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Abstract:

A kinetic paraxial model of a collisionless plasma stationary expansion in a convergent-divergent magnetic

nozzle is analyzed. Monoenergetic and Maxwellian velocity distribution functions of upstream ions are compared,

leading to differences in the expansion only on second and higher-order velocity moments. Individual and 10

collective magnetic mirror effects are analyzed. Collective ones are small on the electron population since only a

weak temperature anisotropy develops, but they are significant on the ions all over the nozzle. Momentum and

energy equations for ions and electrons are assessed based on the kinetic solution. The ion response is different

in the hot and cold limits, with the anisotropic pressure tensor being relevant in the first case. Heat fluxes of

parallel and perpendicular energies have a dominant role in the electron energy equations. They do not fulfill a 15

Fourier-type law; they are large even when electrons are near isothermal. A crude electron fluid closure based

on a constant diffusion-to-convective thermal energy ratio is shown equivalent to the much invoked polytropic

law. Analytical dimensionless parameter laws are derived for the nozzle total electric potential fall and the

downstream residual electron temperature. Electron confinement and related current control by a thin Debye

sheath and a the semi-infinite divergent magnetic nozzle are compared. 20

I Introduction

The understanding of the expansion of magnetically-guided plasmas into vacuum is crucial to improve

the propulsive performances of a magnetic nozzle (MN) [1]. This constitutes the main acceleration stage of some

electrodeless plasma thrusters, proposed for in-space electric propulsion, such as the helicon plasma thruster

(HPT) [2–5], the electron cyclotron resonance thruster [6], the applied-field magnetoplasma dynamic thruster [7], 25

and the variable specific impulse magnetoplasma rocket (VASIMR) [8]. Magnetized plasma expansions are

also relevant in other fields of plasma physics, for example in plasma sources for material processing and

manufacturing [9] or in astrophysical jets [10].

Magnetized plasma beam expansions have been investigated extensively during the past years, both

theoretically [3, 11–15] and in the laboratory [5, 16–23]. Given the inherent difficulty of measuring downstream 30

properties reliably in low-density plasma plumes, theoretical models and simulation codes with the capability

of accurately predicting the plasma response in the MN become crucial to study these devices. In the realm

of plasma models, several approaches exist. On the one side, fluid models tend to be computationally fast

and can provide much insight on the main properties of the plasma two-dimensional(2D) expansion [13,14,24].

However, for a near-collisionless plasma, the closure of the fluid model with equations for the heat fluxes is 35

far from obvious, and requires kinetic information on the plasma state. The fluid closure is generally more
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critical for electrons, which constitute a confined species with modest particle and energy drifts along the MN;

ions are supersonically accelerated by the MN and its internal energy matters only in particular devices [25].

Commonly-claimed isothermal or polytropic closures for collisionless electrons lack proper physical justification:

the first case is just an ad hoc simplification while the second one must be understood as a phenomenological40

closure based on fitting experimental data. This data fitting shows electron cooling in a divergent MN with a

polytropic coefficient in the range 1.1-1.3 [26–29].

Paraxial (i.e. quasi one-dimensional) MN models, relying on the Vlasov equation, are showing to be an

affordable and fruitful way to analyze the exact kinetic expansion of a collisionless plasma beam. In this context,

Mart́ınez-Sánchez et al. [30] developed a steady-state model computing self-consistently the velocity distribution45

function (VDF) of ions and electrons along a slender convergent-divergent MN. It was demonstrated that the

downstream electron cooling and temperature anisotropy are a direct consequence of the emptying of regions

of the velocity space of the electron VDF and that cooling determines the finite ambipolar potential drop along

the MN.

The present paper aims to complete the analysis of Ref. [30] in several directions, part of them suggested50

from other, more recent works. In order of relevance, the first goal here is to analyze the equivalent fluid

model of the MN. The solution of the Vlasov model of the paraxial MN is the VDF of ions and electrons

along the nozzle. The successive integral moments in the velocity space of these VDFs provide the macroscopic

plasma magnitudes, and the integral moments of the Vlasov equations they fulfill. This will allow, for instance,

to assess the relevance, for ions and electrons, of (a) heat fluxes in the energy equations and (b) collective55

magnetic mirror effects in the momentum equations. The analysis of the equivalent fluid model was carried

out partially by Sánchez-Arriaga, Zhou, et al. [31, 32] within a paraxial, time-dependent kinetic model of a

divergent-only MN, finding out that electron heat fluxes were of the same order of magnitude than convective

fluxes of electron thermal energy.

The second goal is to obtain parametric scaling laws of relevant plasma magnitudes, such as the total60

potential fall along the nozzle, or the downstream temperatures and heat fluxes. These laws are important for

quick estimates of a MN performance without determining the full plasma response. Ramos et al. [33] carried

out an analytical study of the asymptotic downstream response except for the heat fluxes.

The third objective is a detailed comparison of the different plasma response in the convergent and

divergent regions of the MN, and the determination of the plasma conditions at the MN throat. Special attention65

will be given to the collective magnetic mirror effect on ions and electrons in each region and its coupling with

the development of temperature anisotropy. Also, it will be shown that the ion VDF at the MN throat differs

largely with the upstream ion VDF. This fact must be taken in to account when comparing convergent-divergent

MN models with divergence-only MN models such as those of Refs. [31, 34]. In particular, the comparison of

the present model with the convergent-only MN of Ref. [35] will be addressed. The convergent-only MN model70

ends in a wall at a throat preceded by a thin Debye sheath. The similarities and differences between the plasma

properties across this sheath and those across the whole divergent MN will be commented.

The last goal is to compare the plasma expansion for upstream monoenergetic and Maxwellian ion VDFs.

Only the first case was considered in Ref. [30]. Velocity dispersion and heat fluxes are supposed to have a different

importance in the two cases, mainly if the ion population is hotter than the electron one in the upstream source.75

The paper is organized as follows. Section II summarizes the key aspects of the kinetic MN model. Section
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III presents spatial results, discusses the two cases of ion VDFs, compares the physics within the convergent

and divergent regions, and presents parametric results at the MN throat and far downstream. Section IV

discusses the macroscopic plasma equations, with special attention to the collective magnetic mirror effect and

the relevance and modeling of the heat fluxes. 80

II Model formulation

The kinetic MN model described in Ref. [30] is summarized here for self-containment. A convergent-

divergent externally applied magnetic field B(z) with a single maximum BM located at z = 0 and vanishing

at z → ±∞ (where B → 0) creates a MN that channels a fully magnetized ion-electron plasma generated at

a source located at z → −∞. Subscripts ‘0’, ‘M’, and ‘∞’ will be used for locations z → −∞, z = 0, and 85

z → ∞, respectively. The kinetic model attempts to determine the steady state of the paraxial, collisionless,

quasineutral, current-free, low-beta, and fully-magnetized plasma plume in the MN. In this asymptotic limit,

particle drifts and induced magnetic field effects are negligible. This ideal fully magnetized model would fail of

course, at |z| large enough where ion and electron magnetization fades, but this fact is marginal to the goals of

the present study, centered on understanding basic plasma phenomena of the MN expansion. 90

Since the spatial distance z does not appear explicitly in the model, a monotonic variable related directly

to the non-monotonic magnetic field provides a more universal description of the spatial behavior. A convenient,

space-like dimensionless variable is

ζ = sign (z) log10

BM
B

, (1)

which places the throat M at ζ = 0 and scales logarithmically with B.

The model will determine iteratively the ambipolar electric potential φ(ζ) and the VDFs of electrons and 95

ions along the central magnetic line of the MN. It is assumed (and then confirmed by the solution) that φ(ζ)

decreases monotonically along the expansion from φ(−∞) = 0 to φ(+∞) = φ∞(< 0); this finite total potential

fall along the MN is to be determined too.

As a consequence of full-magnetization and lack of collisions, electrons and ions conserve their total energy

E and magnetic moment µ, that is 100

E =
m

2
(w2
‖ + w2

⊥) + eZφ, µ =
mw2
⊥

2B
, (2)

where: species subscripts have been omitted, m and Z represent, respectively, the particle mass and charge

number, w‖ is the particle velocity parallel to B (i.e. axial in this model), and w⊥ is the perpendicular velocity.

Solving equation (2) for the two velocity components yields

w⊥(ζ, µ) =

√
2µB(ζ)

m
, (3)

w‖(ζ, E, µ) = ±
√

2

m

[
E − eZφ(ζ)− µB(ζ)

]
, (4)

where w⊥ is positive by definition, while the plus and minus signs for w‖ indicate the forward and backward 105

marching of particles, respectively.

Condition w‖(ζ, E, µ) = 0, i.e.

E = Zeφ(ζ) + µB(ζ), (5)
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Figure 1: Three typical curves of µm for three ion and three electron energies (these ones increasing from curve

1 to 3). The red dots correspond to local minima µT (E). This example corresponds in fact to the solution for

mi/me = 104 and Ti0/Te0 = 10.

sets the spatial turning point for particles of given (E,µ); thus eZφ+µB acts as the effective potential function

for the parallel motion of a particle. Alternatively, equation (5) defines the maximum magnetic moment µm

allowable for a particle with energy E to reach location ζ:110

µm(ζ, E) =
E − eZφ(ζ)

B(ζ)
. (6)

Figure 1(a)-(b) displays three typical spatial profiles of µm for ions (i) and electrons (e) and three different

energies E. The curves show all the possible topologies found with the model discussed here.

The axial electric field pushes ions downstream and electrons upstream in both the convergent and

divergent side of the nozzle. The magnetic mirror effect, in contrast, tends to keep both types of particles away

from the throat region. This leads to different behaviors (a) of ions and electrons, and (b) in the convergent115

and divergent sides of the MN. Taking first the case of ions, for a given energy E in figure 1(a), the curve

µm(ζ) always has a single minimum µT (red dot in the figure) at ζ = ζT in the convergent side. Ions from the

upstream source with low enough µ can surpass that location and therefore are free ions reaching ζ = +∞.

The rest of them are reflected back to the source. Therefore, for given E, there are four µ-subregions in the ion

phase space: µ < µT , for free ions; µT < µ < µm and ζ < ζT , for reflected ions; µT < µ < µm and ζ > ζT ,120

devoid of (upstream) ions; and µ > µm, forbidden energetically.

For electrons the situation is more complex. First, electrons with E > e|φ∞|, such as those of curve

3 of figure 1(b), are free electrons, reaching ζ = +∞, or are reflected back to the source, depending on their

magnetic moment µ. Second, electrons with E < e|φ∞| lead to curves of type 1 or 2 of figure 1(b), and, if

originated in the upstream source, are reflected back to it. In addition, for curves of type 2, with two local125

extrema, there is region of doubly-trapped electrons, bouncing between two locations of the divergent side: they

are decelerated axially by φ when moving downstream, and by B when moving upstream. The populations of

reflected plus doubly-trapped electrons constitute the confined electron population.

As boundary conditions for the VDFs, it is assumed that there are no sources of particles at the down-

stream end, ζ = +∞, while, at the upstream plasma reservoir, the forward marching VDFs (i.e. with w‖ > 0130

and named f+) of ions and electrons are known and semi-Maxwellian (except for a monoenergetic case discussed

in Sec III), that is

f+
0 (E) = n?

(
m

2πT?

)3/2

exp

(
− E
T?

)
, (7)
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with n? and T? reference values of density and temperature. The backward-marching side of each VDF for

reflected particles, named f−, is to be determined.

Macroscopic magnitudes of ions and electrons are obtained from the velocity-integral moments of their 135

VDF. Integration is more conveniently carried out in the invariants space (E,µ), so that for any magnitude χ

its velocity integral becomes

〈χ〉(ζ) =
2πB

m2

∫ ∫
dµdE

χf(E,µ)

|w‖(ζ, µ,E)| . (8)

Since doubly-trapped electrons are disconnected from both the upstream and downstream ends, in this

stationary, collisionless model, their VDF can only be postulated. Here, following Ref. [30], the VDF expression

for the reflected electrons will be also used for doubly-trapped electrons, which means a full replenishment of 140

the doubly-trapped region during the transient MN formation.

The main macroscopic magnitudes for each species are density, particle (parallel) flux, parallel pressure,

perpendicular pressure, (parallel) heat fluxes of parallel and perpendicular energy, given, respectively, by

n ≡ 〈1〉, nu = 〈w‖〉, (9)

p‖ = nT‖ = nm〈c2‖〉, p⊥ = nT⊥ = nm〈w2
⊥〉/2, (10)

145

q‖ =
m

2
〈c3‖〉 =

m

2
〈w3
‖〉 −

m

2
nu3 − 3

2
p‖u, (11)

q⊥ =
m

2
〈w2
⊥c‖〉 =

m

2
〈w2
⊥w‖〉 − p⊥u. (12)

Here, species subscripts are dropped, u is the (axial) macroscopic velocity of the species, c‖ = w‖ − u is the

diffusion velocity of each species, and T‖ and T⊥ are parallel and perpendicular temperatures. The average

pressure is defined as p = (p‖ + 2p⊥)/3 and similarly for the average temperature. The parallel heat flux of

total energy is q = q‖ + q⊥. Notice that: the heat fluxes are indeed diffusive fluxes of thermal energy while the 150

convective fluxes of parallel and perpendicular thermal energy are (3/2)p‖u and p⊥u; only free subpopulations

contribute to parallel fluxes of particles and energy; and, in this paraxial model, focused in the MN centerline

all perpendicular fluxes are zero, i.e. 〈w⊥〉 = 〈w3
⊥〉 = 〈c2‖w⊥〉 =0.

Using equation (8) with 〈w‖〉 the particle flows are straightforwardly determined:

nu

B
=

n?√
2πmT

3/2
?

∞∫

E0

dEµT (E) exp

(
− E
T?

)
(13)

with E0 = 0 for ions and to E0 = −eφ∞ for electrons. These flows are constant spatially, which implies that 155

1/B is proportional to the effective cross-section area of the flow.

For the density profiles, taking into account that f−i = 0 for free ions and f−i = f+
i for reflected ions, the

ion density satisfies

ni(B,φ) =
ni?√
πT

3/2
i?

∞∫

0

exp

(
− E

Ti?

)(√
E − eφ+ sign[ζiT (E)− ζ]

√
E − eφ−BµiT (E)

)
dE. (14)

Similarly, for electrons one has [30]

ne(B,φ) =
ne?√
πT

3/2
e?

∞∫

−eφ∞

sign[ζeT (E)− ζ] exp

(
− E

Te?

)√
E + eφ−BµeT (E)dE

+ ne? exp
eφ∞
Te?

(
1 + erf

√
ξ

2
eξ −

√
ξ

π

)
(15)
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with, in the last term, ξ(φ) = e(φ− φ∞)/Te?. Taking the limit ζ → −∞ (i.e. B → 0) in these expressions, the

upstream densities correspond indeed to the reference values:

ni0 = ni∗, ne0 = ne∗.

It will later found that Ti0 = Ti∗ and Te0 = Te∗ too. This means that, at ζ = −∞, the back-marching VDFs

of ions and electrons are practically semi-Maxwellian. In other words, at ζ → −∞, the contribution of the free160

populations of ions and electrons is a set of measure zero on the velocity integral moments.

Hereafter, only the case of a current-free plasma beam is discussed, i.e. equal fluxes of ions and electrons

in the MN. Then, the total potential drop |φ∞| and the profile of the ambipolar electric potential profile φ(ζ)

must be such that the plasma beam satisfies the current-free and quasineutrality conditions,

e(niui − neue) = 0, ni(B,φ) ' ne(B,φ) ≡ n. (16)

The iteration procedure on φ(ζ) to fulfill the above conditions and obtain the self-consistent solution of the165

problem is the same than in Ref. [30]. Notice that equations (16) states that in a paraxial current-free plasma

ue = ui. The extension of the model to a current-carrying plasma is straightforward, just requiring to change

one boundary condition.

Plasma equations are normalized with BM , n0, Te0, and
√
Te0/mi. Then, the dimensionless model turns

out to depend only on two parameters: the ion-to-electron temperature ratio and the ion-to-electron mass ratio,170

Ti0/Te0 and mi/me.

III Kinetic results

III.1 Spatial profiles and influence of the ion VDF form

Reference [30] studied the MN model with Maxwellian electrons and monoenergetic ions with

f+
i0(E) =

ni0m
3/2
i

4π(3Ti0)1/2
δ

(
E − 3

2
Ti0

)
, (17)

with δ the Dirac function. Figure 2 compares the plasma expansion along the nozzle for the monoenergetic and175

Maxwellian ion VDFs. Figure 2(a) shows that the electric potential profiles φ(ζ) are practically the same for

both ion VDFs. This indicates that φ(ζ) does not depend practically on the velocity dispersion of the ion VDF,

what makes sense since it is determined from conditions (16) involving only plasma densities and flows. Section

III.3 will further compare electric potential drops for the two ion VDFs.

Next, since the electron response depend totally on the relation φ(B), which is nearly the same for the180

two ion VDFs, all electron macroscopic magnitudes are almost identical for both distributions, as figure 2(b),

(c), (f), and (i) corroborate. Since ions and electrons share density and axial velocity, n and ui, differences on

macroscopic variables between the two ion VDFs are noticeable only for higher velocity moments, such as ion

temperatures and heat fluxes. This is well illustrated in figure 2(d), (e), (g), and (h).

Differences in Ti‖ are seen only in the divergent region. Downstream, Ti‖ goes to zero only for the185

monoenergetic distribution, while a reduced parallel velocity dispersion is kept for the Maxwellian one, i.e.

Ti‖∞ 6= 0. On the contrary, Ti⊥ is the same for both distributions and goes to zero downstream (Ti⊥∞ = 0) due

to the inverse magnetic mirror effect, as it will be discussed later. Whereas ions develop a significant temperature
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Figure 2: Normalized plasma properties for Maxwellian ( and ) and monoenergetic ( ) ions, with

mi/me = 104 and Ti0/Te0 = 10.

anisotropy along the MN, the electron temperature is practically isotropic except far downstream. Ion and

electron heat fluxes present complex behaviors that will be discussed in Section IV. Finally, the qualitative 190

trends shown in figure 2 for the hot-ion case continue to be valid in the cold-ion case, i.e. for Ti0/Te0 � 1.

Some parametric studies on the influence of Ti0/Te0 and mi/me on the solution are developed below.

III.2 Behavior on the convergent region and the MN throat

The magnetic mirror effect (MME) on both ions and electrons makes the plasma response very different in

the convergent side, where it slows down the parallel motion of individual ions and electrons, and the divergent 195

side, where it accelerates axially ions and electrons. When this behavior is combined with the effect of the

electric potential, φ(ζ), which is similar in both nozzle sides but opposite for ions and electrons, it turns out

that the collective MME is very different for ions and electrons.

Figure 3 plots the main plasma properties at the magnetic throat M. Plot 3(a) shows that the potential

fall in the convergent side scales mainly with the electron temperature and lies within the interval 200

− eφM/Te0 ∼ 0.55− 0.70, (18)

if mi/me > 103 (that is for ion-electron plasmas). Figure 3(b) shows that the fraction of free electrons at

the MN throat (and therefore in the convergent MN) is still very small. The increase of that fraction when
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Figure 3: Normalized plasma properties at the magnetic throat M, for different mi/me and Ti0/Te0 = 0.1 ( )

and 10 ( ). (a) Plasma potential, (b) ion velocity, (c) plasma density, (d) free electron density, (e) electron

temperatures, and (f) ion temperatures.

mi/me decreases is due to a lower electrostatic confinement of electrons, caused by a lower |φ∞|. Figure 3(c)

plots the plasma density at M, which follows approximately the Boltzmann relation, nM/n? ' exp(eφM/Te0) ∼
0.50−0.54; the next Section will explain this behavior. Figure 3(d) plots the ratio of the plasma velocity versus205

the reference sound speed at the throat, csM =
√

(TeM + TiM )/mi. Notice that the plasma here is a collisionless

fluid, and an expression for the real sound speed would require an exact closure of the fluid equations, which

the next Section finds unavailable. Nonetheless, it is still reasonable to say that the plasma beam experiences

a sonic transition around the nozzle throat.

Figures 3(e) and 3(f) show the parallel and perpendicular temperatures of ions and electrons at M . While210

electrons remain practically isothermal in the convergent MN, ion temperature components behave differently

and develop an anisotropy. In fact, although Ti‖ decreases similarly for both hot- and cold-ion simulations

(Ti‖ ' 0.2Ti0 and Ti‖ ' 0.33Ti0 for cold- and hot-ion cases, respectively), Ti⊥ increases at the throat. This

increase is related to the existence of a low-velocity empty region in the ion VDF at the throat, of characteristic

energy |eφM | ∼ Te0, as discussed in the Appendix A. This empty region becomes more relevant in the integral215

8



for Ti⊥ the lower the characteristic ion energy Ti0. Therefore, the temperature anisotropy in the ion population

is more marked in the case of initially cold ions, Ti0/Te0 � 1.

Both ion and electron particles suffer a similar a magnetic mirror effect, reducing the parallel particle

velocity and reflecting back particles with w‖ = 0. However, the collective MME is very different in the two

VDFs populations, due to the different effect of the electric potential on the two species: additional confinement 220

of electrons and parallel acceleration for ions. It is shown later that that the collective MME on a given species

appears as the volumetric force n(T⊥ − T‖)d lnB/dz in its momentum equation, so a collective MME is closely

related to the development of temperature anisotropy. Therefore, figures 3(e) and (f) suggest the existence

of a strong collective MME on the ions but a negligible one on the electrons. For electrons the individual

magnetic mirror plus the electric potential make the VDF to decrease its density along the convergent MN, 225

while remaining nearly Maxwellian and isotropic. Appendix A discusses and plots the evolution of the ion and

electron VDFs on the convergent MN, in order to better understand their collective behaviors.

Several works on kinetic models consider the plasma expansion in a divergent MN only, placing the

plasma source at the throat M (or nearby) [31, 36]. This configuration makes full sense when plasma processes

on the convergent MN are dominated by phenomena different from magnetic guiding, such as plasma production 230

and heating or interaction with chamber walls. The plasma conditions imposed at the throat in these models

generally differ partially with the present ones, for instance on the ion temperature anisotropy and the beam

’near-sonic’ macroscopic velocity. This fact must be taken into account for a proper comparison with the present

model.

III.3 Parametric laws for downstream magnitudes 235

The asymptotic downstream values of plasma magnitudes are important variables characterizing the

plasma response in the MN. They depend on the two free parameters of the model: the mass ratio, mi/me,

which defines the propellant type; and the temperature ratio Ti0/Te0, which species stores more internal energy

upstream.

The main downstream variable is surely the total electric potential fall in the convergent-divergent MN, 240

plotted in Figure 4(a). The dimensionless final potential, e|φ∞|/Te0, increases logarithmically with the mass

ratio. For electron-ion plasmas -i.e. mi/me ≥ O(103)-, the potential fall (including the drop in the convergent

MN) is 5-8 times the upstream electron temperature, which agrees reasonably well with experimental data,

taking into account the differences between this model and practical configurations [27, 29]. The dimensionless

final potential depends weakly on the temperature ratio: it almost does not change from Ti0/Te0 =0.1 to 1, 245

and only by a 15-20% percent from Ti0/Te0 =1 to 10. This implies that |φ∞| is set mainly by the electron

thermal energy and is consistent with the role of φ of confining most of the electron population. Approximate

semi-analytical fittings for e|φ∞|/Te0 versus mi/me and Ti0/Te0 are derived below.

Figure 4(b) plots the plasma beam velocity, For the cold-ion case Ti0/Te0 = 0.1, the numerical linear

fitting is 250

ui∞√
Te0/mi

≈ 0.168 ln
mi

me
+ 1.95, (19)

and the two coefficients in this linear fitting become (0.160, 2.25) and (0.118,4.40) for Ti0/Te0 = 1 and 10,

respectively. In the cold-ion case, one has ui∞ ≈
√

2e|φ∞|/mi, while a relevant contribution from the conversion
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Figure 4: (a) Total dimensionless potential drop versus the mass ratio, (b) plasma beam velocity versus the

mass ratio, (c) downstream parallel ion temperature versus the mass ratio and (d) downstream parallel electron

temperature versos the total potential drop. Ti0/Te0 = 0.1 ( ), Ti0/Te0 = 1.0 ( ) and Ti0/Te0 = 10 ( ); the

dashed lines correspond to approximate fitting laws.

of ion thermal energy into kinetic energy is added in the hot-ion cases. In plasma thrusters, the final beam

velocity is closely related to the specific impulse, Isp. To this respect it is interesting to observe that, to

dominant order, ui∞ ∝
√
me/mi ln(mi/me), so that the heavier the propellant is, the larger electric potential255

fall compensates partially the higher ion-mass penalty in Isp.

Since ui∞ is finite, the continuity equation (13) states that the plasma density goes to zero as n ∝ B−1.

The perpendicular temperatures of ions and electrons also go to zero, i.e. Ti⊥∞ = Te⊥∞ = 0, due to the

conservation of the magnetic moment (i.e. the inverse magnetic mirror effect). However, the parallel velocities

of ions and electrons keep part of their upstream dispersion and the respective downstream parallel temperatures260

of ions and electrons are not zero. Figure 4(c) plots Ti‖∞/Ti0. For the cold-ion case Ti0/Te0 = 0.1, the numerical

linear fitting is
Ti‖∞
Ti0

≈ −0.099 ln
mi

me
− 3.91 (20)

The two coefficients in this linear fitting become (−0.077,−1.87) and (−0.033,−0.96) for Ti0/Te0 = 1 and 10,

respectively. Figure 4(b) shows that the dependence of Te‖∞/Te0 on the mass and temperature ratios is through

the final electric potential fall, via the numerical linear fitting265

ln
Te‖∞
Te0

= −0.67
e|φ∞|
Te0

+ 0.89. (21)

Both final parallel temperature ratios are much less than one and they are lower the higher mi/me and, thus

e|φ∞|/Te0) are. It can also be concluded that the final electric potential depends more on the electron state

than on the ion one.
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Figure 5: Functions µT (E) for ions and electrons, Ti0/Te0 = 0.1, 1.0 and 10. Plots are for mi/me = 104 but

µiT (E) and µeT (E) are practically independent of mi/me.

Next, Fig. 5 presents µT (E) for ions and electrons for the parametric ranges mi/me = 102–105 and

Ti0/Te0 = 0.1–10. As Ref. [30] showed and figure 5(a) illustrates, the electron function µeT (E) is practically 270

independent of the two dimensionless parameters and satisfies rather accurately the linear relation

µeT (E) ≈ E/BM . (22)

For Maxwellian ions, figure 5(b) shows that µiT (E) is independent of the mass ratio, but depends on Ti0/Te0.

Only for the hot-ion case the approximation µiT (E) ≈ E/BM is applicable. Using these linear approximations

for µeT (E) and µiT (E), analytical expressions are found for the flows of electrons and hot ions in equation (13).

For mass ratios above O(102) and Maxwellian VDFs, these are 275

nue
B
' ne0
BM

√
Te0

2πme

(e|φ∞|
Te0

+ 1
)

exp

(
−e|φ∞|

Te0

)
, (23)

and
nui
B
' ni0
BM

√
Ti0

2πmi
' 0.40

ni0
BM

√
Ti0
mi

(
for

Ti0
Te0
� 1

)
. (24)

Equating both flows, the total potential fall satisfies the implicit equation

e|φ∞|
Te0

− ln

(
1 +

e|φ∞|
Te0

)
= ln

√
miTe0
meTi0

− 0.2, for
mi

me
� Ti0

Te0
� 1, (25)

where the offset −0.2 has been added from the linear numerical fitting plotted in figure 4(a). Notice that the

second term on the left side of equation (25) provides just a mild correction to the first one.

For the cold-ion case, no simple-enough expression for µiT (E) has been obtained, but it is found that the 280

dimensionless potential fall depends no more on Ti0. A suitable numerical fitting based on the results of figure

4(a) is
e|φ∞|
Te0

− ln

(
1 +

e|φ∞|
Te0

)
= ln

√
mi

me
− 0.4, for

Ti0
Te0
� 1. (26)

These two fittings of the MN potential fall for the cold- and hot-ion cases match at Ti0/Te0 ≈ 1.5.

Figure 2(a) showed that |φ∞| was very similar for Maxwellian and monoenergetic ion VDFs, for same

mass and temperature ratio. Indeed, for a monoenergetic and hot-ion VDF, equation (17), the ion flow satisfies

nui
B
' ni0
BM

√
3Ti0
16mi

' 0.43
ni0
BM

√
Ti0
mi

, for
mi

me
� Ti0

Te0
� 1,

which differs very little from equation (24) for a Maxwellian VDF, thus justifying the previous observation.
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Figure 3(a) and equation (18) showed that the potential drop in the convergent MN is modest compared285

to the total potential drop in the MN. Hence, the above scaling laws for e|φ∞|/Te0 can then be taken as valid

approximations for the potential fall in the divergent nozzle, eφ∞M/Te0, with φ∞M = φM − φ∞. Then, the

logarithmic dependence of eφ∞M/Te0 on mi/me resembles much the one for the potential fall in a conventional

Debye sheath next to a wall. To this respect, it is worth to compare the model for the magnetic cusp (indeed

a convergent MN) studied by Mart́ınez-Sánchez and Ahedo [35] to the present convergent-divergent MN one.290

In their case the plasma was current-free too, and the convergent MN was followed by a Debye sheath (of zero

thickness and non-neutral) and a solid wall located at the MN throat, while here the convergent MN is followed

by the divergent MN (of infinite extension and quasineutral).

The total potential fall within their sheath and the one within the present divergent MN have indeed the

same role: to confine appropriately most of the electrons in order that the electron current leaking downstream295

is the correct one (i.e. equal to the ion current for a current-free beam). Electron and ion physics are shown

here to be more complex in the divergent MN than in the planar, purely-electrostatic sheath, but the required

potential drops for electron confinement are rather similar.

Figure 2 showed that most plasma magnitudes reach their downstream asymptotic values around ζ ∼ 2,

that is B/BM ∼ 0.01. Thus, the downstream law s discussed in this subsection are strictly valid only if the300

plasma continues to be fully-magnetized at ζ ∼ 2, which is unlikely (mainly for ions) in many practical cases.

Ion and, then, electron demagnetization at an earlier stage of the expansion will certainly modify somehow the

plasma response, but collective changes could be rather limited. This judgement is supported in the comparison

of the present MN model with the (collisionless, paraxial) unmagnetized plume model by Merino et al. [34]

where plasma anisotropic cooling and similar parametric laws for e|φ∞|/Te0 are found too.305

IV Macroscopic plasma description

IV.1 The equivalent fluid model

Taking velocity moments of the Vlasov equation for a generic VDF, the fluid equations for the bulk

variables are obtained. For the present paraxial flow, the main fluid equations for each species are

nu

B
= const, (27)

B
d

dζ

(
mnu2

B

)
+ nZe

dφ

dζ
+
dp‖
dζ
− (p‖ − p⊥)

dlnB

dζ
= 0, (28)

nuZeφ

B
+
nu

B

[
mu2

2
+

3T‖
2

+ T⊥

]
+
q‖ + q⊥
B

= const, (29)

nuT⊥ + q⊥
B2

= const, (30)

corresponding to the conservation of particles, momentum, total energy, and perpendicular energy, respectively.

The constant in the continuity equation was already determined in equation (13). The momentum equation

(28), which cannot be reduced to a first integral, shows 1/B as the effective cross-section variation in the310

convective term, and includes the collective MME as a third volumetric force. The total energy conservation

equation (29) includes the contributions of the kinetic and thermal energy flows plus the parallel heat flows of

parallel and perpendicular energies, plus the ‘flow of potential energy’ (indeed, the integral of the work of the
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Figure 6: Relative contribution for electrons (left) and hot ions (right) of the different terms of the fluid equations

of (a)-(b) momentum, (c)-(d) total energy per particle, and (e)-(f) perpendicular energy. Units in vertical axes

are arbitrary. Results are for mi/me = 104 and Ti0/Te0 = 10.

electric field). Dividing this equation by equation (27), the conservation of total energy ‘per particle’ in the ion

or electron flow is 315

mu2

2
+

3T‖
2

+ T⊥ +
q‖ + q⊥
nu

+ Zeφ = E , (31)

with E the total energy per (average) particle. Finally, the very simple form of the perpendicular energy equation

(30), without kinetic energy flow and electric field work, is due to the paraxial approximation (i.e. it is the

perpendicular energy in the centerline). The factor 1/B2 in this equation combines the effect of the cross-section

variation and the magnetic mirror effect (which increases the perpendicular kinetic energy proportionally to B).

Since these fluid equations are exact moments of the Vlasov equation they must be satisfied by the 320

integral velocity moments of the ion and electron VDFs obtained directly from the kinetic model. In fact the

error in fulfilling these fluid equations measures the error of the numerical integration algorithms; in all cases

presented here it has been checked that this error is negligible. The analysis of the fluid terms for mi/me = 104

and Ti0/Te0 = 10 is presented in Figure 6 for electrons (left) and ions (right). Each subplot depicts the different
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terms of the momentum, the total energy, and the perpendicular energy equations for ions and electrons along325

the nozzle, thus illustrating on the dominant terms in each equation and nozzle region. Concerning plots 6(c)-

(d), equation (31) has been used and the constant on its right-hand side has been included into the potential

energy term. This is not possible in plots 6(e)-(f) for the flows of perpendicular energy, but units have been set

in order that the right-side constant in equation (30) is equal to 1.

Starting with electrons and their momentum equation, figure 6(a) shows that inertia terms are negligible,330

as expected. The collective MME turns out to be marginal in the whole MN, due to the small temperature

anisotropy except at the far-downstream end. Therefore, electrons present everywhere a near perfect balance
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between the electrostatic force and the pressure gradient,

en
dφ

dζ
' dpe

dζ
. (32)

Furthermore, in the convergent part of the MN, since Te is almost constant, and equation (32) becomes the

Boltzmann relation. This is not the case in the the divergent MN, where no simple relation among Te, n, and 335

φ have been found.

Regarding the conserved electron energy Ee, figure 7(a) plots its dependence with mi/me and Ti0/Te0.

Interestingly Ee + eφ∞ is almost universal and close to (1.2 ± 0.1)Te0. Once more it is worth to compare this

result to the case of a conventional Debye sheath where Ee + eφ∞ ' 2Te0. Figure 6(c) plots the different

contributions to the electron energy balance: the kinetic electron energy is negligible and the potential energy 340

flow is the dominant contribution, which is balanced by the thermal and heat flows, with the dominance of

the heat flow of parallel energy. Figure 6(e) shows that qe⊥ and Te⊥nue near-balance each other except in the

central region of the MN. Since the electron temperature is nearly-isotropic except in the cold downstream end,

a good approximation for the electron energy balance is

5

2
Te +

qe
nue
− eφ ' Ee, (33)

with qe = qe‖ + qe⊥. The error in using this approximate law, in the wide parameter range considered, is found 345

to be below 7% in the whole MN. Regarding the dependence on B, the asymptotic analysis of Ramos et al. [33]

for the electron population at the downstream end of the nozzle, yielded nTe‖u ∝ B and nTe⊥u ∝ B5/3, which

is confirmed here. Additionally, it is found here that similar scaling laws apply to the parallel and perpendicular

heat fluxes: qe‖ ∝ B and qe⊥ ∝ B5/3. Next Subsection further analyzes electron heat fluxes.

The behavior of the hot ion population, shown on the right plots of Fig. 6, presents interesting differences 350

with respect to the electron one. In Fig. 6(b) for the ion momentum equation, the electrostatic force is found

to be marginal for hot ions (except for a discreet contribution in the divergent region). The momentum flux

gain is provided mainly by the two pressure pressure terms; in particular, the macroscopic MME is a dominant

contribution in the whole MN. Also, far upstream, the magnetic mirror and the parallel pressure gradient are

seen to develop sooner than ion convection. Figure 6(d) and (f) for the ion energy show that: the kinetic 355

energy of ions comes mainly from the electric potential energy and the parallel thermal energy; the heat flux

of parallel ion energy can be considered a second-order contribution; and the total flux of perpendicular energy

qi⊥ + nuiTi⊥ tends to zero at both nozzle ends but is non egligible in the central region of the MN. In the

cold-ion case, the response of the electrons is practically the same, but the ion response is simpler, as shown in

figure 8. Now, the ion kinetic and electrostatic energies dominate totally the ion response. Figure 7(b) plots Ei. 360

There is not a good-enough approximate expression, similar to equation (33), for the ion energy. The equation

1

2
miu

2
i +

3

2
Ti‖ + Ti⊥ + eφ ≈ Ei. (34)

yields an error of up to 10% in the central region of the nozzle and remains below 2% for both hot- and cold-ion

cases along the divergent region of the expansion. Nonetheless, equation (34) is not valid far upstream (where

relative errors are of order one).
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= 104, and Ti0/Te0 = 10.

IV.2 Electron heat fluxes365

Using the preceding fluid equations directly, i.e. without solving the kinetic Vlasov equation, requires

closure relations for the heat fluxes. Clearly, the CGL double adiabatic limit, q‖ = q⊥ = 0 [37], does not apply.

Still, ion heat fluxes are not a dominant contribution to the energy balance and could be ignored in a first

approach, as in equation (34). This is not the case for the electron heat fluxes, which are further investigated

in this subsection.370

First, electron heat fluxes do not follow a Fourier law, as it evident from Fig. 9, which compares the

shapes of the heat fluxes and the temperature gradients and shows that they are not proportional. Furthermore,

the upstream and downstream electron heat fluxes satisfy

ζ = −∞ :
qe⊥
nue

= −Te0,
qe‖
nue

=
3

2
Te0 + e|φ∞|, (35)

ζ → +∞ :
qe⊥
nue

= 0,
qe‖
nue
' Ee ≈ 1.2Te0, (36)

so they are nonzero, in general, while the temperature gradients become null at the two MN ends. These facts375

indicate that a heat flux in collisionless and collisional fluids does not represent the same physics. In both fluids,

the heat flux is the difference between the total and convective fluxes of total energy, Eqs. (11) and (12). In a

collisional fluid, the heat flux has the simple and clear meaning expressed by the Fourier law: it develops when

a temperature gradient exists and its effect is to reduce that gradient. No such meaning and effect extend to a

collisionless fluid, where the heat flux is principally a mathematical entity. A physical meaning can theoretically380

be extracted from the third-order equations in the fluid hierarchy for the transport of qe‖ and qe⊥; see, for

instance, Eqs. (43) and (44) of Ref. [38]. However, the complexity of these equations and the presence of

next-order terms make uncertain they can unveil a clear physical interpretation of these fluxes.

Instead, in order to understand better the relevance here of the heat fluxes (i.e. the diffusive fluxes of

thermal energy), Figs. 10(a)-(d) compare them with the convective thermal fluxes. First, Fig. 10(a) shows that

the total flux of perpendicular energy, qe⊥ + nueTe⊥, is positive all along the MN and tends to zero at both

nozzle ends, although only at the downstream end both individual contributions are zero. The negative value of

qe⊥ at the two asymptotic regions is a good example of its predominantly mathematical character. In the central

region of the MN, the total flux of perpendicular energy increases as a consequence of the individual magnetic

mirror effect on electrons; as a consequence qe⊥ increases (and changes sign). Next, Fig. 10(b) compares the
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Figure 10: (a) Ratio of perpendicular heat flux versus perpendicular thermal energy flux. (b) Ratio of parallel

heat flux versus parallel thermal energy flux. (c) Ratio of total heat flux versus thermal energy flux. (d) Ratio

of total heat flux versus total flux. mi/me = 103 ( ), 104 ( ), 105 ( ), and Ti0/Te0 = 10.

two parallel energy fluxes, both being positive along the whole MN. As commented above, the heat flux is

about 2.5-4 times the convective flux in the convergent MN in spite of the quasi-constant temperature there.

Then, just downstream of the nozzle throat, there is a minimum of the diffusion-to-convection ratio, which

balances the magnetic mirror effect on the fluxes of perpendicular energy. Further downstream, at ζ ≈ 2, all

curves intertwine around the value 7/3, and finally the diffusion-to-convection flux ratio increases to the large

asymptotic value

2qe‖
3nueTe‖

≈ 0.8
Te0
Te‖∞

− 1,

obtained from equation (31) and figure 7(a).

The splitting of the heat flux of the electron thermal energy into fluxes of parallel and perpendicular 385

thermal energy could be more a disadvantage than a benefit when looking for a comprehensive macroscopic

picture of the electron response. Figure 10(c) plots the diffusion-to-convection flux ratio of total thermal energy.

Compared to Figs. 10(a) and (b), this ratio is monotonic down to ζ ∼ 2, and then grows to attain a large

asymptotic value (not shown there). Figure 10(d) plots qe/nue, non-dimensionalized with Te0 and confirms

that the heat flow qe/B (which is proportional to qe/nue) is monotonically decreasing. The absence of local 390

extrema around the nozzle throat in figures 10(c) and (d), confirms the compensation there of the magnetic

mirror effects on parallel and perpendicular heat fluxes, caused by the exchange between perpendicular energy

diffusive flux, me〈w2
⊥c‖〉/2, and parallel energy diffusive flux, me〈c3‖〉/2.

In summary, in terms of the electron energy, three regions can be identified in the MN: (1) the convergent

region which is near isothermal but with a rather large heat flux, (2) the main divergent region, reaching until 395
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B/BM ∼ 0.01, with both Te and qe/B decreasing, and (3) the far downstream region, with qe/B near constant

and Te still decreasing to its asymptotic value.

The changing behavior of qe along the MN and its unclear physical basis does not help to derive a closure

relation for the set of electron fluid equations. Nonetheless, to end this subsection, let us comment a crude

phenomenological law for qe, which in the end is going to be equivalent to the phenomenological polytropic400

law, often used to analyze plasma expansions. Based on figure 10(c), let us take an average value of the

diffusion-to-convection flux ratio, i.e. qe/nueTe =const or, in vector formulation,

qe = ᾱ nTeue, (37)

with ᾱ a constant. This is substituted in the stationary internal energy equation

∇ ·
(

5

2
Tenue + qe

)
= ue · ∇pe +Qe, (38)

where, for compactness, Qe groups all volumetric sources of internal energy. For the stationary, collisionless

case, it is Q = 0 and ∇ · nue = 0, and a straightforward integration of the energy equation yields405

Te ∝ nγ̄−1 with γ̄ =
5 + 2ᾱ

3 + 2ᾱ
, (39)

with γ̄ an effective polytropic coefficient. The adiabatic case ᾱ = 0 corresponds to γ̄ = 5/3 and, as the relative

heat flux increases, γ̄ decreases. For instance, the intermediate value α = 7/2, extracted from figure 10(c),

o yields γ̄ ≈ 1.2, a value close to some experimental evidence [26–29, 39]. Implementing the crude closure

(37) in the energy equation (33) yields the known law between the electric potential fall and the polytropic

coefficient, [34]410

e|φ∞|
Te0

≈ γ̄

γ̄ − 1
. (40)

This implies that γ̄ depends on the mass and temperature ratios: for the cold-ion case and using equation (26)

one has

γ̄ ≈ 1 +
(

1 + ln

√
mi

2πme

)−1

. (41)

In summary, in a collisionless plasma, the polytropic law (39) is equivalent to a constant diffusion-to-

convection energy flux law (37). Indeed the variation of qe/nueTe along the nozzle is equivalent to the variation

of the ’local polytropic coefficient’415

γ = 1 +
d lnTe
d lnn

(42)

computed in Ref. [34], for instance. The advantage of the flux-based law proposed here is that it is easily

extended to a weakly collisional plasma expansion. However, the main point to stand out is that both of them

are crude phenomenological closures of a collisionless fluid model and do not reproduce the real electron energy

balance, mainly in the divergent MN, which generally is the region of most practical interest. This would

partially explain that some experimental data requires to be matched with piecewise polytropic laws [27, 28].420

In any case, these simple laws have a practical value for fluid simulations, since they provide acceptable spatial

profiles of the electric potential, and the plasma density and temperatures.

V Summary and conclusions

A previous work on a kinetic paraxial model of collisionless magnetized plasma, channelled by a convergent-

divergent MN, has been complemented here in several directions. One of the central studies has been on mag-425

18



netic mirror effects. In the fully-magnetized case, those are equally important to ion and electron particles,

but macroscopically, magnetic mirror effects manifest only if temperature anisotropy is generated. Contrary to

naive intuition, it has been shown that the collective mirror effect is very mild on electrons, in both convergent

and divergent regions, except very far downstream (where anyway the electron pressure and temperature are

residual). 430

On the contrary, magnetic mirror effects are shown to be strong on ions, generating a large temperature

anisotropy in the ion population. Furthermore, ions change from having Ti⊥/Ti‖ > 1 in the convergent MN

to Ti⊥/Ti‖ → 0 far downstream. Related also to the ion temperature, the comparison of the plasma response

when the upstream ion VDF is monoenergetic or Maxwellian shows changes only on second and higher order

velocity moments, such as Ti and qi. 435

The collisionless macroscopic (i.e. fluid) equations for ions and electrons have been analyzed using the

moments of the kinetic solution. First, the ion fluid behavior is different for the cold- and hot-ion cases. While

in the first case ion dynamics are dominated by the ambipolar electric field, in the second one the anisotropic

pressure and the collective magnetic mirror effect have dominant roles and even ion heat fluxes are not fully

negligible in the energy balance. 440

Since collective magnetic mirror effects are small for electrons, their momentum equation reduces to the

standard equilibrium between the electric and pressure forces, but no simple relation between pe and n (such as

the Boltzmann relation) can be invoked in general. In the present collisionless case, the equations for parallel

and perpendicular electron energies are the most challenging ones theoretically, since electron heat fluxes are

dominant terms in them even in the regions where the electrons are practically isothermal. The electron heat 445

flow qe/B is large and near-constant in the convergent nozzle and then decreases around the throat and the

divergent nozzle to reach a downstream asymptotic value. In almost the whole MN, the diffusive thermal flux

qe is larger than the convective one, (5/2)Tenue, so its variation along the nozzle is related closely to the total

potential fall.

The electron heat fluxes are far from fulfilling a Fourier-type law; in fact, a physical meaning for them 450

in a collisionless fluid is uncertain. Without it, a heat flux is just the mathematical difference between the

total (physical) energy flux and what is defined as the convective flux. The search of a physical basis should be

further pursued analyzing the corresponding third-order electron fluid equation.

Here, in order to find an approximate closure of the fluid equations, a simple phenomenological law based

on a constant diffusion-to convective thermal flux ratio has been discussed. It has been demonstrated to be 455

equivalent to the often invoked polytropic closure, but presents the advantage of being applicable to weakly-

collisional discharges too. In any case, these simple laws, although practical, do not reproduce the locally

changing physics of the real collisionless discharges.

Due to their practical interest, the parametric dependence of e|φ∞|/Te0 on the two free parameters of the

model, the propellant mass and temperature ratios, has been assessed and good analytical approximations have 460

been derived. Similar laws have been obtained for the final beam velocity and parallel temperatures of ions and

electrons. Finally and motivated by a previous work on the plasma discharge in a convergent MN followed by a

Debye sheath and a wall, the similarities and differences between the electron confinement and electric current

control by a very thin sheath and by the semi-infinite divergent region of a MN have been discussed.

The goal of the present paraxial MN model has been to understand fundamental kinetic aspects of a 465
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collisionless plasma discharge and their macroscopic manifestation. The implementation of the new findings

in the 2D or 3D electron fluid models used, for instance, by the codes DIMAGNO [13], FUMAGNO [24] or

EP2PLUS [40, 41] should improve the simulations of plasma expansions in real configurations such as those of

space electric thrusters.
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Appendix A Evolution of the velocity distribution functions475

In the parametric plane (µ,E), the VDF of each species, f , is constant to first order along the ζ direction.

This constant propagation of f from the upstream plasma reservoir is only interrupted by the turning points of

the axial velocity, which are given by equation (5), that is

Lζ : E(µ; ζ) = Zeφ(ζ) + µB(ζ). (43)

This equation constitutes a family of straight lines in the (µ,E) plane, with ζ as parameter. For each location ζ,

the region locally apt for having particles is the one above the corresponding Lζ . Far upstream and downstream,

the lines are horizontal, while at the MN throat, the line has maximum slope, BM :

L0 : E(µ) = 0, (44)

LM : E(µ) = BMµ+ ZeφM , (45)

L∞ : E(µ) = Zeφ∞. (46)

These three lines, together with the envelope Σ of family equations (43), delimit the regions of phase space of

free, reflected, and doubly-trapped particles. Figure 11 displays these lines for electrons (Z = −1) and ions480

(Z = 1) in the cold ions case. There are four distinct electron regions in the (µ,E) plane, separated by L∞, LM

and Σ. Region A contains the high-energy, low-µ electrons that manage to escape the MN, i.e., free electrons, for

all values of ζ. Region B has reflected electrons initially, and then becomes energetically forbidden downstream

as ζ increases. Region C has reflected electrons initially, then becomes forbidden, and then allowed again but

empty. Finally, the special region D is delimited by the envelope Σ, formed by line of equation (43) in the485

divergent part of the MN. This region transitions from having reflected electrons, to being forbidden, to having

doubly-trapped electrons, to being forbidden again. It is the only region of the parametric plane that can host

doubly-trapped electrons. In the case of ions, Σ is the relevant boundary for free (region A). To its right (region

C), reflected ions exist initially, then this region becomes forbidden, and then available and empty again..

In order to illustrate the evolution of the ion and electron VDFs along the magnetic nozzle and complement490

the discussion in the main text, Figure 12 plots three examples in the (w‖, w⊥) velocity plane. The first column

corresponds to electrons (for the cold-ion case). The second column corresponds to cold Maxwellian ions (a
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Figure 11: Regions in the (µ,E) plane for electrons and ions in the cold ion case, showing the lines L0, LM ,

L∞ and the envelope Σ. The thicker lines delimit regions where different types of particles are allowed and

correspond to: A, free particles; B (only electrons), reflected low energy particles, then forbidden; C, reflected

high energy particles, then forbidden, then empty; D (only electrons), reflected particles, then forbidden, then

doubly-trapped particles, then forbidden again.

Maxwellian f+
i0 with Ti0/Te0 = 0.1) and the third one to hot ions (a Maxwellian f+

i0 with Ti0/Te0 = 10). For

additional illustration, the thick black rings on the two last columns correspond roughly to a monoenergetic f+
i0 .

The three lines L0, LM and L∞ of equations (44), (45), and (46) become the following conical sections

in the velocity (v‖, v⊥) plane:

L0 : w2
‖ + w2

⊥ = −2Ze

mα
φ(ζ), (47)

LM : w2
‖ −

(
BM
B(ζ)

− 1

)
w2
⊥ =

2eZα
mα

[
φM − φ(ζ)

]
, (48)

L∞ : w2
‖ + w2

⊥ = −2Ze

mα

[
φ(ζ)− φ∞

]
. (49)

These lines are plotted in Figure 12 as a dotted semi-circle, dash-and-dot hyperbola, and dashed circle, respec- 495

tively. The envelope Σ is the free boundary of the coloured region, joining with the other curves smoothly.

Observe that LM for ions and electrons are conjugated hyperbolas, and that these hyperbolas become straight

lines at ζ = 0, position where they swap the major axis direction. In all plots, those particles on the w‖ > 0

side of the plane that do not have a corresponding image particle on the w‖ < 0 side are free particles; regions

where particles exist for both w‖ > 0 and w‖ < 0 represent reflected or doubly-trapped particles. 500

In the case of electrons (first column in the Figure), only LM and L∞ shape the regions of the VDF.

Electrons within the L∞ semicircle cannot reach the downstream end of the MN, and electrons above the

hyperbola LM cannot reach the nozzle throat. Therefore, only electrons above L∞ and to the right of LM are

free electrons. For ζ < 0 the rest of them are reflected electrons. For ζ > 0, those below L∞ and LM are

reflected, while those between these two lines are doubly-trapped ones. 505

In the case of ions (two last columns), only L0 and Σ (which approaches LM in most plots) play a role

as indicated in the analysis of the (µ,E) plane. The L0 semi-circle delimits a region below which no ions exist.

For ζ < 0, the forward-moving ions located above Σ cannot reach the throat and are reflected back; below Σ

and above L0, most of the ions are free and the region w‖ < 0 is almost empty. For ζ > 0, all ions are free ions,

and are located to the right of Σ and above L0. Far upstream essentially all ions are reflected and the ion VDF 510

is Maxwellian. As the expansion begins, an empty region appears (and correspondingly, the free ions can be
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electrons cold ions hot ions

Figure 12: Electron and ion VDFs in the velocity plane at four different spatial locations. First column is for

electrons in the cold-ion case. Second and Third columns are for a Maxwellian f+
i0 with Ti0/Te0 = 10 and 0.10,

respectively; the thick solid line is for the equivalent monoenergetic case of f+
i0. The mass ratio is mi/me = 104;

cs0 =
√
Te0/mi. Dotted lines are for L0, dash-and-dot ones for LM , and dashed ones for L∞. The vertical tick

in the x-axis is the local value of the macroscopic velocity ui. Observe that the w‖ axis is shifted in this last row.

identified).

At the throat and beyond all ions are free ions. In the divergent side, the empty region grows further,

and the hyperbola of equation (48) becomes more eccentric until far downstream only ions with w⊥ → 0 exist.

The different behavior of Ti⊥ at the throat M for hot- and cold- ions, shown in figure 3(f), can be515
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explained in view of the ion VDF of figure 12. At the throat (ζ = 0), the ion VDF would extend the semiplane

w‖ > 0 and yield Ti⊥ = Ti0, were it not for the empty region below the semi-circle L0 and the arc of envelope Σ.

The relevance of this empty region in the integral definition of Ti⊥ is small for hot-ions but large for cold-ions,

leading to the observed Ti⊥ ' Ti0 in the hot case and Ti⊥ ' 3Ti0 in the cold case.
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