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The End User

A macro facility that allows end users to extend inter-
active graphical applications is presented as part of a
user interface management system (UIMS). Such
macros are expressed by example; that is, the end user
programs the macro in the application’s generated user
interface. Problems with macros by example in graphi-
cal applications are explored, and requirements to
accommodate such a facility are defined for the UIMS

dialogue model. Existing UIMS models are reviewed
relative to these requirements, and the unique facilities
of the MIKE {Menu Interaction Kontrol Environment)
semantics-based model are presented. The implemen-
tation of the macro-by-example system is discussed, as
well as the particular implementation of a multicom-
mand UNDO facility, which is necessary when editing
macros by example.

F or the past several years many researchers, includ-
ing ourselves, have been working on user interface
management systems (UIMS). The purpose of such sys-
tems is to greatly speed the development of interactive

graphical applications. A number of such systems have
been built, and there is evidence that they do reduce the
cost of software development, as well as enhance the
reliability and consistency of the resulting applications.
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These gains, however, carry a price. Each UIMS, of
necessity, carries with it a bias toward a particular set of
interactive styles. Some programmers will still choose to
implement a user interface by hand rather than use a
UIMS, so as to preserve a freedom of style. We feel that
programmers will be truly motivated to use a UIMS if
it provides new user interface capabilities not readily
implementable without a UIMS approach.

This article describes a capability allowing end users
to customize their user interfaces by adding new com-
mands built as macros out of existing commands and to
integrate the new commands into the dialogue of the
user interface. We are particularly interested in specify-
ing macros by example or demonstration. OQur work is
heavily influenced by Halbert’s Programming by Exam-
ple.! In Myers’ taxonomy of visual specification tech-
niques,” our system would be classified as “macros with
examples” rather than “macros by example,” but the lat-
ter term seems to be more widely used.

Obviously, a macro capability could be added to an
application without using a UIMS, but, as we demon-
strate, a truly rich macro capability requires implemen-
tation of most of a UIMS’s functions. In particular, we
show that a semantics-based UIMS such as MIKE
(Menu Interaction Kontrol Environment)® is more read-
ily adapted to such a facility than a syntax-based UIMS.
A semantics-based model begins with a specification of
the application code to be invoked by the user interface
and then refines the interactive facade that is placed over
this code.

We also discuss the issues that arise in defining graphi-
cal macros by example and some of the deficiencies of
existing approaches. Then we determine the suitability
of various UIMS models for solving these problems and
show how the unique features of the command-based
madel used in the MIKE UIMS make possible some
solutions to the problems identified. Finally, we review
MIKE'’s macro-by-example facility.

Macros by example in interactive
programs

Many interactive programs have supported macros by
example in the form of simple keystroke macros. In such
systems the user turns on macro recording, performs the
desired operation or operations, and then stops the
recording and stores the macro. When the macro is
stored, some control character or sequence is bound to
the macro. Whenever the invocation sequence occurs,
the saved keystrokes are fed to the program as if they had
been entered by the user. This is an intuitive and easily
taught method for combining primitive capabilities into
larger ones. It is also relatively easy to implement by
filtering the input, so that the remainder of the applica-
tion need not know of its existence.

Reviewing macros by example in a graphical environ-
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Figure 1. A desktop.

ment, we have identified the following issues that must
be addressed:

® Problems inherent in preserving graphical interac-
tions for later use.

Parameterization or generalization of macros.
Visual presentation of the macro body.

Editing of macros while in demonstration mode.

Specification of other than straight-line flow of
control.

® Integration of macros into the existing interactive
dialogue.

Preserving graphical interactions

We might consider adding to an application the capa-
bility of preserving graphical interactions by recording
sample and event requests and then playing them back
as amacro. This does not work, however, as can be shown
by the example in Figure 1.

In some applications the user deletes a file by select-
ing the file’s icon with the mouse and then selecting the
trash can icon. The input events consist of two mouse
selections. The problem arises when the user saves these
events as part of a macro body for some later execution.
These two mouse selections have meaning at later macro
invocation time only if the file to be deleted and the trash
are at the same locations as at macro definition time,
which is rarely the case for the file and sometimes not
the case for the trash can.

What is really needed is a specification of some file
name, or other location-independent file identifier, and
the specification that it is to be deleted. Saving only the
first mouse location specifies a file at a particular loca-
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tion, which is overconstrained. For the second mouse
selection, the trash can icon—or rather its associated
semantic meaning—should be saved. The problem of the
second selection can be resolved by saving logical events
(ie., the trash can icon selection) rather than physical
events (i.e., the mouse location). However, the semantic
references illustrated by the file selection are not avail-
able in a simple sequence of either physical or logical
events. The issue is treated in greater depth by Halbert.’

Keystroke macros work in text editors because the
screen location is an artifact of the semantic current
insert position. The interface is defined as a mapping
between inputs and semantic actions, which are
reflected on the screen. In a text editor, a given input
event is semantically defined regardless of the appear-
ance of the screen.

In our graphical example the inputs are meaningless
without the picture, and saving them for future use out
of context is of little or no value in reproducing seman-
tic meaning. The problem lies in the fact that graphics
is a tool for manipulating objects in semantic domains
unrelated to graphics. In the example above, the opera-
tions are defined on files, not on points or icons. The
points and icons are a presentation—they are visualiza-
tion vehicles for the underlying semantics.

An effective macro system must therefore save seman-
tic operations rather than the actual input events origi-
nally used to express them. The problems that arise
when trying to make this mapping are discussed below.

Distinguishing the semantic operand

The first problem is distinguishing exactly what the
semantic operand is. In the preceding example the oper-
and was the file and the action was delete, as indicated
by selecting the trash can. If, however, the trash can was
not selected but rather another location on the desktop,
then the operation is to move the file, and the second
point is a location to move it to. In this second case the
point itself is the operand because it is a geometric loca-
tion within the desktop.

Moving the file icon to another window, however, is
not simply a geometric positioning. A change of direc-
tory is implied in addition to the change of position. Fur-
ther complications might arise if the user opens several
directory windows before finding the desired one. The
intermediate steps are unnecessary to the semantic
meaning of the action; they simply support visual aids.
Because of the dialogue model used, our implementation
resolves some but not all of these issues. Several remain
open research topics.

Parameterization by example

A second problem is one of parameterization of
macros. In simple keystroke macros there are no
parameters. The behavior of the macro is defined
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entirely in terms of current application state information
such as the current insert position or the current search
pattern. In direct-manipulation interfaces we attempt to
be as modeless as possible; thus such current state infor-
mation is not as meaningful. When creating a macro by
demonstrating an interactive command sequence, we
must differentiate between example parameter values
and constants. To build an archive macro that is to take
the selected file and place it in a special archive direc-
tory, the example sequence would be to move the Tile’s
icon into the archive directory’s window. In this exam-
ple, the selected file is a parameter that will change from
invocation to invocation while the destination directory
will remain constant.

It is also important to differentiate between the file
parameter and the dialogue fragment used in specifying
its example value. In Halbert’s work’ the parameteriza-
tion is inferred from the example and then shown in a
special macro window. The end user can then edit this
macro specification later to make the differentiations
between constants, parameters, and parameter argu-
ments. Our approach is less sophisticated, but we believe
that it is more direct.

Presenting and editing macros

When creating macros by demonstrating them, a prob-
lem arises in presenting the macro body itself. Most key-
stroke macro systems do not provide any ability to view
the macro. Tinker* presents the code being created as a
Lisp function. In Halbert’s work, the commands being
entered are presented in a separate window using Eng-
lish and pictographs. What is not provided in these sys-
tems is the ability to edit the macro while demonstrating
it.

Keystroke macros, aside from not providing an edita-
ble presentation of the macro, have the problem of
differentiating between keystrokes that are part of the
example and those intended to edit the example. This
problem is alleviated somewhat in an environment sup-
porting overlapping windows, since any event directed
at the macro window can be considered part of the edit-
ing process. A more difficult problem, however, is updat-
ing the state of the interactive application in response to
the editing process, while in demonstration mode.

Since each command is executed as the macro is
recorded, if a user wants to move backward in a macro,
the steps must be undone so that the application is in an
appropriate state. Take, for example, the sample macro
in Figure 2. The user may want to move back to the Open
Picture command by pointing at it with the mouse. The
problem that arises is the undoing of all the intervening
commands. The requirement of being able to undo an
arbitrary number of commands imposes a serious con-
straint on how the interactive application is imple-
mented. This need for a semantic UNDO has led most
systems to edit macros off line rather than in example or
demonstration mode.
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Control flow in macros by example

Complexity is created because macros by example lead
most naturally to a straight-line flow of control. Such
macros are not particularly valuable because they do not
allow intelligent or flexible services to be programmed.
There are several approaches to this problem. Tinker*
has the user provide multiple examples of the macro. The
system then detects the difference and asks for a predi-
cate that differentiates between the examples. In Pro-
gramming by Example, iterative and conditional
constructs must be added later when editing the macro
off line. Specifying conditionals requires predicates for
making the decision. Most interactive applications do
not have a concept of Boolean predicates, because the
interactive user—rather than the user interface—is
expected to make all the decisions.

Integrating macros into the application’s user
interface

A final problem in extending an application by user-
defined macros is integrating them into the existing
application dialogue. Most graphical applications that
allow such macros provide special syntax for invoking
the macros, and they frequently do not provide the same
level of user friendliness in binding arguments to macros
as they do for built-in commands. Usually the macros are
an awkward add-on to the original application.

Macros by example in a UIMS

Our work does not necessarily solve all of the problems
described above. In most cases we have used solutions
developed by others. Our primary interest was to provide
macros by example in a UIMS. Providing such a macro
capability in a UIMS allows any application built with
the UIMS to have such a capability. We have found that
some of the features present in a UIMS significantly ease
the development of a macro-by-example system.

To support macros by example in a UIMS it must be
possible to perform the following actions without dis-
rupting the normal functioning of the user interface:

® Log complete semantic commands rather than prim-
itive input events while the user is invoking them to
demonstrate the macro body.

® Identify individual commands or closure points and
generate a textual or pictographic presentation of that
command when displaying the macro body.

® Undo multiple commands so as to make editing of
the macro possible.

® Explicitly identify and reference macro parameters.

® Integrate macro invocation into the dialogue of the
existing application, including the binding of argu-
ments to the macro invocation.

January 1988

Open Picture "Foo.Baz"
Add Line (10,20) to (100,20)
Add Text "Name" at (70,25)
New Picture "Here.Here"

[Add Text "Here" at (100,100) I

<end>

Figure 2. Example macro.

Now we will review the dialogue models used in exist-
ing UIMSs relative to how they might satisfy these
requirements. We will then present the dialogue model
of the MIKE UIMS and show how it is better suited for
supporting macros by example. Following this will be a
short discussion of how macros by example are actually
supported in MIKE.

UIMS dialogue models

UIMS models can be divided into several sets. The first
consists of systems based on a syntactic dialogue speci-
fication, including grammar-based systems®® and tran-
sition network systems.”® In a formal language sense
and in the kind of features they support, both approaches
are essentially equivalent. The process is one of accept-
ing inputs, comparing them against the present parse
state, invoking some semantic action, and proceeding to
a new state. A related model is the dialogue tree, such as
the one in Tiger."” It has many of the same characteris-
tics as grammatical approaches but is tied to its menu-
traversal algorithm rather than a grammar or state
machine.

A second set of UIMS models consists of object/event
systems. Such systems typically use a combination of
input events and selected visual objects to make a bind-
ing to a particular semantic action.”™

Both syntactic and object/event models have some dif-
ficulty in meeting the requirements for macros by exam-
ple presented above.

Limitations of syntactic and event models
Because a UIMS is in control of the dialogue, it is rela-
tively easy to log either input events or semantic actions.
In the syntactic or event models, however, it is somewhat
more difficult to identify complete semantic commands.
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Typically the specification of a command and its argu-
ments is spread over several semantic actions. For exam-
ple, in drawing a line there might be one action to save
the first point, a second to save the other point, and a
third to actually get the line drawn. The sequence would
be further obscured by actions to generate the appropri-
ate prompts, set up the menus, or handle rubberbanding
of the line. Rubberbanding is especially a problem
because the semantic action log would now contain
hundreds of echoing actions that are not useful in a
macro context.

An event- or syntax-based UIMS does not have the
necessary information to decide which actions should
be saved. Such UIMSs could be augmented with special
conventions and possibly attribute-evaluation tech-
niques to define complete semantic commands, but
characteristics allowing this are not inherent in syntac-
tic or event-based models. Object/event models, as in
SmallTalk-style messages, have many of the same charac-
teristics found in MIKE and would be amenable to tech-
niques similar to those described in this article. Such
models support rather complex messages with seman-
tic meaning rather than simple physical or logical events.

The presentation of the macro body also becomes a
problem because semantic actions are typically hidden
from the interactive user. As such they are not in an
externally presentable form. We would like such a
presentation of a semantic command to be as close as
possible to the actual prompts and echoes used to pro-
duce it interactively. In syntactic or simple event UIMS
models, the prompt and echo information is typically
integrated into the semantic actions and is not available
for the UIMS’s use.

The need for an UNDO is a problem that none of these
UIMSs can solve on their own. Constructing a macro
involves semantic actions that modify data structures not
under the UIMS’s control. Without access to these struc-
tures, it is impossible to undo the changes.

Some UIMSs have a syntactic-level UNDO facility for
rubbing out or canceling partially completed commands.
Syngraph,® for example, has rubout nonterminals that
log the input events and update the prompts and menus
without calling any semantic routines. This feature
allows for rubout, because only information under
UIMS control has been modified. When the rubout non-
terminal is completed, the logged sequence is reevalu-
ated and the semantic actions performed. Once this has
been done, that dialogue fragment can no longer be
rubbed out.

A similar facility is found in Tiger,” where an
“implicit reject” is possible. In this case special seman-
tic routines are called to handle semantic recovery. Here
again, only a localized portion of the dialogue can be
undone. This is not a capability sufficient for editing
macros in demonstration mode.

Parameterization of macros is particularly difficult in
syntactic or event-based UIMSs because there is no
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semantic distinction between an argument and a com-
mand. All semantics are treated as atomic code frag-
ments or messages. Any concept of action/argument
bindings is buried in the semantics. If the UIMS is not
able to differentiate between argument specifications
and actions, it will not be able to specify that a particu-
lar argument is to be parameterized.

The inability to differentiate between arguments and
actions causes additional problems when the user wants
to integrate parameterized macros into the dialogue.
There are only three options for specifying the argu-
ments when invoking a macro: The user must specify the
arguments in some special (frequently textual) syntax,
which is out of sync with the rest of the dialogue style;
modify the grammar, transition network, or event han-
dlers, a procedure usually beyond the capabilities of end
users; or specify the parameterization off line in a spe-
cial macro edit mode.

All of these options are possible and may actually be
worthwhile to achieve end user dialogue extensibility,
but they are not really satisfying. We have sought to make
macro specification occur as much as possible in
demonstration mode, so that the process will be as nat-
ural as possible for an end user of the application’s
interface.

Macros by example and MIKE

MIKE (Menu Interaction Kontrol Environment) is a
UIMS that grew out of concepts of programming lan-
guage design rather than formal languages or interactive
device-handling concepts. Only a very sketchy discus-
sion of MIKE?® is provided here. In MIKE the basic defi-
nition of an interactive interface is a set of data types and
a set of functions and procedures that can operate on
data objects of those types. This approach is similar, if
not identical, to the objects-and-actions model proposed
by others.” It is essentially data abstraction and could
be adapted quickly to an object-oriented model. For
example, if we are designing a simple drawing package,
the following object types could be defined as having
some meaning to the interaction:

Point, String, DrawPrimitive, Picture

On the basis of these types we might then define the fol-
lowing commands and functions:

NewPicture(Name: String)
Create a new picture.

PictureName(Name: String): Picture
Identify a picture by name.

IdentifyPicture(Location: Point): Picture
Identify a picture by pointing at it.
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OpenPicture(Pict: Picture)
Open an existing picture.

DeletePicture(Pict: Picture)
Delete an existing picture.

AddLine(P1, P2: Point)
Add a line primitive to the open picture.

AddText(At: Point; Txt: String)
Add a text primitive to the picture.

MovePrim(Prim: DrawPrimitive, To: Point)
Move the selected primitive to a new location.

DeletePrim(Prim: DrawPrimitive})
Delete the selected primitive.

PickPrim(Where: Point): DrawPrimitive
Select a primitive by pointing at it.

Although this is a rather simple application, it illus-
trates MIKE'’s dialogue model. Each of these procedures
and functions is an application routine exposed to the
interactive user. In addition to the object types Draw-
Primitive and Picture, which are defined by the applica-
tion itself, there are a number of types that are
predefined and automatically supplied by MIKE. They
are

Integer, Real, Point

Key
A one-byte code identifying a function button
or keyboard key.

String
A character string.

These predefined types identify specific interactive
techniques automatically provided by MIKE. It is pos-
sible to add other techniques such as rubberband lines,
rubberband rectangles, or file names. An approach used
in MIKE is to make as many different input techniques
as possible available simultaneously. For example, in
specifying an integer value, a user has the following
options:

® Type in an integer number.

® By typing its name, select a function that returns an
integer.

® Select from a menu a function that returns an integer.

January 1988

® Select an integer function by striking the function
button bound to it.

® Seclect an integer function or value by picking an
active viewport that has such an integer item bound
to it.

The controlling factor is the desired operand type. This
arrangement allows the end user to select the most nat-
ural approach, rather than forcing the designer to deter-
mine it. Because these techniques for selecting an option
and performing any needed interaction are localized in
MIKE, it is possible to differentiate between an argument
and its specification.

We have sought to make macro
specification occur as much as
possible in demonstration mode,
so that the process will be as
natural as possible for an end user
of the application’s interface.

The above description of the user interface to this
drawing application is readily understood by or
explained to anyone with some familiarity with com-
puters. The basic notion is that a command does some-
thing to its operands and/or returns a value. The
operands and result-value types are given names from
the user’s application domain. Such interactive com-
mand definitions are specified using MIKE’s interface
editor, which is itself written using MIKE. Note also that
the semantic functions such as PickPrim form an
integral part of the argument specification and allow the
application to expand the set of argument types beyond
the primitive ones provided by MIKE.

From such procedure and function definitions, MIKE
creates a default syntax for interactively specifying com-
mands. A menu is created from all the procedures that
do not return a result. The user can select a command
from this menu, and a prompt is issued for the com-
mand’s first parameter. The name of the parameter is
used as the prompt, and the type of the parameter iden-
tifies what is wanted.

Using this parameter type, MIKE creates a menu of all
functions returning that type. If the type corresponds to
one of the primitive types, then the corresponding inter-
active techniques are enabled. The process continues
until a complete command has been entered, at which
point the semantic procedure and/or functions that have
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MIKE: Creates a display similar to:

NewPicture
OpenPicture
DeletePicture
AddText
AddLine
MovePrim
DeletePrim

Select 8 command: __ J

User:  Types "O" unique abbreviation for OpenPicture
or
selects OpenPicture from the menu

MIKE: Creates a display similar to:

PictureName
LocatePicture

OpenPicture ( Pict: Picture ___ J
User:  Types "P" unique abbreviation for PictureName
or
selects PictureName from the menu
MIKE: Sets the echo and prompt message to
"OpenPicture ( PictureName( Name:String "
User:  Types "FooBaz"

MIKE: Recognizes a complete command and executes
"OpenPicture ( PictureName( "FooBaz") )"

Figure 3. Example dialogue.

been specified are called. The example dialogue in Fig-
ure 3 illustrates the procedure.

The default syntax shown in Figure 3 is not always
user friendly. For example, selecting LocatePicture from
a menu and then pointing at the picture is rather awk-
ward. Using MIKE'’s interface editor, the dialogue
designer can form the menus into trees, draw icons and
attach commands or partial expressions to them, and
bind function buttons or other input events to com-
mands, as well as change the echoes and prompts to
more English-like statements. In addition, the interface
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editor can attach commands such as LocatePicture to
windows so that the function is automatically selected
when the window containing picture names is selected.

All these tailoring operations are performed in a
WYSIWYG style easily learned by nonprogrammers.
End users with sufficient expertise to define their own
macros should have little trouble tailoring their inter-
faces using MIKE.? The interface definition is stored in
a profile file. Because MIKE does not evaluate any of the
application’s actions until after the complete command
has been parsed, it is possible to provide the same kind
of rubout facilities found in most command-line inter-
preters. Rubout undoes the effect of the last command
selection or operand input. The echoes and menus are
all restored to what they were previously. Subsequent
invocations of rubout can continue backward until the
entire command has been removed. The entire com-
mand can be removed in one event with the Cancel
command.

MIKE'’s support of macros-by-example
requirements

Because of the nature of MIKE’s dialogue model, the
logging of complete semantic commands is relatively
straightforward. The presentation of a command in the
macro body is a matter of using the command echo that
MIKE already generates automatically. Identification of
arguments that should be parameterized is easy because
the action/argument relationship is clearly defined.
Once a macro has been created, it is a command with a
set of parameters. As will be shown later, the macro
parameter types are implicitly determined while creat-
ing the macro. From MIKE'’s point of view, in terms of
the dialogue model, a macro is the same as a primitive
application procedure. Once a macro is defined, it will
by default appear in the global menu, and the interface
editor can tailor its interactive presentation using all the
techniques available for primitive commands.

MIKE’s dialogue model and architecture then provide
five of the six facilities required of a UIMS to support
macros by example. MIKE alone, however, will not solve
the UNDO problem, which must be solved for the macro
editing facility. This facility requires the STUF data
management facility and the cursors package discussed
in the next section.

Implementation of macros by
example

Before discussing how macros by example have actu-
ally been added to MIKE, we show in Figure 4 the over-
all architecture of an application. In this architecture the
graphics package GPW forms the interface between the
software and the interactive display and input devices.
This is a windowing package which, like many others,
supports overlapping windows. As such, it queues input
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events for MIKE as well as window redraw events. MIKE
parses the input events on the basis of the interface
description found in the profile file.

As discussed earlier, the profile file is created by the
interface editor and defines the entire user interface. The
only time that MIKE itself modifies the profile file is
when it stores or modifies macros. MIKE calls on the
application functions and procedures that have been
defined for it whenever a complete command has been
recognized. The roles of STUF, cursors, and change log-
ging are discussed below in conjunction with the imple-
mentation of UNDO.

Macro definition

In a submenu of the main menu, MIKE provides a set
of macro definition and manipulation commands. Most
of MIKE treats these special commands as application
commands, allowing their user interface to be tailored
by the interface editor. These commands are divided into
recording commands and editing commands. The
recording commands are defined as follows:

Create(Name: String)
Creates a new macro. The name is actually a
menu pathname to place the macro in MIKE’s
tree of menus.

NewParameter(Name: String)
Adds a new parameter to the open macro.

StartRecord
Starts recording the macro example.

StopRecord
Stops recording the macro example.

CancelRecord
Terminates recording without saving the
macro.

When the user creates a macro, a special macro win-
dow opens and is kept on top of all other windows on the
screen. This window can be moved around or resized so
as not to interfere with the application while the macro
is being demonstrated. With the NewParameter com-
mand the user can define parameters for the macro by
name. Initially these parameters are typeless.

To create a macro the user invokes the StartRecord
command and begins providing an example of how the
macro should behave. Again, most of MIKE does not
know that commands are being saved in a macro body.
The interface proceeds as normal until an application
command is to be invoked. Then the command expres-
sion is passed to the routine that actually does the execut-
ing. This routine checks to see if macro recording is
turned on and, if it is, calls the appropriate routines to
log the command into the macro body. Then the routine
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Application
Data

STUF
' Cursors '4_]

Interface

Editor
Change <
Logging
Profile
File

The End User

Figure 4. System architecture.

Macro: AddMessage
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Figure 5. Creating a macro.

calls the application to have the operation actually per-
formed.

When commands are logged into the body, the macro
window is also updated to reflect the addition of the
command. Since MIKE'’s command-echo mechanism is
driven by the same internal command representation
used in executing the command, it is a simple matter to
formulate the command presentation in the macro win-
dow using the same algorithms and interface infor-
mation.

Macro definition proceeds as the user expresses the
commands in the user interface, as is normally done.
When initially defined, the parameters are typeless.
Because of this, MIKE places the name of the parame-
ter in angle brackets ( (ParmName) ) in every menu
associated with an argument type. To reference a param-
eter, the user selects it from the menu. A schematic view
of how this might be done is shown in Figure 5. At the
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stage illustrated in the figure, the parameter is assigned
the type of argument for which it will be used.

An example value for the parameter is required for the
demonstration of the macro to continue to function
properly. A prompt is issued for the example value, and
the input parsing proceeds normally. When the com-
mand that used the parameter is in fact logged, the value
expressed for the parameter is stored with the
parameter’s definition, and the command is logged into
the macro body with a parameter reference rather than
the example value given for the parameter. Once a
parameter receives a type and an example value, its name
will appear only in the menu associated with that type.
Any subsequent use of the parameter in the macro body
will select the parameter’s name, and its attached exam-
ple value will be used. This approach is not as sophisti-
cated as Halbert’s generalized data descriptions, but it
is rather direct and easily learned, and does not intrude
much into the normal user interface.

Macro editing

Making mistakes while demonstrating a macro body
is very easy, and it is frequently desirable to go back and
edit an existing macro. The commands provided for edit-
ing are as follows:

DisplayAMacro(MacroName: String)
This will open the specified macro in the
macro window so that it can be edited.

Cut
Cut the current statement out of the macro.

Paste
Paste a statement in at the current position.

UpArrow
Move up one command.

DownArrow
Move down one command.

GoTo(Where: Point)
Move the current command position to the
one pointed at by Where.

The DisplayAMacro command opens an existing
macro for editing. To edit a macro, however, the user
must have example values for its parameters. The sam-
ple parameter values specified at macro definition time
are not saved, because they were specific to that exam-
ple context. DisplayAMacro recursively calls the MIKE
parser to obtain the example values from the end user.
Remember that all editing is done in demonstration
mode. Within the macro window one of the macro com-
mands is highlighted as the current statement position.
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This statement is the next command in the macro to be
executed. The Cut command deletes the current state-
ment from the macro and saves it. The Paste command
inserts the saved command immediately in front of the
current statement and makes it the new current state-
ment. Obviously, a richer set of editing commands could
be provided, but those shown above are sufficient.

Positioning the current statement pointer is the most
difficult part of macro editing while in demonstration
mode, because the state of the application must coincide
with this current position. Selecting the DownArrow
command (normally bound to the down arrow key on the
keyboard) has the same effect as single stepping through
the macro in a debugger. MIKE takes the current state-
ment, passes it to the execution routines for evaluation,
and moves to the next statement. Selecting UpArrow,
however, requires that the statement immediately in
front of the current one be undone. The exact process for
undoing is discussed below.

The GoTo command is a quick way to move through the
macro body by pointing at a statement in the macro win-
dow. Normally, GoTo is bound to the macro window
itself, so that selecting a point in the macro window auto-
matically invokes GoTo using that point. GdTo is imple-
mented by moving up or down in the macro body until
the selected command is reached. Therefore, it must be
possible to undo an arbitrary number of commands.

Note that these movements within the body of a macro
are possible at any time during original demonstration
or later editing. The user could, for example, back up to
a statement by selecting it, demonstrate two or three
commands to be executed before the selected statement,
and then move down to the end of the macro body and
continue on. Invoking any application command while
in macro edit mode will insert the demonstrated com-
mand immediately in front of the currently selected
command in the macro body. This is not an off-line proc-
ess; all of it can be done as a natural part of the user
interface.

As discussed above, a simple straight-line macro is not
very interesting. To support IF and WHILE control struc-
tures, we used the approach found in Pygmalion.'
When the user gets to the point where an IF test is
desired, the IF command can be selected from the macro
menu. Since MIKE knows about data types, it then
presents a menu of all application functions that return
Booleans, and enters a Boolean expression as the predi-
cate. This expression is then evaluated and, depending
on the result, the True or False branch is chosen, where
the next logged commands are placed.

To leave the IF, the user selects a statement beyond the
end of the IF. (MIKE always maintains a special selecta-
ble dummy statement at the end of every block.} A diffi-
culty arises when the user wants to specify the other
branch of the IF. Doing this requires that the macro be
saved and a new set of example parameters that produce
the opposite predicate result be specified. The user then

IEEE Computer Graphics & Applications

Authorized licensed use limited to: Brigham Young University. Downloaded on January 29, 2009 at 15:11 from IEEE Xplore. Restrictions apply.



moves down to the IF and into the other branch, where
statements can again be expressed by example. The user
can create WHILE loops in a similar fashion. The only
difficulty is that when a statement inside the body of the
loop is selected, there is ambiguity as to which iteration
of the loop has been selected as the example. Because
DownArrow always moves to the next statement in exe-
cution order, moving through multiple iterations of the
loop is possible, but still somewhat awkward.

Implementation of UNDO

There are several possible ways to provide a facility for
undoing the results of some action.” One of these is to
log all semantic actions and then replay them up to a
point just prior to the portion to be undone. This is eas-
ily done in a UIMS possessing access to all the seman-
tic calls that have been made, but it is not nearly fast
enough for use in macro body cursor movement. This
approach also requires the ability to restore the applica-
tion state existing before the beginning of the log.

A second and better approach is to have inverse oper-
ations for every semantic action. In fact, any good user
interface should include mechanisms for reversing any
operation. The difficulty lies in the fact that such inverses
frequently depend on the end user’s intelligence. For
example, if the user draws a line, he or she can then
delete it. What is required, however, is that the end user,
knowing that delete is the reverse of draw, will reselect
the line to be deleted. Expecting such intelligence in the
end user is not unreasonable. Expecting such intelli-
gence in the UIMS, however, can lead to problems.

An automatic inverse facility would need to have more
semantic knowledge about exactly how to select the cor-
rect line for deletion, and would need to know that select
followed by delete is the appropriate inverse for drawing
a line. Such actions are obvious to end users but rather
messy to encode for the automatic handling of all pos-
sible cases. Adding such semantic knowledge to MIKE'’s
understanding of commands is entirely possible, but
there are some subtleties in expressing invertibility that
we have not completely explored.

A third approach—the one MIKE uses—is to monitor
the data structures of the application itself and undo any
changes to them. This is the approach used in many data-
base management systems because the DBMS has con-
trol over all changes to the data. Regardless of what an
application may do, the DBMS has final control, because
ultimately changes to the database are the only real side
effects.

STUF and undoing application data changes

Our research into editing templates'® and other auto-
matic data display and editing tools'®* has led us to
develop STUF (STrUctured Files) as a data management
system. STUF manages its structures in main memory
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and supports records, unions, and arrays of varying
length in a form easily loaded to and from secondary
storage. STUF provides the facilities of a database
management system, while allowing the efficiency of
accessing and manipulating data using normal data typ-
ing facilities. Like a DBMS, STUF has knowledge of all
modifications to its data and can log sufficient informa-
tion to allow any such operations to be undone. The
details of STUF are discussed elsewhere.”’ What is
important is that any changes to application data
managed by STUF can be undone.

Undoing other side effects

In addition to the application’s database there is other
information that must be undone. In most interactive
applications, there are “‘current data objects” that con-
trol the browsing or editing operations. Such objects
might be the currently selected window, the text inser-
tion point, or the currently open file. Such data refer-
ences are called cursors, and they are the data references
commonly associated with graphics or text cursors. Such
cursors are integer numbers or pointers and are
managed by the cursors package.

The cursors package monitors all changes to cursors
and thus can log them. Cursors was originally imple-
mented to support interrelationships and control
updates between windows. For example, one window
may have a list of files with one of them being the cur-
rent file. Another window may show the contents of the
current file. The current file then is a cursor that affects
both windows. Any change to the current file must cause
an update to both windows.

The final set of information to be undone is the
graphics display itself. This UNDO is performed by
notifying GPW that all of the screen has been damaged.
The notification, in turn, generates events to cause the
application to redraw all visible windows. The redraw
capability is already necessary to support window
repair. The entire screen must be damaged because
MIKE does not know what changes to the screen have
been made by the command being undone. On the VAX-
station, redraw is easily done with enough speed for
UNDO.

To perform UNDO in MIKE the following steps are
taken:

1. Before an application command is invoked, MIKE
calls the change-logging facility to place a mark on
the change stack.

2. MIKE invokes the application’s command proce-
dure and functions.

3. The application then performs whatever opera-
tions it must. In the process, every change to the
cursors and STUF files will be logged by calls to
change logging. All information saved by the appli-
cation between calls to semantic routines must be

77

Authorized licensed use limited to: Brigham Young University. Downloaded on January 29, 2009 at 15:11 from IEEE Xplore. Restrictions apply.



stored in a cursor or STUF. The change-logging
software has been generalized so that other data-
storage models can also use it to log their changes,
but to date STUF and cursors have been sufficient
for us.

4. When an UNDQO is to be performed, MIKE calls
change logging and requests that all changes down
to the most recent mark be undone. Change logging
handles this via calls to STUF and cursors.

5. After the application data has been restored, MIKE
has GPW generate the necessary redraw events,
which MIKE then refers to the appropriate appli-
cation routines.

Summary and conclusions

We believe that the future of user interface manage-
ment systems lies in their ability to provide features
beyond those normally found in hand-coded applica-
tions. The unique semantics-based dialogue model of
MIKE has allowed us to create a macro facility in which
macros are specified by example. Such a facility allow-
ing end users to extend their interfaces is thus available
automatically to all applications built with MIKE and its
sibling software packages.

There are still some issues to be resolved. The macro
facility does not have local variables. Along with these,
it would also be of value to include a facility like Halbert’s
set iterators as an alternative to the WHILE loop.

The current approach does not have the same ease of
expressing visual behavior found in Peridot.’? Note,
however, that in its present form Peridot is not a facility
allowing an end user to extend the interface: Macros by
example still have a problem in operand references. If,
for example, the user selected a file from a desktop win-
dow, the value received would probably be an internal
pointer to the file. Such internal pointers are not neces-
sarily valid in future invocations of the macro. What is
really needed is the file name.

This example illustrates the dichotomy between inter-
active specification and specifications to be preserved
over time. Macros by example still do not fully resolve
such problems. They do, however, provide an important
new capability for user interface management systems. Ml
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