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abstract: Widespread recognition of the importance of biological

studies at large spatial and temporal scales, particularly in the face

of many of the most pressing issues facing humanity, has fueled the

argument that there is a need to reinvigorate such studies in phys-

iological ecology through the establishment of a macrophysiology.

Following a period when the fields of ecology and physiological ecol-

ogy had been regarded as largely synonymous, studies of this kind

were relatively commonplace in the first half of the twentieth century.

However, such large-scale work subsequently became rather scarce

as physiological studies concentrated on the biochemical and mo-

lecular mechanisms underlying the capacities and tolerances of spe-

cies. In some sense, macrophysiology is thus an attempt at a con-

ceptual reunification. In this article, we provide a conceptual

framework for the continued development of macrophysiology. We

subdivide this framework into three major components: the estab-

lishment of macrophysiological patterns, determining the form of

those patterns (the very general ways in which they are shaped), and

understanding the mechanisms that give rise to them. We suggest

ways in which each of these components could be developed usefully.

Keywords: biogeography, evolution, geographic range, macroecology,

patterns, physiology.
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Introduction

The fundamental importance of documenting and un-

derstanding biological patterns at large spatial and tem-

poral scales has come increasingly to the fore in recent

decades (Hengeveld 1990; Brown 1995; Maurer 1999; Gas-

ton and Blackburn 2000; Gaston 2003). The principal driv-

ers have arguably been threefold. First, there has been

recognition that many local biological, and particularly

ecological, phenomena can best be interpreted within a

broader regional/global or a longer temporal (including

phylogenetic) context (Colwell and Winkler 1984; Ricklefs

1987; Brown and Maurer 1989; Cornell and Lawton 1992;

Ricklefs and Schluter 1993; Gaston and Blackburn 2000;

Webb et al. 2002). Second, it has become clear that many

of the most pressing issues facing humanity are operating

on large spatial and temporal scales (e.g., climate change,

food security, maintenance of ecosystem services, emer-

gence of new diseases; Rosenzweig and Parry 1994; Barnett

et al. 2001; MEA 2005; Wolfe et al. 2007). Third, the avail-

ability and analysis of data at large spatial and temporal

scales has greatly improved, particularly through growth

in the number of local studies and monitoring schemes

and better technologies (e.g., satellites), databases, com-
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puting power, and statistical tools (Gaston 2003; Kerr and

Ostrovsky 2003; Jones et al. 2006; Diniz-Filho et al. 2007;

Kozak et al. 2008). This has enabled studies to be con-

ducted in ways that previously were impossible.

Recognition of the importance of studies at large spatial

and temporal scales has led to the development of partic-

ular bodies of biological research focused on these topics

and increasingly explicitly distinguished as coherent fields

or subdisciplines of study. Most obviously these include

landscape ecology, macroecology, and macroevolution

(Stanley 1979; Forman and Godron 1986; Brown 1995;

Gaston and Blackburn 2000). Importantly, the more recent

work done in such fields has strong historical roots, often

building on studies that were conducted many decades

ago and resulting in the wider recognition that these sub-

disciplines are now stimulating new conceptual develop-

ments and avenues for research.

In this vein, it has recently been argued that there is a

need to reinvigorate large spatial- and temporal-scale stud-

ies in physiological ecology through the establishment of

a macrophysiology (Chown et al. 2004; Chown and Gaston

2008). Such studies were relatively commonplace in the

first half of the twentieth century, following a period when

the fields of ecology and physiological ecology had been

regarded as largely synonymous (e.g., Shelford 1911; Chap-

man 1931; Fox 1936, 1938, 1939; Fox and Wingfield 1937;

Moore 1939, 1942b, 1952; Scholander et al. 1953; Andre-

wartha and Birch 1954; Scholander 1955; Bartholomew

1958; for reviews, see Vernberg 1962; Garland and Adolph

1991; Huey 1991; Spicer and Gaston 1999). However, com-

pared with the subsequent flourishing of studies of the

biochemical and molecular mechanisms underlying the

capacities and tolerances of species, large-scale work re-

mained rather marginal. These developments are reflected,

for example, in explicit remarks about the absence of ecol-

ogy in physiological ecology (Kingsolver 1988), the mount-

ing domination of molecular biology in the physiological

sciences (Weibel 1997), implicit exclusion of ecology in

discussions of new directions in comparative physiology

and biochemistry (Mangum and Hochachka 1998), and a

detailed treatment of how ecology and physiology drifted

apart in the twentieth century (Huey 1991). They are also

highlighted by the trend of an increasing subdivision or

renaming of journals to deal with the focus on mechanisms

at lower levels in the biological hierarchy (e.g., the sub-

divisions of Comparative Biochemistry and Physiology, Jour-

nal of Comparative Physiology, and Journal of Experimental

Zoology and the renaming of Physiological Zoology to Phys-

iological and Biochemical Zoology). In some sense, macro-

physiology is thus an attempt at a conceptual reunification

that has often been suggested (e.g., Lawton 1991; Spicer

and Gaston 1999) and is echoed in its proposed formal

definition as “the investigation of variation in physiological

traits over large geographical and temporal scales and the

ecological implications of this variation” (Chown et al.

2004, p. 160).

Renewed interest in large-scale physiological patterns

and processes has been particularly stimulated by recog-

nition that these may provide valuable insights into causes

of physiological variation that otherwise are not obvious

at local scales (Chown and Gaston 1999; Spicer and Gaston

1999; Hoffmann et al. 2001, 2003; Osovitz and Hofmann

2007; Stillman and Tagmount 2009). Local and short-

term studies will, of course, remain important in such

an endeavor, but it seems highly likely that the most rapid

progress will be made by drawing on the strengths (and

acknowledging the weaknesses) of both small- and large-

scale, and short- and long-term, investigations. The need

for a macrophysiology has also been fueled by the great

attention that has been paid to macroecological patterns

and processes recently (Brown 1995; Gaston and Black-

burn 2000; Blackburn and Gaston 2003) and the physi-

ological assumptions that lie behind many of the expla-

nations that have been proposed for them (Stevens 1989;

Gaston et al. 1998; Chown and Gaston 1999; Spicer and

Gaston 1999; Clarke and Gaston 2006; Ghalambor et al.

2006; Millien et al. 2006; Kearney and Porter 2009). More-

over, it is increasingly appreciated that prediction of the

outcomes of interactions between the major drivers of

environmental change will require understanding across a

wide range of hierarchical levels (Spicer and Gaston 1999;

Pörtner 2002; Ricklefs and Wikelski 2002; Wikelski and

Cooke 2006; Chown et al. 2007; Brook 2008; Brook et al.

2008; Cooke and Suski 2008). In general, technological

developments have doubtless played a smaller role in stim-

ulating renewed interest in large-scale physiological pat-

terns and processes, although they have been particularly

significant in enabling the measurement and investigation

of plant physiology, and the consequences of variation

therein, over large spatial and temporal scales (e.g., Grace

et al. 1995; Running et al. 2000; Buchmann et al. 2002;

Baldocchi 2003; Santos et al. 2003; Jones 2004; Wright et

al. 2005; Piao et al. 2007; Reich et al. 2007).

In this article, we provide a conceptual framework for

the continued development of macrophysiology. We sub-

divide this framework into three major components: (a) the

establishment of macrophysiological patterns, (b) deter-

mining the form of those patterns (the very general ways

in which they are shaped), and (c) understanding the

mechanisms that give rise to them. Although these three

components are conceptually helpful, they are clearly in-

terrelated in most investigations (Wiegert 1988; Wilson

1988).
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Patterns

MacArthur (1972, p. 1) observed that “to do science is to

search for repeated patterns, not simply to accumulate

facts” (see also Feder 1987). Both spatially and temporally,

three main kinds of macrophysiological patterns may be

observed: intraspecific, interspecific, and assemblage (Gas-

ton et al. 2008). These are perhaps most easily construed

in terms of a simple species by sites (or, for temporal

variation, by times) matrix ( ), in which species arer # c

given in rows (r) and sites/areas or times/periods are in

columns (c). Typically the cells of such a matrix would

contain the presences/absences of species or their respec-

tive abundances at a series of sites or times (e.g., Simberloff

and Connor 1979; Gaston 2002; Bell 2003). However, they

can equally contain the values of physiological traits or

other features (and be subject to matrix algebra in the

same way). When we consider spatial patterns, the sites

can most usefully be sequenced in terms of the gradient

of interest (positional or environmental), and when we

consider temporal patterns, they can be thought of as se-

quenced in some temporal order, although in practice we

are often interested in the relative position of sites along

a continuum of those gradients (and also in the maps that

can be generated by projecting the contents of the r # c

matrix into geographical space).

Intraspecific, Interspecific, and Assemblage Patterns

Intraspecific patterns concern variation in traits along the

rows of the matrix. That is, spatial or temporal variation

in the physiology of individual organisms or populations

with positional (e.g., latitude, longitude, altitude, depth)

or temporal variables or environmental variables charac-

terizing those locations or times (e.g., temperature, pre-

cipitation, salinity, solar radiation, productivity). Environ-

mental variables, in particular, attract much attention as

potential drivers of patterns of spatial or temporal vari-

ation in physiological traits. Intraspecific patterns might

also concern the frequency distributions of such trait var-

iation and how these change through space and time. In

this case, temporal variation tends to be investigated (e.g.,

invertebrate supercooling points; Cannon and Block 1988;

Sinclair et al. 2003), although a few studies have also made

comparisons of spatial variation in the form of these dis-

tributions (Block 1982; Grant and Dunham 1990; Worland

et al. 2006). More typically, spatial or temporal variation

among population means and extremes tend to be studied

(Garland and Adolph 1991). Those that have been doc-

umented include patterns of variation in temperature tol-

erance (Blem 1974; Smith and Ballinger 1994; Lemos-

Espinal and Ballinger 1995; Hoffmann et al. 2001; Klok

and Chown 2003; Bernardo and Spotila 2006; Pörtner et

al. 2008; Sepulveda et al. 2008; Stillman and Tagmount

2009), desiccation resistance (Arad et al. 1992, 1993), water

use efficiency (Hultine and Marshall 2000; Maron et al.

2007), metabolic rate (Kendeigh 1976; Clarke and John-

ston 1999; Wikelski et al. 2003; Bernardo and Spotila 2006;

Lardies and Bozinovic 2006), development time (Weber

and Schmid 1998; Burke et al. 2005; Mitchell et al. 2008),

various performance traits such as growth rate and run-

ning or swimming speed (Huey et al. 1990; Sinervo and

Losos 1991; Bernardo 1994; Miles 1994; Jonsson et al.

2001; Bernardo and Reagan-Wallin 2002; Arnott et al.

2006), gene transcription and translation (Fangue et al.

2006; Whitehead and Crawford 2006; Cheviron et al. 2008;

Karl et al. 2008; Stillman and Tagmount 2009), enzyme

isoforms (Pierce and Crawford 1996; Rank et al. 2007),

and membrane properties (Pernet et al. 2008). Impor-

tantly, it should be recognized that patterns at one level

(e.g., hydrocarbon properties) may be construed as mech-

anisms at another (e.g., the mechanistic basis of reduced

water loss; see Gibbs 2002). However, such pattern/mech-

anism relationships among hierarchical levels, within or-

ganisms, do not alter the fundamental intraspecific form

of the variation. Indeed, they may be vital for understand-

ing the evolution of geographic variation among popu-

lations (e.g., Powers 1987; Pörtner 2002; Rank et al. 2007;

Saastamoinen et al. 2009). Thus, intraspecific variation also

provides a powerful framework for studying adaptive evo-

lution, as the variation among individuals/genotypes in

physiological traits within a population represents the var-

iation available for selection to act on, while the variation

between populations reflects the competing pressures of

divergent selection, gene flow, and drift (see Kawecki and

Ebert 2004).

Interspecific patterns principally concern relationships

between the traits of different species occurring in different

places and the positional or environmental characteristics

of the sites or times at which they occur, although they

may also concern the frequency distributions of those traits

(note that intraspecific and interspecific patterns may be

mixed by including separate data points for multiple in-

dividuals or populations of multiple species, but this can

serve to confound and confuse fundamentally different,

albeit often closely related, issues). Most frequently, the

traits are expressed at the level of the individual organism

and thus concern many of those embodied in intraspecific

patterns, with the values typically being derived as means

or medians across multiple individuals (e.g., desiccation

resistance, immune function, metabolic rate, sprint speed,

thermal tolerance, development rate, and regeneration

rate; Bosch et al. 1987; Tsuji 1988; van Berkum 1988; Som-

mer et al. 1997; Andrews 1998; Gaston and Chown 1999;

Hoffman and Harshman 1999; Addo-Bediako et al. 2000,

2001; Lovegrove 2000; Gibert and Huey 2001; Van Damme
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and Vanhooydonck 2001; Stillman 2003; Martin et al.

2004, 2005; Mommer et al. 2006; Bannister 2007; Clark

et al. 2007; Clusella-Trullas et al. 2008). A latitudinal mid-

point or mean of an abiotic variable is often used as the

independent variable against which variation in the trait

is assessed. It is important to recognize that using this

approach may obscure important intraspecific variation,

emphasizing the potential benefits of explicitly exploring

both intraspecific and interspecific patterns. Alternatively,

the characteristics being investigated may be attributes ex-

pressed only at the species level. For example, in macroeco-

logical studies, geographic range size or global population

size has been examined (Gaston and Blackburn 2000),

although to date few macrophysiological studies have in-

vestigated equivalent traits.

Assemblage patterns are those in the structure of the

assemblages occurring in different places or at different

times. They are typically derived from averaging, summing,

or otherwise characterizing the columns of an matrixr # c

and, thus, the physiological composition of each site or

time across species. The existence of assemblage patterns

is implicitly assumed in many statements about the char-

acteristic physiological traits of species inhabiting partic-

ular kinds of environments, and they are thus important

to much generalization about spatial and temporal vari-

ation in physiology. Their documentation has, nonetheless,

been surprisingly poor (but see Addo-Bediako et al. 2000).

All three sets of macrophysiological patterns—intraspe-

cific, interspecific, and assemblage—may also include re-

lationships between two or more different physiological

traits, across either sites or times. Such patterns essentially

concern levels of covariation in these traits as they indi-

vidually change with position, time, or environmental con-

ditions (e.g., tests of hypotheses of coadaptation often use

data on interspecific variation in the mean values of two

or more traits; see Huey and Bennett 1987; Angilletta et

al. 2006; Clusella-Trullas et al. 2008).

Intraspecific, interspecific, and assemblage macrophy-

siological patterns all have a phylogenetic context, reflect-

ing the evolutionary relationships between populations

and species. The use of formal comparative methodology

to account for these relationships is best developed for

interspecific patterns, in which it has long been recognized

that the failure to do so can lead to misleading interpre-

tations of results (Felsenstein 1985; Martins et al. 2002;

Carvalho et al. 2006; for examples of analyses of inter-

specific macrophysiological patterns, see Ricklefs et al.

1996; Rezende et al. 2004; White et al. 2007b; Huey et al.

2009). Although most studies have employed phylogenetic

information to control for the nonindependence of the

data due to shared ancestry, this information may also

provide important clues as to processes underlying the

emergence of macrophysiological patterns such as esti-

mations of evolutionary rates and models of character evo-

lution, patterns of dispersion and vicariance of the taxa

involved, and reconstruction of ancestral states (for intro-

ductory texts, see Pagel 1999; Garland et al. 2005). Evo-

lutionary relationships among populations are only now

starting to be employed in the analysis of intraspecific

macrophysiological patterns (e.g., Terblanche et al. 2009).

The absence thereof may be a particular concern for stud-

ies examining numbers of populations over large geo-

graphic extents, but appropriate phylogeographic data are

often not available. Comparative methods may also be

suitable for the study of assemblage patterns, in which

nonindependencies between data points result both from

particular species being directly shared between assem-

blages and from different but related species being shared

(software such as Phylocom can estimate different metrics

of interassemblage phylogenetic dissimilarity; Webb et al.

2008). However, we are not aware of their application as

yet in the context of macrophysiological assemblage pat-

terns.

Laws, Rules, Effects, and General Tendencies

Views differ markedly as to how frequently biological pat-

terns have to be documented, and how seldom exceptions

have to be found, for them to be regarded as generalities

and how firm such generalities have to be before they are

more formally termed effects, rules, or even laws (Mayr

1956; Gaston et al. 1998, 2008; Lawton 1999; Lomolino et

al. 2006a, 2006b). Regardless, there are a large number of

macrophysiological patterns that have been documented

frequently, or otherwise seem likely to have a high degree

of generality (table 1). While none of these have formally

been termed macrophysiological rules or laws, they seem

arguably to be as general as many patterns in other bio-

logical fields that have gained such epithets.

The majority of these generalities concern aspects of

thermal biology at the intraspecific or interspecific levels

(table 1); general patterns at the assemblage level appear

to be very scarce. Most have deep historical roots, although

they have often been much better documented and are

more fully understood in recent work (other generalities

with similarly deep roots clearly are closely related but are

not treated here as strictly macrophysiological, e.g., Allen’s

rule, Bergmann’s rule, Rensch’s rules; Lincoln et al. 1982).

However, other macrophysiological patterns that seem

likely to stand the test of time at this point have only been

revealed much more recently (e.g., Lovegrove 2000; Still-

man 2003; Deutsch et al. 2008; Helliker and Richter 2008;

Wittmann et al. 2008). This raises the possibility that more

such patterns have yet to be discovered.

For each generality, we have attempted to identify the

individual researcher with whom it has most closely been
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associated (table 1). In the past there would have been a

general acceptance that the effect, rule, or law became

known by the researcher’s name. Although such labeling

has fallen heavily out of favor, there may be something to

be said for reestablishing it, inasmuch as it often makes

for a brief and distinct terminology. We note, however,

that such labeling risks simplification and overlooking key

early work leading to the development of any particular

rule. Nonetheless, it may, for example, stimulate investi-

gation to determine the generality (or lack thereof) of key

physiological assumptions often made in macroecological

investigations (the physiological aspects of the environ-

mental variability hypothesis underlying the Rapoport ef-

fect offer an important example; see Stevens 1989; Addo-

Bediako et al. 2000). In table 1, one of the named general

patterns that is especially contentious is Krogh’s “rule,”

and the contention serves to highlight the need to explore

the idea more carefully. Krogh’s rule, as expressed here,

differs from Krogh’s normal curve, which is the positive,

intraspecific relationship between metabolic rate and mea-

surement temperature so widely found in ectotherms.

Rather, we refer here to among-population and among-

species variation in mean metabolic rates. Sometimes also

known as metabolic cold adaptation, it appears increas-

ingly that many marine species do not show this pattern

and that this may also vary depending on the evolutionary

age of a given group in an area (i.e., responses vary among

younger vs. older polar species [see, e.g., Clarke 1993,

2003] and may also relate to climate and temperature var-

iability [Pörtner 2006]). Accordingly, the pattern seems to

be quite general in terrestrial insects (Addo-Bediako et al.

2000) and in subarctic marine species (e.g., Pörtner et al.

2008). A similar phenomenon is also found in plants, in

which annual nighttime CO2 flux is unrelated to average

annual nighttime temperature across a variety of North

American and European sites (assemblage level) and mass-

corrected tree growth is not influenced by ambient grow-

ing-season temperature (Enquist et al. 2007).

A clear preliminary goal of macrophysiology is the pro-

duction of a catalog of macrophysiological patterns. This

will require both the inevitably somewhat haphazard ac-

cumulation of a much larger body of published studies

testing the occurrence of particular patterns for given spe-

cies, taxa, and assemblages and also a more carefully tar-

geted approach to determine the full breadth of species

for, and circumstances under, which particular patterns do

or do not emerge.

Unification

Given that all are drawn from the same matrix andr # c

fundamentally depend on the same biological determi-

nants (and hierarchies), intraspecific, interspecific, and as-

semblage patterns cannot be entirely independent. Con-

ventional unifying principles in physiology would be those

of energy, water, mass, and nutrient balance, and one can

doubtless think of macrophysiological patterns in such

terms. However, in the context of macrophysiology and

its explicit links with ecology and evolution, a more ap-

propriate unification, at least of observed spatial patterns,

may be through the geographic ranges of species. Intraspe-

cific patterns describe the structure of the geographic

ranges of species, and the mechanisms underpinning those

patterns are what structure ranges (Gaston 2003). Inter-

specific patterns are derived from the structure of the geo-

graphic ranges of individual species and variation in the

location of the geographic ranges of species exhibiting dif-

ferences in a particular trait. Finally, assemblage patterns

are derived from the structure of the geographic ranges of

individual species, variation in the location of the geo-

graphic ranges of different species, and also the number

of ranges (the range overlaps) in an area (all of which may

be influenced by species’ interactions).

A unification of macrophysiological patterns around the

structure of geographic ranges serves readily to link them,

logically and to some extent mechanistically, to many other

ecogeographic and ecotemporal patterns (Gaston et al.

2008). Not only can many of these latter patterns best be

thought of in terms of the structure of geographic ranges,

but range size plainly plays an important role in speciation

processes and thus in the development of the phylogenetic

dependencies of species traits (Gaston 2003). A focus on

geographic ranges as a core unit of macrophysiology would

also fit well with a more general increase in the attention

that they are receiving (e.g., Brown et al. 1996; Gaston

2003, 2009; Holt et al. 2005; Eckert et al. 2008). This is

particularly being driven by the demand for predictions

of the likely responses of species’ distributions to anthro-

pogenic climate change (see Kearney and Porter 2009),

and the resultant needs to understand the patterns of niche

conservatism (the retention of ancestral ecological char-

acteristics; Wiens and Graham 2005). Both are obviously

highly relevant to macrophysiology.

One variable that appears frequently in discourses about

large-scale physiological patterns but does not fit well

within the above framework of intraspecific, interspecific,

and assemblage patterns in physiological traits is that of

body size. A similar argument can be made with regard

to large-scale intraspecific, interspecific, and assemblage

patterns in ecological traits, which principally concern var-

iation in species occurrences and abundances (Gaston and

Blackburn 2000). Indeed, body size might perhaps best be

viewed as providing an important link between macroeco-

logical and macrophysiological patterns, which sits well

with the metabolic theory of ecology (Brown et al. 2004)

and the focus on allometric and other scaling relationships.
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A key question then becomes the extent to which body

size is treated as a given, from which other trait states

follow (e.g., Brown et al. 2004; White et al. 2007c), or as

a response to other trait states (e.g., Roff 1981; Bernardo

1994; Bernardo and Reagan-Wallin 2002; Etilé and Des-

pland 2008) or whether it follows from a complex interplay

between these two extremes (Chown and Gaston 1999;

Kozłowski et al. 2004; Cabanita and Atkinson 2006; Ber-

nardo et al. 2007; Kaiser et al. 2007). It is useful to consider

each of these viewpoints, depending on the objectives of

a macrophysiological study. Sometimes it is most helpful

to view body size as an important determinant of physi-

ological tolerances and capacities, sometimes as being in-

fluenced by these tolerances and capacities, and sometimes

as a combination of both.

In a related vein, and secondarily, body shape may also

play a significant role in linking macroecological and ma-

crophysiological patterns. Although it is often overlooked

in both contexts, in combination with body size, shape

affects surface-to-volume ratios and thereby influences

metabolic rate, desiccation, food and water requirements,

sheltering behavior, locomotion, and spatial distributions

(Gates 1980). Body size and shape are also constrained by

the physical environments available to a species (e.g., fos-

sorial or arboreal habitats). Morphological properties af-

fect developmental times, potential growth rate, time to

sexual maturity, movement distances, resource require-

ments, parts of the environment that an organism can use,

and many other physiological and ecological aspects of

species and their geographic ranges (see, e.g., Lovegrove

2001). The interactions and interconnections of morpho-

logical, physiological, and behavioral properties constrain

the set of properties feasible for any given environment.

Form of Patterns

There is a perhaps inevitable predisposition on the part

of investigators of large-scale physiological patterns to step

directly from the observed patterns to considerations of

how these are shaped and what they tell us about the

typical ecophysiological mechanistic currencies of energy,

water, mass, and nutrient balance (Prosser 1986; Ho-

chachka and Somero 2002; McNab 2002; Chown and Nic-

olson 2004). However, particularly given the potential ap-

plied significance of some of these patterns, it also may

be well worth dwelling on what can perhaps be regarded

as an intermediate step, examining how these patterns are

formed in much more general terms.

One potentially useful way of doing this (building on

the work of Kunin 1997; Gaston 2006; Gaston et al. 2008;

see also Darlington 1943) is to think of macrophysiological

patterns in terms of three sets of processes: entry rules,

exit rules, and transformations. Entry rules are biases in

the processes that determine which individuals or species

join a population or assemblage through immigration or

speciation; exit rules are biases in the processes that de-

termine which individuals or species leave a population

or assemblage through emigration or extinction; and

transformations are changes caused by environmentally

induced or genetically based processes, such as shifts in

resource profiles, behavior, or tolerance, that act on in-

dividuals or species when they are members of a particular

population or assemblage at a given spatial location at a

particular time. For example, the extent to which phe-

notypic plasticity in physiological or behavioral traits can

promote or retard adaptation (Lee et al. 2003; Dybdahl

and Kane 2005; Ghalambor et al. 2007) is an especially

relevant, although underexplored, component of the ways

in which transformation may lead to macrophysiological

patterns and their subsequent consequences for ecological

and evolutionary variation.

All macrophysiological patterns are effectively shaped

by one or more entry rules, exit rules, or transformations.

For example, consider a simple interspecific gradient of

decreasing critical thermal minimum temperatures (CTmin,

the temperature that defines the lower limit of normal

physiological, behavioral, and ecological function) from

low to high latitudes (Snyder and Weathers 1975; van

Berkum 1988; Addo-Bediako et al. 2000; Deutsch et al.

2008). First, it could be generated because species with

lower CTmin invaded areas at higher latitudes or speciation

in those areas gave rise to organisms with lower CTmin

(entry rules). Second, it could arise because species that

did not have lower CTmin at higher latitudes emigrated or

became extinct in those areas (exit rules). Finally, the gra-

dient could arise because variation in selection with lati-

tude resulted in those species that were present acquiring

systematically different CTmin either through acclimatiza-

tion or adaptive evolution (transformations).

Plainly, human activities have influenced all three of

these sets of rules. Chown and Gaston (2008) highlighted

how a macrophysiological approach can help elucidate the

impacts of the major drivers of biodiversity loss and

sources of concern for human well-being (climate change,

habitat destruction, invasive species, overexploitation, and

pollution). Taking each of these drivers in turn, it can be

argued that the effects of habitat destruction on macro-

physiological patterns are so profound because they result

in large influences on entry and exit rules and transfor-

mations (e.g., Brooks et al. 2002; Brook et al. 2003; An-

gilletta et al. 2007; Cheptou et al. 2008). The effects of

climate change are more spatially variable, particularly on

entry and exit rules, although they have a widespread in-

fluence on transformations (e.g., Umina et al. 2005; Huey

and Tewksbury 2009; Huey et al. 2009). Conversely, in-

troductions tend to have a spatially variable effect on trans-
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formations but a generally large effect on entry rules (in

large part the introductions themselves) and a smaller ef-

fect on species-level exit rules (with extinctions driven by

introductions being relatively low, at least regionally; e.g.,

Sax and Gaines 2003; Chown et al. 2007; Gilchrist and Lee

2007). Finally, both overexploitation and pollution, unless

particularly severe, tend to act disproportionately through

their effects on transformations (e.g., Coltman et al. 2003;

Darimont et al. 2009).

Mechanisms

Investigators of large-scale variation in physiological traits

typically seek mechanisms for this variation at lower levels

in the biological hierarchy. This tradition has led to con-

siderable success in understanding the underlying basis of

the response of organisms to their environments and, for

many, remains the raison d’être of comparative physiology.

Today, exhortations are not uncommon for physiologists

to pursue such investigations to the level of transcription

products and the genes underlying them. For example,

Dow (2007, p. 1632) recently argued for the “redefinition

of integrative physiology as the investigation of gene func-

tion in an organotypic context.” Little doubt exists that

such work is essential and has a major role to play in

improving understanding of the mechanistic basis of phys-

iological variation (Storey 2006; Feder 2007a). Nonethe-

less, evolutionary physiologists have argued that its value

can be broadened considerably when considered in light

of the evolutionary origins of such variation and the con-

ditions that are required to maintain it (Garland and Car-

ter 1994; Feder et al. 2000). In much the same way, the

currency of mechanistic physiology can be much broad-

ened by extending its exceptional insights to macro-

physiological questions. Several means of so doing can be

identified, of which the following strike us as particularly

significant.

First, broadening of the evolutionary array of organisms

to which these tools are applied would go a considerable

way to assist with understanding the basis of the physi-

ological diversity that plays out at large spatial and tem-

poral scales. While model organisms by necessity must

form the foundation of much of the initial work at the

cellular and genomic levels, determining the extent to

which the lessons learned from them are more general is

essential for considering the basis of broadscale physio-

logical variation (Feder 2007b; Pertoldi and Bach 2007).

This is particularly true because model organisms tend to

be of intermediate size (for convenience of handling), eu-

rytopic (so they survive experimental manipulation), and

relatively common (for reasons of ease of acquisition and

sometimes ethics). More attention should be given to in-

clude in studies rarer, non-laboratory-tolerant species and

also “less charismatic” clades, which have not been his-

torically favored. This will increase the likelihood of a

thorough understanding of extant (and, through the use

of phylogenetic tools, extinct) biodiversity. Previously such

suggestions were much more easily made than actually

taken up, but the challenges of adopting genomics-based

approaches for nonmodel organisms are constantly less-

ening as technological advances occur in gene-expression

profiling and cost reduction in DNA sequencing. In many

cases, genomic resources generated for one organism may

be applied to studies of related species (e.g., heterologous

microarray hybridization; Buckley 2007). Those investi-

gating physiological variation have an important role to

play in drawing the attention of more mechanistically

minded physiologists to the diversity they seek to under-

stand (Chown and Storey 2006).

Second, in addition to broadening the array of organ-

isms, broadening the array of traits studied would be val-

uable. The choice of the physiological traits traditionally

studied, in part, reflects a historical legacy of the devel-

opment of the field and mainly comprises those that are

easy to measure. With the advent of molecular techniques

(particularly molecular genetics), it is now possible to an-

alyze the variation in many other traits likely to constitute

and drive large-scale patterns, such as variation in cad-

mium susceptibility (Buchwalter et al. 2008), major his-

tocompatibility gene complexes (Summers et al. 2003), or

immune defenses, which might, for example, help explain

why only some introduced populations become invasive

(Lee and Klasing 2004).

Third, just as physiological mechanisms underlying sig-

nificant macroecological patterns can themselves be con-

sidered patterns (e.g., variation in thermal limits thought

to underpin variation in geographic range size; Stevens

1989; Gaston and Chown 1999; Cruz et al. 2005; Bernardo

et al. 2007; Calosi et al. 2008a, 2008b; Naya et al. 2008),

so too might gene-expression characteristics be considered

broadscale patterns that can explain macrophysiological

variation. Genome-scale expression fingerprints of organ-

isms allow a higher-resolution assessment of physiological

states than an emergent property, such as thermal limits,

and yield data that inform how organisms may be parti-

tioning energy and thus provide necessary details for ad-

dressing questions of ecological energetics (Teranishi and

Stillman 2007; Cheviron et al. 2008; De Salvo et al. 2008;

Place et al. 2008; St. Cyr et al. 2008; Stillman and Tagmount

2009). Moreover, much stands to be gained from inves-

tigating not only which genes might be underlying par-

ticular responses but also how evolutionary potential (e.g.,

copy number, promoter complexity) of candidate genes

might underpin variable expression (e.g., Lucassen et al.

2006) and thereby constrain physiological change in the

face of either natural or anthropogenic environmental var-
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iation. It is also important to recognize that the environ-

ment has an important role to play in genetic expression

through methylation of DNA, which alters gene and pro-

tein expression during the lifetime of an organism and

sometimes for multiple generations (i.e., epigenetic in-

heritance; Anway et al. 2005). There is increasing evidence

that methylation “software” controls genetic “hardware.”

Thus, the interaction between environments and the or-

ganisms that exist in them can lead to variable phenotypes

across the landscape, even though the underlying geno-

types may be very similar or even identical. Yet, how such

variation in gene expression contributes to adaptive evo-

lution remains largely speculative.

Fourth, and perhaps most readily achievable for many

macrophysiologists, further focus needs to be given to the

relationship between physiological mechanisms and de-

mographic parameters. At the population level, the only

way in which physiological variation can have ecological

implications is through its effect on birth, death, immi-

gration, and emigration rates. Although this causal con-

nection has long been recognized (Andrewartha and Birch

1954) and reemphasized in a variety of contexts (Huey

and Stevenson 1979; Kingsolver 1983, 1989; Bale 1987;

Dunham et al. 1989; Lawton 1991; Dunham 1993; King-

solver and Huey 1998; Porter et al. 2000), framing phys-

iological investigations in such a manner is not undertaken

to the extent it perhaps should be. In particular, efforts

need to be made to examine multiple populations (ideally

large numbers and certainly substantially more than two),

although the challenges of doing so at very large scales

may be formidable (Garland and Adolph 1991). Recent

work is beginning to demonstrate the considerable insights

that can be gained from such an approach (Kearney and

Porter 2004, 2009; Ludwig et al. 2004; Loeschcke and Hoff-

mann 2007; Pörtner and Knust 2007; Kristensen et al.

2008). Even so, additional emphasis needs to be given to

sublethal effects (Bernardo and Spotila 2006; Layne and

Peffer 2006; Hance et al. 2007; Chown et al. 2008), es-

pecially to loss of performance (Peck et al. 2004; Pörtner

and Knust 2007; Pörtner and Farrell 2008), including the

significance of reproductive failure (e.g., Rinehart et al.

2000; Jørgensen et al. 2006) rather than failure to survive

a given set of conditions, and to the ways in which dispersal

influences variation in physiological traits (Chown and

Terblanche 2007).

Fifth, difficult as it may be for physiologists (who are

often trained in the tradition of keeping all variables con-

stant, save for the one of key interest), varying several

factors simultaneously and determining their influence on

survival and reproduction must be more commonly un-

dertaken. Organisms routinely face changes to more than

a single environmental variable at a time (many of which

markedly covary), and understanding whether such var-

iation acts in an additive or multiplicative fashion is es-

sential (Bernardo and Reagan-Wallin 2002; Meynard and

Quinn 2007; Pörtner and Farrell 2008; Widdicombe and

Spicer 2008). Experimentally, this obviously creates sub-

stantial challenges in attaining sufficient levels of repli-

cation, particularly for studies on animals, although these

are not insurmountable (e.g., McNab 2003).

Sixth, and in a related vein, while determining the in-

fluence of typical environmental variables, such as tem-

perature and humidity for terrestrial habitats and tem-

perature and salinity for marine ones, is achievable and

has been the subject of some work (e.g., Hayward et al.

2001; Juliano et al. 2002; Appel et al. 2004), physiologists

rarely consider other such combinations. For example,

thermal tolerances may be very different in resource-

deficient versus fed animals or in the presence of a predator

that induces considerable differences in behavior, mor-

phology, and components of the physiological phenotype

(Zangerl et al. 1997; Miner et al. 2005; Hoverman and

Relyea 2007).

Finally, integrated laboratory and field experiments

(e.g., Sears et al. 2006), the combination of laboratory-

based selection and acclimation treatments with field tests

(e.g., Kristensen et al. 2008), and the use of micro- and

mesocosms (Relyea 2006; Warren et al. 2006) provide a

means of reintegrating other, typically more ecological,

pressures (e.g., predator pressures, resource patch location

requirements) with the kinds of variables typically assessed

in the laboratory. These kinds of approaches are often

better developed for plants, through common garden ex-

periments (e.g., Clausen et al. 1948; Alvarez-Uria and Kör-

ner 2007; van Kleunen and Johnson 2007), than they are

for animals (perhaps with the exception of Drosophila me-

lanogaster, but see, e.g., Niewiarowski and Roosenburg

1993; Conover et al. 1997; Billerbeck et al. 2001). None-

theless, in both cases, substantial benefits could be realized

from common gardens that are exposed to local conditions

and that realistically (inasmuch as this can be done) rep-

licate field conditions (see, e.g., discussion in van Loon et

al. 2005).

Obviously, pursuing all of these recommendations

would be extremely challenging. In the face of limiting

resources, hard decisions will be required to determine

which are the more important.

Conclusions

The distinctions that rapidly arose between the subdisci-

plines of physiological ecology and ecology allowed for the

marked advances in mechanistic understanding that did

much to fuel their development. However, this also re-

sulted in highly reductionist perspectives that paid little

attention to the large geographical and temporal-scale pat-
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terns that had underpinned much early work. The emer-

gence of macrophysiology is a recognition of the impor-

tance of the continuing need to document geographical

and temporal-scale patterns and their implications and

in so doing to reunify physiological and ecological ap-

proaches, as well as include evolutionary ones. In large

part, this reflects the significance of these patterns for un-

derstanding some of the major environmental issues cur-

rently facing humankind. Such a reunification will require

improved collaboration between researchers working on

related taxa in different parts of the world to establish the

protocols and approaches that will enable them to doc-

ument macrophysiological patterns and how these are

formed. It will also require better collaboration between

physiologists and ecologists to determine the mechanisms

giving rise to those patterns, particularly the interplay be-

tween levels of explanation that have typically been re-

garded as either physiological or ecological, and the im-

plications of both the patterns and their mechanistic bases.

From an applied or conservation perspective, a much-

improved predictive framework should result for antici-

pating which populations or species are likely to be most

affected by habitat change, climate change, overexploita-

tion, and biological invasions. The success of such en-

deavors might well be measured in terms of the emergence

of genuine macrophysiologists.
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physiological adaptation to climate in the native and introduced

range of Hypericum perforatum. Evolution 61:1912–1924.

Martin, L. B., II, M. Pless, J. Svoboda, and M. Wikelski. 2004. Im-

mune activity in temperate and tropical house sparrows: a com-

mon-garden experiment. Ecology 85:2323–2331.

Martin, L. B., II, J. Gilliam, P. Han, K. Lee, and M. Wikelski. 2005.

Corticosterone suppresses cutaneous immune function in tem-

perate but not tropical house sparrows, Passer domesticus. General

and Comparative Endocrinology 140:126–135.

Martins, E. P., J. A. F. Diniz-Filho, and E. A. Housworth. 2002.

Adaptive constraints and the phylogenetic comparative method: a

computer simulation test. Evolution 56:1–13.

Maurer, B. A. 1999. Untangling ecological complexity. University of

Chicago Press, Chicago.

Mayr, E. 1956. Geographical character gradients and climatic ad-

aptation. Evolution 10:105–108.

McNab, B. K. 2002. The physiological ecology of vertebrates: a view

from energetics. Cornell University Press, Ithaca, NY.

———. 2003. Sample size and the estimation of physiological pa-

rameters in the field. Functional Ecology 17:82–86.

MEA (Millennium Ecosystem Assessment). 2005. Ecosystems and

human well-being: biodiversity synthesis. World Resources Insti-

tute, Washington, DC.

Mellanby, K. 1935. The evaporation of water from insects. Biological

Reviews 10:317–333.

Meynard, C. N., and J. F. Quinn. 2007. Predicting species distribu-

tions: a critical comparison of the most common statistical models

using artificial species. Journal of Biogeography 34:1455–1469.

Mezhzherin, V. A. 1964. Dehnel’s phenomenon and its possible ex-

planation. Acta Theriologica 8:95–114.

Miles, D. B. 1994. Population differentiation in locomotor perfor-

mance and the potential response of a terrestrial organism to global

environmental change. American Zoologist 34:422–436.

Millien, V., S. K. Lyons, L. Olson, F. A. Smith, A. B. Wilson, and Y.

Yom-Tov. 2006. Ecotypic variation in the context of global climate

change: revisiting the rules. Ecology Letters 9:853–869.

Miner, B. G., S. E. Sultan, S. G. Morgan, D. K. Padilla, and R. A.

Relyea. 2005. Ecological consequences of phenotypic plasticity.

Trends in Ecology & Evolution 20:685–692.

Mitchell, N. J., M. R. Kearney, N. J. Nelson, and W. P. Porter. 2008.

Predicting the fate of a living fossil: how will global warming affect

embryonic development, sex determination and hatching phe-

nology in tuatara? Proceedings of the Royal Society B: Biological

Sciences 275:2185–2193.

Mommer, L., J. P. M. Lenssen, H. Huber, E. J. W. Visser, and H. de

Kroon. 2006. Ecophysiological determinants of plant performance

under flooding: a comparative study of seven plant families. Jour-

nal of Ecology 94:1117–1129.

Moore, J. A. 1939. Temperature tolerance and rates of development

in the eggs of Amphibia. Ecology 20:459–478.

———. 1942a. Embryonic temperature tolerance and the rate of

development in Rana catesbeiana. Biological Bulletin 83:375–388.

———. 1942b. The role of temperature in speciation of frogs. Bi-

ological Symposia 6:189–213.

———. 1952. An analytical study of the geographic distribution of

Rana septentrionalis. American Naturalist 86:5–22.

Naya, D. E., F. Bozinovic, and W. H. Karasov. 2008. Latitudinal trends

in digestive flexibility: testing the climatic variability hypothesis

with data on the intestinal length of rodents. American Naturalist

172:E122–E134.

Niewiarowski, P. H., and W. M. Roosenburg. 1993. Reciprocal trans-

plant reveals sources of variation in growth rates of the lizard,

Sceloporus undulatus. Ecology 74:1992–2002.

Osovitz, C. J., and G. Hofmann. 2007. Marine macrophysiology:

studying physiological variation across large spatial scales in ma-

rine systems. Comparative Biochemistry and Physiology A 147:

821–827.

Pagel, M. 1999. Inferring the historical patterns of biological evo-

lution. Nature 401:877–884.

Payne, N. M. 1926. Measures of insect cold hardiness. Biological

Bulletin 52:449–457.

Peck, L. S., K. E. Webb, and D. Bailey. 2004. Extreme sensitivity of

biological function to temperature in Antarctic marine species.

Functional Ecology 18:625–630.

Pernet, F., R. Tremblay, I. Redjah, I. Sache, J.-M. Sévigny, and C.

Gionet. 2008. Physiological and biochemical traits correlate with

differences in growth rate and temperature adaptation among

groups of the eastern oyster Crassostrea virginica. Journal of Ex-

perimental Biology 211:969–977.

Pertoldi, C., and L. A. Bach. 2007. Evolutionary aspects of climate-

induced changes and the need for multidisciplinarity. Journal of

Thermal Biology 32:118–124.

Piao, S., P. Friedlingstein, P. Ciais, N. L. D. de Noblet-Ducoudré, and
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