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INTRODUCTION

Human chemokines are a superfamily of 48 small (approxi-

mately 8–14 kDa) chemoattractant cytokines that are divided

into four subfamilies, CXC, CC, (X)C, and CX3C, based on
the arrangement of the conserved N-terminal cysteine residues,

where “X” represents any amino acid (Zlotnik and Yoshie, 2000).

Systematic chemokine nomenclature is based on the cysteine
subfamily, followed by an “L” for ligand and a numerical des-

ignation (Zlotnik and Yoshie, 2000; Mukaida and Baba, 2012).

Since some chemokines only exist in humans or in mice, human
chemokines may be designated with capital letters, while the

murine chemokines are written in lower-case letters (Zlotnik

and Yoshie, 2012). The biologic effects of these proteins are
mediated by a superfamily of 19 seven transmembrane G protein-

coupled receptors (7TM GPCRs). There is also a set of “atypical”

chemokine receptors that do not mediate cell migration, but
rather, regulate inflammation by acting as decoy or scavenger

receptors (Mantovani et al., 2010). Several chemokine decoy

receptors have been identified (D6, DARC/Duffy antigen recep-
tor for chemokines, CCXCKR); all have mutations that prevent G

protein-coupling and thus, intracellular signaling, acting instead

to alter local concentrations of chemokines within a microenvi-
ronment and influencing subsequent immune responses (Collins

et al., 2010; Yoshimura and Oppenheim, 2011).

Chemokines can be thought of as “inflammatory” or “homeo-
static” depending on whether they are induced during inflamma-

tion or constitutively expressed in certain tissues (Zlotnik et al.,

2011). Homeostatic chemokines are expressed in lymphoid or
other organs, are involved in leukocyte homing and trafficking,

and are well conserved between species (Zlotnik and Yoshie,
2012). Inflammatory chemokines are primarily involved in the

recruitment of leukocytes to areas of inflammation and can have

marked differences in function between species (Islam et al., 2011;
Zlotnik et al., 2011). Inflammatory chemokines play key roles in

tumor progression, as they determine the immune cell infiltrate

in the tumor microenvironment, modulate the immune response,
and participate in angiogenesis and dissemination of the tumor.

In this review, we discuss the potential roles of macrophages
and their production of chemokines in modulating angiogenesis.

ANGIOGENESIS

There are two major processes involved in the formation of blood

vessels, vasculogenesis and angiogenesis. Vasculogenesis typically
describes the generation of blood vessels de novo from mesenchy-

mal blood islands that develop into blood cells and vascular

endothelium (Lu et al., 2011). Angiogenesis is defined as the
sprouting of new vessels from pre-existing ones (Risau, 1997).

Physiologic angiogenesis occurs during embryonic development,

wound healing, and female reproductive cycling, and involves ves-
sel destabilization, endothelial cell migration and proliferation,

and sprouting. These processes are followed by a resolution phase

with reduced endothelial cell proliferation and vessel stabilization
(Motz and Coukos, 2011). In the adult organism, angiogenesis

is typically associated with pathologic processes such as cancer,

stroke, diabetes, and other inflammatory diseases such as psoria-
sis and arthritis (Kiefer and Siekmann, 2011); unlike physiologic

angiogenesis, pathologic angiogenesis does not have a resolution

phase and results in a highly disorganized vascular network (Motz
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and Coukos, 2011). Hypoxia or low oxygen tension is the pri-
mary factor in the induction of angiogenesis. Inflammatory cells

are recruited to ischemic tissues and extravasate to these areas

via tethering to P-selectin expressed on activated endothelial cells
and platelets (Egami et al., 2006). Once there, these inflamma-

tory cells release cytokines, vasoactive molecules, and chemokines

in response to the hypoxia. The resulting vascular networks of
tumors are leaky and hemorrhagic, with abnormal endothelial

cell proliferation and apoptosis; they are poorly functional with

excessive convoluted branching that results in oxygen depletion
and extracellular acidosis (Nagy et al., 2010; Fokas et al., 2012).

These chaotic vessels lack distinct venules, capillaries, or arteri-

oles, and are lined by endothelial cells that differ from normal
endothelial cells both molecularly and functionally and are sup-

ported by abnormal pericytes that are loosely attached and do not

provide full coverage to the vessel (Bussolati et al., 2011).
Since they were first isolated from adult peripheral blood in

1997 (Asahara et al., 1997), emerging data have revealed a role

for endothelial progenitor cells (EPCs) in the process of tumor
neovascularization. Circulating EPCs or angioblasts comprise a

very minor subpopulation in the blood that is most likely derived

from hemangioblast precursors (Asahara et al., 2011). They were
first characterized by their expression of CD31, Flk-1/ vascular

endothelial growth factor receptor (VEGFR)-2, Tie-2, and their

release of nitric oxide (Asahara et al., 1997; Ahn and Brown,
2009). These progenitor cells home to sites of neovasculariza-

tion, differentiate into endothelial cells, and have been reported to

compose anywhere from <0.01% in B16 melanoma (Purhonen
et al., 2008) to >80% of the tumor vasculature in B6RV2 lym-

phoma (Lyden et al., 2001). Using a preclinical model of murine

Lewis lung carcinoma metastasis, investigators found that these
cells comprised 12% of the neovasculature in the metastatic

lesions, and more importantly, demonstrated that blocking their

mobilization significantly inhibited angiogenesis and decreased
the formation of lethal macrometastases, implicating these cells

in “the angiogenic switch” (Gao et al., 2008). Despite the dis-
crepancies in their reported contributions to the composition of

tumor vasculature, these cells can contribute to neovasculariza-

tion by virtue of their production of pro-angiogenic mediators
including VEGF, insulin-like growth factor (IGF)-1, angiopoitin

(Ang)-1 and -2, and CXCL12/stromal cell-derived factor-1/SDF-1

(Ahn and Brown, 2009).
Vascular endothelial growth factor (VEGF), also known as

VEGF-A, is the prototypical pro-angiogenic cytokine secreted

by hypoxic tumor cells, tumor-associated macrophages (TAMs),
and endothelial cells within the tumor microenvironment. It

was originally demonstrated to be an endothelial growth factor

and a potent inducer of vascular permeability (Claesson-Welsh
and Welsh, 2013). VEGF has also been shown to be chemo-

tactic for monocytes in vitro via VEGF receptor 1/FLT1 and

VEGFR2/KDR (Murdoch et al., 2008). Thus, this molecule is
an obvious target for anti-angiogenic therapy in cancer patients.

However, a clinical study using laser capture microdissection

(LCM) and gene expression profiling in rectal carcinoma patients
using bevacizumab (Genentech), an anti-VEGF antibody, found

that CXCL12, CXCR4, and CXCL6/granulocyte chemoattrac-

tant protein-2/GCP-2 expression were induced in rectal cancer

cells with bevacizumab administration, while neuropilin 1 was
increased in TAMs (Xu et al., 2009). Furthermore, increased

plasma levels of CXCL12 in these patients after treatment

were associated with rapid disease progression and metastasis.
The authors speculated that the CXCL12–CXCR4 pathway may

be a tumor resistance or escape mechanism with anti-VEGF

monotherapy, as this pathway is also strongly implicated in angio-
genesis (Xu et al., 2009).

CXC CHEMOKINES AND THE ELR MOTIF

CXC chemokines can be further be classified as ELR+ or

ELR−, based on the presence of a glutamate-leucine-arginine

amino acid sequence at the N-terminus of the protein. The
ELR+ chemokines, CXCL1/growth-regulated oncogene α/GROα,

CXCL2/GROβ, CXCL3/GROγ, CXCL5/epithelial cell-derived

neutrophil activating peptide-78/ENA-78, CXCL6/granulocyte
chemoattractant protein-2/GCP-2, CXCL7/neutrophil-activating

protein-2/NAP-2, and CXCL8/ interleukin (IL)-8/IL-8, are

chemotactic for neutrophils, and are pro-angiogenic (Raman
et al., 2011). All of the murine ELR+ CXC chemokines signal

via the CXCR2 receptor, while human ELR+ CXC chemokines

signal primarily through CXCR2, but can also signal through
CXCR1 (Keeley et al., 2011). It is important to note that there

is no homologue of the human CXCL8/IL-8 gene in mice or

rats (Nomiyama et al., 2010). Additionally, humans have both
CXCR1 and CXCR2 genes for the ELR+ chemokine receptors,

whereas CXCR1 has not been found in mice or rats (Moepps

et al., 2006; Mukaida and Baba, 2012). CXCL8 is the prototypic
ELR+ pro-angiogenic chemokine in its promotion of endothe-

lial cell migration, invasion, and proliferation, all of which result

in the formation of capillary-like structures within tumors (Ben-
Baruch, 2012). In addition to its secretion by tumor cells, CXCL8

has also been shown to be produced by monocytes when cultured

with supernatants from freshly excised breast cancer tissue and
mammary tumor cell lines. Moreover, the cultured monocytes

also secreted the pro-angiogenic chemokines, CXCL1, CXCL2,
CXCL3, CXCL5, and CXCL7, resulting in micro vessel forma-

tion, with no production of angiostatic chemokines (Toulza et al.,

2005).
CXCL8 may also play a role in angiogenesis as a potent neu-

trophil chemoattractant (Mantovani et al., 2010; Tazzyman et al.,

2013). In multistep pancreatic islet carcinogenesis in RIP1-Tag2
transgenic mice, it was determined that neutrophils were required

for the “angiogenic switch” due to their production of matrix

metalloproteinase (MMP)-9 that activates VEGF (Nozawa et al.,
2006). Using this model, investigators demonstrated that MMP-9

was expressed by neutrophils infiltrating the angiogenic islets and

the tumors, while MMP-9-expressing macrophages were located
along the periphery of the tumors, where tumor growth and

angiogenesis occur (Nozawa et al., 2006). The ELR+ chemokine,

CXCL6, may also contribute to angiogenesis via its recruitment of
neutrophils. For instance, it has been shown that CXCL6, CXCL8,

and CCL2 are co-induced in micro vascular endothelial cells

after stimulation with pro-inflammatory stimuli (Gijsbers et al.,
2005). Using immunohistochemistry (IHC) on patient biopsies,

it was shown that endothelial cells from various gastrointesti-

nal tumors (e.g., adenocarcinomas of the esophagus, stomach,
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colon, and pancreas) expressed CXCL6, which strongly correlated
with leukocyte infiltration of the tumors and MMP-9 expression.

While CXCL6 only weakly induced the proliferation of endothe-

lial cells, it did synergize with CCL2 in neutrophil chemotaxis,
allowing for neutrophil-derived proteases to degrade extracel-

lular matrix and promote neovascularization (Gijsbers et al.,

2005). Other mediators implicated in the “angiogenic switch”
include, fibroblast growth factor (FGF), PDGFs, lysophosphatic

acid (LPA), and angiopoitins (Hanahan and Weinberg, 2011;

Fagiani and Christofori, 2013).
The ELR− chemokines, CXCL4/platelet factor-4/PF-4,

CXCL4L1/CXCL4 variant, CXCL9/monokines induced by

interferon-γ/Mig, CXCL10/interferon-γ inducible protein-10/IP-
10, CXCL11/IFN-inducible T cell chemoattractant/I-TAC,

CXCL13/B cell attracting chemokine-1/BCA-1, and

CXCL14/breast- and kidney-expressed chemokine/BRAK,
are chemotactic for lymphocytes and natural killer (NK) cells

and are angiostatic (Raman et al., 2011). CXCL4, CXCL4L1,

CXCL9, CXCL10, and CXCL11 are all reported to be ligands
for CXCR3 (Struyf et al., 2011). These angiostatic chemokines

play important roles in tumor progression, as over-expression

of CXCL4 inhibits angiogenesis, tumor growth, and metastasis
(Yamaguchi et al., 2005). In fact, CXCL4 was the first described

angiostatic chemokine, which was found to inhibit endothelial

migration and proliferation, and the binding of fibroblast growth
factor (FGF)-2 and VEGF to their receptors (Maione et al.,

1990; Airoldi and Ribatti, 2011). CXCL4 was once thought to

only be expressed by megakaryocytes and platelets, however,
human monocytes, mast cells, and activated T cells are now

known to secrete this chemokine (Vandercappellen et al., 2011).

CXCL4L1 is a homologue of CXCL4 and differs by three amino
acid residues at the C-terminus of the protein. Both genes are

located on human chromosome 4, and CXCL4L1, which is only

present in humans and some primates, likely arose from recent
duplication of the CXCL4 gene (Dubrac et al., 2010). These

proteins are not identical in function, as CXCL4L1 is a more
potent inhibitor of endothelial cell migration and angiogenesis

than its homologue, as well as being more diffusible, having a

longer half-life, and acting in a paracrine manner, as opposed to
CXCL4’s juxtacrine activity (Dubrac et al., 2010).

THE CXCL12/CXCR4 AXIS

An important exception to the ELR− rule is CXCL12/stromal

cell-derived factor-1/SDF-1, which is ELR−, but promotes angio-
genesis via binding to its receptor, CXCR4 (Singh et al., 2013).

Currently, CXCR4 is one of the most studied chemokine recep-

tors and is over-expressed in over 20 different human tumors,
including prostate, breast, ovarian, lung, pancreatic, colorectal,

and melanoma (Balkwill, 2004; Singh et al., 2013). It has been
shown that CXCL12 binding to CXCR4 induces Akt phosphory-

lation and increases production of the major angiogenic factor,

VEGF, in the human breast cancer cell line, MDA-MB-23 (Liang
et al., 2007). Experimental models of melanoma, colon, pancre-

atic, thyroid, and prostate cancer have demonstrated that organ

directed metastasis is mediated by CXCR4+ tumor cells migrating
to CXCL12+ organs such as the liver and the lungs (Domanska

et al., 2013). Studies of glioblastomas and neuroblastomas have

also shown that CXCR4+ monocytes recruited to tumors pro-
mote new vascular formations within the neoplasms; the mono-

cytes first establish themselves within perivascular areas of the

tumor and then release pro-angiogenic factors such as VEGF
and angiopoitins, with subsequent recruitment of bone marrow-

derived endothelial and perivascular progenitors that will com-

pose the vasculature (Jodele et al., 2005; Domanska et al., 2013).
CXCL12 is normally expressed by the mesenchymal stroma of

the lungs, liver, lymphatic tissues, and bone marrow (Domanska

et al., 2013). Despite its documented role in tumorigenesis,
CXCL12 is considered a homeostatic chemokine by virtue of its

pivotal role in the retention and homing of hematopoietic stem

cells in the bone marrow and in lymphocyte trafficking (Teicher
and Fricker, 2010). In addition to its expression on most leukocyte

subsets, CXCR4+ cells that can directly or indirectly participate in

angiogenesis include, smooth muscle cell progenitors, endothe-
lial cell precursors, and immature and mature hematopoietic

cells (Petit et al., 2007; Teicher and Fricker, 2010). CXCL12
directly mediates angiogenesis through its binding to CXCR4 on

endothelial cells and by recruiting endothelial progenitor cells,

while indirectly it induces the secretion of pro-angiogenic fac-
tors such as VEGF, CXCL8, and CXCL1 by leukocytes, tumor

cells, and endothelial cells that express CXCR4 (Verbeke et al.,

2011).
CXCR7 is another receptor with high affinity for CXCL12,

and its recent discovery has complicated the understanding of

the CXCL12/CXCR4 axis. While CXCR4 and CXCR7 are both
moderately expressed on normal endothelial cells, the expression

of CXCR7 on endothelial cells within the tumor microenviron-

ment is markedly up-regulated and has recently been suggested as
a marker of tumor vasculature in various tumors such as renal

carcinoma and gliomas (Singh et al., 2013). Conversely, other

researchers demonstrated that co-expression of both CXCR4 and
CXCR7 resulted in decreased CXCL12-mediated intravasation of

mammary carcinoma cells and fewer metastases of these tumors

to the lungs (Hernandez et al., 2011; Singh et al., 2013). Moreover,
CXCR7 is also able to bind with low affinity to the angiostatic

ELR− chemokine, CXCL11, which itself can also bind to CXCR3

(Lasagni et al., 2003). Clearly, additional research is necessary to
better understand the crosstalk between these chemokines and

their multiple receptors.

THE LONE CX3C CHEMOKINE

The single member of the CX3C subfamily, CX3CL1/fractalkine,
signals through its chemokine receptor, CX3CR1, and is unique

in that it is a cell surface transmembrane protein that func-

tions as an adhesion molecule that can be proteolytically cleaved
by the metalloproteinases, ADAM10 and ADAM 17, to form

the active soluble chemoattractant (White and Greaves, 2009).
This chemokine recruits lymphocytes, NK cells, and mono-

cytes, and has been shown to participate in angiogenesis through

several different mechanisms. For example, Kumar et al. have
shown that a bone marrow derived CX3CR1+ monocyte sub-

population is capable of differentiating into smooth muscle-like

cells subsequent to CX3CL1–CX3CR1 interactions in blood ves-
sel walls after vessel injury (Kumar et al., 2010). Furthermore,

a competent CX3CL1–CX3CR1 interaction is necessary for
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nascent microvessel formation, maturation, and vascular struc-
tural integrity in two models of neovascularization, and for the

differentiation of CX3CR1+ monocytes into smooth muscle-like

cells in vivo (Kumar et al., 2013). Loss of this chemokine/receptor
interaction resulted in the development of smaller, leaky, poorly

developed, and hemorrhagic microvessels in Matrigel and experi-

mental plaque models of neovascularization (Kumar et al., 2013).
Utilizing inducible fibroblast growth factor receptor 1

(FGFR1) in a murine mammary tumor cell line and its endoge-

nous expression in the breast cancer cell line, HS578T, another
laboratory has recently shown that activation of this tyrosine

kinase receptor leads to CX3CL1 production by tumor cells and

subsequently, enhanced macrophage recruitment to mammary
cells during the early stages of tumorigenesis in vitro and in vivo

(Reed et al., 2012). By blocking CX3CR1 in vivo, these researchers

demonstrated decreased macrophage infiltration into the mam-
mary epithelium of MMTV-iFGFR1 mice and decreased angio-

genesis (Reed et al., 2012). It is important to note that CX3CL1

is typically up-regulated on inflamed endothelium via the pro-
inflammatory cytokines, IL-1, tumor necrosis factor (TNF-α),

and interferon (IFN-γ) (Lee et al., 2013).

As lipid-laden macrophages or “foam cells” are the defining
feature of early atherosclerosis, laboratories focusing on this dis-

ease process have also studied the molecules that direct monocyte

migration from the peripheral blood to vessel walls. Accordingly,
Saederup et al. created CX3CL1−/−CCR2−/−ApoE−/− mice, and

demonstrated independent roles for CCR2 and CX3CL1 in the

accumulation of macrophages in the artery walls of mice deficient
in apolipoprotein E (ApoE) (Saederup et al., 2008). CCR2 and

CX3CR1 are located too close together on murine chromosome 9

for the generation of mice deficient in both receptors. Deletion
of both CX3CL1 and CCR2 resulted in dramatically reduced

macrophage accumulation in artery walls compared to deletion

of only one of those genes, suggesting that these molecules work
additively, and that they recruit different monocyte subsets from

the circulating Ly6Chi population in atherogenesis (Saederup
et al., 2008; Lee et al., 2013).

MACROPHAGES

Analogous to the T helper cell Th1/Th2 classification,

macrophages can be broadly divided into a classically acti-
vated M1 phenotype or alternatively activated M2 macrophages

(Hao et al., 2012). M1 pro-inflammatory macrophages are

activated by IFN-γ, TNF-α, and engagement of Toll-like recep-
tors (TLRs) by microbial stimuli such as lipopolysaccharide

(LPS), and release inflammatory cytokines and reactive oxygen

and nitrogen intermediates. These macrophages are typically
IL-12high, IL-23high, and IL-10low, promote Th1 responses,

are tumoricidal, and can elicit tissue destruction (Mantovani
and Sica, 2010; Baay et al., 2011). M2 anti-inflammatory

macrophages, on the other hand, are directly induced by inter-

leukin (IL)-4 and IL-13 and indirectly by IL-5, IL-10, IL-21,
IL-25, and IL-33 (Liu and Yang, 2013). The chemokines, CCL2,

CCL17/thymus and activation-regulated chemokine/TARC, and

CCL22/macrophage-derived chemokine/MDC have also been
shown to promote M2 polarization of macrophages (Mantovani

and Sica, 2010). These cells are usually IL-12low, IL-23low, and

IL-10high, and are involved in immunosuppression, tissue repair
(including angiogenesis), and tumor promotion (Mantovani and

Sica, 2010; Baay et al., 2011).

M1 and M2 macrophages also express different chemokines;
M1 cells produce pro-inflammatory CXCL5/epithelial

cell-derived neutrophil-activating factor-78/ENA-78,

CXCL9/monokine induced by IFN-γ/MIG, and CXCL10/
IFN-γ-inducible protein-10/IP-10, while M2 macrophages make

CCL17, CCL22, and CCL24/eotaxin-2 (Figure 1) (Mantovani

et al., 2004; Traves et al., 2012). Further classification of alterna-
tively activated macrophages into M2a, M2b, and M2c has also

been suggested (Gordon and Martinez, 2010). Typically, tumor

associated macrophages (TAMs) are M2 macrophages and play
important roles in angiogenesis, metastasis, and the generation of

immunosuppressive regulatory T cells (Tregs) (Mantovani et al.,

2009).

TUMOR-ASSOCIATED MACROPHAGES (TAMs)

The induction of angiogenesis is considered to be a “hallmark” of

cancer, a distinctive capability that is necessary for tumor growth
and dissemination (Hanahan and Weinberg, 2011). While angio-

genesis was once thought occur after tumor cells acquired an

invasive phenotype, it is now appreciated that this event occurs
early in tumorigenesis during pre-malignant lesions of the breast,

prostate, gastrointestinal tract, cervix, uterus, lung, and squa-

mous cell carcinoma of the head and neck (Raica et al., 2009).
Furthermore, it has been shown that TAMs play a key role in the

induction of angiogenesis, and their infiltration precedes vascu-

lar remodeling in the PyMT (mammary epithelial cell restricted
expression of the polyoma middle T oncoprotein) mouse model

of breast cancer (Lin et al., 2006). Depletion of macrophages

in this tumor model using mice carrying the homozygous null
allele (Csf1op) for the monocyte growth factor, colony stimulating

factor (CSF)-1, caused a 50% reduction in vascular density and

resulted in delayed tumor progression and metastasis (Lin et al.,
2006; Murdoch et al., 2008).

Tumor-promoting inflammation is considered to be the sev-

enth “hallmark” of cancer (Hanahan and Weinberg, 2011).
The microenvironment of solid tumors comprises many other

non-malignant cell types, including the cells of blood and

lymphatic vessels, fibroblasts, adipocytes, and leukocytes such
as macrophages, dendritic cells, lymphocytes, neutrophils,

eosinophils, mast cells, and myeloid-derived immune suppressor

cells (MDSCs), which are characterized by co-expression of the
macrophage surface marker, CDllb, and the neutrophil surface

marker, Gr1. TAMs are the most prominent component of the

leukocyte infiltrate within tumors, and one meta-analysis found
that intratumoral macrophage density correlated with a poor

patient prognosis in over 80% of studies (Bingle et al., 2002; Halin
et al., 2009). Macrophages are a heterogeneous population of

leukocytes that play many important roles in immune regulation,

angiogenesis, tumor progression, and metastasis. Accumulating
data suggest that peripheral blood monocytes extravasate into

tumors and differentiate into tissue macrophages, accumulating

in distinct tumor microenvironments depending on chemokine
expression pattern (Murdoch et al., 2008; Lee et al., 2013). This

accumulation of macrophages occurs within hypoxic areas of
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FIGURE 1 | M1 and M2 macrophages and their differential chemokine

secretion in the tumor microenvironment. Tumor and tumor-associated

stromal cells secrete chemokines and cytokines to recruit monocytes to the

site of the tumor. These peripheral monocytes differentially develop into

polarized tissue macrophages (M1 vs. M2), which have distinct chemokine

secretion patterns and functions within the tumor.

the neoplasm that contain necrotic tissue and is mediated pri-

marily by the CC chemokine, CCL2/monocyte chemoattractant

protein-1/MCP-1 (Murdoch et al., 2008). CSF-1, VEGF, placen-
tal growth factor (PGF), CXCL12, CXCL8, and MMP-9 have also

been reported to be involved in the mobilization and recruit-

ment of hematopoietic cells from the bone marrow to the sites
of tumors (De Palma et al., 2007).

CC CHEMOKINES

CC chemokines are chemotactic for monocytes, dendritic
cells (DCs), eosinophils, basophils, lymphocytes, and NK cells

(Zlotnik and Yoshie, 2012). Multiple studies have demonstrated

a correlation between the levels of the inflammatory chemokines,
CCL2 and CCL5, and the number of myeloid cells within tumors

(Soria and Ben-Baruch, 2008; Allavena et al., 2011). The primary
monocyte-recruiting chemokine, CCL2, regulates the trafficking

of monocytes, macrophages, and other inflammatory cells by

binding to its receptor, CCR2 (Zhang et al., 2010). CCL2 expres-
sion has been demonstrated in many types of cancer including,

multiple myeloma, melanoma, esophageal, gastric, colorectal,

lung, breast, ovary, and prostate cancer (Craig and Loberg, 2006;
Zhang et al., 2010). CCL2 indirectly contributes to angiogene-

sis by attracting TAMS, which secrete pro-angiogenic cytokines

such as VEGF, platelet-derived growth factor (PDGF), trans-

forming growth factor (TGF)-β, and CXCL8/IL-8, and the pro-

teolytic enzymes, MMP-2 and MMP-9 (Mantovani et al., 2010).
CCL2 can also directly induce angiogenesis in endothelial cells,

which express its receptor, CCR2 (Salcedo et al., 2000), and

induce VEGF and hypoxic-inducible factor (HIF)-1 in tumor cells
(Zhang et al., 2010).

Other tumor-derived chemotactic factors secreted by both

malignant and stromal cells that attract peripheral mono-
cytes to the site of tumors include CCL3/macrophage inflam-

matory protein-1α/MIP-1α, CCL4/macrophage inflammatory

protein-1β/MIP-1β, CCL5/regulated on activation normal T cell
expressed and secreted/RANTES, CCL7/MCP-3, CCL8/MCP-2,

CXCL12, and the cytokines, macrophage colony stimulating fac-

tor (M-CSF), PGF, and VEGF (Figure 1) (Lewis and Pollard,
2006; Murdoch et al., 2008; Mukaida and Baba, 2012). After

macrophages have successfully migrated into the hypoxic region

of the tumor, their movements become restricted by decreased
expression of CCR2 and CCR5 via hypoxia-mediated down-

regulation of these receptors (Sica et al., 2000; Bosco et al., 2004;

Lee et al., 2013). The authors’ of these studies speculated that
this may be a mechanism to retain recruited macrophages at

hypoxic sites; and together with the observation that hypoxia
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mediates up-regulation of CXCR4 within macrophages and
tumor cells (Schioppa et al., 2003), is suggestive of plasticity

in chemokine receptor expression within hypoxic tissues (Bosco

et al., 2004).
Interestingly, investigators have revealed another connection

in the angiogenesis nexus involving macrophages and CCL2. The

transcription factor, Twist 1, has previously been shown to play
multiple roles in tumor initiation and progression, including

induction of the epithelial mesenchymal transition (EMT) and

degradation of the extracellular matrix (Yang et al., 2004), with
increased expression having a positive correlation with metastasis

and poor survival in several aggressive human tumors, including

breast and colorectal cancer (Gomez et al., 2011). Via, in part, to
repression of E-cadherin transcription, the epithelial mesenchy-

mal transition permits carcinoma cells to migrate away from

the site of the primary tumor through the lymphatics and/or
peripheral blood to form metastatic tumor foci (Qin et al., 2012).

Low-Marchelli et al. recently demonstrated an additional and

novel tumor-promoting role for this transcription factor in the
induction of CCL2 production by human and murine mam-

mary tumor cells, which serves to recruit infiltrating CCR2+

macrophages and to induce angiogenesis (Low-Marchelli et al.,
2013). These authors suggested that induction of CCL2 by Twist

1 in tumor cells recruits TAMs that then promote extravasation

and metastatic seeding in other organs by virtue of the pro-
duction of MMPs, which can degrade the extracellular matrix,

release matrix-bound growth factors, and allow endothelial cells

to invade the tumor during angiogenesis (Low-Marchelli et al.,
2013).

A “CHEMOKINE-LIKE” FACTOR

A cytokine that is not a true chemokine but is considered to
be “chemokine-like” is macrophage migration inhibitory factor

(MIF), which a non-cognate ligand for both CXCR2 and CXCR4.

The name of this cytokine may not be completely accurate, as

studies have shown a role for MIF in the recruitment of mono-
cytes in the pathogeneses of arthritis and glomerulonephritis

(Bernhagen et al., 2007). Furthermore, it has been demonstrated

that MIF is a critical molecule in vascular processes, and its
expression is up-regulated in endothelial cells, smooth muscle

cells, and macrophages during the development of atherosclerotic

lesions in mice and humans (Bernhagen et al., 2007). Recently,
investigators have also found that hypoxia-induced MIF recruits

endothelial progenitor cells (EPCs) in a CXCR4+dependent man-

ner, suggesting a possible role for MIF in angiogenesis (Simons
et al., 2011).

CONCLUDING REMARKS

Chemokines affect multiple signaling pathways of inflamma-

tory diseases and tumor initiation and development including,
cellular proliferation, survival and apoptosis, leukocyte recruit-

ment, cellular migration/metastasis, and of course, angiogenesis.

The newly appreciated complexity of the crosstalk between the
chemokines, CXCL11 and CXCL12, and their receptors CXCR3,

CXCR4, and CXCR7, illustrate the importance of additional

studies in order to better understand the opposing and syner-
gistic effects of pleiotropic chemokines and their promiscuous

chemokine receptors. Like chemokines, macrophages also play

multiple roles in inflammatory diseases and tumor progression.
Thus, identifying the mechanisms by which macrophages are

recruited to sites of inflammation or tumor, and exactly how

these leukocytes influence angiogenesis may lead to better tar-
geted therapeutic applications in patients with cancer and other

inflammatory diseases involving vascular pathology.
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