass spectrometry (ICP-MS). �e speci�c surface area measured by the nitrogen absorption–desorp-
tion technique (Brunauer Emmet Teller method, BET) was around 1040 m2/g. Transmission electron microscopy 
(TEM) revealed that the SWCNTs had a �brous structure with an average diameter of 1–4 nm diameter and 
average length of 0.5–2 µm. SWCNTs. �e ζ-potential was −42.3 ± 0.9 mV. For GO, TEM measurements and cor-
responding electron di�raction (ED) pattern were performed by dropping a GO dispersion on a carbon-covered 
standard TEM grid (QUANTIFOIL Multi A) and subsequent drying under air. Samples were analyzed on a ZEISS 
Leo912 transmission electron microscope operated at an acceleration voltage of 120 kV. TEM showed that GO 
had a two-dimensional structure with smooth and regularly shaped surface (Fig. S3a) with an average diameter 
of 1.1 ± 0.3 µm. �e ζ-potential of GO �akes was recorded using Malvern Zetasizer Nano ZS and was found to 
be −42.0 ± 1.2 mV. �e successful oxidation was proven by XRD which showed the shi� of the (002) plane of 
graphite at 26.5° to 9.9° (022) of GO. Furthermore, FTIR analysis using a Perkin Elmer FT spectrometer between 
400 and 4000 cm−1 revealed characteristic peaks at 3300, 1720, 1620, 1405, 1220, 1041 cm−1 which correspond to 
the alcohol-, ether- and carboxyl surface groups (Fig. S3b). �e chemical composition of GO was determined by 
X-ray photoelectron spectroscopy (XPS) using a Surface Science Instruments ESCA M-Probe XPS spectrometer 
with a monochromatic Al K-α source of 1486.68 eV. Survey XPS spectra (Fig. S3c) were acquired with pass energy 
(PE) of 158.9 eV, 0.5 eV step size, 125 ms dwell time and averaged over 7 scans. �e high resolution C1s and O1s 
XPS spectra (Fig. S3d,e) were acquired with PE of 22.9 eV, 0.05 eV step size, 175 ms dwell time and averaged over 
25 scans. Spectra of the insulating samples were charge corrected by shi�ing all peaks to the adventitious carbon 
C 1 s spectral component binding energy set to 284.8 eV. CasaXPS so�ware was used to process the spectra.

Calcination of nanomaterials. SWCNT samples (0.7 mg/mL, 750 µL in dH2O) were placed into a 10 mL 
�ask and dried under vacuum at 40 °C. A�er the solvent was removed, the atmosphere was changed to nitrogen 
and the sample was heated to 250 °C (�rst 200 °C and then 250 °C to avoid overheating). �e sample was kept at 
250 °C for 1 h, then cooled down and re-dispersed in distilled water. �en, SWCNTs were dispersed at 30 µg/mL 
in distilled water, PBS, DMEM medium, or DMEM medium supplemented with 10% FBS by ultrasonication for 
10 min using a bath sonicator and size and zeta potential of the samples were measured using Zetasizer Nano ZS 
(Malvern Instruments Ltd., UK) as described67. For cellular interaction studies, calcined SWCNTs were dispersed 
in endotoxin-free water under sterile conditions in laminar �ow. HMDM were then exposed to SWCNT (30 µg/
mL) for 12 h in DMEM medium supplemented with 10% FBS in the presence or absence of polymyxin-B sulfate 
(10 µM). CCL5 production was measured using ELISA as described below.
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Endotoxin assessment. Endotoxin content in SWCNT and GO dispersions was assessed using the chro-
mogenic limulus amoebocyte lysate (LAL) assay (Charles River Endosafe, Charleston, SC). �e endotoxin content 
was found to be below FDA-mandated limits of acceptance (0.5 EU/mL) (data not shown). To verify these results, 
SWCNT samples were also assessed using the TNF-α expression test (TET) that enables unequivocal detection of 
endotoxin with a sensitivity that is comparable to the conventional LAL assay, but without any interference with 
the assay, as described previously18. In brief, HMDM were exposed to nanomaterials or lipopolysaccharide (LPS) 
in the presence or absence of the speci�c LPS inhibitor, polymyxin B (10 µM) and TNF-α secretion was measured 
at 24 h of exposure using a Human TNF-α ELISA Kit purchased from Abcam (Sweden).

Primary human immune cells. Human mononuclear cells were isolated from bu�y coats obtained from 
adult blood donors (Karolinska University Hospital, Stockholm, Sweden) by density-gradient centrifugation 
using Lymphoprep (Nycomed). Monocytes were separated based on CD14 expression using CD14 MicroBeads 
(Miltenyi Biotech Ltd) following the manufacturer’s instructions68. Cells were grown in RPMI-1640 medium 
supplemented with 10% heat-inactivated fetal bovine serum (FBS), 2 mM glutamine, 100 U/mL penicillin, and 
100 µg/mL streptomycin (Gibco). For the generation of human monocyte-derived macrophages (HMDM), cells 
were cultured with 50 ng/mL recombinant macrophage colony-stimulating factor (M-CSF, R&D Systems) for 3 
days. To con�rm macrophage di�erentiation, surface expression of CD11b was determined using a PE-conjugated 
CD11b antibody (BD Biosciences) and measured using a BD LSRFORTESSA �ow cytometer (Fig. S6). For the 
generation of dendritic cells (DCs), CD14+ cells were instead cultured with 10 ng/ml granulocyte-macrophage 
colony-stimulating factor (GM-CSF, Gibco) and 800 U/mL interleukin (IL)-4 (Gibco) for 6 days.

Cytotoxicity assessment. Cytotoxicity was estimated using the lactate dehydrogenase (LDH) assay 
(Cytotox 96® Non-Radioactive Cytotoxicity Assay Kit, Promega, 96-well plate format). HMDM (106 cells/ml) 
were exposed to the nanomaterials at 10, 30 and 100 µg/mL in 200 µL for 24 h. A�er exposure, 50 µl of the super-
natants was transferred to a new 96-well plate. �e cells were washed and lysed with 100 µL 0.1% Triton and Lysis 
bu�er for 45 min at 37 °C. �en, 50 µL of the lysate was transferred to a new 96-well plate and 50 µL of reconsti-
tuted substrate was added to the supernatants and the cell lysates. A�er 20 min incubation, the 50 µL of stop solu-
tion was added to each well and the absorbance was recorded at 495 nm using a Tecan In�nite F200 plate reader 
(Männendorf, Switzerland). �e toxicity was expressed as the percent of LDH release in supernatant (absorbance 
of supernatant) compared to maximum LDH release (absorbance of supernatant + cell lysate). Possible interfer-
ence with the assay was assessed by incubating nanomaterials with reconstituted LDH substrate. No interference 
was detected.

Cellular uptake. HMDM were exposed to SWCNTs or GO in RPMI-1640 medium supplemented with FBS 
for 24 h and then washed with PBS, trypsinated, and centrifuged at 2000 rpm for 3 min. Cells were then �xed in 
2% glutaraldehyde in 0.1 M sodium cacodylate bu�er containing 0.1 M sucrose and 3 mM CaCl2, pH 7.4, and 
stored in the refrigerator. Cells were washed in bu�er and post�xed in 2% osmium tetroxide in 0.07 M sodium 
cacodylate bu�er containing 1.5 mM CaCl2, pH 7.4, at 4° C for 2 h, dehydrated in ethanol followed by acetone, 
and embedded in LX-112 (Ladd, Burlington, VT). Sections were contrasted with uranyl acetate followed by lead 
citrate and were examined in a Tecnai 12 Spirit Bio TWIN TEM (FEI Company, Eindhoven, �e Netherlands) 
at 100 kV. Digital images were taken using a Veleta camera (Olympus So� Imaging Solutions, GmbH, Münster, 
Germany).

cDNA microarray. HMDM were seeded in 24-well plates at a density of 106 cells/well in a �nal volume of 
1 mL and treated with the indicated concentrations of SWCNTs or GO. Cells were collected to RNAlater bu�er 
(Ambion) and total RNA isolated with RNAqueous Small Scale Phenol-Free Total RNA Isolation Kit (Ambion). 
�e quality of the total RNA was determined by Agilent Bionalyzer (Agilent, Santa Clara, CA). For microarray 
analysis 250 ng of total RNA was processed with GeneChip 39 IVT Express Kit (part no. 901229) and hybrid-
ized to GeneChip Human Genome U219 array plate (A�ymetrix, Santa Clara, CA) with speci�c protocols using 
the GeneTitan Hybridization, Wash and Stain Kit for 39 IVT Array Plates (P/N 901530). A�ymetrix GeneChip 
Command Console 3.1 was used to control the process and to summarize probe cell intensity data. Hybridization 
quality was checked with A�ymetrix GeneChip Command Console and Expression ConsoleTM 1.1 s.

Transcriptomics data analysis. Gene expression data was normalized using the RMA method69, and R/
Bioconductor 3.0 and mapped to Ensembl gene identi�ers70,71. Data was log2 transformed for analysis and vis-
ualization. Replicates (1–3 for each treatment) were summarized by taking the average of the log2 transformed 
fold change. �e microarray data were submitted to the Gene Expression Omnibus database (GEO accession no. 
GSE83516). Gene expression data of all genes which had average fold change of greater than 0.75 log2 scale in a 
24 h treatment of either SWCNT or GO was visualized with a heatmap using the Multi Experiment Viewer so�-
ware, version 4.8.1, with genes ordered according to average fold change of treatment versus control in SWCNTs. 
Gene signature and pathway enrichment analysis was performed with Molecular Signature Database (MSigDB 
version 4.0) using canonical pathway descriptions and the Fisher’s exact test72. Only signatures which had a sig-
ni�cance of q < 0.05 a�er multiple testing correction and at least three signi�cant genes are reported. Ingenuity 
Pathway Analysis (IPA) (application version 220217, content version 16542223) (license obtained from Ingenuity 
Systems, Redwood City, CA) was performed in order to interpret the mRNA sequencing data73. Both canonical 
pathway enrichment analysis and upstream regulator analysis were performed using the IPA tool. �e cut-o� 
p < 0.01 and the overlap of at least three signi�cantly a�ected genes was used. In addition, regulators were �ltered 
by activation Z-score and all regulators were required to be expressed in the gene expression samples that were 
analyzed.
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Multiplex array for chemokine detection. HMDM (106 cells/ml) were exposed to the nanomaterials 
at the indicated concentrations for 24 h. Cell supernatant were then collected, centrifuged at 15.000 g for 5 min 
to remove nanomaterials and cell debris and stored at −80 °C. Supernatants were never refrozen. Chemokines 
were quanti�ed by using a Bio-Plex Pro Human Cytokine Assay (Bio-Rad) and Bio-Plex® system and so�ware 
following the manufacturer’s instructions74. �e cytokine standards were reconstituted in RPMI-1640 cell culture 
medium supplemented with 10% FBS. For NF-κB inhibition studies, HMDM were pre-exposed to Bay 11-7082 
(10 µM) for 1 h. A�er pre-incubation, the inhibitor was removed from the medium and cells were exposed to 
SWCNTs.

Chemokine detection by ELISA. To complement the multiplex array experiments, selected chemokines 
were also determined by using a speci�c enzyme-linked immunosorbent assay (ELISA). To this end, HMDM 
(105 cells/well) were exposed to 30 µg/mL of SWCNTs for 12 h. For some experiments, cells were �rst pretreated 
or not with cytochalasin D (10 µM) for 2 h and then exposed to SWCNT for 12 h in the presence or absence of 
cytochalasin D. To block TLR signaling, cells were pretreated with oxPAPC (30 or 60 µg/mL) prior to exposure 
to SWCNTs (30 µg/mL). Additionally, to block MyD88 signaling, cells were preincubated with Pepinh-MYD 
(25 µM) or Pepinh-Control (25 µM) prior to exposure to SWCNTs. �en, the supernatants were collected and 
stored at −80 °C for subsequent analysis. CCL5 expression in the supernatants was determined using a speci�c 
ELISA (Human RANTES ELISA, Life Technologies, Sweden) following the manufacturers’ instruction. In brief, 
the cell culture supernatants (controls and SWCNT-exposed samples) or CCL5 standards were added to the 
pre-coated ELISA wells provided in the kit and incubated for 1 h at RT. �en, the wells were washed and incu-
bated �rst with the biotinylated antibody reagent solution and then with the streptavidin-HRP solution for 1 h, 
respectively. Finally, the chromogenic TMB substrate solution was added and the plates were kept in the dark for 
30 min, followed by stopping the reaction. �e absorbance was measured at 450 nm in a Tecan plate reader. A 
standard curve of CCL5 was prepared and the amount of CCL5 in cell culture supernatants was calculated from 
the standard curve.

NFkappaB activation. NF-κB activity was determined by the NF-κB p65 (pS536) PhosphoTracer ELISA 
kit (Abcam, Sweden) according to the manufacturer’s instruction. Brie�y, HMDM (106 cells/ml) were exposed 
to 30 µg/ml of SWCNTs or LPS (0.1 µg/mL) or medium alone for 12 h, in presence or absence of Pepinh-MYD 
(25 µM) or Pepinh-Control (25 µM). Cells were then harvested and washed with PBS and the phosphorylated 
NF-κB p65 (pS536) protein was quanti�ed based on a horseradish peroxidase-ADHP substrate reaction. �e 
�uorescence was read at ex. 540 nm and em. 590 nm using a Tecan plate reader.

TLR reporter cell lines. HEK 293 cells co-transfected with human TLR2 (HEK-Blue™ hTLR2) or TLR4 
(HEK-Blue™ hTLR4 cells) and an NF-κB/AP-1-secreted embryonic alkaline phosphatase (SEAP) reporter gene 
were obtained from InvivoGen (Toulouse, France). Once TLR signaling is initiated, NF-κB and AP-1 is activated, 
which initiates the secretion of SEAP which can be detected in the cell supernatants to quantify NF-κB activation. 
�e HEK-Blue™ Null1 cells were included as a negative control. HEK-Blue™ Null1, hTLR2 and hTLR4 cells 
were cultured in DMEM growth medium containing 4.5 g/L glucose and supplemented with 10% FBS, 50 U/mL 
penicillin, 50 mg/mL streptomycin, 100 mg/mL Normocin™, 2 mM L-glutamine and 1 × HEK-Blue™ selection 
antibiotics mixture, according to the manufacturers’ instruction. For Null1 cells, Zeocin™ was used instead of 
the selection antibiotics mixture. Cells (2 × 105 cells/mL) were exposed for 12 h to 30 µg/mL of SWCNTs or LPS 
(0.1 µg/mL) as a positive control in HEK-Blue™ detection medium (InvivoGen). SEAP activity was measured at 
630 nm using an In�nite F200 Tecan plate reader.

CCR5 receptor expression. CCR5 cell surface expression was assessed by �ow cytometry. Brie�y, 106 
cells were resuspended in 100 µL of FACS solution (0.1% bovine serum albumin plus 0.1% sodium azide in 
phosphate-bu�ered saline) and incubated with antibody or isotype control at +4°C in the dark. FITC-conjugated 
rat monoclonal anti-CCR5 antibody [HEK/1/85] (Abcam, ab11466, lot GR60886-7) and rat IgG2a (BD 
Pharmingen) (isotype control) were used. A�er incubation, cells were washed three times with cold FACS solu-
tion and �xed with 2% formaldehyde for 20 min at RT. Cells were immediately analyzed using a FACScan �ow 
cytometer (Becton Dickinson, San Jose, CA) operating with FBS Express 4 Flow Cytometry so�ware; 10.000 
events were collected for each sample.

Cell migration assay. Cell migration was evaluated using a 24-transwell chemotaxis microchambers 
(Costar). To this end, 600 µL of medium (RPMI-1640 with 10% FBS) or conditioned medium (supernatant of 
100 µg/mL SWCNT-exposed or 100 µg/ml GO-exposed HMDM) was added to the lower wells of a chemotaxis 
chamber. A polycarbonate 5 µm pore size �lter was layered onto the wells, and 100 µL of cell suspension (105 cells/
mL of monocytes or DCs) were seeded in the upper chamber. �e plate was covered and incubated at 37 °C for 
3 h. At the end of the incubation, �lters were removed, and the migrated cells were counted in the lower chamber. 
Results were expressed as the chemotactic index: the mean number of cells migrating to a test stimulus (SWCNT- 
or GO-conditioned medium) divided by the number of cells migrated to the control (medium alone).

Molecular docking. �e docking simulation of CNTs to TLRs was performed using the AutoDock Vina 
so�ware75. �e 3D structures of model nanotubes, i.e., zigzag nanotubes with chirality parameters (14,0) and 
a corresponding diameter of 1.1 nm were generated using the TubeGen 3.4 tool76. �e length of each CNT was 
8 nm. For oxidized CNTs, carboxylated groups were added on both ends (until saturation) and on the surface 
of the nanotube (randomly) using the Molfacture plugin in VMD visualization so�ware77. �e target structure 
was taken from the x-ray crystal structure of TLR4 (PDB code: 3fxi, chain A) and a 1 Å-spaced grid map with 
200 × 200 × 200 points was built around the protein to search for possible binding sites over the entire surface 
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of the target. Gasteiger partial atom charges in both protein and nanotube structures were assigned by using 
the AutoDock Tools suite program78. Docking simulations were carried out with a maximum number of 1000 
generated binding modes. �e top orientations were selected with a maximum energy di�erence of 10 kcal/mol 
between the best and worst retained binding modes.

Statistics. All experiments were performed in at least three biological replicates and at least in technical 
duplicates; data are shown as average ± S.D. Unpaired two-tailed Student’s t-test or one-way ANOVA with 
post-hoc Tukey’s test was used for statistical analysis.

Data availability. �e data that support the �ndings of this study are reported in the article and in the sup-
plementary information �les and from the corresponding author upon request. �e transcriptomics data were 
submitted to the Gene Expression Omnibus database.
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