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We introduce a practical and computationally not demanding technique for inferring interactions at various

microscopic levels between the units of a network from the measurements and the processing of macroscopic

signals. Starting from a network model of Kuramoto phase oscillators, which evolve adaptively according to

homophilic and homeostatic adaptive principles, we give evidence that the increase of synchronization within

groups of nodes (and the corresponding formation of synchronous clusters) causes also the defragmentation of

the wavelet energy spectrum of the macroscopic signal. Our methodology is then applied to getting a glance

into the microscopic interactions occurring in a neurophysiological system, namely, in the thalamocortical neural

network of an epileptic brain of a rat, where the group electrical activity is registered by means of multichannel

EEG. We demonstrate that it is possible to infer the degree of interaction between the interconnected regions of

the brain during different types of brain activities and to estimate the regions’ participation in the generation of

the different levels of consciousness.

DOI: 10.1103/PhysRevE.96.012316

I. INTRODUCTION

The current trends in neuroscience and neurophysiology

are connected with the analysis of brain networks [1–4],

which interact with each other to perform different types of

cognitive tasks, as, e.g., the formation of a memory trace [5,6],

the processing of a visual object [7,8], or the development

(on a clinical level) of pathological rhythms, like epileptic

seizures [9,10]. These interactions are often quantified by

means of the degree of synchrony, which can be measured

both locally (i.e., within the same brain structure) or over

a more global scale (i.e., in between brain structures) [11].

While neurophysiology aims at understanding the interplay

of individual neurons [12,13], the majority of available data

(especially those acquired from human subjects) comes from

noninvasive tests. These tests are made, in daily practice,

under the form of electroencephalograms (EEG) or mag-

netoencephalograms (MEG), functional magnetic resonance

imaging (fMRI), which actually measure the (electric or

magnetic) group activity of large ensembles of cells. The focal

riddle for physicists and neuroscientists consists, therefore,

in disclosing the way microscopic scale neural interactions

pilot the formation of the different activities revealed (at a

macroscopic scale) by EEG and MEG signals.

In a network of active elements (like neurons in the

brain), one has to distinguish between the signal sensed at

a microscopic scale (the individual, electric or magnetic,

activity of a neuron) and the macroscopic signal, which is

instead produced by a group (or subnetwork) of elements.

Processes taking place at the network’s microscopic level

(such as partial or complete synchronization between units,

formation of clusters, etc.) affect the spectral properties of the

macroscopic signal.

Starting from a model network of Kuramoto oscilla-

tors, which evolve adaptively by means of homophilic and

homeostatic adaptive principles, we give evidence that the

increase of synchronization within groups of nodes (leading

to the formation of structural synchronous clusters) causes

also the defragmentation of the wavelet energy spectrum

of the macroscopic signal and introduce a practical and

computationally not demanding technique that allows an

estimation of the interaction between microscopic units of a

network by means of appropriate treatment of the macroscopic

signals. Our methodology is then applied for getting a glance to

the microscopic interactions occurring in a neurophysiological

system, namely, in the thalamocortical neural network of an

epileptic brain of a rat, where the group electrical activity is

registered via multichannel EEG. We compare our technique

with wavelet coherence approach and show that both methods

provide equivalent results in the analysis of the interaction

between the cortex and the thalamus. We demonstrate the

possibility to determine the degree of interaction between the

interconnected regions of the brain during different types of

brain activities.

II. MODEL NETWORK OF KURAMOTO OSCILLATORS

The network under consideration is a multiplex [14] graph,

in which topology and dynamics of nodes mutually interact

via homophily [15,16] and homeostasis [17] principles, as

proposed in Refs. [18,19]. The units of the network are

Kuramoto oscillators [20], the most common and simplest

way to describe synchronous phenomena occurring in nature

[21–23]. The system consists, therefore, of M layers, each of

which are made of N = 300 oscillators. The phase evolution
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of each oscillator is given by

φ̇l
i (t) = ωi + λ1

N
∑

j �=i

wl
ij (t) sin(φl

j − φl
i )

+λ2

M
∑

j �=l

sin(φ
j

i − φl
i ). (1)

Here, φl
i (t) is the time-dependent phase of the ith oscillator of

the lth layer, dot denotes a temporal derivative, {ωi} is a set of

randomly assigned frequencies [uniformly distributed in the

interval [1,10] (s−1)]. Notice that (in the spirit of a multilayer

network) the natural frequency ωi of the ith oscillator is

the same in all M layers, whereas its instantaneous phase is

actually layer-dependent. λ1 and λ2 are the intra- and interlayer

coupling strengths, respectively.

At first, all weights {wl
ij (t = 0)} are randomly assigned

in the range [0,1] (except those corresponding to i = j ,

which are all set to zero), and normalized via the condition
∑N

j �=i wl
ij = 1 (l = 1, . . . ,M). The latter implies that the input

strength received by each unit i in each layer l is constant, as in

a homeostatic process. Equation (1) is then initially simulated

with fixed weights {wl
ij (t) = wl

ij (0)}, up to tA = 500 s, when

the weights start instead to evolve adaptively (so as to enable

layers to possibly reorganize), corresponding to a homophily

principle, which is expressed by the following equation:

ẇl
ij (t) = pl

ij (t) −

⎡

⎣

∑

k �=i

pl
ik(t)

⎤

⎦wl
ij (t). (2)

Here, the time-dependent quantity pl
ij (t) is defined as

pl
ij (t) =

1

T

∣

∣

∣

∣

∫ t

t−T

ei[φl
i (t

′)−φl
j (t ′)]dt ′

∣

∣

∣

∣

. (3)

Notice that pl
ij quantifies the average phase correlation

between oscillators i and j of layer l over a characteristic

memory time T . Equation (2) yields the strengthening of the

connections between those units, which are phase correlated

across T , verging therefore the well-known Hebbian learning

process [24].

From the solutions of Eqs. (1) and (2), the microscopic

signal of each unit in each layer can be estimated at all times

as x l
i (t) = sin [φl

i (t)], while the macroscopic signal of each

layer can be expressed as Xl(t) =
∑N

i=1 x l
i (t). The spectral

properties are analyzed by the wavelet transform [25], a

well-known tool suitable for analysis of various nonstationary

processes (as it is the present case, where signals come from

layers whose structure of connections evolves actually in time).

As an initial, descriptive example, we start with illustrating

the case of a monolayer network [M = 1 and λ2 = 0 in

Eq. (1)], for an intralayer coupling value λ1 = 0.5, and

for T = 100 s. This parameter corresponds to the partial

synchronization in the model network and the emergence of

structural clusters in its topology [18].

To examine the dynamics X(t) in both the time and

frequency domains, the wavelet power spectrum can be cal-

culated as W (f,t) = |M(f,t)|2, where M(f,t) is the complex

wavelet surface defined with the aid of continuous wavelet
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FIG. 1. (a) Wavelet decomposition of the macroscopic signal,

produced by a monolayer network of phase oscillators under the

effect of adaptive mechanism. Lower row: momentum distributions

of the wavelet energy and the network topologies. Panel (b) refers to

t1 = 500 s (i.e., before adaptation starts to take place in the system),

while panel (c) is obtained for t2 = 500 s (i.e., after the adaptive

process has produced a time independent network’s topology). Both

instants at which the lower panels are obtained, are indicated with

vertical arrows in panel (a). λ1 = 0.5, T = 100 s. See main text for

all other specifications.

transform [25,26],

M(f,t ′) =
√

f

∫ +∞

−∞
X(t)ψ∗[(t − t ′)f ] dt (4)

(the symbol “∗” denotes the complex conjugation), with the

Morlet mother wavelet,

ψ(ζ ) =
1

4
√

π
exp(j2πζ ) exp

(

−
ζ 2

2

)

. (5)

Figure 1(a) reports the evolution of the wavelet power

spectrum W (f,t) of the macroscopic signal X(t). In the

absence of the adaptive mechanisms (t < tA), the wavelet

energy is distributed almost homogeneously over all range

of frequencies [see the plot W (f ) in Fig. 1(b)], as well as

the network is a single-component graph characterized by a

highly homogeneous distribution in the link strengths. As t

exceeds tA, the network structure evolves: the links between

synchronized elements are strengthened, while the weakly

synchronized nodes progressively loose their connections.

After transient processes have expired, this leads to the

appearance of three well-structured clusters, within which the

elements exhibit frequency synchronization [see Fig. 1(c)].

The stationary momentum wavelet spectrum exhibits, there-

fore, three isolated peaks (corresponding to the spectral

components of the signals taken from the three different

clusters), and the structure of the layer becomes modular [with

the three frequency clusters forming three densely connected

clusters of nodes, as schematically illustrated in the lower plot

of Fig. 1(c)].

A much richer scenario characterizes the case of a two-

layered network [15–19], which is schematically illustrated

in Fig. 2(a), and corresponds to setting M = 2, λ2 = 0.005,
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FIG. 2. (a) Schematic illustration of the two-layered network.

Top right panels: W1(f,t) [panel (b)] and W2(f,t) [panel (c)]

(see text for definitions), and the momentum distributions of

the wavelet energy W1(f,t∗) [blue curve in panel (b)] and

W2(f,t∗) [red curve in panel (c)], obtained for t∗ = 1400 s. (d)

The surface of wavelet product Eq. (6). λ1 = 0.5, λ2 = 0.005,

T = 100 s. See main text for all other specifications.

λ1 = 0.5 in Eq. (1). Here, the units have two types of connec-

tions: one set of links accounting for intralayer interactions

(i.e., those befalling among elements of the same layer) and

another set of links (the interlayer links) determining the cou-

pling between elements of different layers. Under the simul-

taneous effect of intra- and interlayer couplings, the elements

belonging to different layers, group into either identical and

synchronous clusters (for relatively large values of λ2) or

distinct and asynchronous clusters (for small values of λ2).

The used set of parameters corresponding to partial synchro-

nization between the layers implies the presence of identical

clusters along with nonidentical ones. The macroscopic signals

produced by the two layers are X1,2(t) =
∑N

i sin[φ
1,2
i (t)].

The upper right part of Fig. 2 reports the wavelet energy

distributions W1,2(f,t) for X1 [Fig. 2(b)] and X2 [Fig. 2(c)]. As

in the previous case, one clearly sees that the wavelet energy

is uniformly distributed for t < tA in both layers. For t > tA,

the spectral properties of each layer become similar to those

of the single-layer case (the adaptive process within each layer

leads to the formation of clusters and thus to a fragmentation

of the wavelet spectrum), but, due to the initial mismatch

in the inter-layer topology, the spectra of the two layers are

different [compare the momentum distributions W1,2(f,t∗),

for t∗ = 1,400 s, reported at the right of Figs. 2(b) and 2(c)].

While fragmentation of the wavelet spectra is caused by

local synchronization (affecting independently the oscillators

within each layer), several frequency ranges exhibit a local

increase of the wavelet energy in both layers. The latter is

associated with the emergence of global synchronization and

is a consequence of the action of intralayer connections. Such
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FIG. 3. Five-layered network (M = 5) for λ1 = 0.5, λ2 = 0.005,

T = 100 s. The upper left panel reports the two similarity functions

of Eqs. (7) and (8) (see text for definitions). All other panels

report the wavelet energy spectra W (f ) (left plots) and the effective

frequency distributions N (f ) (right histograms) for the different

layers, calculated at t∗ = 1500 s.

frequency bands are easily localized on the surface of the

wavelet spectra product,

W (f,t) = W1(f,t) × W2(f,t). (6)

In Fig. 2(d), the bands where local maxima of W (f,t) are

observed are marked as I, II, and III. In particular, the

frequency band I is characterized by a significant increase of

the wavelet energy in both layers. Inside band I, the frequency

value where the wavelet energy of the first (second) layer

reaches its maximum is marked by a solid circle (square) in

Fig. 2(b) [2(c)]. The right plot of Fig. 2(d) discloses that the

locations of the local maxima of W1 and W2 inside region I

match perfectly, which, in turn, is a proof of synchronization

between the layers.

Next, we consider the case of a five-layered network

(M = 5), with inter- and intralayer links arranged in a way

similar to the two-layer case. The degree of similarity vi,j

between layers i and j can be defined (at a macroscopic scale)

as the integral of the difference between the corresponding

wavelet energy distributions Ŵi,j (f,t∗) taken at t∗ = 1400 s

(i.e., at the moment at which a stationary state has emerged,

and the network topology does not change in time, except for

small, residual, fluctuations affecting the intralayer links wi,j ):

vi,j =
[∫ f2

f1

|Ŵi(f ) − Ŵj (f )|df
]−1

, (7)

where f1 = 2 Hz and f2 = 10 Hz are the bounds of the

frequency range for which global synchronization is ana-

lyzed. The value Ŵ (f,t) = (f2 − f1)W (f,t)/
∫ f2

f1
W (f ′,t)df ′

for each frequency f quantitatively characterizes the contri-

bution of the corresponded spectral component in the whole

wavelet power spectrum of the considered macroscopic signal.

The obtained values are shown in Fig. 3 (upper left panel,

with solid blue circles). One easily sees that, due to the
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interplay between the adaptive evolution of links within each

layer and the interlayer interactions (which may differ for

different pairs of layers), the degree of similarity vi,j is

distributed inhomogeneously [i.e., without an apparent order

with respect to the pairs (i.j ) of layers].

Likewise, one can define another degree of similarity νi,j (at

a microscopic scale, i.e., based on the states of the individual

oscillators) as

νi,j =
[∫ f2

f1

|Nfi
(f ) − Nfj

(f )|df
]−1

, (8)

where now Nfi
(f ) is the effective frequency distribution of the

oscillators in the ith layer (i.e., the conveniently normalized

number of oscillators of the ith layer displaying an effective

frequency f ). The values of νi,j reflect then the similarity in

terms of the number of oscillators (belonging to the ith and

j th layers) exhibiting synchronous oscillatory behavior at the

selected frequency, or equivalently, the similarity of structural

clusters formed within the two layers. The upper left panel

of Fig. 3 reports also (with solid pink triangles) the values

of νi,j for each pair of layers and immediately beholds the

remarkably good correspondence between the two measures,

Eqs. (7) and (8).

Our examples demonstrate that homophilic and homeo-

static adaptive principles ordain the structure and dynamics

of multilayer networks into states where local and global

synchronization (within specific frequency bands) can be

revealed from measurements of microscopic and macroscopic

quantities. The results, obtained for the considered model of

multilayer network, demonstrate that the proposed approach,

based on continuous wavelet transform, allows to effectively

describe the dynamics of the complex networks on micro-

scopic and macroscopic scale. It is important to know that the

proposed method is based on the relation between the values

of the spectral energy, calculated across wide bands frequency

by means of continuous wavelet transform, and do not use

directly the instantaneous phases of the signals. This means

that the proposed approach is useful for the analysis of complex

nonstationary signals, which do not have the well-pronounced

component in the spectrum, e.g., EEG signals. Such conclusion

is of relevance for the experimental study of neural networks

in the brain, where spectral properties are actually related to

the various forms of sleep-wake and cognitive activity.

III. NEUROPHYSIOLOGICAL DATA

At a physiological level, available recordings (through

EEG or MEG) provide typical samples of brain dynamics

at its macroscopic level. They reflect, indeed, integrated

extra-cellular voltage changes of neural ensembles, located in

the vicinity of the recording electrode. In parallel (and with the

aid of intra- or extracellular single unit recordings), an operator

is endowed with the opportunity of browsing the activity of

a single neuron, inspecting brain dynamics at its microscopic

level.

In the current study, local field potential (LFP) and single

unit recordings were obtained in three-month-old genetic

absence epilepsy rats (GAERS), a very similar genetic absence

model as the earlier mentioned WAG/Rij model, under

Fentanyl-Droperidol anesthesia. A 1 M	 Tungsten electrode

was lowed in the deep layers of the somatosensory cortex,

and another 1 M	 Tungsten electrode was placed into the

posterior thalamic nucleus. LFP and unit recordings of a

given brain structure were gathered by the same electrode.

Band-pass filters between 500 Hz and 10 kHz were applied

for the unit recordings, digitalized at a constant sampling rate

of 20 kHz by the SPIKE2 recording software [27,28]. LFP

signals were filtered between 1 and 100 Hz and digitalized

at a constant sampling rate of 1 KHz. All experimental

procedures were performed in accordance with the guidelines

of the council of the European Union of the 24th November

1986 (86/609/EEC), which were approved by local authorities

(review board institution: LandesamtfürNatur, Umwelt und

Verbraucherschutz Nordrhein-Westfalen; approval ID No.:

87-51.04.2010.A322).

Figure 4(a) illustrates the typical setup under which

measurements are performed. In Fig. 4(b), we report the

record of the EEG signal, as well as that of its underlying

microscopic components (the activity of one or a few neurons)

measured by the same electrode as the EEG signal. Since

also the neuronal spiking is recorded with an extracellular

electrode, it should be noted that it cannot be guaranteed that

the spiking activity represents a single neuron. Therefore, spike

sorting, using principle component analysis, was applied prior

to analysis. Macroscopic and microscopic signals are acquired

in two different (yet reciprocally connected) brain structures:

cortex (S1) and thalamus (PO), which enables us to give ground

to the above discussion about interrelationships between local

and global synchronization processes.

In Fig. 4(b), we report the record of the EEG signal, as well

as that of its underlying microscopic components (the activity

of one or a few neurons) measured by the same electrode as the

EEG signal. Since also the neuronal spiking is recorded with

an extracellular electrode it should be noted that it cannot be

guaranteed that the spiking activity represents a single neuron.

Therefore, spike sorting, using principle component analysis,

was applied prior to analysis.

In the recordings, a transition is observed from normal,

physiological brain activity of the rat toward a pathological,

hypersynchronous behavior, corresponding to the occurrence

of an epileptic seizure (the so-called spike-wave discharge

(SWD) due to the specific waveform of the electroencephalo-

graphic signals with well-pronounced large amplitude sharp

peaks and slow waves [29,30]) and involving an abiding

change in local and global synchronization properties of the

brain network.

Before seizure starts, the registered macroscopic activities

of cortex and thalamus are complex signals with continuous

power spectra (see Figs. 4(c)–4(e) for t < 8.4 s). Such a

behavior actually corresponds to cells firing spontaneously

and in a uncorrelated manner. At the onset of the seizure,

instead, cells of cortex and thalamus start to exhibit a correlated

bursting activity, which gives rise to the regularly repeated

spike pattern (followed by a wave pattern) that is seen in the

macroscopic recordings (Fig. 4(b) for t > 8.4 s). A similar

increase in phasic coupling during SWD can be seen for

intracellular recordings of absence epileptic rats in VB and

RTN neurons [31].
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FIG. 4. (a) Schematic illustration of the experimental setup. The

panel is a drawing of the rat’s brain, with marked regions of cortex and

thalamus, which contain the location of the recording electrodes that

actually register the group neuronal activity by means of local-field

potential (LFP) and the activity of the single cells (unit recordings).

(b) The set of registered neurophysiological signals, reflecting the

activity of single cells (unit S1 and unit PO) and the group activity

in cortex and thalamus (LFP S1 and LFP PO). (c–e) Wavelet

decompositions of the macroscopic signals. (c) WPO(s,t) obtained

from signal LFP PO, (d) WS1(s,t) obtained from signal LFP S1, and

(e) W (s,t) = WS1(s,t) × WPO(s,t). The solid circles and the solid

squares shows the main spectral component of the signals, taken from

the single cell in thalamus (unit PO) and cortex (unit S1), respectively.

s = 1/f indicates the timescale, and f the linear frequency. The

instant of time at which there is the onset of SWD is shown by an

arrow and marked by a vertical white dashed line.

Like in the case of the network model, the distributions

of wavelet energy WS1(s,t) and WPO(s,t),s = 1/f (obtained

from the macroscopic signals S1 and PO) change from an

almost homogeneous configuration (t � 8.4 s) to a shape that

is characterized by a local peak positioned in the frequency

band corresponding to the epileptiform activity. According

to the above discussion, this fact reveals that the onset of

epileptic seizure establishes local synchronization within both

cortex and thalamus, as well as global synchronization between

these two regions of the brain. Indeed, by comparison of

the surfaces WS1(s,t) and WPO(s,t), and by consideration

of the surface W (s,t) = WS1(s,t) × WPO(s,t), one can see that

the considered cells in the cortex and in the thalamus are

synchronized at the frequency of the seizure and, moreover,

they are synchronized with other cells belonging to the same

part of the brain (see Fig. 4(e) for t > 8.4 s).

Following the approach described in the previous section,

one can analyze the dynamics of the thalamocortical network

by means of a multichannel set of EEG recordings taken from

Wistar Albino Glaxo from Rijswijk (WAG/Rij) rats [32]—a

genetic animal model giving rise to absence epilepsy. In the

experiment, six-month-old WAG/Rij rats were chronically

implanted with stainless steel electrodes in layers 4 to 6 of

the somatosensory cortex, as well as in (i) the posterior thala-

mic nucleus, (ii) the ventral-posteromedial thalamic nucleus,

(iii) the anterior thalamic nucleus, and (iv) the reticular

thalamic nucleus under deep isoflorane anaesthesia. Two

weeks after surgery, EEG signals were recorded from theses

structures in freely moving animals. Signals were filtered by a

band pass filter with cutoff points at 1(HP) and 100(LP) and

a 50 Hz Notch filter and digitalized by WINDAQ-recording-

system (DATAQ-Instruments Inc., Akron, OH) [33,34] with a

constant sample rate of 500 Hz. Experiments were carried

out in accordance with the Ethical Committee on Animal

Experimentation of Radboud University Nijmegen (RU-DEC).

As a result, the recordings taken from three cortical and

four thalamical electrodes are considered at different instants

of time: (i) at the beginning of a seizure, (ii) at the end of

a seizure, (iii) at a time at which the rat is in a state of

active wakefulness, and (iv) at a time at which the rat is in

a state of slow-wave sleep; refer to Fig. 6. Moreover (and

according to the neurophysiological background of absence

epilepsy [35]), the dynamics of the network is studied within

three different frequency bands: (i) 
f1
(the low-frequency, LF,

oscillation range 1–5 Hz), (ii) 
f2
(the range 5–10 Hz, SWD, of

seizure activity), and (iii) 
f3
(the range of high-frequency, HF,

sleep spindle range activity, 7–20 Hz). The wavelet energies

WLF,WSWD, and WHF are calculated as

WLF,SWD,HF =
∫ t

t−τ

[ ∫

f ∈
f1,2,3

Wi(f,ξ )df

]

dξ, (9)

where τ = 2.5 s is a time lapse chosen conveniently (and

judiciously) to neglect spurious fluctuations, and i is the

number of the EEG channel.

The characteristic dynamical states of corticothalamocor-

tical neuronal network of epileptic brain [the SWD (at the

onset and the end), active wakefulness, and deep slow-wave

sleep] are illustrated in Fig. 5, which reports typical EEG

fragments recorded in cortex and thalamus, with the analyzed

time epoches that are marked by rectangles and labeled as

SWDO, SWDE, AW, and DSWS, respectively. Figure 6 (left

panel) illustrates the ratio of the wavelet energies [Eq. (9)]

calculated for all considered states (columns) and all channels

(rows). One easily sees that during SWDO (i.e., when the

epileptic seizure has just recently started), most of the wavelet

energy (about 50%) is concentrated in the range of SWD

activity (WSWD), both in the cortex and in the thalamus. This
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FIG. 5. Typical fragments of registered EEG signals, reflecting

the activity of the neuronal group in cortex and thalamus during the

epileptic discharge (SWD, a), during active wakefulness (AW, b), and

during deep slow-wave sleep (DSWS, c). The epochs corresponding

to the onset (SWDO) and end (SWDE) of SWD, to AW and DSWS

are marked by rectangles.

reflects the fact that the synchronization level between neurons

in the thalamocortical network of the brain increases at those

frequencies which correspond to the band of the epileptic

seizure 
f2
. As the end of the seizure is approached (during

SWDE), synchronization in the frequency band of the epileptic

seizure 
f2
increases in the cortex, leading to an increase of

WSWD. At the same time, neurons in the thalamus start to go

out of the hypersynchronous state, and the value of WSWD

decreases in the thalamus recordings.

During the normal physiological activity, i.e., active wake-

fulness (AW) state, the value of WSWD is less in the cortex.

At the same time, the wavelet energy increases in the

frequency bands 
f1
and 
f3

, both in the cortex and in the

thalamus, which is caused by the neurons being involved

in other types of brain activities (as, for instance, cognitive
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SWDE AW DSWS SWDO SWDE AW DSWS

FIG. 6. Left panel: the ratio of the wavelet energies [Eq. (9)],

calculated for all considered states (columns) and all channels (rows).

Right panel: the energy values [Eq. (9)] averaged over the cortical

(solid bars) and thalamical (empty bars) channels. The error bars stand

for the maximal deviation within the channel set. Once again, SWDO,

SWDE, AW, and DSWS stay for the SWD onset, the SWD end, the

active wakefulness, and the deep slow-wave sleep, respectively.

tasks). During deep slow-wave sleep (DSWS), most of the

wavelet energy is concentrated in the low-frequency band


f3
, and WLF experiences a significant growth, which actually

corresponds to an increased number of the neurons producing

low-frequency rhythms, and global synchronization between

them both in cortex and in thalamus.

To quantitatively compare the changes in wavelet energies

for the different states of the epileptic brain, we further

report the values 〈WLF〉, 〈WSWD〉, and 〈WHF〉, which are the

energy values [following Eq. (9)] averaged over the cortical-

thalamical recordings. These averaged values are shown in the

right panel of Fig. 6, where solid and empty bars correspond to

the cortex and thalamus recordings, respectively. The obtained

results show that during the transition from the seizure onset

to the seizure end (SWDO → SWDE) neurons in the cortex

exhibit a growth of the synchronization level in the SWD

frequency band 
f2
, while the synchronization level in the

thalamus decreases. As a consequence, the fact that the

thalamic neurons abandon the synchronous state seems to be

the cause of the epileptic discharge destruction.

At first glance this seems in contrast to previous ob-

servations of network dynamics preceding onset of SWDs

[36]. These authors analyzed the spatiotemporal dynamics

of interactions within and between widely distributed cor-

tical sites using MEG from juvenile absence patients and

reported for the 3 Hz band a preictal cortical long-range

desynchronization 1.8 s before SWD onset, followed by

local and long-range synchronization, all before SWD onset.

A second MEG study focusing on preictal δ activity in

children with childhood absence epilepsy, using nonlinear

associations and time-frequency analyses of MEG signals

noticed a preictal increase in power of the SWD band (3 Hz),

an increase in local clustering, and a decrease in path length

immediately preceding SWD onset, while during SWDs a

general sharp increase in local connectivity and decrease in

global connectivity was observed [37]. In a study toward

cortical initiation and spreading of SWDs in the same genetic

epilepsy model as was currently used, WAG/Rij rats, it was

found that during SWDs cortical synchronization is increased

as compared to the interictal periods [10], suggesting a

common cortical phenomenon during SWDs in the rat model

and in human patient patients. In WAG/Rij rats the dynamics of

preictal widespread cortical activity were not studied in detail.

Others [38–40] focused on corticothalamic, thalamocortical,

and thalamothalamic interactions preictally and ictally in the

model. The outcomes of their studies showed next to a general

increase in coupling during the SWDs, also a complex dynamic

pattern of interactions between different channel pairs during

SWDs. Interestingly, preictal phase decoupling was seen

between cortex and thalamus and between various thalamic

sites [38] with pairwise phase consistency analyses, not with

other methods, such as linear Granger causality [39]. Although

this may or may not be related to the findings of Amor and

Gupta cum suis, it is preferable to compare the human and

rat data with the same analytical methods. Moreover, cortical

spreading is undoubtedly different from corticothalamocorti-

cal spreading and or intrathalamic spreading. In all, it remains

inconclusive whether in the WAG/Rij model preictal cortical

desynchronization occurs comparable to the Amor et al. and

Gupta et al. findings; this awaits experimental verification. A
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cortical grid covering the entire surface of the rats cortex might

be necessary to obtain comparable rat data, notwithstanding

the putative differences between human MEG and rat EEG

data, the results obtained in juvenile absence patients versus

WAG/Rij rats and the same analyses technique, the anatomical

differences between humans and rats, and the location of the

foci.

With the increase of 〈WSWD〉, the values of 〈WLF〉 and

〈WHF〉 decrease in the cortex, while the vice-versa occurs in

the thalamus. 〈WSWD〉 decreases in the SWD frequency band

with the growth of 〈WLF〉, whereas 〈WHF〉 remains practically

unchanged. Such changes expose that the neuron groups in

the cortex and thalamus interact with different intensities in

the different frequency bands, depending on the specific brain

state. For instance, synchronization in the SWD frequency

band in the cortex becomes stronger at the end of the epileptic

discharge. At the same time, in the thalamus one observes a de-

crease of synchronization in the SWD frequency band, and and

increase in low- and high-frequency bands, i.e., the neurons

start to interact more intensively producing the low- and high-

frequency activity. During AW and DSWD, one observes a

significant increase of the wavelet energy 〈WLF〉 with a simulta-

neous decrease of the energy, corresponding to the epileptiform

pattern 〈WSWD〉 and alpha and theta activity 〈WHF〉.
A first conclusion that can be drawn is that neurons in

the cortex and thalamus interact in the various frequency

bands with different intensities depending on the specific state,

leading to a variety of synchronous patterns. It should be

noted that, along with the interaction between neurons located

relatively close to each other in the cortex layers, the interaction

between remote regions of the corticothalamocortical network,

e.g., different nuclei of the thalamus, is also relevant for

understanding processes leading to the hypersynchronous

epileptic dynamics.

The interaction between cortical and thalamic neural activ-

ity preceding and during SWDs has been described in WAG/Rij

rats [10] and in GAERS [41], another well validated and

commonly used genetic absence model. Multisite cortical and

thalamic field potential recordings showed increased coupling

and synchronization between the cortical SWD initiation site

and thalamus, while also synchronization, between cortical

EEG and oscillatory activity in thalamus (ventral postero

medial (VPM) and posterior) cells, gradually increased just

prior to the cortical defined SWD and was maintained at

an elevated value during the SWDs. Earlier, Pinault [42]

described, also in GAERS, that action potentials in VPM

and reticular thalamic nucleus occur in synchrony with the

generalized SWDs.

As in the case of the multilayered network model, one can

analyze the degree of the interaction between the different parts

of the corticothalamocortical network during the generation of

the different forms of activity. It can be assumed that in brain

the neurons belonging to the different brain structures can

be involved together in the generation of the certain rhythm.

In this case, the wavelet spectra of the EEG signals, taken

from these areas of brain, are expected to demonstrate the

increase of the similarity. According to this, the strength of

the interaction between the corresponded areas of brain can be

estimated by the calculation of the degree of similarity wi,j via

Eq. (7), where the limits of integration are chosen accordingly
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FIG. 7. (a) The mean value of the strength of interaction between

the different parts of the thalamocortical neuronal network. The values

[calculated for whole network (w1
ij ), for the cortex (w2

ij ), and for

the thalamus (w3
ij )] are averages of the coefficients wi,j over the

considered parts of the brain. wi,j are estimated via Eq. (7), based on

the similarity of the wavelet spectra. (b) The schematic illustration of

the coefficients wi,j , reflecting the degree of interaction between the

different parts of the cortex and thalamus, for all considered states

of brain network and frequency bands. The values of wi,j are shown

by the increase (or decrease) of the line width, which connect the

corresponded brain structures. Other stipulations are as described in

the caption of Fig. 6.

to the frequency bands associated with the type of the rhythm

(in our study the limits are defined by the bands 
f1,2,3
).

Figure 7(a) reports the mean degree of the interaction be-

tween the areas of brain belonging to the cortex, the thalamus,

and the whole neuronal network, calculated by averaging the

coefficients wk
i,j over the corresponding region of the brain

network (with k = 1 for the whole corticothalamocortical

network, k = 2 for cortex and k = 3 for thalamus). In Fig. 7(b),

the values wi,j are shown by the increase (or decrease) of the

line width, which connect the corresponding brain structures.

From Fig. 7(a), one easily sees that the corticothalamocortical

network is characterized by a high degree of global interaction
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at the onset of the seizure (SWDO state) and during the

DSWS state, while the minimal value of w1
i,j is achieved

for the SWDE state. Looking at the w2
i,j and w3

i,j values

(corresponding to cortex and thalamus, respectively), one finds

that the thalamical network exhibits a high level of global

interaction during the SWDO and DSWD states, while during

the SWDE state the different regions of thalamus interact

weakly with each other. On the contrary, the cortical regions

interact more strongly at the end of the epileptic seizure.

From Fig. 7(a), one can conclude that, along with the

interaction within the different parts of cortex and thalamus,

the increase of the interaction between these parts manifests

itself as a key feature of the epileptic seizure. Indeed, at

the beginning of the SWD (i.e., when the seizure occurs

spontaneously) there is an increase not only within the cortex

and thalamus separately, but also between them. At the end

of seizure, despite the strong and stable cooperation between

the parts of the cortex, the interaction between the thalamic

nuclei and the cortical layers decreases. Based on our study

it can be proposed that SWDs end due to the diminishment

of the interaction between cortex and thalamus. Functional

deactivation studies of the cortex and dorsal thalamus in

WAG/Rij’s and GAERS [43–45] demonstrate that an intact

cortex and thalamus is a prerequisite for SWDs to occur. More

fine-tuned experimental manipulations, for instance, with the

aid of optogenetic techniques, are to be performed to clarify

the causal role of particular interaction of specific neuronal

groups in certain frequency bands in, e.g., seizure generation.

From Fig. 7(b), where the interaction in the corticothalam-

ocortical network is shown for the different frequency bands,

one can conclude that at seizure onset (the SWDO state), the

different parts of neuronal network demonstrate a high level of

interaction in the bands 
f1
and 
f2

(the low- and spike-wave

oscillations frequency). The increase of the interaction in the


f1
band is related to the presence of the low-frequency δ

precursors, as shown in Ref. [46]. At the spike-wave discharge

end (the SWDE state), there are still strong interactions in

the cortex, related to the SWD-frequency band. At the same

time, the parts of the thalamus interact in a much weaker way

in this frequency band and, moreover, exhibit a significant

decrease in the interaction with cortical neurons. When the

seizure is finished and the animal exhibits active wakefulness,

the different parts of corticothalamocortical network start to

interact stronger in the frequency band 
f3
, which corresponds

to the generation of high-frequency brain rhythms. During the

deep slow-wave sleep, such interactions can be observed in

the band 
f1
of low frequencies, while in the other bands the

different parts of the brain interact more weakly. During the

AW state, the parts of the cortex and thalamus interact almost

equally with each other, but the high degree of the interaction

here is revealed in the high-frequencies range. Conclusion is

that, during slow-wave sleep, the low-frequency oscillations

(δ waves) are generated by the neuron populations both in the

cortex and in the thalamus, and this type of brain activity is

characterized by a high degree of interlayer interaction in these

parts of the brain as well as over the whole neuronal network

of cortex and thalamus.

The degree of interaction between the cortical and tha-

lamical EEG channels in the frequency band 5–10 Hz has
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FIG. 8. (a) The mean values of the strength of interaction between

the different parts of the thalamocortical neuronal network, calculated

for the time interval corresponding to the development of the SWD.

The values w2
ij (for the cortex) and w3

ij (for the thalamus) are averages

of the coefficients wi,j over the considered parts of the brain. wi,j

are estimated via Eq. (7), based on the similarity of the wavelet

spectra. The values u2
ij (for the cortex) and u3

ij (for the thalamus)

are also averages of the coefficients ui,j over the same parts of the

brain, where ui,j are estimated based on the wavelet coherence [25].

The EEG samples, corresponded to the first seconds of the SWD

development (b) (vicinity of time moment t1) and (c) t2.

also been considered on the time interval corresponding to

the development of the SWD (see Fig. 8), using both the

classical wavelet coherence and our approach. In Fig. 8(a),

the wavelet coherence values [calculated for the cortex (w2
ij )

and for the thalamus (w3
ij )] are the averages of the coefficients

wi,j over the considered parts of the brain, where wi,j are

estimated via Eq. (7), based on the similarity of the wavelet

spectra. The values [calculated for the cortex (u2
ij ), and for

the thalamus (u3
ij )] are also the averages of the coefficients

ui,j over the same parts of the brain, where ui,j are estimated

based on the wavelet coherence [25]. One can see that the

dependencies calculated with the different approaches behave

similarly: there is an increase of the w2
ij and u2

ij values (cortex

interactions) within the SWD region, and a decrease of the

values w3
ij and u3

ij (thalamic interactions). In Figs. 8(b) and

8(c), the EEG samples are given for cortical and thalamical

channels in the vicinity of the moment of the time t1 chosen

close to the SWD onset and in the vicinity of t2 chosen

close to the end of the SWD, respectively. One clearly

sees that the oscillations in cortex and thalamus demonstrate

phase synchronization. When comparing the cortical and

thalamical EEG corresponding to the moments t1 and t2, it

is possible to observe that, indeed, thalamic EEG start to

desynchronize for t = t2, while cortex still demonstrate strong

synchronization.

At the same time, despite the similarity of the wavelet

coherence and the proposed approach, the latter has the major

advantage in the analysis of the multichannel data. While the

wavelet coherence allows us to estimate the mutual coupling

between the pair of signals, the proposed measure can be used

for the detection of the global synchronous structures in the

array of signals. It can be done by the multiplexing of the

corresponded Ŵi(f,t) values in time-frequency domain [see

Fig. 2(d)]. This feature of the proposed approach becomes
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important when processing the large amount of the multichan-

nel data in real time and can be used in brain-computer inter-

faces or for the real-time monitoring of the human conditions.

IV. CONCLUSION

Microscopic processes characterizing the interaction be-

tween the units of a network affect the properties of the network

at any macroscopic scale. However, how this interdependency

can be used in the reverse way (i.e., to reveal the nature of

microscopic interactions by the study of the global changes

of the network) is not generically obvious, especially when

the dynamics of the single nodes is unknown. This is an

important issue in neurophysiology, where data on the brain

dynamics is available by means of electroencephalograms

(EEG) or magnetoencephalograms (MEG), which actually

measure the electric group activity of large ensembles of cells,

while the state of individual neurons and the evolution of

the links between them cannot be easily revealed. We have

here demonstrated how to use the macroscopic properties of

the network to get information on the network dynamics at a

microscopic level.

Our analysis started with a model network of Kuramoto

oscillators, for which the evolution of the links between

the nodes is controlled by homophilic and homeostatic

adaptive principles. We gave evidence that the increase

of synchronization within groups of nodes (leading to the

formation of structural synchronous clusters) causes also

the defragmentation of the wavelet energy spectrum of the

macroscopic signal. Considering a multilayer network model

we revealed that nodes, belonging to different layers, interact

with each other with different degrees of intensity. Namely, a

strong interaction between the layers reflects the appearance

of structural clusters (with the same spectral properties) on the

layers. The degree of similarity between pairs of layers can be

estimated as the integral of the difference between the wavelet

energy distributions, and they display inhomogeneities over

the considered pairs of layers.

The same phenomena were observed in a neurophysiolog-

ical system considered, namely, in the corticothalamocortical

network of the brain of a genetically epileptic rat [47],

where the group electrical activity are registered by means

of multichannel EEG. We demonstrated the possibility to

determine the degree of interaction between the interconnected

regions of the brain. Specifically, depending on the type of

brain activity, we found that the neurons in cortex and thalamus

interact in the different frequency bands with different degrees

of intensity, which, in turn, leads to the formation of different

synchronous patterns. Along with the interaction between

neurons located relatively close to each other in the cortex

layers, we gave evidence of interaction between more remote

regions of corticothalamocortical network, e.g., different

thalamic nuclei.

In addition, we detected strong synchronization of the

cortical layers at the end of the epileptic seizures together

with a decrease in their synchrony with thalamic nuclei. This

is an indication of the attempt of the cortex, the location

of the epileptic onset zone in this epilepsy model, to keep

the seizure ongoing, which is corrupted by the thalamus.

Interestingly, network analyses of the multichannel EEG

in the same epilepsy model showed a high coherence and

phase consistency between cortex and thalamus and between

cortical layers during the seizure [38,48] in agreement to

what is well known in absence epileptic patients. A recent

proposed scenario on how absence seizures spontaneously

end, based on different types of advanced signal analyses,

also mentioned that intrathalamic processes heavily contribute

to the spontaneous ending of the seizure [39].

Our approach constitutes a practical technique for the

investigation of brain neuronal network interactions, with the

potential of getting a glance at interactions at a microscopic

level by the analysis of the macroscopic signals commonly

acquired in neuroscience studies. In particular, our study may

be applied in a wide range of neurophysiological studies, which

investigate functional brain network conductivities by means

of EEG and MEG data during different forms of cognitive and

behavioural tasks as well as for the study of pathophysiological

brain processes.

Here we describe a model showing that local synchroniza-

tion is the basis for long-range synchronization. The data, as

obtained in epileptic rats, are just an example. Our model

does not only illustrate how SWDs are generated within the

corticothalamocortical network, but is also applicable to the

broader topic of information processing within brain networks.

The thalamocortical system is well described anatomically and

functionally, this is mainly the case for the relay nuclei and

the subgranual layers. However, and in contrast, the function

and mode of information processing of higher-order thalamic

nuclei is less well known [49]. In addition, the recognition and

more detailed analysis of the immense diversity of, e.g., phase

relationships and its implications for functional information

processing within cognitive subdisciplines (e.g., attention or

motor performances) is currently debated (see, for example,

Ref. [50]). Maris et al. [51] proposed that diversity in phase

relationships may support effective neuronal communication

by enhancing selectivity and flexibility. Our findings support

their general idea and demonstrate that dynamics and diversity

are certainly present in pathophysiology leading to the occur-

rence of SWDs. It cannot be excluded that these principles

also govern other corticothalamocortical processes, such as δ

sleep and sleep spindles, next to cognitive functions.
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