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ABSTRACT

Two causality conditions that refer only to mass-shell
quantities are formulated and their consequences explored.
The first condition, called Weak Asymptotic Causality,
expresses the requirement that some interaction between the
initial particles must occur before the last intcraction
from which final particles emerge. This condition is shown
to imply that if a two-body scattering function is analytic
except for singularities in the energy variable at normal
thresholds, then a) the physical scattering functions in
two adjacent parts of the physical region separated by any
normal threshold are parts.of a single analytic function,

b) the path of continuation Joining these two parts bypasses
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the singularity in the upper half-plane of the energy
variéble, and ‘¢) the“iﬁtégral ovér-the'physical‘function‘
can ée represented aé'anfihtegral ovér a contour that is
distoptedrinﬁq thevqppgqehalf energy plan¢ (hence not, for_ E o
example,’byAa principal-value intégral). Singularities
possessing fiéité derivatives of all.ofders with respect to
‘real variations of the energy are not encompassed by this
result.

The second causality condition, called Strong Asymptotic
Causality, expresses thé‘réquirement that, apart from contri-
butions whose effects fall off fastér than any invgrse
power of Euclidian distance, momentum-energy ié cafried over
macroscopié distances only by sfable physical particles.

This condition implies thdt all n-particle scattefing functions
(nzl) are analytic, apart from infinitely'differentiéble
singularities, at physical points not lying on any positive-a
Landau surface. Moreover, the scéttering functions on the

two sides of ‘any such Landau surface are analytically connected
by a path that passe#'around the singularity surfacé in a

well defined manner, which i1s the same as in perturbation
theory. Thus, apart frdm possible infinitely differentiable
singularities, the physical region singularity structure is -
derived from a mass-shell causality requirement. Several properties

£+ oo . cas :
of the set &_ . of physical region positive- Landau surfaces are derived.
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T. INTRODUCTION

By a causality réquirement we shall mean a reQuirement that events

identified as effects occur‘later than events identified as their

causes. Such requirements have led to important properties of the
basic functions of classical electrqdynamics,l nonrelativistic quantum

3

mechanics,2 and gquantum field theory. ‘The aim of the present work is

to formulate causality requireménts'within a mass-shell S-matrix

theory and to derive from them-certaih properties of the physical-region

. . b5 ' .

scattering amplitudes.
The procedure is as follows. The momentum-space wave functions

representing the initial and final'pérticles,qf a scattering experiment

are chosen to be Schwartz test functions, and the scattering functions

are shown to be Schwartz distributions. The mass-shell constraints on

- these wave functions imply that the space-time wave functions defined

by Fourier transformation are solutions of the free-particle Klein-

Gordon equation. Consequently the regions over which these space-time

functions are nonzero cannot be bounded; these wave functions have appreci-

able values on cones, called velocity cones, running from the infinite
past to the infinite future. It is argﬁed in Section II that these

velocity cones can be iﬁterpreted as the trajecﬁory regions of the



correspondlng partlcles in the sense that the transition
amplitude of a reaction will be small unless the velocity 4

B

cones of approprlate partlcles 1ntersect These 1ntersections o
are 1nterpreted as the locatlons of the possible particle
collisions. It is their space- tlme orderlng that is
restricted by the causalltyvcondltlons,{

_Tne space-time wave functions are‘not strictly confined
to their velocity cones, but have "tails" tnat extend over
all space-time. This means tnat the locations of collisions
are not sharply defined. Thié presents a difficulty that
must be surmounted. |

In Section IIT a condition called Weak Asymptotic Causality
(WAC) is formulated. This conditilon expresses‘the general
idea that if a time t can be found such that none of thé
collisions bétween initial particles occur at times earlier
than t, and none of the ccllisions from which final particles
emerge occnr at times later than t, then the'corresponding
transition“amplitude shoula be small. 1In other words, the
first éollision between initial particles shouldgpccur no
later than the last collision that produces finél particles.
The WAC condition is formulated so that it refers only to
‘the asymptotic regions long before or long after the relevant
collisions take place. Indeed, it is only in these regions.
that the free-particle wave functions should have physical

significance. From the WAC condition we derive the ie rule

for continuation past any physical region Landau singularity
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surface of the two-body scattering functions. This weak
condition is not strong enough, however, to give the rule

for continuation past an arbitrary Landau singularity surface
of a general n—particle scattering funqtion.

In Section IV a stronger condition, calledetrong
Asymptotic Causality (SAC), is formulated. It embodies the
idea that energy-momentum 1s carried over macroscopic
distances only by physical particles. More precisely, the
probabilities of interactions having energy-momentum transfers
that cannot be attributed to physical particles are required
to fall off faster than any inverse power of the Euclidian
distance, as the distances involved become infinite. The
SAC condition is shown to imply that the scattering functions
are infinitely differentiable at all physical points not
lying on a positive-a Landau surface.

Points that do lie on some positive-o surface are
classified as type I points or type II points. Points which
lie on only-one positive-a Landau surface are included among
the type I points. The only known examples of type II points
are points at which two initial or two final particle energy-
momentum vectors are colllinear. The SAC condition is shown
to imply that in a neighborhood of a type I point K a

scattering function can be represented as a sum of a finite

number of terms of which the first is infinitely differentiable,

while the others are boundary values of holomorphic functions.



Furthermore, these boundary values are themselves infinitely
differentiable except on the‘relevant Landau surfaces. If

K belongs to .only one positive-o Landau surface, then there
is only one of these boundary value terms, and the ie-
prescription thaﬁ defines the boundary value agrées'with

that of perturbation theory. Similar results are derived for
type I points at which several positive-a surfaces intersect.
‘No results are obtained for type II points.

The results described above are useful in the following
way. In analytic S-matrix theory it is assumed that the only
singulérities of the scattering functions are those that
arise from the unitafity equations. But even granting that
the positions of the singularitles are known, there 1is the
question of how to continue around them. There is even the
prior question of whether the physical scattering fuﬁctions
on the two sides of a singularity passing through the physical
region are analytically connected at all. That these two
functions can differ is a real possibility. For example,
the K-matrix, which also has singularities on the Landau
surfaces, is not represented in sectors separated by these
surfaces by the same analytic function. This properﬁy is a

special feature of the scattering matrix. It has usually

been assumed that one -could accept the results of perturbation

~theory on this point, and take the scattering function in the

various sectors to be parts of a singie analytic function,



with the rule for continuation around singularities the same
as in perturbation theofy. The present work provides a
physical basis for these assumptions. Infinitely differen-
tiable singularities are not encompassed.v Since, however,
the singularities generated by the unitarity equaﬁibns are
apparently never infinitely differentiable, this omission is
of no practical significance in this context.

As a by-product we obtain a number of useful results concerning
the nature of the set<£ * of physical points lying on positive-¢ Landau
surfaces. Let Y1 be the mass shell. This consiéts of points in energy-
momentum space that satisfy the mass constraints and the conservation.laws.
Let 70% be the subset of )N where two (or more) initial or two (or more)
final_energy-momentum vectors are coliinear. Let Ji+[d)} be the Landau
surface in M associated with the Landau diagranlﬁ), and let (518[53] be
the subset of‘dE+IdDJ that excludes points lying on the gfde)'J of any’
contraction-CD' of D. Then 3;+ is the union of points lying.on the
various o‘ﬁgm}J. Each point K ;E( 7?10 of ig@] is shown to correspond
to a unique (apart from sealing) point in the space of Feynman «'s. Each
surface;fkyﬁBJ is shown to be an analytic submanifold of'7n.-775 of co-
dimension 1. It is shown that the ie prescripfions associated with a
set of intersecting Landau surfaces ig[@i] associated with a set of Q)i

that are all contractions of some single Q) are necessarily compatible.



II. BASIC FORMALISM

A. Transition Amplitudes

The basic observables 1in scattering experiments can be
considered to be the probability amplitudes for transitions
from initial systems of freely moving particies'to final
systems of freely moving particles. The general mathematical
form of these transition amplitudes is dictated in the
follqwing way by physical requirements.

Consider an arbitfary_reaction involving a total of n
initial and final particles. Letjthe particles be 'labelled
by an index 1, lgig¢n. Each particle is represented by a
complex-valued momentum-space wave function wi which,
because the particles are freely moving, 1s a mapping

wi:'hﬁ+g from the real manifold
- k.7 = yu,”, o,k,.>0} (2.1)

into the space ¢ of complex numbers. The vector ki is

the mathematical energy-momentum of the 1ith particle and is

L. 73

- defined by ki.= 0iP; where Py is the physical energy-
momentum of the particle, and

+1 for final particles,

o, = (2.2)
-1 for initial particles.



The mass My of each particle is assumed to be nonzero.
Other quantum numbers such as spin, isospin, charge, etc.,
are unimportant in fhis discussion and are not indicated
explicitly. The functions wi can, for the present purposes,
be assumed to belong to the spaées .@Cmi) of functions that
have compact support supp wfzma and continuous partial
derivatives of all orders in 7%1'

The transition from the initial system of particles to
the final system is represented by a functional S[wl,...,wn]

which, when all of the wave functioné wi have unit norm
vl = (2 >‘3J/§“k 00,k 8-, %) Ju. () [P, (2.3)
i m 170 i i > :

is a probability amplitude. The functional S is assumed to
be linear in the ane functions of the initial particles and
antilineaf in the wave functions of the final particles. This
linearity, together with the probability interpretation of

S , 1implies the inequality

ETIRPIIRTAS | IR O 72 [ C(2.m)
1

This inequality in turn implies the continuity of S 1in each
variable wi in the topology induced by the norm (2.3),6
and hence also in the topology of .B(ﬂg).7 The functional

S can, therefore, by virtue of the nuclear theorem,8 be

written wal""squ = S[yl , where ¢ 1s the product wave



function ' A v

_ _ _ . o

w<k1,.--,kn> = II wi(k-) II Wi (ki), (2.5)

initial . final
and Sfyl is a continuous linear functional (Schwartz distri-
bution) on the space BCXmi) of functions with compact support
and continucus partial derivatives of all orders in the
' = X ' X"' '

product space Xﬁh nﬁ ng X”%.

Conservation of energy and momentum requires S to be

concentrated on the set
M= {K|K = (ky,...,k) ¢ Xni,. Tk, = 0} . (2.6)

The restricted real mass-shell 'W'.is the subSet of all

points ‘K of M at which at least two of the vectors ki

are linearly independent. The restriction of S to the set

B = {y|y ¢ A9(X772i), (Man supp Y)C K} S (2.7)

then has the representation9 ' .

Styl = j[de(K) S(K) , (2.8)

where S{(X) is a Schwartz distribution and
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1'6(k12~p12) 00,k (2.9)

dK = (27) é(Zki)Hd

iO)

is the (Lorentz invariant) volume element of # .
It is convenient to use, instead of S(K), the distri-

bution

T(K) = S(K) - Sy(K), | (2.10)

where .SO(K) is the no-scattering part of the S matrix. - Our

causality cohditions will be formulated in terms of the

corresponding functionals TI[y].

B. TInfinite Differentiability

In the following sections the distribution T 1is some-
times said to be infinitely differentiable, and sometimes
holomorphic, at a point K of MW . These statements are
given precise meaning in the following way.

The restricted real mass-shell % is a subset of. the
restricted complex mass-shell %2. The definition of 2¢C
is analogous to that of X ; ﬂ% is the set defined by

M. = {K|k.% = u. 2, tk, = 0}, (2.11)
c i i i U7
where the components of the vectors 'ki are now allowed to

assume complex valués, and W% is the set of all points
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K = (k kn) of ‘”%A at which two or more of the vectors

SERRRE
ki are 1inearly,independent.r'This'set "Zai is a;(Bn—u)_

dimensional submanifold of an , which means that at every

point Ké%é there is a (nonunigue) local coordinate System.lo

This local coordinate system is defined as' a triple (AC(K),

H_sDé(R)) consisting of a neighborhood AC(K)cgﬁn of K,
7"

a polydisc

s lzy= 2, < vy, Eeg3n’”, r, >0}, (2.12)

Al

DC(K) = {z]zeCBn_u

and a nonsingular holomorphic mapping 1_: DC(K)+AC(KO' which

K
is such that K =1 (2) and HaA (K) =1 (D «(K)). At
K . ¢ 6] K C
points K of ¥ this mapping can, and will, be chosen so
3n-4

that 4 (K)a¥ = 1_(D_ (K)nk ).

K _ _
It is sometimes convenient to chocose a local coordinate

are defined by

)

system in which the loéal.doordinates Zy

the equations zy, = UA'K, where the UA = (uxl""’ukn

are appropriately chosen n=tuples of four-vectors and

~.n n 3 vV
U, XK = ¢ u,, k, = I I g u, .. K. (2.13)
A 121 Al i L 1=10 v=0 Alv Tiv
[ The metric is .goo = —gll = —g22 = —g33 = 1.] Such a

coordinate system will be daliedfa_simple coordinate éystem.
Infinite differentiability on ﬂ» can now be defined as

"follows.
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- Definition 1. Let F(X) be a function defined on some

open. set VicH. The("f'unctibn F(K)  is -said to be

infinitely differentlable at Ke/Z 1if and only if for

every choice (AC(K),HK,DC(K)) of local coordinates
“at K, the function F o Iz has continuous partial

derivatives of all order in some neighborhood

ey na_(R)) of Z =_HK’1(K). If, in addition, the

function F o HK can be represented by a convergent

power series in a nelghborhood of 1z, the function F

is said to be holombrghic‘at K.

Definition 2. Let T(K) be a Schwartz distribution

defined on some open set 2%, The distribution T(XK)

is said to be infinitely differentiable (holomorphic)
- ' . . ) -

at Ke/l if on some neighborhood #c7l of K there is

defined an infinitely differentiable (holomorphic)

function F(K) +hat satisfies the equation
| J/QK b(K) [T(K) ~ F(K)} =0 - (2.14)
for all wave functiqns ¥y 1n
B(N) = {lelP‘%Z ,Q(J(?ni), (Masupp w)&n’} . (2.15)

Because the different posSible local coordinate systems are

holomorphically equiValenﬁ,ll the conditions of the definitions
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are satisfied for all choices of local coordinate systems if
they are satisfied for any particular choice.’

C. Space-time Wave Fundtions -

A preliminary problem of this paper is to develop some
kind of space-time picture of a seattering process. To this
end we introduce space-time wave functions
T ~io,k-x

k (k" %) 0o k) e TNy 0. (2.16)

L o
b0 = (em73 [a
These functions ﬁi(x) haVe ﬁhe important property12 that,

‘for eévery positiVé:integer N, the eqﬁatidn'

lim T §(R1) = 0 | | (2.17)
T - v . ‘ . '
is satisfied uniformly in X on compact subsets of the

complement of
V() = {X|%x = kb, ke Supp Py, t reall. (2.18)

Thisvproperty entails that for any fixed positive numbers
€, N, and § there exists a Ty such that for all T>T
one has ]Ei(fT)I < (IQTT)—NS“‘fdf all X 1in the complement
of the set ‘

A A A ' '".' : o o . PA

Vo(yy) = {x]x = kt, [k-k'|s e,k'e Supp ¥4, t reall U{X||X|gel,

(2.19)
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[The norm |x| of any four-vector x 1s the Euclidian norm
| ~

x| = (Zx&gﬁ J The rapid uniform collapse of wi(ﬁT) into

oy %E(wi) as 1o suggests that the ith particle may in some

| limiting sense be regarded as confined to
- . oA A N :
Ve(wi,T) = {x|x = X1, xeve(wi)} ; -(2.20)

This suggestion‘is supported by the following consideration.
Let the various wave functions $} be displaced by the
‘respective amounts Uy T . The displaced momentum-space wave
functions are wi(k) exp(i oik~uiT), and the corresponding
transition amplitude is denoted by TI[y;Ut}. Thus, for
product wave funcfions VK in‘é?bﬁ), the amplitude T[y;UT)

has the representation
T{y;Ut] = /%K eTU KT yix) T(x). (2.21)

If T(K) -is essentially constant in the (perhaps very small)

support of ¢, the approximation

. [ v ~ > *
wa;UT]ﬁAdeux n wi(x-uir) il ﬁ. (x-u,t) (2.22a)
' initial final +

-a/fa% 3 1 P, ((Rrupo) @ $£*((§—ui)r) (2.22b)
initial ' final

can be made. If an €>0 can be found such that no point
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lies simultaneocusly in-all of the_displaced‘Coneé «

~ RN oA ‘ L g
V_(yysuy) = X|x-ug e Vo(p)), : (2f23)

then equations (2.17) and (2.22) imply that

2am - N Tlysui) = 0 - | (2.24)
T , : _

for all positive integefs N. [Henceforth, the notation
f(t)=> 0 'willlindicate the'fapid decrééSe.(Z.éﬂ) of any
function f(1).] That_is,‘if the intersection of all the
sets ?/’E(q)i;ui.)i is empty, then the probability_thét'a”
reaction of the‘correspondingIparticlés'takes piace‘deéfeases
rabidly‘as T becomes infinite.- |

This result provides a’jgstification for cohsidefing
the particles to be mainly‘cbnfiﬁed to the space-time regions
where the corresponding wave functions $i are not small.
It ‘also suggests ‘that the image under §+k'¥ £t of the
région of intersection of the'displacedAcones 'Qe(wigﬁi) should
be. interpretable aé the location of the "collision" of the
'corresponding particles, in'thé limit T+, This ideé has
been diééusséd'in detail ianef. 5, and shown to be com-
pietely in accord.withfthe‘natﬁre of the ohé—particle exchange
"contribution to 5 $cattering process.
| This interpretation of overlap regions as thé ldcétions

of the corresponding collisions is the basis of the present
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work. These collisions constitute the "events'" of S-matrix
theory, and Causality conditions place restrictions on their

space-time ordering.
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o

.III. -WEAK ASYMPTOTIC CAUSALITY (WAC)

A. Formulation of WAC ' o o

If the particle trajectories (i.e. the displaced velocity
cones) are such that all possible collisions involving two
or more initial‘particles occur later than all possible
collisions from which two or more final bafticle can emerge,
the reaction is considered to be acausal énd the cbrresponding
~transition amplitude 1s required to be small. This requireQ
ment:is made preciée in the following way. Let ¢ be a
product wave function, and let T[y] be the corrésponding
- transition amplitude. Let the particles représented by ¥
be displaced by amounts u; T .The displaced particles are
represented by the wave functions wi(k) exp(icik‘uix), and
the transition amplitude corresponding to them is denoted by
T{v;Ut]. For any fixed time t  and positive number €
define the two sets

DT (E,e) = X%, - )y - €} (3.1)

Finally, let A (%,e,u) be the set of all n-particle
displacements U = (ul,uz,...,un) such that (a) the Euclidean 4
distance between points of Ge(wi;ui)nﬁ’(ﬁ,s) and points of
ﬁe(wj;uj)nb‘(%,s) has a lower bound d7;,>0 for all pairs
(i#j) of initial particles, and (b) the distance between
poinés of ﬁe(wi;ui)nﬁ+(€,s)- and points of §€(wj;uj)nﬁ+(%,e)

{ .
has 4 lower bound d+ij>o for all pairs
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A
(1 # J) of final particles. A set a(%,e,w) is called a
set of acausal displacements. The weak causality condition
is as fdllows:

Weak Asymptotic Causality (WAC). For any fixed product

wave function Y in d80¢), fixed time %, and fixed
positive number €, the condition T[y;Ut}» 0 1is
satisfied uniformly in U on every compact subset of
the set d(%,e,¥) of acausal displacements.
This causality conditlon is justified in Appendix A
by proving that it holds in nonrelativistic gquantum mechanics
and in all classical models with finife range interactions.
The WAC condition is elso plausible within . the frame-
work of relativistic theories. 1If the set of particle
then

displacements U belongs to d(%,a,wz A the displaced velocity

cones
_ _ A ~ N .
_Ve(wi5ui;r): {x = XT'XEVE(wi,ui)} (3.2)
of the initial particles become increasingly far apart, as

A
T becomes infinite, for all times Xg < tt + €1, and the

displaced velocity cones of the final particies become

increasingly far apart for all times Xg > %T - €1. But irf
the initial particles become increasingly far apart in
then

A A
Xy < tt + €T, 4 the state generated near x, = tt by the

0

initial particles should be represehted with increasing

precision, as 1>, by the displaced initial free-particle
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A

state. Similarly, the state near xq = t1 that develops
into the final free-particle state should be_represented
with incréasing precision‘by the displaced fiﬁal free-
partiélevstéte. (See-Figure 1.) Therefore; both these

' Y. . X n
states near x, = tT are represented with increasing pre-

0
cision by the correéponding free-particle stétes, and the
transition amplitude TLy;UT] shodld approach its no- |
scattering value. This‘value is zero since the no-scattering
part has been subtracted froﬁ T. | _

According to this argument; the amplitude wa;Urlv
~would be éxpected to Vanish,aé E: becomésiinfinite.' But
éhould it decrease faster than every inverse power of T?
This property means that for any fixed N, no matter how

-N

'large,'the‘amplifude decreases faster than T Now, the

overlap integrals

.[,\ dqxlﬁi(x - u;T) 'JJ.(X - ujr)l, (3.3)

+
O"i.(U,T)
o D™ (t,e,T)

where

' Di.(%)‘eaT)-F: {X = }?Tl;(Eﬁ

should provide'a meaSUré of the probability that interactions

‘ : + :
take place in D (%,e,t). If U belongs to &(%,e,y), then

(a) o‘ij(U,T) $ 0 for all pairs (i # j) of initial particles,

and (b) O+ij(U;T)’$ 0 for all pairs (i # j) of final

¢y, GG

¢
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particles.13 The overlab integrals thereforé decreasé faster

N v
than, say, T_N . If the propagation of dynamical effects is

itself causal, at least up to terms that fall off faster than
any iﬁverse pbwer of (Euclidian) distance, the fact that the
initial and final overlaps fall off at a very large rate
(T—NN) shOuldvinsure that the transition émplitude falls off
at least at a relatively slow rate (T'N).

The discussion of the previous two paragraphs 1is based
oﬁ the idea of a de?elopment.of a system in time. It does 
not, however, require a fundamental quantity that represents
the "state" of a system‘at an instant of time. As VT becomes
infinite, the duration of the strip et 3 (XO -t - et
over wHich the initial and final particle states are compared
becomes infinite. Therefore, the notion of a "state" of a
system needs to become precise only when the time interval

to which it refers becomes infinite. This is in accord with

the general S-matrix philosophy.

B. Consequences of WAC

The weak asymptotic causallity conditilion does not permit
a complete specification of the singularity structure of
T(K), but it does have some useful consequences. Suppose that
T is a connected open set in 7¢ and that the set af+ of
points lying on positive-a Landau surfaces passes through 7.
Suppose also that T(K) is holomorphic on 72—4&. It is then

of interest to know whether the functions that represent T(K)
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~in fthe various regions of'72—gf are holomorphic continuations

ofveach othef, and if sd,.to know the path'thét cohnects_them.
In Section V it is shown that if 77 is sufficiently ¥

small and if each point K of the set Nnd' is generated

by exactly oné positive-a Landau diagran $7,lu apart fron

diagrams that.differ from 4 by overall translations and

- scallings, then
NNL = x|Kenr(x) = 0} (3.5)

"whefe A(K) 1d1s a real analytic function defined in a full
Mnfdimensional.heighborhbod of_7z, The gradient VA(K) =
(ul,...,un), where us = aA/aki“,' is well defined and is
nonzero in Y. . This result motivates the following theorem.

Theoremvl. Suppose the following four conditions are

satisfied. .

(a) A real anaiytic.function A(K) 1is defined in a

full ‘fieighborhood of a neighborhoéd Ned or Redl

(b) There is a local coordinate system (A;(K),H%,D;(K))

with =2

K

1
1= A(K)lB, such that the distribution T = T o Iy >
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is a distribution in Zy. that is infinitely smooth in

the variables (22""’Z3n—4)' That is, for any test
v

function ¢(z) with support in DC(K) the amplitude

T{v] has the representation

m
TLyl = j/;z F(z) d - Ca(z)y(z)T, (3.6)
dzl

where m is an integer, J(z) 1s the Jacobian
. 1
appropriate to the transformation II & and F(z) is

continuous in =z and has continuous derivatives of

1
all orders in (22""’Z3n—4)‘
(¢) For some fixed time 7T, some fixed €>0, and
with
some fixed product wave function §  in Bk),p’K) # 0,
R | _ A
the set A(t,e,p) contains -VA(R).
(d) The WAC condition is wvalid.
Let (AC(K),HK,DC(K)) be any simple coordinate system
at K. Then for any a, O<a<l, there exists a real
‘ — N -~
neighborhood IZc(YInAC(K)n supp @) of K such that the

restriction of the functional T to EMN') can be

written in the form

TLy] = 1lim /de(K)[TO(K) + L (KK, 8], (3.7)
| 6130
S§eC’ (a)

where
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I

Kk, 8) = p(npgTh() + 18) - o (3.8) )

and

ctia) ='{§]6 € 53n—4, (5,v)> 8] |y| al. (3.9)

: ‘Mcm;evo and is
‘The vector vy in (3.9) is;given by

BAOHK _
(z), (lgAig3n-4) . (3.10).

'Y - ) et e o
‘A azx
where Mg (z) = K. The function T°(K) 1is infinitely
differentiable on N ', and the function Tl(K) is
" holomorphic (has a power series expansion in local

coordinateslo) on

ga = {K[KeWn & (K), Im[nK"l(K)] e ¢t ()}, (3.11)

This theoréﬁ”is proved:in Appendix C.

The specific form of the domain £d of Theorem 1
depends on the particular choice of simple coordinate system
A variation of Theorem 1 that does not refer to a partigular
simple coordinate system is the following Theorem 1A, which
is also proved in Appendix C.

Theorem 1A. Suppose the assumptions of Theorem 1 are

- satisfied. 'For any ¢€»0 define



i

c€+(K) ='{K[im{[vA(K)‘+ U]«XK}>0 for allIUeRE}, (3.12)
where

L v o -2 /]
R = {UJU = (up,..enu ), full = [iv Uy ] < el , (3.13)

the components uiv being real. Then for any >0
there exists a complex neighborhood TLEC%% of K
such that the restriction of T to 5(Zhﬂé) has the

form

TIyl = lim ‘/éKw(K)[TO(K) + Tl(K'(K,s))],_ (3.14)
50

where K'(K,s) 1is any function uniformly continuous in

Ke7l€n7b and s, 0O<s<l, such that: K'(K,s) is

infinitely differentiable on 71€n7ﬁ and all derivatives

are continuous in both K and s; K'(K,0) = K for

all Ke[nan?b} ; and K'(X,s)e[l n CJ(R)] for all

s>0. The function T°(K) is infinitely differentiable

on 7161\7L and Tl(K) is holomorphic on ‘nenCE+(K).

The content of Theorem 1A is this: at points K
sufficiently near K, the functional T[y) is represented
by a function that is, apart from infinitely differentiabl¢
singularities, holomorphic in a domain that is essentially

the upper half-plane of the variable o(K;K) = VA(K) K.
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vThis theérem is applicable, for example, to the case
of two'partiCIe scatteringv [1 +2 >3+ u].' The only
_(positive—d) Laﬁdau;sufféceé in the phyéicaibrégiOn'are those | "
' ' 2,

corfesponding to normal thresholds in s = (k3 + k) These

surfaces are givén by functions A of the form A(K) =

v(k3 + k)= M~. Thus the displacement VA(R) has the form

CVA(R) = (0,0,u,u), (3.15)

where U o= 2(E3 + EM)‘ This displacement vector simply
shifts the two final particles, 3 and 4, by twice the total
'_.energyémomentum vector of the reaction, as is illustrated in

Figure 2. If k and k. are not collinear, and if E3

1 2
and &, are not collinear, then it is clear from the figure
that for any product wave function ¢ with sufficiently
small compact support centered at &, tﬁere exists a ¢t and
‘an é for which ~-VA(K) belongs to CZ(%,€,¢).‘ Indeed,
because u  1s positive timeliké (k3 and ky are positive
timelike), the displacement ~VA(RK) moves the regions of
interséction of the final particle velocity cones to a positiph
earlier than thaf 5f'the initial partidles donés.v Thus condi-
tion (c¢) can be satisfied for any value of %-'1ying between
'thesé two regions, for some sufficiently small .¢. If T(z)
is ~analytic in the variables other than z; = A(K), and if

WAC 1is valid, then all the conditions of the theorem are met.

The function Tl(K)' is .then holomorphic in what is essentially
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the upper half-plane of the variable o(K;K). This upper

half plane is to lowest order in- (K - K) the upper half
plane of the variable s, S0 Tl(K) i1s holomorphic in the
intersection of a neighborhood of X with what is essentially
the upper half plane of the variable s.

Another application of Theorem 1 is:%he pole contribution
fto the three particle scattering amplitude. If in the vicinity
of the pole at A(K) = 0 the amplitude is assumed to have the
form T(K) = R(K)D[A(K)} + H(K), where R(K) and H(K) are
holomorphic and D[A] is a distribution that is holomorphic
for A#0, then the conditions of the theorem on the structure
of T(K) are satisfied. The function A(K) is given by

2

A(K) = (k3 +oky * k6)2 - M°, and the displacement VA(K)

is, therefore,
VA(K) = (0,0,u,0,u,u), (3.16)

where u = Z(E3 + EM + E6). The re;ult of this displacement
is shown in Figure 3. Suppose now that none of the initial
particle momenta are collinear and none'of the final particle
momenta are collinear. Then inspection of Flgure 3 shows
that for wave functions ¢ with sufficiently small compact
support centered at K, there exists a % and an € for
which -VA(K) belongs to (AL(f,e,$). Theorem 1 again

prescribes a path of continuation of Tl which involves

infinitesimal detours



—26-

into the upper half plane of: o(K;K).

»

Thé WAC condition does not give the ie prescriptions
for normal thresholds of ali‘types of réactions. For example,
if the case just considered were modified byvadding one
external line at each vertex in such a way that each subreac-
tion involved two initial and two final particles, then the
conditions of the theorem could not be satisfled. Indeed
the conditions of‘the theorem provide, in such a case, no
distinction between the two collisions that allows one to
identify one collision as the cause and the other as the
effect; the two vertices are_completely equivalent so far as
weak causality 1is concerned. |

The two vertices are, of course, not completely equivalent.
Positive energy is generally carried into one and out of the
other by the external particies. This provides the necessary
distinction between cause and effect, because energy-momentum
is always transferred over macroscopic distancesvin a way
such that positive energy flows forward in time. Td.proceed
further, this energy balance consideration must be incorporated
into the causality condition.

- The WAC condition can be augmented by an energy balance o
condition so as to give the ie prescriptions for all normal r
thresholds. Rather than dwelling on this point, we
shall pass directly to the logical extension of this idea.
Transmission of energy and momentum over.macrosCopic distances

is, as far as we know, associated not only with the forward
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transmission of positive energy, but with transmission of
just those amounts of energy and momentum that can be
carried by physical particles. A formulation of this idea

is given in the next section.
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IV. STRONG ASYMPTOTIC CAUSALITY (SAC)

A. Formulation of SAC

The condition of strong asymptbtic causality (SAC) is
a formulation of the notion that momentum-energy is trans-
mitted over macroscopic distances oniy'by stable physical
particles: 1f a reaction requires. a transfer of energy-
momentum that cannot be carried by stable physical particles,
then SAC requireg the probability of that-reaction to fall
off faster than any inverse power of the lower bound on the
Euclidian distances over which_such transfers must carry.

The central idea in the formulation of this requirement
is that particle collisions are located in fhe intersections
of the trajectory regions (i.e., displaced velocity cones)
of the corresponding wave functions. From a collision involv-
ing two or more initial particles certainvother stable
physical particles may emerge. The momenta of these new
particles must be consistent with conservation laws, and their
trajectory regions must originate in the collision region
where they are produced. These new trajectory regiéns may .
intersect other trajectory regions, defining new collision ’
regions from which additional particles may emerge. In this
fashion a causal network of collision regions connected by
physical particle trajectories can be built up. V(See Figure

4.
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In order to formulate this idea more precisely the

following definitions are introdyced. -

Definition 3. A causal space-time diagram ¢9 is a

triple 3:= (V,L,e) consisting of a set V = (vl,...,vm)

of space-time points (vertices), a sef L‘= (Ll,...,LS)
of directed line segmehts of épace—time points, and a
matrix e of struqture constants. The following
properties hold:
(a) Each Jine segment Lj has the represéntation

+

Ly = {x]x ='tzj + (1 -~ t) zj", Ost<l.}, (4.1)

where the endpoints zj° are spacetime points.

(b) The set V 1is the intersection of the end points:

1 '
V= {x]|x = 216 = 230 for some g¢,0 and i # j}. (4.2)

e wec"'\vz\%
Lines intersect,only at end points.

(¢c) The structure constants ejr(léjss, l<rsm) are

defined by

+
l._l
e
Hh
<
it
P

Jr r J

0 otherwise.

(d) FEach line segment Lj is associated with a freely
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moving physical particle of nonzero mass My ‘and -

momentum—energy’:pj. The real momentum-energy vector _
' : : . _ o
pj' satisfies pjo>0.'and~ pj2 = ujg,' and is related
to L, b
3 y
+ - :
A, 2R, - R, = 0.Dp. b.oq
; ; L5 5Pj ( )
where oy is some positive real number.

(e) Momentum is conserved at each vertex:

W

L p. €,

TPy it 0, (all r). . (4.5)

(Any other additively consefved‘Quantum number must

obey a similar conservation law.)

(f) Each v, satisfies (4.2) with o = o' = +1 and

also with o = ¢' = -1, (This condition can be

imposed by virtue of the stability condition on the
masses of physical particles).

The line segments of D are divided into two classes:
internal and external. A line segment is internal if the
set V contains both of 1ts endpoints. Otherwise 1t 1is
external. The vertices are similgrly classified: a vertex
is external if it is the ‘énd point of" at least one external
line. Otherwise it is internal. A ‘» with no internal
lines 1is called trivial. |

Definition” 4.  Tet Y o= My, ‘be a product wave function.
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An n-particle displacement U = (ul,...,un)- belongs to

the set §(y), and is called causal with respect to y ,

if and only if for ea;ck e>Q there exists a causal
space-time diaggram ‘05 such that: (a) the diagram ogé
has n external lines that are associated (in the sense
of Definition 3) in a one-to-one fashion with the n
initial and final particles represented by ¢. In
particular, the physical momentum-energy vectors asso-
ciated with the external lines are py = Giki’ where

K = (kl,...,kn) belongs to the support of y;

(b) the vertex of l% that contains the endpoint of

the i1th external line, is contained in Qe(wi;ui).

The sets of displacements that are not causal with

respect to Yy are acausal with respect to ¢

a(y) = {Uju £ &)} . (4.6)

The strong asymptotic causality condition analogous to WAC
would be the reguirement that for any fixed product wave
function vyed(f) the relation T[w;UT]%O be satisfied
uniformly on compact subsets of dA(y).

We shall, however, deal directly with the connected
part Tc[w] of "T{Y)]. Only the connected causal space-~-time
diagrams x9 should be relevant to Tc[w]. [ A connected
diagram is one for which the point set L}Lj is connected.]

Let Z . (¥) Dbe the subset of & (y) which is formed by
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requiring also that the space-time diagram 49 of Definition

3 be.connected. The corresponding acausal set 1s
A, = {U|u ¢ 2,0} | (4.7)

The SAC condition is then defined as follows:

Strong Asymptotic Causality. For any fixed product

wave function yeB(¥) the condition Tc[w;UTJ » 0

is satisfied uniformly on compact subsets of ézc(w).

B. Consequences of SAC

Consider displacements of the form

Uy(K) = (a +t a + toky,...0a t b k), (4.8)

171° 2722

where K = (kl,...,kn) is any point of supp ¥, a is any
real four-vector, and the tiv are real scalars. If the
momenta of the external lines of a diagram A are given by
K, and the positions of these lines are specified by a set
of the form R

of displacements from a common origin,by ~UO(K)’ then the
extérnal lines of ;& all pass through a common point.- The
set zo(w) of all displacements of the form (4.8) is then
immediately seeﬁ to be -a subset of C_C'(l,b).

The sets zC(K) and CC'(K) are defined to be the sets
obtained by replacing supp ¢y by K 1in the foregoing

definitions.

t
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Let £t be the set of all points Kem for which the
set 5C(K)-£b(K) ié nonempty. The set °(+ is characterized
by the following theorem.
Theorem 2. The set of+ is the union of all positive-a
Landau surfaces that are associated with connected Landau
diagrams.
Proof. The positive-o Landau loop equations associated with
a diagram dH  are precisely the statement that the set of
Vecfors Aj = ujpj fit together to form a nontrivial causal
diagram ) . The conservation law constraints>and mass-shell
conditions are demanded both by the Landau equations and by
the existence of $>. Thus, the statement that there exists
a nontrivial connected causal diagram A satisfying K(®) =
K, where X(d) 1is the set of energy-momentum vectors
associated with extehnal lines of 40, 1s equivalent to the
statement that the Landau equations associated with diagram
H nave a positive-a solution at K.16 At a point Ke(- Z%),
where 7”0 s the subset of the masé~shell. 72  in which two'
or more initial particle energy-momenta are collinear or two

or more final particle energy-momenta are collinear, the

existence of a nontrivial connected causal diagram A>,

satisfying K(ﬁ) K 1is equivalent to the fact that 5;(K)n
JO(K) is nonempty. This is because the trivial connected .
causal diagrams j) satisfying K(ﬁ) = K cdme only from

éo(ﬁ) and each nontrivial one 1is given by some U in

5c(ﬁ) that is not in KO(K). At points K in 7%0 the set
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JC(K)»_'ZO<K) “is’nonempty. | See Section V; paragraph 2.]
But all points ,Kéﬁ% clearly lie on some positive-a Landau
surface. This completes thé'proof.’

‘This geometric interpretation of the Landau equations
has been emphasized by Coleman and Norton,l6 We use it
continually. In particular, the set of points lying on
| positive-o Landau surfaces 1is regarded as precisely the set
of points K at which K = K[Q(K)] for some causal non-
trivial 4 =8 (x).

We consider only Connected'diagrams, and by_a'Landau
surface always mean a Landau surface associated with a
nontrivial connected‘causal diagram.

A first consequence of SAC is Theorem 3.

Theorem 3. SAC implies that the scattering function

TC(K) is infiniteiy differentiable at all points of

yRPAS
The proof is given in Abpendix'D. Theorems 2 and 3’combiné
to say that the ;ingularities of TC(K) (or more precisely,
the points at which T,(K) 1s not infinitely differentiable)
are confined to the positive-a Landau surfaces.

We next turn to points that lie on £F. Let & be
évaint of 4. Tet U ='{Ul,...,U3n_4}'vbe any set of
(3n—4) n-particle displacements that define a simple local
coordinate syStém at K through the equations Z, = UX°K'

Define the set

i 7
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raw) = {U[U = 2¢t,0,,|t] = 1}. ' (4.9)

‘[ The norm |t| is the Euclidean norm of t = (tl""t3n—4)‘]

A product neighborhocod N is a neighborhood such that for

some product wave function ¥, supp x =M. For any product

neighborhood 7l define the set

r,m;n) = {UlUe g (x)aT (W)}, (4.10)

where supp ¥ =N and the bar over the right-hand side
indicates closure.

Definition 5. A point K of &£ is of type I if and

only if for every set U that can be used to define a
simple coordinate.system <AC<K)’HK’DC<K)) at K there
exists a product neighborhood 71 of K, (nnﬂﬁc(%hAc(K)),
such that:; (a) the set r.w;n)  is contained in a
finite number of closed disjoint subsets chhxgn); and
(b) each of these sets ch(ugn) can be contained in a

corresponding set of the form
+ .
r (u;ej) = {U|U = zt,U lt] = 1, (t,ej)>o}, (4.11)

where e is some vector in Esn—u. A point Red  is

of type II if it is not of type I.
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o o¥)71
The set 7n0c4? of points X = (kl,{..,kn)‘Aat which

two initial or two final particle momentaAére collinear
conéists entirely of type I1II boints. No other type II points
are known. The problem‘of showing that various points Kexf—vé
ane‘of type I is considered in the next section. |

. The structure of TC(K) near type I:points is intimately
related to the geometric structure of the set T (U;7). Let

Q _be thevunit sphére
Q= {t|t e B3n?4, ]t[ =1}, o (4.12)
and let'
ch(u;n) = {t]|t -e Q, (2t#UA)e rcj(u;n)}. (4.13)

Because the varlious closed sets ch are mutually disjoint,
~the correspondiﬁg compact sets ch also have this property.
It is therefore possible to construct open neighborhoods
wsc .of the sets ,ch  that have disjoint closures Bj.
Moreover, because of condition (b) of Definition 5, the
neighborhoods w. can be constructed so that the polar cones

3n-~4

c*(@,) = {s]s e BT, (67,6)>0 for all 6'e B} (h.1h)

are nonempty. Finally, let
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=

1}+<n> = {K|K e 7, chfu3n)n ¢.(K) is nonempty }. (4.15)

The structure of Tc(K) at type I points is then giVen by

the following theorem, which is proved in Appendix D.

Theorem 4. TLet Red' be a type I point. Let .
<AC(K)’H?’DC(K)) be any simple coordinate system with
local coordinates =z, = U,-K. Let U = {Ul’°"’U3n—U}’
and let X Dbe some préduct neighbbfhood of K that
sétisfies the conditions of Definition 5. Let wj be
the neighborhoods of the ,Qci(u;n) defined in the
preceding paragraph. Finally; let the SAC condition be
.valid. Then there exlsts a neighborhood 721 of K,
H1C(ﬂﬂ70)> such that the restriction of T V] tQF

B(Hl) has the representation

T vl =./dK¢(K) TCO(K) + Z lim erxw(K) ch(KkKﬁ».

i le]~0
6€C+(5j) (4.16)

The summation runs over the indices that label the

ch(u;n), and the quantity ‘Kkkiﬁ is defined by
K'(K,8) = Ng(Mp™h(K) + 18). (4.17)

The function TCO(K) is infinitely differentiable on



~38- .

N., and the functions TCJ(K) are holomorphic on the
sets |

«

EJ. = {K|Ke¥ab (K), Im Tp~(K) e C"(&,)). (4.18)
Moreover, each 1limit function

7 d(x) = 1im T Iklksy 0 (5.19)
C I(S"*O C

6eCT(B,)
J
s : e a e s » ' : Lt
exists and is infinitely differentiable on 7’11 - L) .
‘Thus, aside from an infinitely differentiable back-
grbund term, the amplitudé TC(K) - can be represented at
type I points as the sum of a fihite number of terms, each

17

with its own 1e prescription.
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V. CAUSAL DISPLACEMENTS AS

GRADIENTS TO LANDAU SURFACES

In order to apply Theorem 4 at a point Keiﬁ, - one must
establish that K 1is of type I. This is done by exploiting
the very close connection between the causal displacement
vectors U at K and thé normal vectors to the various
Landau surfaces that pass through K. For example, when K
belongs to only one positive-a Landau surface JT+[Q], there
is essentlally only one causal displacement U at K, and
‘this displacement can be identified with the normal to ‘£+[ﬁ].
The continuity of the normal then implies that K is of type
I. This result, and a number of related ones, are contained
in the theorems that follow. |

First we note that all polints of ]no are type II points.
[Recall that Wno is the set of all points K = (kl,...,kn)
of M at which two initial or two final particle momenta ki
are collinear.] This result is seen as follows. Let Kel s
and let Rl and E2 be collinear initial particle momenta.
[Similar arguments hold for collinear final particle momenta. ]
Then, for every product wave fﬁnction v¢ that does not

_ aveny w70,
vanish at K, ,and ° . every U of the form U = (u,0,...,0),
the various displéced velocity cones X(wi,ui) always inter-

sect in a way that allows the conditions of Definition 4 to

be satisfied with a diagram JQ of the type illustrated in



~4o-

Figure 5. Thus, for any WU = {Ul""’U3n—4} +hat defines

a simple coordinate system at X

, - and for any product
neighborhood W of K, it is alwaysApoSsible tb_find a
connected bath in PC(%ﬂ) that COnnects_'U>= (E,O,...,O)ch(u;”)
with —ﬁérc(u;n).' For.this reaéon condition (b)'of'Definitioh

5 cannot be satisfied. | | |

v

To claésify points % that do not‘lie in‘jno,_ some
additional notation'is introduced. The symbol'.z repreSents
‘a’fixed.cauSal space~time diagram. The symbol V(g) =
(Vl(@j;"';vm(é)) represents ﬁhe,set of space—time vectors>
that give the positiohs of.the vertices of‘.ﬁf__Thé symbol
K() = (kl(é),...;kn(ﬁ)) ‘represénts ﬁhé set of mathematiéal

momenta assoclated wiﬁh the external lines of 4 .

Definition 6. . A diagram & is similar to a diagrém

E if and only if its lines and vertices can be labeled

so that 4 and .@  have the-same matrix € of structure

constants ¢ and the same types of pafticles asso-=

Jjr?
ciated -with corresponding iihes. The set of causal
diagrams similar to o0 iS denoted by [51.

This definition of Held] does not require V(&) to

" coincide with V(&), ﬁor K(d) ‘to coincide with k(d). It

does requiré each line 6f-a§ to have a positi?e timelike

image in any diagram & ¢ [D). Moreover, any line .Ei of b

and its image L; 1in BHelh] must be associated with the

same type of partiéie.
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Definition 7. A contraction ' of A is a nontrivial

* ' diagram lying on the boundary of (&) that is formed by

shrinkingvto points some, but not all, of the internal
Jines of 4 . The notation H'cH means that H' is a

contraction of & .

Definition 8. The positive-a Landau surface J+[§] is

the set of points K such that KX = K(d) for some

deldl:
LF[B] = KIK = K@), Held]}. (5.1)

The restricted positive-a Landau surface °{O+ [8) is
the set of points K of ‘f+[_§] that do not lie on

f[.é)'] for any contraction &' of J

£ 48] =8 - U Lo (5.2)
' Dch

It is clear from Definitioh 8 that the set .;f+ is the
union of the restricted positive-o surfaces af0+.

The restricted surfaces f0+ are of Interest because
of their relatively simple topology: |

—

Theorem 5. If d is any fixed nontrivial connected
— - +l'\()/"\
causal diagram, and if Ks(.,{o (D] —7710), A there exists

-

a neighborhood Hc¢ (%4}’%) of K in which °{O+['§] is an

. . T e < : ]
analytic submanifold of codimension l_*o

This theorem, which is proved in Appendix E, means in
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particulaf that nonmanifold points such as acnédes and
cuspsl8 cannot lie on 2 -M,. The set‘df+ —)ﬂb‘ is the
unioﬁ of manifolds of codimeﬁsion 1 in %.

By virtue of theorem 5 the normal vector té a surface
J%+[L5] i; Weli defined (to within a scale factor) at each
-pbint }{izgythat surface. The content of part (b) of the
next theorem is that this normal vector (appropriately
scaled) is the n particle displacement U = (ul;.;.,un)
that generates (by displacing 1ines originally passing
through some éommon origin) the positions‘of-the external
lines of any diagram £ that satisfies K(&8) = K. [ Hence-
forth, the phrase "U generates¢0 " will.mean that U =
(ul,...,un) genefates, by displacements ul,...,un of
I%nes originally passing through the origin, the positions
of" the external lines of ;0.]

Theorem 6. Let p'lxeaﬁy fixed nontrivial connected

causal space-time diagram, and let Ke % be a point of

Jg+[51u' Then there is a full U4n-dimensional neighborhood

N(K) of E and a real analytic function a(K), holomorphic in

K over VYL(K), such that

a) The gradient VA(K) is nonzero at each point of VYL(K) and

£ " LIJaNER) = {K|Ke Hnl(K), A(X) = 0}, (5.3)

L
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(b) If Kd)e J%+[§1n7L(K) for some Adel[f], .and if
U = (ul,...,un) is a set of n displaceménts that

generates the dlagram J?, then U must have the form
U = AVAGKW)) + Up(KWd)), o (5.4a)

',_where kSO and UO(KCﬂ)) is of the form (4.8). 1In

other words,
u,V = 2+ a¥ o+ otk Y, R (5.40)
where A, a’, and t, are real constants that depend
only on the indicated indices, and . A 1is strictly

positive,

If two surfaces <ZO+[ﬂ1] and J%+[ﬂ2] coincide in some

neighborhood of Ke(%ﬁ—ﬁé), the two surfaces cannot be

oriented in opposite ways. This follows from Theorem 7.

TheoremA7. Let ‘01 and -&2 be two fixed nontrivial
~connected causal space-time diagrams, and let ~K€(J+—&6)
bélong to both Jb+[QJ and 46+[i2}. Let the corre-

sponding real analytic functions from Theorem 6@ be
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'A (K) and 'A;(K).iva};fu+tbL] and <[ [D ] coincide
in some- neighborhood nC')ﬁ of K then '
VAl(K)V; XVA2(K)-+eUO(K),. where 350 and U (R) s
of tne form (4.8). | | | o
th‘proof'of Theofem 7’is‘given'intAbpendik'F.

b-At points Ké'not in'Tn. displacements Uy (K) of the
form (4. 8)- produce no essentlal changes in a dlagram «0
Their only effects are avcommon translation of all external
‘lines of & and displacements of these lines along them-
 selves. The parameter .X”ffikes'theISCalezof'the diégram.
Thus, part (b)dof Theorem"6 says.that if Kv= K(H), a nhere
ﬁe[ﬁ] and :Ke¢’+fﬂ].n then the pos1tlons of the external

‘ _ (essenhially umigquely
lines of 4 are,esseﬁ%&a%%y\obtalned by regardlng the
various components of VA(K) as the dlsplacements of the
corresponding extefnai lines of'@ . Theorem 7xsays that
the sense of the causalydirection elong .VA(K)':is an

intrinsicvfeéture of the surface ‘[O+[§]' this sense does

not depend on the partlcular class of s1m11ar dlagrams LD]
’that mlght be used to define’ the glven surface d% [o].

To classify a'polnt KeC{ —"L) 1t 1is necessary to
determine the complete set of dlsplacementsv‘U‘ that.generete
diagrams }ﬁ that satisfy K(9) = R. ThevfolloWing two
theorems give the structure of these'sets. The first theorem.
is special; the Second is general;

Theorem 8. Let # e .a fixed nontrivial connected

causal space~time diagram, and let:K(ﬁ):R be a point of
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W . If K= K(H), where 4 belongs either to [Glor
to [§'] for some contraction d' of &, then any

displacement U that generates 00 is of the form

U 5 é AgVAg(K)'+ Uy (KD, . (5:5)

where Agzo for all g)_and UO is of tﬁe form (4.8).
The (finite) sum in (5.5) runs over the indices g that
label diagrams °0gC§ o_r’" .Qg =4 for which KEJO+[.Dg].
result is proved in Appendix E.‘

Theorem 9. Let & belong tovef+-n%; Let I be a
minimal set of indices g such that any restricted

surface ‘[O+[0 ] that contains K coincides near K
. o Some 3&I

with one of the surfaces ‘£O+[ﬂg]A [The set I 1is

known to be finite.lgl If K = K(@) for some connected

causal space-time diagram H , then any displacement

U that generates & is of the form

U=1 2. VA (K) + U (K), - (5.6)
ger® © °

where Agzo for all g and Uo(K) is of the form (4.8)

Theorem 9 is a trivial consequence of Theorems 7 and 8. The

characterization (5.6) of the displacements that generate

diagrams & for which R = K(§) will be used to show that

almost all points of J’+-ﬂ%.are of type I.

To show that a point K of'={+—”% is of type I it is
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- not necessary to-c¢onsider the sets Pé(i&?@b for all sets B
[z that‘défiﬁe simple locai“coordinate systems at K oc
$or product neighbbrhoddé N of K. It is sufficient to

cohsider instead the sets

T R = U]Vl (BnTaDY (5.7)

for any one (fixed) set U .

Theorem lO. Let iZ'; {Ul,.;,;Uén;u}’ défine a simpl¢
" .coordinate system at stGC+AZﬂ3).'HThensthe‘pbint K is
“of type I if and only if Té(ﬂ;ﬁ)- can bé'cq?éred.by a
‘finite number_of'disjdint'closed subsets 'FéJQZ;K)_ bf
T, eachiof which can be cantaihéd'in.a‘corréépohding
set of the form'(aiil). Theorem U fémains_tfue if thev
wj are taken to be opén neigﬁborhoods (with disjoint
closures) of the corrésponding sets ch(ﬁ;K).'
This theorem is proved in Appendix"F;' -
Theorem 10 shows that the sﬁructuré of GC(K) ‘deterﬁines
whether a point KEJﬁ—7ﬂo is of:type‘Iﬁ Tb'determine_the
structure of 'JC(K) ét these points we use the following

theorem)whiéh is proved in Appendix F.
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Theorem 11. If K belongs to»aff~h%

consists of all displacements U that generate connected

oy

thon _
> the set _5E(K)

causal diagrams 4 that satisfy K = K(J4). ' o
' Combining Theorems 9, 10 and 11,we obtain the following

. theorem.

Theorem 12. Let K be a point of £7-M. Let I be a
minimal set of indices g such that any restricted

surface cl(;-[&lbthat contains K coincides near K L
: <:H".:‘="°'""”z %e :
"~ with one of the restricted surfaces «£O+[@g]A_ If the

~ vectors VAg(K) and the (4n-dimensional) vectors

F o (lgpsnth) defined by

(F )M = 8, FH (1<psn), (5.8a)
and

(FO)P“ = (n+l<pgn+l) (5.9Db)

ap“f“*l..
are linearly independent, then, the point K is of type
I. Furthermore, the represéntation of ,TC(K) in -
Theorem 4 has only one boﬁndary value term at K.
The proof is trivial. The vectors Fp form a basis for
ﬁO(K). If the vectors VAg(K) and Fp arevlineérly
independent, there exists a set W = {Ul""’UBn—N} vThafu
contains all the VA (R),geI, and defines a simple coordi-

nate system at K., The set éﬁK)nP(ﬂJ is then trivially
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contained in a single set ‘P+Cu,e) of the form (4.11).
This implies that K is of type I and that only one boundary

value term is required in the representation (4.16) of

. " 20
T, (K). |
Theorem 12 is applicable, in particular, to the case
where K Dbelongs to only one _ surface JB+[ﬂj:
Corollary. If only one surface -/0+[A] passes

through Ke({+—n5), the point K is of type I. More-

over, only one boundary value term ié needed 1n the

representation (4.16) of TC(K).

In the situation described ih'the'corollary only one
boundary value term Tcl(K) is needed in Theorem 4. By
taking.the neighborhood n  or Theorem‘u small enough, thé
region of holomorphy of Tcl(K) can be expanded to.include
any given point in AC(K)nZQ in the ﬁpper haif—plane of
o(K;K) = VA(K)K. The argument is similér to that in
Theorem 1A and will not be rééeated. |

| The corollary includes, of course, the special case in
which Lt consists near K of a single restricted surface
JB+[51.21 It also includes.more complicated cases. For
example, a point Ke@i+—n%) that lies on the edge of the
surface a[o+[£T]_ of the triangle diagram JT does not 1lie
on J%+[&T]. Tt lies on the surface 9/0+[3] of a contraction §
of ﬂTJ If these two surfaces are the only parts of <7
that penetrate some neighborhood of K, .thén the corollary

applies.
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The hypothesis of the‘corollahy is satisfied at almost
alllpoints Kn of of+éﬁ%; ‘This;is”a consequence of the fact
that onl& a finite numbeh of distinct surfaces o[d}fj]
intersect any bounded neighborhood Ne A of Z.17  The
union of their intersectionslis therefore of zero measure
in nni+, ;and the complement of that unionvcontains aimost
all points of 7b7£4: 'That is, in any bounded open set 727
of A therset‘of points Ké(lﬁlwg) which lie on only
one surface o{ * contains almost ail-points-of %V?(Jﬁéhg).

A second consequence of Theorems 9, 10 and 11 is that
if all the surfaces Jfo [4] that pass through K come from
dlagrams 4 that afe contractlons of the same fixed diagram
if then B is of type I‘22

Theorem 13. A point Ke(d*an) is of type I if there

is a nontr1v1al connected causal space-time dlagrmn ﬂ)
such that the dlagrams .0 of Theorem 9 are all
contractions of ij. In such a circumstance only one
boundary Value term 1s needed‘in.the representation of
Theorem U of f (K) at K. | |
The proof is glven in Appendlx E
It is not known if all p01nts of a€+ —7n are of type I.
Any counterexample would have to lie on at least four
different surfaces ‘Z +ka]yx Two of these ,& would'have
to be contractions of some dlagram 40 and two would have to

be contractions of some other dlagram -9 But all four 49

could not be contractions of any single diagram. We have not
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- succeeded in finding such a case. In any event such points

would be rare, and in a sense accidental, because thelr
existence requires thq-intersectioﬁ of surfaces J%+[ﬂg]
corresponding to contractioné_of one diagrém gl to inter-
sect the intersection of surfaces.‘jb+[Jg] correspohding

to contractions of another "uhrelated“ diagram 492.' Two
unrelated diagrams arerdiagrams'that ére not both contractions
of any single diagram. It seems prcbable that singularities
associated with unrelated diagrams will be additive and

hence independent. A proof should-emerge from the study of
discontinuiﬂy formulas. That, however, 1is a subject in

itself.
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VI. AN EXAMPLE.

As a cbncrete example of-the analySis bf Section V?‘
we consider the Lahdéulsurfacé J’+L§] for the butterfly
diagram of Figure 6. Since at any point Re 9] it is
possible to contract eilther Gne‘of the triangles to a point,
the surface £ [H) 'is nothing but the intersection of the
Landau surfaces‘<t+[@l] ~and i{+[ﬁ2) for thé two triangle
diagrams' &, and 4, that make up d .  (See Figure 7.)

If °[+[&] is the only part of 1{+ to penetrate a neighbor4l
hood of Ke(i+—hb), this eiample forms a thtrivial example
of the situation desdribed by Theorems 12 and 13.

Consider first the surface 4+[ﬂl] correspondling to
the.triangle diagram ﬂ1f  The important variables are the
two subenergies, G, = (k1+k2)2 and. 63 = (k3+k4)2’ and
the momentum transfer o, = (k5+k6+k7+k8)2. In terms of

the wvariables

X, = : : (6.1)
i 2ujuk ?

3

where the “j are the masses of the internal particles, and

(ijk) 1is a permutation of (123), the Landau surface & (&1)
24

is given by zeros of the real analytic function

Al(K) =v1—x12—x22—x32—2x X2X3 . , (6.2)
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The physical region for the reaction corresponding to

ﬁl i1s contained in a volume defined_by xlal,.x2s—l, and

: x3>l. The two surfaces X = 1 and Xg = 1 are the Landau
surfaces associated with diagrams that are contractions of

4

|-
If x, 1s held fixed at some value i2<—l, the surface

nyﬁgl] becomes the familiar curvé in the xlx3 plane shown

in Figure 8. The gradient VAl is
VAl(K) = (u,u,v,v,w,w,w,w)3 _ (6.3a)
wheré
o= =20u) T+ xgxg) (R Ey) (6.30)
v = -2(p1u2>‘?(x3 toxqx) (Ry + By) 5 o (6.30)
W o= —2(u1u3)-l(x2 + xlx3)(ﬁ5 + R6 + E7 + E8) . (6.34d)

Inspection of (6.3) shows that VAl(K) and the vectors

F., lg¢ignt4, defined in (5. ¥ ') are linearly independent at

points K which do not 1lie in'yno. The surface &/.”[31) is

therefore. a submanifold of . of codimension 1 at Ke& W- Yo
According to Theorem 6, the vector VAl(K) .generates

the diagram '&1 at K. For this to be true it is first

necessary that the four-vectors A3 = w-u and Al = V=W
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be positive timelike. [The other vector A2'= v-u  1s then

automatically positive tiﬁelike.] ‘For this to be true the

e i 2 2 = 5 T ¢
quantities A7, A3 s —A3'(kl+k2), and A1’<k3+ku> must all ¢

be positive. Some algebra yields the following equatiohs:

5" = [xé<x32_1)” + x3<x22-1)%]2 [Fi(x2,x3)]2,  (6.4a)
2 2 : 2 ’
837 = [xq -1] [Fi(x2,x3)] , .' (6.4b)
- - . o5 : : -
_AB'(kl+k2) (U3+X1U2)(X3 ”l)hFi<X2’X3)’ _ (6.4c)
A (ko+k, ) = (‘ +x )[x (x 2—l)vz+x (x 2—1)hJF (x.,X% )‘ (6.4a)
1 3 b ul 3“2 2 3 73 2 + 22737/ ¥
where

Ft(xz,x3) = (x3 —l)%(ué_ +x2u1. + (x2 —1)I/L(u2 +x3pl

(6.4e)

The upper (+) sign refers to the (+) branch of the curve
of Figure 8, and the (-) sign refers to the (-) branch
of the curve. It is clear from (6.4a) and (6.4b) that both

A and A are timelike unless F Vanishes. For both to

1 3 x
be positive timelike the expressions in (6.4c) and (6.4d) must

be positive. A necessary condition for them even to have the
v 2
(%37~

can only happen on-the segment "AB of the curve of Figure 8.

same sign is that x 1)ﬁ + xs(xpg—ljh be positive. This
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It is then a simple matter to show that F is positive on

+
AB. F_ need not be considered since AB 1is on the (+)
part of the curve. Thus, A3 and Al are positive time-
25

like on AB. It can also be shown that the momenta p,.

i

of the internal lines of 401 are related to the Ai through

-1 2
( )

the equations Ai = 0Py where Oy = My Ai

The
lengthy algebra needed to show this is straightforward, but
not instructive, and is omitted. Thus, the displacement
VAl generates a'diagram &1" which‘is simiiar to éh.
The displacement -VAl generates the trivial diagram
when F vanishes. There is .at most one such point for

ffixed x and it corresponds to the second type Landau

23

—

singularitygb given by c5l'/z = OBWni ozh. Because they do
not lie on ;{+, the function TC(K) is infinitely
differentiable at such points.

Inspection of (6.3) also shows that as K approaches
endpoints of the segment AB, the displacement —VAl(K)
changes confinuously into the gradient of the Landau surface
of the appropriate contracted diagram. This continuous
behavior is implicit in Theorem 10. It means that the
le-prescriptions for the leading surfacé J%+L91) and the
surfaces ¢{0+[ﬁl'], &l'C:AE, are compatible (the corollary
of Theorem 12).

‘A similar éhalysis can be applied to the diagram &

2

(Figure 7). The function A is given by

2
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A2(K) =1 - yl2 - y22 - Y32 ; 2yly2y3 3 (6-53)
where
2 2 2
(kpet k)7 = ug = wg
oy, =2 5 6 (6.5b)
2u5u6 , v
| 2. .2 2
(kot k + k,+ ko)™ - u - Uy
y, = —2—& T 8 6 (6.5¢)
SHyHg
> > oo |
73 : 2“4P5 ,
The gradient VAZ(K) is given by
VA, (R) = (o,o,o,o,wl,wl,wz,w2>; - (6.6a)
where
(Y1+y,¥2%) (Y5t ¥,2)
W, = 1l 273 k + E6 .22 13" (Ro+ R+ B+ K ),
U5U6 5 U“U6 5 6 7 8
- (6.6b)
(yoF ¥9Y5) “(F 4+ E gt ya¥3) o o
w 3 142 (kot kg) (ko+ k. + k-+ kg)
2 7 8 5 6 7 8
Hylg HyHg



-57-

Note that if VA, and VA, generate 191 and AO , Thea
displacements of the form VA1VA1 +_A2VA2, with xl and

Ag positive, generate diagrams in [&]5 where & 1is the
butterfly diagram with contractions Dl . and &2. Thilis 1is
the result given in Theorem 8.

At any point KE(J%+[31]A,{O+[Q2]), .the vectors
VAl(K) " and VA2(K)- and the vectors Fi; 1sisn+ﬁ, defined
in (5. 8) are linearly independent. .The surface °Z+fﬂ] =
¢%+[31Jn jb+[£2] is therefbre a submanifdld of 2{—26 of
codimension 2. The hypétheseé of Theorems 12 and 13 are

satisfied, so the point K 1is of type I.
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_VIT. SUMMARY:

In this work the reiaticnshib between continuity
properties of scatteringffunctions in the physicallregion
and macroscopic spaceetime phenomeha Eas been examined. It
was shown how singularities on Landau surfaces ~can be
regarded as caused by processes in Wthh the transfer of
energy—momentum is carrled by phy51ca1 partlcles

The algebralc equlvalence of the Landau equatlons.and
corresponding space—tlme dilagrams was emphasized earlier
by Nortou and Coleman.l6‘ The present work extends the
algebraic result of Norton and Coleman by showing (in the
course of proving Theorem 1) that if the scattering functions
are infinitely differentiable except on the Landau surfaces,
then either the space-time collision regions must be ordered
so that the momentum-energy can be carried from the initilal
particles to the final particles by means of physical particles,
or the transition amplitude drops off faster than any inverse |
power of a scale parameter. We also obtain the more difficult
converse: if transition amplitudes fall off faster than any
inverse power of the scaling parameter when the space—time'
collision regions are not causally connected via physical
particles, then the scattering functions must be infinitely
differentiable except on the Landau surfaces. Moreover,

apart from infinitely differentiable singularities, the
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ie-prescriptions associated with the Landau surfaces coincide with

those of perturbation theory.
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APPENDIX A

The proof that the weak asymptotic cauéality condition
~is valid in nonrelativistic quantum mechanics 1is baééd on |
an inequality of Brenig and Haag.2! Let gtO, be the state
at time t that would devélop from an asympﬁotic initial
particle state b if there were no interactions between
the particles, and let ﬂt be fhe cofresponding state if
there are interactions. Similarly, let wto be the state
at time t that would develop into the asymptotic final
particle state ¢ 1if there were no interacfions, ahd let
wt be the corresponding state 1f there are interactions.

Then the transition amplitude {Y|T|@> can be written
CVITIBY =< 18, -<v.°18.%> , (A.1)

where t is.any arbitrary time. From (A.1) follows the

inequality
[l TIe>] < Jug- v o0 1o .00 + lve- w00 + I8.- 8.°0 . (a.2)

The norm |+]] in (A.2) is defined for all functions

f(Xq5.--5%,,t) by

) . . ' -
ﬂftﬂ = <ft|ft>1 = { jdgl,...,dgmllf(gl,... X & Yoo, (A.3)
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and it is assumed that Qto and wto' have unit norms. The
quantities [y, - wtou ‘and  |lg, - ﬂtoﬂ are bounded by the
27 :

inequalities

T
oy - 2.°1 < / atr v og,,°|  (a.ta)

and

Tve = w00 < / ac’ v oy, Ol - (A.4b)
.

where V 1is the interaction Hamiltonian.
Let the asymptotic initial and final particles now be

displaced by amounts u and let the displaced initial

it
. . Ut Ut

and final particles be represented by @ and ¢ . For

these displaced particles the inequality (A.2) leads to the

following inequality:
IT[gy;UT] | < FIB;U,1] Gly;U,t] + F[B;U,t] + G[v;U,t], (A.S)

where
(E+e)T

F{g;U,1] = .[ - oatt v zt,UT’Ou , (A.6a)

-_— 00
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and

" _
clv;u,t] = // ' datt f|v wt,UT’OM. (A.6b)
(E-e)1
Here % 1is any arbitrary time, the number e is positive,
and the scale parameter 1 1s greater than 1.
If the potential V has a finite range R, the integrals

Ut,o . L
’ “ _are restricted to

UT,O“

which define ||V g, and |V y,

- the domain
A(R) = {(xqs. 2 )15y - ﬁjl.s R for all 1 and Jt. (A7)
[Here it is assumed that there are m particles in all stages

of the reaction; no creation or annihilation of particles is

allowed.] Thus the quantity |V ﬁtUT’O" has the form

UT,O _ m . A a A ’ A
"V-Q%'T | = 3 j/h axq..-dx |V(§lr,...,§mT)
A(RT™T) -
(A.8)
initial T+ 1 107 - 40

Now the wave functions @;(LQ - ui]T), ‘considered as funiction
of §, collapse uniformly into the cones §€(wi;ui) as 1
becomes infinite. Cohséduently, if U belongs to Cl(g,e,ﬁw)

s0 that the initial-particle cones Gs(wisui) aveaaéﬂ'sepamm¥eﬂ

A A
before (t + 6), then for some sufficiently large T +the



~63-

product wave function in (A.8) is of rapid decrease in T(WMAICJO

uniformly in (ﬁi,...,gm,%') for (gl,...,gm) in A(RT™Y)
ana ' < (T + e). Thus if V is bounded (or even merely
integrable), the function F[@;U,1] [and by similar arguments
G[w;U,T]] is of rapid decrease when U belongs to a(t,e,ov).
Then the inequality (A.5) impiies that the weak asymptotic
causality condition is satisfied for any given U 1n
At ,e,oy). |

To extend the analysis to dompact sets I of éZ(%,e,ﬁw)
- it is only necessary to observe that the velocity cones
§e<wi’ui) nevér comé closer in the appropriate regions
o § (T + ¢) and 20
The number <1 is chosen so that R << &(I')7, and the

>

by (% - €)- than some distance §(T).

analysis proceeds as before. This insures that the WAC
condition is satisfied uniformly on compact subsets of
a(%,e,ﬂw). These arguments can be extended also to the
case of potentials that have decreasing exponential bounds
at large r.

The same ideas can be formulated in a classical theory
by considering a statistical ensemble of classical experi-
ments in which the momentum-space probability functions
Pi(g)' of the initial and final particles have small compact
support, and in which the spatial distributions Pi(g,t) at
time t = 0 fall off faster than any power of i§l—l.

Let V. (x) be the velocity cone that corresponds to

the support of Pi(g) and that has its tip at x = (xo,g):
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'Vi(x) = ix* | x' - X =:A(wi(5),5) £er—some | AeR

(A.9)
amd | ke supp Pi}.
. . 2 2\We
Here wi<g)'-ls (k™ + mi-)_. Furthermore, let
Vi(x;r) = LH W% (Xo,g'). _ (A.10)

Now, if the'trajectory'bfvthe ith freely moving particle
paéses through -a point x!' = (x0,§')  foriwhich' x' - x| <r
then the trajectory mustﬂlie entirely in Vi(x;r). ‘This
meahs that the fraction of the trajectories in the statis-

tical ensemble for which particle 1 remains alWays inside

Vi(X;r) is just

Fi(x;r) = '1]/‘ ax' Pi(x',xg). (A.11)

The rapid fall off of Pi(z,O) ‘for large |x| implies that

'Di(rr) = 1 5.§i(0;rT) ‘ (A.12)

goes rapidly to zero as T becomes infinite: Di(PT) » 0.
The stipulation in the weak asymptotic causality

condition is (essentially) that the'dispiaced velocity cones
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of the initial'particies do th intersect for t < et and
that the displaced velocity cones of the final particles do
not intersect for .t 2> - et. The conditlion that the dis—
placed cones do not intersect in these regions means that
when 1 = 1 the minimum (Euclidian) distance between the
cones in the regions T ¢ € and %_z —-€ is nonzero. If

D is this minimum distance, the minimum distance when =

0
is arbilitrary is DOT, .which becomes infinite as 1t Dbecomes

infinite.
Since the displaced cones Vi(uiT) have a minimum
spatial separation DOT in the appropriate regions
+ t ¢ et, they can be replaced by slightly larger regions
Vi(uiT;rT) that have a minimum spatial separation dOT > 0.
Let the initial and final particles of the classical
treatment be subjected to the displacements U T The

corresponding displaced spatial distributions PiUT(z,t) are

given by
X,t) = Pi(§ - U, T, b - uiOT). (A.13)

Thus, the probability that the freely moving particle 1

remains always inside Vi(uiT;rT) is

Ut
i

]é'— EiTl<rT

. = ' = .
P,  "(ut jrt) j/ va Pi (5’,uior) Pi(O,PT). (A.

14)
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The probability that every particle "i-'rémains inside its
displaced region Vi(ur;fr) is I Fi(O;fT). This number
rapidly apprbaches unity as- Tt gecomes infinite.

Let us suppose that the interaction between the particles
has a finite fange 'R, in the senée'that'a set of .particles
do not interact unless the distance between some pair of them
becomes less than R. But for sufficiently ldrge T the

0

is greater than R. Thus for this value of 1 there will

distance d.t of closest approach of the regiOns Vi(uiT;PT)

be no interaction between initial particles in the region
t ¢ et for those members of the ensémble'for.whiCh each
initial particle ‘is in its fégion V,(u;t,rt).  The fraction
of the members for which these conditions are realized
(simultaneously for all particles) rapidly approaches unity.
Consequently, the probabiiity that the initial particles
interact in t < €7 'rapidlyvappfoaches‘Zero as 1T Dbecomes
infinite. Similarly, the probability that the final particles
interact in 't 2 -et -rapidly approaches zero as 1 becomes
infinite.

The fact that the fraction of membefs of the ensemble
~that have reactions in t < 0 decreases rapidiy as
becomes infinite means that the difference between the

classical joint probability function

f;;,§m;zl,...,ym;t) (A.15)
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and its unperturbed value

: initial

must, when integrated, become small -as 1T becomes large:

Ut . Ut,o |
/éz ay [Pin (%,Y,O) f‘Pin 2 (z,y,0)| > 0. (A.17a)

Similarly, we must have
Ut Ut,0 :
dX d¥ [P, (X,¥,0) - P (X,v,0)[ 0.  (A.17Db)

The classical expression for the overlap probabllity is

UT(x,v,0), P tUT(X,y,o)}. (A.18)

~

T = -/dg 4y Min {P. ou

This gives the fraction of the members. of the "in" ensemble
that can occur as members of the "out" ensemble, or conversely.

(If in a certain "bin" the in ensemble has n members and

1
the out ensemble has n, members, the minimum of ny and
n, is the maximum number of members common to both ensembles.)

It follows from (A.17) that T differs from its unperturbed

value

o}

T° = ].dg ay Min'{PinUT’o(g,y,o), p  UTs0

out (X,V,0)}, (A.19)
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by a term that goes rapidly to zero‘as :Tv bééomes infinite.
Thus, for a fixed U in (Q(0,e,¢), the weak asymptotic
causality condition isvvaliduin a classical mbdel with finite
range interactions. The analysis is extended to compact sets
I' of a(O,e,w) 'ihvthe'éame way as in the quantﬁm mechanical

case.
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APPENDIX B

By way of establlshing notatiori, we give a constructive
proof of the following well-known proposition: the restricted
complex mass-shell 7&0 is a (3n—u)—dimehsional analytic
submanifold ofv gun.

Proof. Let the n-tuples K = (kl,...,kn) of complex
momentum vectors be associated with points =z = (Zl”"’ZUn)

of ghn through the equations

Zyy4p-3 = Ky (1glen, O<ug3). (B.1)

Then the set 7”0 can be written as

M o= {zlze g7, £(2) = e = £, (2) = 0}, (B.2)

where the functions f,(z) are defined by

3 .
= A Hu 2 2 .
f£,(2) = 2UEO g (zui+u_3) - 3m %, (lg¢ign), (B.3a)
and by
i-n-1,i-n-1 ¢
f.(z) = g ’ 5 2y 5 41n-l? (n+lgign+d). (B.3b)
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(The metric is .goo = egll = —g22 = _g33 = 1.)

~Consider the Jacobian matrix

Z

s

o of . - : ‘
_ o _
Jij(z) g—f,(Z). V(B.M)
Explicit computation shows that the set of points of 77[.C
where rank J 1s less than n+4 is exactly ”%—ﬁ%. There-
fore, at every point K (or z) of :ic a (nonsingular) set

4n

of coordinates for G can be defined by

F.(2) = fi(z),  (Lsignth), (B.aa)
and
4n
F,(z) = jzl Ejiy2yo (nt5gighn) . | (B.5b)

The (3n-4) fixéd real vectors

E.” = (E (B.6)

1 T (EypseesBEqyy)
appearing in (B.5b) are any vectors which, together with
the n+ld vectors
af, : 3f,

2 (52 (B ogs ), Getensi), 6.D)



-47;(_4-

form a set of linearly independent vectors. The functions
Fi define a coordinate system in a sufficiently small neigh-

4n 28

borhood AC(K)CfQ of K = K(z). It follows from (B.2)

that the set AC(K)n‘ﬂCY is a (3n-4)-dimensional analytic
submanifold of Qun. Since this construction can be made
for any point Ke]%, the proposition i1s proved.

Remark. The mapping F: Qﬂn > QMn defined by (B.5), and

hence also its inverse, is real analytic. It follows that

the mapping HK introduced 1in Section IIB is also real

analytic.
Remark. The vectors Ek for n+5<kgln can be associated
with n-particle displacement vectors UA = (ukl""’ukn)’

1¢As3n-4, in the following way:

u

>\J = EX+1’1+’M,”J’+U—3’ (lSjSl’l, 0§U$3)- (B.8)

u
The local coordinates (B.5b) of )tc then become
F.=U+-K= 1 u,." ko> (lshe3n-h), (B.9)

where the bar indicates the relabeling of indices. Thus,
the local coordinate system constructed in the proof of the
proposition is a "simple" coordinate system. [ See Equation
(2.13) .] |

Remark. For any point Red the set of 3n-4 linearly

independent vectors UA defined above provides a unique
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decomposition of any displacement vector U into the sum

3n-4 _ .
U= 15 ¢,U, + U (K), ' (B.10a)
A=1 AT | 0 |
where
Uoj“<K> = tjkj“ + aP, | (;sjsn), (B.10Db)

is é causal displacemenﬁ forvany @ such that subp J5
contains . K. The displacement UO(K)‘ displaces each
particle of the set specified by R albng its own trajectory,
“and gives a siﬁgle overall displacement to all particles.

Thus UO(K) 'is a member of the causal set KO(K) defined
below Equation{(4.8).

The Zj definedvabove are simply components of the
vectors ki. In the rest of the paper the z's denote the
(3n-4) variables of a real local coordinate system.

Notice that UO(K) belongs to the null space of the

matrix 09K/3z. That is,

UO\K(Eﬂ-BK(E)'E r UM 3% o0 (1aag3n-b). (B.11)

This follows from the restrictions on K imposed by (B.2).
Moreover, at any polint of - all vectors in the null space
of 8K(Zz)/3z are of the form 'UO[K(E)], since this null

space has dimension n+l.
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APPENDIX C

A. Proof of Theorem 1.

Let (L (T,e,$) Dbe the set described in assumption (c).
This set contains -VA(K), and is thus nonempty. It is in

fact open in the topology induced by the Euclidean norm

o -u'f=1{z% ju -u’ (c.1)

iv iv
3

To see this, define for any neighborhocd N of any displace-

ment U in A(%,e,¢) the set

T (;,0) = ULEJN V_(4s5u). (C.2)

A ~ -
Every two initial-particle cohes V€(¢i;ui) and V€(¢j;uj)

are separated by some finite (Euclidian) distance dO in

D™(f£,e). Therefore the sets §€(¢i,N) and G€(¢3,N) are
separated in %—(tas) by a distance d'o>(do—2A), where

A is the diameter of N. If A 1is chosen small enough, thew
the distance dy-24 1s positive, and the sets %€(¢i,N)

and %€(¢3,N) are disjoint in D7(f,e). Similar arguments
hold for each pair of initial particles and each pair of

final particles. Thus every U in some neighborhood of U
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belongs to a&%,e,ﬂ). Since U is an arbitrary point of
A(t,e,¥), this set is open,

According to hypothesis, the displgcement V = -VA(K)
pbelongs to A (},e,8). Since (2(%,e;ﬂ) is open there exists
a neighborhood N of V vwith compact élosure N éontained
in A(%,e,0). The WAC condition thenvrequifés that
T[@;Ut] &> 0 uniformly.on ﬁ. The symbols N and N here-
after designate these two sets.

If the relation
supp ¥ Csupp @ : | (C.3)

is true, the relation
Ate.p) € Atiew) RS

is also true. Thus it foliows from WAC that the rapid
decréase Tly;Ut] = 0 is obtained uniformly on N for any
fixed product wave functioﬂ Yy in 5(%5 with support
satisfying (C.3). |

| Let U = {Ul,...;Usn_u} be any set of n-particle dis-
placements that define a simple coordinate systém
(AC(K),HK,DC(K)) with local coordinates F, = U,-K, and let

F(u) ={U|U = ZtAU)\, t = (tl:°"3t3n_u) € 9}3 (C'S)
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where @ 1is the unit sphere in EBH—“. Then, the set T (W)
is contained in the union of the finite number of open sets
rpiCu) constructed as follows. It is shown in Appendix B

that the displacement VA(K) can be written as
VA(K) = v A(K) + UL (K) (C.6)

where UO(K) is a causal displacement belonging to ZO(K),

and

7 A(R) = Iy,U (c.7)

A

The vector y = (Yl”"’Y3n~M) must be nonzero, since
otherwise -yA(K) would not belong to A(t,e,8). Let the

normalization of A(K) be such that vy = e is a vector

s3>0 ) De any 3n-4 other vectors in

of @, and let e 3n

2 which, together with e
B3n—ﬂ'

1 form an orthonormal basis for
For any o, O<a<l, a finite open covering of Q is
given by the sets

2\

Qlt = {t|t e 0, + (t,e)) > (1 - a9, (C.8a)

and

t+

o]
]

(et e 0, ¢ (t,e) > B(r-1)"%}, (2¢p3n=b = r),  (C.BDb)
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where o>B>0, and (t,t') 1is thé_usual inner product
Ly ‘ 3n-4 |

t = 1
(t,t7) = It,t', .

by the open sets

of B The set T(U) 1is thus covered

+ _ a +

rp Uu) = {u|u ZtAUA, t e Qp }. (C.9)
The crucial step is to show that for any O<oa<l there

is some (real) neighborhood ﬂOC(7ZnA'C(K)n AC(K)G supp #)

of K, such that for any fixed product wave function ¢ in

g(no) the transition amplitude T[y;Ut] is of rapid decrease

(T{v;Ut] = 0) uniformly on

*(

ro(u) = T(W - ry (). (C.10)

Since

roanc| U rp"(u)]U[U fp‘m)], (C.11)
pz2 : pzl

it is sufficient to prove the uniform rapid decrease on the

closed sets fl’(u) and Tpi(u), (pz2).

| For any fixed product ¢ e BOf) satisfying (C.3) the

uniform rapid decrease of T[y;Ut] on fl—fu) is a consequence

of the WAC condition, provided o 1s small enough so that

flffu)C{Nr\TCuﬂ. [If the original a is not small enough

then a smaller one can be used.] To use this fact let

C)C supp # be an open set with the property
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@Mc(nnA'c(K)n AC(K)), and let 8 'c@ be an open neighbor-
hood of K with the property & 'csupp ¥'c¢&, where ¥' 1is
a product wave function. Let 721 be the intersectlon

Z& =O'NA of §' and . Finally, let ¥ efW) ve a
product wave function that is unity in supp V' and zero
outside supp @. Then for any product ¢ in t?(Za), the
wave function y = Yy satisfies T{y-P;Ut] = 0. Since ¥
"is a product wave function in &) that satisfies (C.3),
T[y;Ut] is of rapid decrease uniformly on fl*(u). Thus
T[y;Ut] also has this property.

The uniform rapid decrease on the other sets [ ~,p 2 2
is a consequence of the smoothness requirement on T(K). Let
z = (Zl""’ZSn—4> be the local coordinates for which T(z)
is smooth in the varilables <22>‘;"Z3n~4>‘ Let U be some

+

displacement in TO" and let hO(U) be the coordinate

transformation defined by

Cl = Zl’ (C.1l2a)

Ly = UrK(zl, (C.12b)

Co = f €0 UA'K(Z>’ (2¢pg3n-4,p#0), (C.12¢)

where the vectors ep = (epl""’ep’Bﬁ—M) .are the orthonormal

basis vectors used in (C.8), and the Uy are as in (C.5).

Define
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ﬂp(Z) = § epAUAfK(z) =AVp3K(Z), (1<pg3n-4), (C.13)

and let Q(z) Dbe the determinant of the square matrix

Q. = agp/azx. Finally, for any K in 711 (with n_l taken

oA
“sufficiently small) write

VA(K) = & gp(K) Vp+.UO(K) s (C.14)
where UO(K) belongs to Cg(K). The functions gb(K) are
continuous, and gp(K) = 6pl' _Usipg the readlly verified

relation UO-BK/BZ = 0, one.finds by explicit calculation

that the Jacobilan HO(Z,U) of the transformation hO(U) is
H (z,U0) = Q(z) (g,(z) Xg« g, (z) X, (C.15)

where U = I XV . Thus if U Dbelongs to roi, then the

Jacobian does not vanish on the set

1

D () = {z]K(z) e Ny = N (K), |a(z)] > e,

(C.16)

lg,(2) gl_l(z)l < plr-1)™ ™.

[The open sets DO(K) always contain Z and hence are

nonempty, for all 022.] Therefore if z belongs to Do

and U belongs to Toi then the holomorphic transformation
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hG(U) can be inverted, giving the =z, = z,(¢,X) as holomorphic
functions of & and X. - Then because . zi(C,X) is simply ¢,
the smoothness of T(z) 1in the Variablés (22"“’23n—4>
implies the smoothness of T'(,X) = T(z(Z,X)) in the variables

(cg,...,c3n;4,x) when ¢ belongs to h_(U)D;, and U belongs

+

to TG_. The proof of this is deferred to the end (Lemma 1).

+

Let 720 = H%(DU). Then for U in T " and ¢ in 49(%%)

the amplitude T[V;Ut] can be written
Ply:Ut] = /dc e tegT f(cg,’X), " (C.17)

where.

g ,X) = -/dgl...dcg_l QL4+ -9y H '(g,X)
' (C.18)
"(g,X) 9(g,X) T'(g,X)

is a distribution in ¢ that depends on X. The function J :

o
is the holomorphic Jacobtan associated with the local coordinate
system (A'C(R),H'K ,D',(K)). The holomorphy of H' (2,X) =
,HO(Z(Q,X))”'and J;(C,X) = J(z(z,X)), and the smoothness of

T and ¥ =19 o Hk, imply the infinite differentiability of

f in ¢, and in X for all Uefgi. (See Lemma 1). The
function f must also have compact support since the function

@’(C,X) = J(Z(C,X)) does. It follows therefore, for all U
+

in fo_’ that all derivatives anf/aign are absolutely

summable and hence that the integrals



-80--

Az

I (X) = ,[ dg lanf (¢ ;Xfl‘ . C (c.19)
n - o} n "°o : o :

are bounded for U in To#' Equation (C.17) then'implie529
that T[y;Ut] = 0 uniformly on foi. Since the index o

' was arbitrary, the amplitude Tly;Ut] >0, unifdrmly on the
set Po(u) defined in (C.10) for all-prpdﬁct wave'functions
Y in B(TIO)', where 720 = 71.0 is open :m % and contains
K. | . . . . |
| | To complete the proof let n't:x?na be.a.heighborhOOd
of K, and let M H{?& be a s@bset of 776, Let be a
product wave function in 3(720) with unit value Qn' n'. |

Then, for any ¥ in B(M'aA ), one has
Iyl = Tlux1. |  (c.20)

If the notation T(t) = TLx;Zt,U,} is introduced, the ampli-

v ATA
tude T(y] can be written in the form of the convolution3®

Tiyl = j[dt$(—t) %kt), . - (C.21)
where

Ty = (emy~(3n-H) jfdz eHEE) (o n) (2). (c.22)
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The =z in (C.22) are the local coordinates UA-K; Define

14r t=0 or tlt]t =% en,

8(Q, ;t) = (C.23)
0 otherwise.

Equation (C.21) can then be rewritten

Tly) = j[dtm(-t)[ TO(t) + ﬁl(t)], (c.zu)
where

ey = [1 - ola; )] T(e) (C.25)
and

The) = (o, L) T(e). (c.26)

The results of the preceding paragraph show that
T°(t) » 0 uniformly in t]t]—l as |t|»w. Therefore, the
function To(t) has an infinitely differentiable Fourier

transform T°(z), and>?t
fdta(-t) %O(t) = hfdz(w 0 HK)(Z)‘FO(Z). (c.27)

Let J(z) Dbe the Jacobian appropriate to the local coordi-

nates (AC(K),HK,DC(K)). Define TIO(Z) = J—l(z)'To(z), and
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let TO(K) = QTO(HK—l(K)). -Then (C.27) becomes
./dtﬁ(—ts %o(t) = ‘/de(K) T°(K), (C.28)

where T°(XK) is infinitely differentiable on TZ'n7L.

The functilon %l(t) 1s not necessarily of rapid decrease
when |t|-«, but it has at most polynomial growth.32 Hence,
the function exp[—(ﬁ,t)]%l(t) is of rapid decrease when §

belongs to
c* = {8](s,8) > 0 ror all t e B3, (C.29)

and it has a Fourier transform Tl(z) that is holomorphic
for Imz in ¢¥.33 1f TJl(z) = J—l(z) Tl(z) is introduced
for 2z 1in

gt = {z]|z ¢ AC(K), Im z € C+}, (C.30)

31

the second term in (C.24) becomes, after simple manipulation,

/&t&(—t) Tl(t)'= lim jadz(w o) HK)(Z) J(z) ?fl(z+i6). (C.31)

18>0

§e C 4

From this it follows that

‘/ﬁti(—t> ey = ll?n deKw<K> 1 (xi,s), (C.32)
§ {0 :
se ¢t
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where TY(K) = TJl(HK—l(K)) and

K'(K,8) = I_(Ig H(K) + 18). (C.33)
K

This completes the proof.

Lemma 1. Suppose T[y] has the representation

m

rte) = [ e[ su(a)] o) (C.34)

s dz,

where S 1s some domain, and F(z) 1s a function that is

continuous in z4 and has continuous partial derivatives

of all orders in the variables (22,...,zn). Let h:3-+3' be
some nonsingular holomorphic mapping from SC:Brl onto

s'C R" such that z;' = hy(z) = z;. Then there is a
function G(z'), z' = h(z), which is continuous in zl' and

has continuous partial derivatives of all orders in

(22',...,z3n_u'), such that

- _
Ttw]»= j[ dZ'[ d'm Jw(h_l(Z'))] G(z'"). (C.35)

S dz,

Proof. Under the mapping h, the operator dm/dzlm

transforms into a differentilial operator

1 p
h_,(z') D P d N
1 pp P gy 1P

L (C.36)
p' P 1

=
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) 1
where the hpp' are holomorphic functions and the Dpp
are derivative monomials in the variables (Z2"""Z3n—4'>‘

The quantity T[y] then has the form

T[v) = _[ az' H' (z)[pay(r ™tz ] FaTizr. (c.3m)
SV

The function F'(z') = F(h—l(z')) also has the property

©

that it is continuous in the first variable zl' and C
in the other variables (22',{.1,z3n_4').' The function
H'(z') 1is the holomorphic Jacobian for the transformation

p P'

h. For each p and p' the derivatives can be

transferred (through partial integrations) to the functions

H'hpp,F'. This transforms (C.37) into the form
| g gP -1
Tl = dzr I G (2)—"Tu(hT(z")). (c.38)
qr p=1 b dzl'_ o .

The functions Gp(z') also have thevproperty that they are
continuous in the first variable zi' and ¢® in the others.
Through further partial integrations the derivatives dp/dzl'p

can all be transformed into derivatives dm/dzl’m, yielding

v m )
T(y] = [ dz'[ d - Jw(h'l(Z'))] z Gp'(Z'). (C.39)
s oz, P |
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The function G = Gp' is the function required by the

z
P
Lemma.

Lemma 2. Equation (C.21) is wvalid:

T(w)= T[x ¥] = [dcm-t) T(t). (C.40)

Proof. Since x belongs to b » the functional

T[xy ¢} = Fl[y] 1is a continuous linear functional on the space
2 of functions ¢ that possess continuous partial deriva-
tives of all ordefs. (Note that the support of Y 1is not
restricted here.) This is because x ¥ Dbelongs to A for
every ¢ 1in £ . The functional F then belongs to &',

34

and the result of Bremmermann 1is directly applicable,

yielding (C.40) for all ¥ e & that satisfy (C.20).

B. Proof of Theorem 1A.

The proof consists of two parts. The first is a
demonstration that the number o, the simple coordinate
system of Theorem 1, the number e, and the set 7[8 can
be chosen so that [7Z€nCE+(KﬂCf&. The second consists of the
necessary generalization of the way the limit (3.7) is taken.

Choose a simple coordinate system (AC(K)’HK’DC(K>) in

which 2z, = o(K;K) = VA(K) K. Such a choice is, of course,
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possible only if VA(K) does not belong to z;(K). [Sée
(8.11).] But if VA(R) belonged to ¢_(R) the various
displaced velocity cones G(ﬂi,— aiA(K)) would have a
common point and assumption (c¢) of Theorem 1 could not be
satisfied. Thus, coordinates with z, = 0 can be chosen.
Let N"C [Aé(K)nﬂ%] be abcomplexbneighborhood of K

such that its closure 7I" 1is also contained in AC(K)n7é

and the set HK-l(ﬁ”) is convex. Then for Ke[n"/)C€+(K)}
one has
Imz, (K) > sup Im(U-K)= e]Im K. - (C.h1)
UeR
€
Since HK_l(ﬁ") is convex, there is some A>0 such that
for Ke 7'[".
[Im X|| > |1mz | & (C.42)
where 2z = HK—l(K). For since the mapping HK is hdlomorphic,

the functions fiv(x,y)'E‘Imkiv(x+iy) "have derivatives of
all orders for (x+iy) in " and can therefore be expanded
about y = 0 by using the Taylor formula (with remainder)35:
f.
iv

| | 3 | |
fi\)(X,y) = fi\)(X,O) +§ y)\’a—y-';\— (X,ty), (C.L‘S)

where t, 0<tgl, is some number that depends in general on
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y. Since kiv(z) is real when 2z 1is real, fiv(x,o) = Q.

We can therefore write

f[Im K| = |y| A(x,y), (c.hl)
where
] . of, 1
A(x,y) = |y iz 2y ~—i-(X,ty)l2}2- (Cc.45)
. A 9y
1V v)\ A
Consider now
A = inf 1 Alx,y). (Cc.46)
(x+iy)eHK (n") :
y#O

If A = 0, there must be a seguence of points (xn,yn),

with yn#O, such that

lim A(Xn,yn> = 0. (c.u7)
I’l")OO
Moreover, because 7" 1is closed the sequence (Xp,yn>

~

approaches a limit (x,y) with (x+iy)e HK”l(ﬁ"). If
J#0, then [|Im K(X+i¥)]] = 0. But for a simple coordinate
vsystem the vanishing of the imaginary part of K(X+iy)

implies y=0. This precludes the case J#0. To discuss the

case where y=0, we first define W o= yn|yn]_1. The

sequence W

no suitably restricted to a subsequence,is conver-

gent to some w with unit norm. The
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continuity of the derivatives afiv/ayx further implies that

1

A = 1lim A(xn,yn)
n->o

of, "2
{z [z W, g (i,o)]g}- (C.48)
iv oA * 9

If A = 0, the equations

- afj_\) = N
iw)\—g}—,;——(x,O) = 0 (C. 9)

must be satisfied for all 1 and v. Because the real
analyticity of the kiv(z) implies

ok,

v (z) = iy <§ 0) (C.50)
8ZA ayA 270 ’

the equations (C.49) state that the vectors vy = (viA""’

), with v = akiv/azx, are linearly dependent.

VnA
These vectors VA form the rows of the Jacobian matrix of

iix,v

the mapping HK(Z). Since this Jacobian has maximal rank
in DC(K), the rows cannot be linearly dependent. This
contradiction implies that A caﬁnot be zero. Consequently
A  1s greater thah zZero.

For any €>0 one can find an 0<a<l such that u<éA.

Then (C.41) and (C.42) imply

Im 2z

p > HImozla (C.51)

..
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This implies that =z dis in HK—l(f&). Thus, [72WqC€+(K)]C€‘
and the first part of the theorem 1s proved.

It is clear that N'" can be chosen so that f)’z"n #]Cﬂ'
where 7' 1is the neighborhood of Theorem 1. Theorem 1
therefore implies Theorem lA, provided the manner of taking
the limit (3.7) can be converted to that of (3.14). Let

(x,8), 1<Ag¢3n-4, be any uniformly continuous functions
3n-4

“)

of xeD(K) = DC(K)n5 and s, Ogssl, which have the
following three properties: (a) partial derivatives (with
respect to x) of all orders exist and are continuous in
both x and s; (b) Z(X,O) = x for all x; (c¢) z(x,s)
belongs to HK_l(f&) for all x and s>0. We want to

show that

T{y] = 1lim [de(K)[ TO(K) + TH(K(K,s)], (C.52)
s->0

where TO(K) and Tl(K) are the functions of Theorem 1 and
' -1 .
K(K,s) = Op(z(lz “(K),s)) (C.53)

Since [nﬁnCE+(K)]CfE, all paths K'(K,s) of the type
allowed by the theorem are of the type (C.53); Thus a proof
of (C.52) proves also Theorem 1A.
The relevant term in (C.52) is the one involving Tl(K?&sD.

In terms of local coordinates it can be written
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1(s) = Jarv) KK - _/d>55<x>w<>é>TJ1(z<x,s>). (C.54)

The function TJl(z) was defined in the proof of Theorem 1
- » ' +
as J 1(z)Tl(z), where Tl(z) is defined for Im zeC (a)

and zeDC(Kj as
1l(g) = (oq)"(30-4) ][dte+i(z’t)%1(t) (C.55)

For s>0 and xeD(K) the quantity Im(z(x,s),t) is bounded
from below by n(s)|t]>0, for all (real) t # 0 in the
support of ﬁl(t). This 1bwer"bouﬁd is a conéequence of the
continuity of z(x,s) and the.aséumption that Z(X,S)EHK—l(fa)
for s>0. The integral (C.55) therefore converges

uniformly in 2z and the integrations in (C.54) can be inter-

36
changed:

I(s) =v/fdt§1(t) o(-t,s), (C.56)
where
o(t,s) = <2n)‘(3n‘“>/de(x)J'l(z(x,s))w(x')e‘”Z(X’S)’t). ((:.'573,)
The next step is to show that the integral (C.56)

converges uniformly in s in some strip Osssso, where

O<sosl. The function %l(t) is continuous and of at most
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polynomial growth, so there is some integer N such that

ey (e 1PNHL

is absolutely summable. On the other hand,
the function (1+]t|2N)®(—t,s) is bounded in both t and

s for t in the support of %l(t) and s 1in some strip
Osssso. To see this, consider the functions zk(x,s) as

a mapping ¢ from D(K) into DC(K) for each s. Let
W(x,s) be the Jacobitan of . Assumption (a) about z(x,s)
implies that W(x,s) is continuous in both x and s, and
assumption (b) implies that W(x,0) = 1 for all x. It
follows that there exists 843 O<sosl, such that W(x,s)
does not vanish on any product set of the form P x I, where
I = {st<S<sO} and P is any compact subset of D(K). For
any sel, therefore, the mapping ¢ can be inverted on P.
Since supp ¥ 1s a compact subset of D(K), this result

can be applied to (C.57), ylelding

o(t,s) = (em)~(3n=H) / 4z (x(2))3 (2 )w L (2) p(x(z))e T (2>0)

r(s) (C.57b)

The contours _F(s) in (C.57b) are the images under ¢ of
D(K)n supp ¥ for various values of s. The sets TI(s) are
compact for all sel. Consider now the function (1+[t|2N)

®(-t,s):

(1+]6]2Ma(=t,s) = (2m)~(30-%) /.dzJ(x(z))J_l(z)w_l(z)w(x(z))
I'(s)
' 2 .
[1+(_1)N(2 —3—5)N]el(z’t).
A BZA'

(C.58)
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Partial integrations of (C.58) yield

(1]t M e(-t,s) = (2my~30-H) J[ azw L (z)F, (2)et(72F) | (c.59)
I'(s)

where

Py(z) = W(z)[1+(-1N 2 2] @ 2)ux(2)). (c.60)
A 0z '
)\ .

Equation (C.59) can be rewritten:
(1161 My e(-t,s) = <2ﬂ)‘3“‘“[dxpN<z(x,s))ei_(Zst). (C.61)

The continuity of the mapping ¢ 1in bocth x and s, and
the continuity of the functions J, W, and ¢ ensure the

boundedness of FN(z(x,s)) on D(K) x I. The boundedness of

el(z’t) for all t in the support of %1(t) is ensured by

the fact that =z is either real (s= 0) or in HK—l(Ea).
Thus, the function (1+|t|2§§(—t,s) is bounded in both t
and s, with t in the support of %l(t) and 0<sgs

37
and the integral (C.56) converges uniformly.

O,

The order of the 1limit s-»0 and the integration over

t can therefore be interchanged:

1im I(s) = .[dtTl(t) o(-t,0). (C.62)
s->0 - : :
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Because &(-t,0) 1is Jjust J(—t), equation (C.62)1is

1im I(s) = /dtr'f*l(t) V(-t). (C.63)
s~+0

Since it was shown in the proof of Theorem 1 that

|1:'|Lm ]qu)(K) Tl[K'('K,S)]=[dt ) T(-t), (C.64)
§|+0

6€C+(u)

the proof is complete.
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APPENDIX D

A. Proof of Theorem 3.

= +
Consider an arbitrary point K of W - i, , and let
W = (U o "U3n-h} be a set of linearly independent displacements

that define a simple coordinate system (AC(K),HK, DC(K)) at K.
Because W - L © is open,l9 there exists a (product) neighborhood
Niexn, ;N 'M)C(AC(K)H[W-,LJ_“]), of K such that 7} is
the support of some product wave fu”nction X'. Because Y defines a set
of local co_ordinates at K, the set ’}’i_i can be chosen small enough so
that the set I(W) defined in (L.9) has an empty intersection with
GO( X'). [See (B.10).] |

Congider next a product X éatisfying supp X E'ﬁlc &=

l)
where is open. Then

-

G0 ebyoe) (0.1)

To prove (D.l) assume the converse: suppose there is a U in (:C(X) that
is not in /;OO(X' ). Because the points of 7'/ Wi lie in W - 5.7 ana
hence in M -m o , W€ can assume that no two initial hi are collinear in
-7—’[‘ and no two final Ri ‘are collinear in 'Y(—' . Then, because U is not
in CO(X’), one can find some € > O such that the sets %E(Xi,ui) of
Definition 4 have no common point. But then the diagram )r)é required

by Definition 4, and the fact that U is in [’;C(X), must be a ﬁontrivial
diagram. This diagram (De belongs to éC(K) - EO(K) for some K

in ’ﬁ{) . But then this K 1lies on ._i_+, contrary to the definition

of ¥'. This contradiction proves (D.1).
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Because I'(M) does not intersect (fO(X), it does not inter-
~ ’ . ' 7
sect ﬁ;C(X)) and is therefore a (compact) subset of ({ C(X).
Since T(Ul) 1is a compact subset of /] C(X), the SAC
condition implies that %;(t) = TC[X;ZtXUx] = 0 uniformly in
t]t]™ as ] - e

Let the product wave Tunction X have unit value on
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the closure YL of some neighborhood 7122C7¢' of K, where

"2
ﬁQ is a subset of 7Zln#u  If ¢ belongs to é?(Z%), then

Tc[wj = Tc[w x]. This relation can be rewritten30

T[] =‘/6t5<—t> T (), (D.2)
where
Be) = (amy~ 307 ‘[dz e =y o gy (2), (D.3)

is defined just as in Appendix C. Since Tc(t) is of‘
rapid decrease uniformly in t|t| ' when |t] ©becomes
infinite, it has an infinitely differentiable Fouriler

31

transform - Tc(z).38 Moreover the convolution theorem

can be used to convert (D.2) to
Tc[w] = -[dz(w o HK)(Z) Tc(z). (D.4)

Let J(z) be the weight function (Jacobian) appropriate to

the mapping Iz, and let TCJ(Z) = J—l(z) Tc(z). Finally,
_ -1

let TC(K) = TCJ(HK

differentiable on 722, “and

(K)). This function is infinitely

T vl = ‘/EKw<K) T, (K) (D.5)
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for every wave function in t?(ﬂg). The distribution TC(K)
is therefore infinitely differentiable on ”2 and hence at

K.

B. Proof of Theorem 4.

Let 71C{ﬂ?)AC(K)]'be a neighborhood which satisfies the
conditions of Definition 5. Then, any neighborhood 721 of
K fulfills the conditions of the theorem if its closure
/Iy 1is contained in 77.

To prove this let x Dbe a product wave function in

#(7)) with unit value on 7,, and let T _[x;U(t)]= T, (%)
for any displacement U of the form U(t) = ¢ tXUA’ Being
the Fourier transform of a distribution with compact support,
Tc(t) is infinitely differentiable.32 If ¢ 1s any wave
function in é?(ﬂi), the transition amplitude Tc[w] can

30 ‘

be written
T lx wl =T vl = Jdtw<—t> T, (t), (D.6)

where { is defined in (D.3). The domain of integration

is broken up in the following way. Let

w =g90- U w, , _ : (D.7)
[®] i}l 1

and for all 120 let
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C(mi) é‘{plt # 0, ﬁlfl‘l ew, }. | (D.8)

Define the step functions

1 if t e Clw;),
0, (t) = (D.9)
0 if t £ E(wi),

and adjust the (finite) values on the boundaries of the

C(wi) so that

z Oi(t)~= 1 ' (D.10)
120

for all t. Equation (D.6) then becomes

T{y] = 2 fdt$(-t) (1), ' (D.11)

120

where subscripts ¢ are now dropped and
TH(t) = 0,(t) T(t). (D.12)

Consider first the term T°(t).  Because the set '50
corresponds to a closed subset of T(U) - Fé(ﬂ;?@, the SAC
condition implies that, as |t| increases, the function

TO(t) is of rapid decrease, To(t) 2 0, uniformly in t|t|_1

for t in ,G(wo). Since T°(t) vanishes for t ¢ @(wo),
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the restriction that t Dbelong to @(wo) can be removed:
T(t) 0 as |t|»w. This means that T°(t) has an
infinitely differentiable Fourier transform To(z), and

31

the first term in (D.11) can be written
/dtﬁ(-t) T(t) = [dz(w o mg)(2) T%(2). (D.13)

Let J(z) be the weight function appropriate to the mapping

il and let Tjo(z) = J—l(z) T°(2). The definition

R’:
T°(K) = TJO(HK_l(K)) allows (D.13) to be written in the

desired form
fdt$(~t) ™(t) = ~[de(K) T°(K), - (D.14)

where T°(K) is infinitely differentiable on 711.

The functions T (t), 131, which vanish for t £ Clw,),
are of at most polynomial growth as |t| ©becomes infinite.
Any exponential damps this polynomial growth, and hence the
functions exp{—(é,t)}ﬁi(t) are of exponential decrease as
|t|+» uniformly in t|t|™% for any 6€C+(Gi). The
function' exp{—(é,t)}%i(t) has a Fourier transform
Ti(x+i§) that is holomorphic for 6ec+(&i).33 It is evident
that

/dt@(—t) Fligy = |l?m d/dtﬁ(—t) e~ (850D Fligy (D.15)
5 -0

4+ _
§eC (wi)
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The convolution theorem®® can be used to write (D.15) as

/ét$<—t)'Ti(t) = Ilim | ]éx(w o m)(x) T (x+16). (D.16)
§{=0 _

6€C+(&i)'
Define TJi(z) = J—l(z) fi(z) for 'z in the set
E, = {z]z e D_(R), In z c+(5i)}, (D.17)

1

and define T(K) = T '(I"'(K)). Then, (D.16) takes the

J
form
./§t$<—t) (t) = 1im ‘/HKW(K) 71 (K'(K,9)., (D.18)
|8 ]~0
sec’ (@, )
where
K'(K,8) = Tp(M"H(K) + 16). | (D.19)

The function. TH(K) is holomorphic on é?i = Ng(E;).
Equations (D.14) and(D.18). combine to yield the desired
representation (4.16). .
It remains to show that if K is any point in nl—12+, then
the 1imit function (4.19) exists and 1is infinitely

differentiable at K. By virtue of (D.18) the function
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Ti(K) exists as a distribution. It is only necessary,to
show that it is infinitely differentiable. Let 722, be a
neighborhood of K with closure contained in 711—dg+, and
let ¥ be a product wave function in é?(ﬁ%). Then it
follows.from the results Just derived that T[¥;U] has the

formal representation.

il

T[v;U(t)] = T(w,t) /dzJ(z>w<z>e“i(Z’t) T2}, (p.20a)

J

j/dt'ﬁ(t—t')z GRICID (D.20b)

where .muauwaamqg, U(t) = & tAUA’ and the various Tg(z)

are distributions. Because ﬂ.2 contains no points of °Zi+

the displacements in Fol(%;nl) belong to ézc(w). The
. i : i~ : } _—
image of T (u,nl> in @ 1is, w,. Since the sets wj(3>0)
are disjoint, there is a neighborhood wi' of w_ with

A

closure ' Thot. does not intersect any of the sets Ejt»ﬁ%
J # 0,1, The sefi".uj.;: is therefore the image in Q of a set
Fc'i(u;nl)c T(w) that is a subset of (_(¥). The SAC
condition then requires that T(w,%r) be of rapid decrease,

~ A _ A -
T(y,tt)= 0 ,as T »x, uniformly int=t|t] L for t in

—

W This requirement is also satisfied by fhe first
(j=0) contribution to (D.20). since T°(z) is infinitely
differentiable. (See D.l3.)‘ For j#O,i the set 51' is
a subset of §Q - aj. According to the lemma (Lemma 3)

proved below, the contributions Jj#0,1 to (D.20) must,

therefore, also be of rapid decrease uniformly on C%'.
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Therefore, the ith term of (D.20) is also of rapid decrease
uniformly on By '. But by virtue of Lemma 3 the ith

term must be of rapid decrease uniformly also on the comple-

ment of Wy 'y Thus for all t we have
1im |t |V ./ézJ(z)w(z) Th(z) e 1(2:8) o g (D.21)

Itl—)oo

for all integers N. This implies that Tg(é) is infinitely
differentiable in the interior of the support of w?g‘Since
lw can be chosen to be nonzero at 2z, the function T?(z)
must be infinitely differentiable at 7. Thus T () is,

by definition, infinitely differentiable at K.

This completes the proof.
Lemma 3. Let w be an open subset of @, and let ' be
a closed subset of @ - w. Define
G(t) = f! atglt-t') T(x,t, (D.22)

Clw)

where T(X,t) and $(t) are defined in the proof of Theorem

4. Then, Tor every integer N, the limit

1im ) G(Ee) = 0 - (D.23)
is obtained wuniformly in t = t|t “Loon Br.
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Proof. The function E(x;t) is of at most polynomial growth

32

as |tl+w. There 1is, therefore, an integer p for which

(1+]t]|P)™% T(x;t) 1s bounded. Let A be that bound. Then

|G(€T)| < A J/ at' (14|t |P) T (Er-t 1) |, (D.24)
Clw)

< A jf ac' 1+t |®) Cq|%r-t'|_q : (D.25)
Clw)

The 1 dependence of the right-hand side of (D.25) can be

explicitly exhibited:

leEo] s a oy M E) £ P o)), (D.26)
where
AL (t) = j\ att e |5 Jt-t1 |7, (r = 0,p). (D.27)
C(w)
Since w'c9-w, the magnitude |t-t'| is bounded from below
by a positive numbéer when t 1s restricted to w'. It

follows that the integrals Ar(g) are bounded on w' if

g is chosen large enough. In fact, 1f N d1s any positive
integer, the number g can be chosen large enough that
il times the right-hand side of (D.26) is (uniformly)

bounded on w'. It follows that G(tT) satisfies (D.23)
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APPENDIX E

A. Proof of Theorem 5.

Let ;9 be a fixed nontrivial connected causal space-
time diagram, and let K belong to (JB+L§]4W%)- According
to Theorem 6, the set ofo+[,5] is iocally the set of zeros
(on ) ) of a real analytic function A(X) that has nonzero
gradient near .K. This would immediately imply that afb+[§]
i1s an analytic submanifold of H of codimension 1 at K
were 1t not fbr the possibility\that the gradient of A with
respect to local coordinates might vanish, even though VA(K)

does not. To rule out this possibility, let A(z) = A(K(z)),

where =z 1is a set of local coordinates at K for W. Then,
ok
ok aA K _ X A iy
= = =% m—— = . (1€2<3n-4). (E.1)
>
azk 3 Zy i,u akiu azx

Now, any veéfbr VA = 3A/3K that causes (E.1) to vanish for
all A 1is of the form Uy(K). [see (B.11).] But ir w
were of this form, the displacements U which generate
diagrams‘ﬂ E[EL K = KL@), would also be of this form. Hence,
because K 1is not in Yﬂo, the diagrams Je [0], £ = K(4),
would be trivial. This is contrary to hypothesis. Thus,
98/3z, 1is nonzero and the surface «/d+[§] is an analytic

submanifold of‘ll of codimension 1 at K.
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B. Proof of Theorem 6.

Let & be a fixed nontrivial connected causal space-

time diagram with n external lines and m vertices, and

let Deld]. rLet

be the sum of the mathematical energy-momentum vectors k.

kj(&)

Q. [k@)] =&
J

(E.2)

J

of the external lines attached to vertex r of 195[5].

Energy-momentum conservation at vertex ©r then gives

where

Q [K@®)] = F_[V()],

PV = D0 g ey, HAJ(V)H_lAj(V).

The primed sum extends only over internal lines.

J J

Aj(V) are defined by

and the quantity

AJ(V) =1, €5p Vo

la,coy) = [AJ.(V)-'AJ.(V)]/2

(E.3)

(E. L)

The vectors

(E.5)

(E.6)
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is a Lorentz length. [‘The HAJ[V(A)jﬂz are all strictly

positive for deld], by definition. ] The uyoand e
are the masses and structure constants of @-. Equation (E.3)
is obtained by first expressing Qr[KQD)] in terms of the

momentum-energies associated with the internal lines incident

A=

upon vertex r, and then using the identity HAj“ = Haij

o to eliminate a,.
it J

In terms of the quantities just defined the positive-a
Landau surface ,Z+ID] is the intersection of the mass shell
7] with the set

A5l = {K = (Kyse.nsk )]0 (K) = F_[V; 5], Ven3, (E.7)

where the argument d 1in Fr[Vj.§]= Fr(V) emphasizes the

depehdence of the €ip and My in FP(V) upon 45, and
Q = {V[AJ(V) are positive timelikel}. (E.8)
+ e = _ then
If Ve@' and Rel[Hl satisfy Q_(K) = F_(V), ,the set
+ = + =
Q' (K) = {v|vea', Q (K) = F_(V)}, (E.9)

consists precisely of those points V which satisfy

Aj(V) = xj AJ(V), (All internal lines j), (E.10)
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where the 1, are strictly positive scalars. For if V
satisfies (E.10), it clearly belongs to & (R). [See (E.4).]
Converseiy, if V belongs to Q+(K), the vectors

.Dr(V) = Fr(V) - Fr(V). ' | (E.11)

must vanish. This gives

I ) -
z -D_(V) = Ztu. {jA.(V - A, (V A (V)-A, (V) )= 0. E.12
L vpeDp(V) = Ity Fa, (0l = Jay(MI™" a5()-8,(T) (E.12)
oy e . each
Each term. in the braces /is. nonpositive, hence, must

vanish. This implies (E.10).
Condition (E.10) is essentially the condition that V

belong to the null space of the Jacobian matrix H(V) defined

by
_ OF . _
LS
=T, el o, (D38, (D2 —A, (T) &, (T)].
K JT Js J J J v - Ju Jv .
(E.13b)
‘The null space of H(V) consists of all m-tuples W =
(wl,...,wm) of ‘four-vectors for which the equations
s w M oH (7) =0 (E.14)

r ru,sVv
ru Ho
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are satisfied for all s and v. It is evident from (E.13b)
that all vectors that satisfy (E.10) belong to this null
space. Hence, the»set Q+(K) is contained in the null space
of H(V). Conversely, any vector V in the null space of
H(V) must satisfy (E.10), without the restriction to positive

Aj. For if (E.14) is true, the equation

H v 7Y = = 1 7 —3 T 2.
. I ow, w, H (V)= 0 =z M ||AJ.(V)(| {"AJ(V)H
U,SV J

(E.15)

2 = 2
Iy ) - [AJ.(V)-AJ.(W)] }

is also true. Sinceeach term in the braces 1s nonpositive,
each must vanish. This implies (E.10), without the restriction
to positive Aj.

Explicit computation shows that any linear combination
of the vectors ¥V and Ep(Osps3), where Ep is a 4m-

dimensional vector with components
(E ), 8.7, (E.16)

belongs to the null space of H(V). Since Aj(Ep) = 0 for
all p and j, the vectors VEQ+(K) and Ep must be
linearly independent. The dimension N(V) of the null space
of H(V) must therefore be at least five: N(V) » 5.

On the other hand, N(V) cannot be greater than 5. For

suppose it were. Then thére would exlist some W, linearly
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independent of the vectors ¥ and E , such that W, T
and the Ep, and hence also any linear combination of them,

belong to the null space of H(V). Consider the identity
(T + o) = AL A(T) = (X, + V) A.(¥ - E.1
AJ(W aV) AJ(a) J( ) ( j } J( )s | ( 7)
where the Xj are defined by
A, (W) = XA, (7). (E.18)

The number o can obviously be chosen so that kj(a) >0

for all j and Aj(a) 0 for some Jj. Let {ak} be a

sequence 50, with 0y >0, and introduce
v, (E.19)

The vectors WA belong to Q+(K) and they converge to a
limit, W' =-W + oV, which is not zero since W is linearly
independent of V. The set of four-vectors W"definés a
aiagram‘@ ' which 1s a contraction of 26, The diagram é)'
cénnotvbe a trivial diagram because the trivial diagrams are
generated only by linear combinations of the Ep, and W'
cannot be one of these because of the linear independence . of
the W, ¥V and E,. The function F'S(V) corresponding to
the vertex s of .. .@' is simply the sum of the functions

Fr(V) corresponding to those vertices r of 40 that unite
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to form vertex s in the contraction of £ that gives A '.
The function Q'S(K) corresponding to the vertex s of g

is formed in the same way from the Qr<K) of 4. Thus we

thain
Q' (R) = F' (W) (E.20)

for each value of A. Since the F'S do not depend on those
internal lines of u§ that are contracted in forming 01,

the 1limit can be taken: Q'S(K) = F'S(W'). But then K

belongs to <Z+[g']. This contradicts the assumption of the
theorem, Thus the quantity N(V) cannot be greater than 5. But then

N(V) is exactly 5, and the matrix H(V) has rank
R(V) = Um - N(V) = 4m - 5 = R. (E.21)

The knowledge that N(V) = 5 1s itself useful. It
says that all vectors W in the null space of H(V) are

of the-form

W=7+ 32 aP E . ' (E.22)
o

Thus all VeQ (K) are of this form. Variations of the
scalars ap simply translate the entire diagram, and
variations of A merely change the scaling of the diagram.

Thus (E.22) tells us that there is essentially only one
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diagram A rrom the set [D] that satisfies K() = R.

The Vectors 'Qr satisfy the four conditions :i_Qru = 0,
0<ug3. Thus we may consider the reduced space in which one
of the féur—vectors Qr is eliminated. Similarly one of

the four-vectors vr is eliminated by requiring £ vrv = Q.

. r
. Since the eliminated rows and columns are linear combilnations
of the remaining ones the reduced 4(m-1)-dimensional matrix
H still has rank R = 4m-5.

Following the procedure of Goursat39 one can now

construct a function @®(Q) of the remaining (m-1) Q's that

is real analytic at Q Q@ = Q(K), has a nonvanishing

§, and which vanishes on the set

gradient V&(Q) at Q

R') = 1Q = (Q,....Q)1Q,

L F(V), Veq'}, (E.23)

for some neighborhood Q'CQ+ of V. The constrﬁctioﬁ of
®(Q) goes as follows. Since the rank of the reduéed H,
which we will call ﬁ, is just one less than fhe maximum
possible rank 4(m-1), one may, by virtue of the implicit
function theorem, arrange the QPu and the vrU S0 that

the first R = 4m-5 of the vru (called xi's) can be

expressed as real analytic functions ii(Xl,...,XR,t) =
ii(X,t) of the first R of the Qr's (called Xj's) and
the final Vru (called t). These expressions ii(X,t)

for the vp“'s are then inserted into the expression for the

final Q. " (called T). This gives
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(X,t),

T = T(X X (H,8),8) = TIx,¢] (E.2U)

1

Differentiation of (E.24) gives

B~ ox ~
3T _ 5T 1 o7
=2 3%, 9% T 3t (E.25)

Similarly, one has

X (X (K,8) 500, Xp (X,0),8) = Xj[x,tj = Xy, (E.26)
which upon differentiation gives
0%, e o, 8%, aij
Freali Z ai st » (1<I<R). (E.27)
i=1 i

Equations (E.25) and (E.27) can be combined and simplified
and by recognizing that the

by writing T = XO and t = io

matrix SXJ/Bxi is just Hji:

an B R
sz = E iy 3g— 0 (0<i<R). (E.28)

Multiplication by the matrix C of cofactors of q yields

%, %,
? C"A 2‘)7(_—‘ = (det H) ‘a—E— . (E.29)
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This equation, when combined with (E.27) and the fact that

det § = 0, yields
oT _ ' :
C 5% 0. | (E.30)

But COO is the cofactor (minor) of H that was chosen to

be nonzero. There is, ﬁherefore, a full neighborhood of the

image (X,t) of V¥V in which

@
=l

= 0. : (E.31)

Q|
(g

This implies that T is independent of t:
T = T(X]. (E.32)

Since the Xj and T are just the Qr“, equation (E.32)

can be rewritten
T - B[X]=z #(Q) = 0. (E.33)

This defines the real analytic function  ¢(Q). It is evident
from (E.33) that V&(Q) 1s nonzero at Q. The neighborhood
Q' of T 1is chosen small enough that C_, 1s nonzero and
T{X] is single-valued and-holomorphic on the image &(Q') of
Q'.

We now show that there exists a Um-dimensional neighborhood

hood N (Q) of Q@ such that
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R AT(@) = {Q]Qel(F),9(Q) = 0}n £, (E.3H4)
where

£= {Q|q = (Qys-+-5Q ), L Q, = 0}. (E.35)

m J

The fact that ¢Q(Q+) is confined to & follows immediately
from (E.3) and (E.A) by explicit computation. The nontrivial
content of (E.34) is that, subject to this restriction, the
zeros of @& exactly coinclde with /Q(Q+) in some neighborhood
of Q.

"The construction of the function & ensures that it

vanishes on &(Q'):
R(2')C {a|2(Q) = 0}a €. (E.36)

To show (E.34) we first show that a neighborhood 72'(J) of

@ can be chosen so that
RN (@ ce (2). | (E.37)

Suppose this were not true. Then one could find a sequence
of points Q(A)»@ such that,.for each value of A, Q()) 1is

in IQ(Q+) but not in L(Q'). Each of these points Q(X) 1is
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generated by a corresponding point V(X)€Q+, which can be
required to satisfy I v_(A) =0 and Z'HAJ(V(A)H = 1. [The
value of the mapping F of (E.4) is insensitive to such
reétrictions.] The points V(A) are then confined to‘a
bounded region of V space. For if this were not true, the
Euclidean norms of the difference vectors Aj(V(A)) would
have to be unbounded for some j. This cannot be reconciled
with the required boundedness of both their Lorentz norms and
the energy components of all the Q(X).

Since the V(X) are confined to a bounded region the
infinite sequence of V(X) must have a subsequence that has
a limiting point V(«). If this limit point were in Q+
then the continuity of F(V) would ensure that the image
(under F) of V(») would be §. This would require that
V() have the form (E.Eé). The normalization and trénslation
conditions would then ensure that V(=) = ¥. This is not
possible since the V(A) must all lie outside the neighborhood
Q' of V. Thus V() cannot be an element of Q+.

The only other possibility is that some of the "AJ(V(w))H
are zero. The corresponding vectors AJ(V(w)) must then
also be zero. For if "Aj(V(A))H+O but Aj(V(k))%O, then +he
energy parts of some of the Qr are forced to become infinite,
which contradicts the requirement QP(A)+QP. Thus certain of
the vectors AJ(V(w)) must be zero. Not all can be zero
because of the condition Z'ﬂAj(V(A))H = 1, Thus, after appropriate
‘scaling, ovérall~tran91ationuandispecificdtibnﬁof the individual external

momenta incident on each vertex, the diagram
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corresponding to V(e) 1s a contraction J ' of ﬂ', Equation
(E.20) again yields a violation of _ our original hypothesis
that Kejo+[5];T¢ws none of the ,Aj(V(®)) can vanish.

A1l alternatives having been ruled out, equation (E.37)
is established. It follows from (E.36) that there exists

a Um-dimensional neighborhocod #N'(Q) of @ such that

0ln € . (E.38)

R(aHam (D)C{qlaen (@), 2(Q)
This result is half of (E.34).

To complete the proof of (E.34) we construct a i4m-dimen-

sional neighborhood N"(Q) of @ such that
{Q]Qen"(3), (Q) = 0lnfcR(a A7 (T). (E.39)

Then (E.34) is satisfied with 7U(T) =7'"(Q)an"(}F).

To prove (E.39) consider the equations
Xy = x; (X,t), (E.40)
where the functions on the right are those appearing in

(E.24). Combining (E.40) with the condition Lv, = 0, one

obtains a system of equations

H _ = MU,
v E =7 M | (E.41)



=117

that gives all the vru as functions of the Xj‘(lsstL
and t, where t 1s Jjust one of the VrUJS' Let X be
the projection of >Q onto X-space, and let T be the
value of t - such that ¥ = V(X,T) 4is the point of Q' that
.satisfies Q@ = F(V) ana Z'AJ(V) = 1. Because of the non-
singular nature of the mapping (E.41) there are neighborhoods
Ny and n, of % and E such that the image [ under (E..41)]
of ﬂXXﬂt is contained in Q'. Moreover, (E.26) and (E¥33)
imply that if the projection X(Q) of Q onto X-space
belongs to RX, if Qef, and if @(Q) = 0, then Q =
F[7(X(Q),t)] for any tsﬂt. Thus, every point of {&(Q) = 0}
‘and € that satisfies X(Q)sﬂx is generéted by some point
V in Q'. Taking 7 ﬁ(Q) to be the set {QIX(Q)eﬂX}, we
have (E.39). Thus (E.34) is proved.

The proof of Theorem 6 is completed by transforming the

preceding results from Q-space into K-space. Thus one defines
A(K) = 2(Q(K)) _ (E.42)

and lets 71(K) be any K-space neighborhood of & with image
[undger (E.Z)] in Q-space contained in XN (). Since Loy
is the K-space image of kZ(Q+), (E.34) becomes (5.3). [All
points of ,Ztﬂ’l b.elohg to M, and hence also to X if .72(K)=72
is a small enough neighborhdod of ReX. ]

If K is a point of o T[JJa/I(R) then the point Q(K)

lies in /2(Q+%1H(Q). Hence, by virtue of (E.37), Q(XK) lies

T
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in R(Q'). Thus there is a V(X) in @' such that

F[V(K)] = Q(K). For all points in Q' we have Coo # 0.

Thus the rank, R[V(XK)] of H(V(XK)) 1is U4m-5. The arguments
that gave (E.22) show also that any vector in the null space

of H(V(K)) 1is of the form

W= AV(K) + £ a° E . . (E.L3)
5 o

However, the gradient V&(Q) at Q = Q(K) belongs to the

null space of H(V(K)), as is seen from

3O(F._ ) sF_ (V)
2elFV] -y i T, (E.44a)
8vS ru aFru avs
39(Q_ )
= Ty’
iu e Hru’sv(V) (E.UlLDb)
. ru
_ U _
= iu (v @), Hru,sv(v) = 0. (E.lUkc)

Since V ¢ 1is nonzero we may rewrite (E.43) (using new A
and af) as vru(K) = AV@EQ(K)]Pu + Z-ap(Ep)ru or, more

e
briefly, as

V(K) = AV® + % apEp, (E.45)

where the sign of ¢ 1is chosen so that ) 1s positive.

The positions of the vertices VP(K) determine the
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positions of the lines of the corresponding diagram. In
particular the position of the external line Li is generated
by the displacement

(E.46)

u, = A(V 9) + 3 ap(Ep)

r(i) r(i)
where r(i) 1labels the vertex to which Li is connected.
The general displacement that generates this position of Li
i1s obtained by adding an arbitrary translation of this line
along itself:
v u P u TR

Uy A(V é)r(i) + I a (Ep)r(i) + tiki (E.47)
The E, is independent of r [See (E.16).] and can be
considered a set of vectors over 1, rather than r. Since

Q

r(i) is a sum of terms containing ki we can write

aQ
9% . _ 5 90 rv _ 00 = (V .9) M (E.48)

akiu BQrv akiu aQr(i)u r{i)

-Substitution of (E.48) into (E.47) then‘gives

- 30[Q(K)]
k.

+ I af ap“ + tiki“, (E.49)
iy

which is just (5.4).
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C. Proof of Theorem 8.

Let T = V(§). It was shown below (E.14) that the null
space of H(V) contains §+(R), the closure of the set
" (R). The set 0Y'(K) contains the vectors V = V() for
all diagrams d that satisfy K = K(ﬁ) and belong either to
[J) or to [H'] forAsome A'cd. Hence, the null space of
H(V) contains ‘all points V that correspond to the diagrams
& or the theorem.

Let the vectors Ep defined by (E.16) together with

the vectors of the set {V ..,Vp}, where p = N(V)-4, be

1"
a basis for the null space of H(V). Thus, any vector W

of this null space has a unique representation

aPE . (E.50)

Because of (E.10), the vector W must satisfy the equations

AJ(W) = aj(W) AJ(V) f (i KiXij)Aj(v), (E.51)

where the Xij are defined by

Aj(vi) = XijAj(V) (E.52)

Because £ 1is connectéd,the condition AJ(W) = 0 for all
J implies ki = 0 for all 1i. This in turn implies the

linear independence of the vectors R. = (X

By 1128500000 )
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These vectors: Ri form a basis for the space of vectors
a = (ul,az,... ) appearing in (E.Sl). Through (EfSl) the
vector (W) specifies W up to an overall translation
. _
Za"E .
p- , ‘
In terms of o vectors the set §+(K) has the follow-

ing description. For any W in §+(K) the vector a(wW) is

a linear combination, o(W) = in(w)gi, of the Bi' The

Véctor W is in §+(K) if and only if the vectors A(W)
(A (M) 5o () and €y = (Xygse.0,X5)  satisfy A(W)- >0
for all j. [The index J 1labels the internal lines of & .]
From this description it is clear that Q+(K) is con&ex and
starlike [wg§+(ﬁ) implies AW;§+(E) for all A0 .]
Consider a nonzero vector g(W) corresponding to a point
W of §H(R). If all other points W' of ot (%) give an
a(W') proportional to g(W) then p =1 and the dimension
of ﬁhe null space of H(V) 1is five. 1In this case no contrac-
tion &'¢ H can give point KL&') = K and Theorem 6 gives
“the desired result. Alternatively, if there ié a o(wW")
not proportional to a (W), then let P Dbe the plane through
the origin that contains both a(W) and g(W'). The inter-
section of P with the image At in .g—space of TY(R) s
two dimensional, convex, and starlike. The boundaries of
Pr1A+ are therefore two half-lines originating at the origin
which, because A+ contains no vector g with any negative

components, must intersect in an angle less than 7. Let

g(wl) and Q(WZ) be vectors in A’ that define these two



Lo

-122-

boundary rays. In term$ of these vectors, the original

vector Q(W) has the representation
g(W) = y oW ) + yoaW,), ' (E.53)

where ¥4 and y, are strictly positive.

Because- ga(W;) and o(W,;) 1lie in the boundary of
P/wA+, the corresponding vectors g(wl)' and &(Wg) must
be orthogonal to some of the vectors (.. The vector A(Wl)
is orthogonal to Qi’ ieIl, and the vector 5(w2) is orthog-
onal to C,, 1812.

There are two alterhatives for the vector g(wl). The
first is that g(wl) and its positive multiples are the
only vectors in A+ for which the corresponding vectors A
are orthogonal to the vectors Qi’ ieIl. The second 1s that
there is some second linearly independent vector q(wl') in
2" withn A(Wl') orthogonal to the vectors Cio ieIl.

In the first case the vector W, satisfies W, = V(éﬁ),

where K = K(ﬁl) and the diagram 91 cannot be further
contracted at K. Thus, the point K belongs to ¢[O+[Jl],

and W, must have the form (E.45). Egquation (E.53) allows

1

one to write

_ . P i .
W = XlVQ + y2W2 + Za Ep’ (E.54)

where Al is positive.
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In the second case the analysis just peformed on g(W)
is applied to g(wl). The plane »Pl corresponding to P
contains g<wl') and g(W,). The intersection P;n AY has
boundary rays defined by g(wll) and g(wlz) such that the
corresponding vectors _A(WII) and A(Wl2) are both orthog-
onal not oniy té the vectors Qi, ieIl, but to some additional
C; as well. In terms of these new vectors g(wll) and |

a(W,,) the vector a(W;) can be written
.g(wl) = yllg(wll) + ylzg(wl2); . (E.55)

- where and Yqi5 are strictly positive.

I11
The entire analysis is then repeated with @(wll),

a(W and g(wg),'etc.-‘At each stage at least.one new 91

12)
is added to the previous set of gi's. Since the number of
¢:'s 1is finite, the procedure must terminate. At that stage
all the vectors into which W ié decomposed are associated
with diagrams. that have no further contractions. Thus we

where xg > 0 and the sum runs over those dilagrams
ﬂgcyﬁ or ,&g_=.@ “that satisfy K = K(éé), but which have
no contractions that do.

The arguments following (E.42) complete the proof.

<A,
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D. Proof of Theorem 13%.

‘e

Because of thebrems 10 and 11 it is sufficient to show that

o

the set (5.5) is convex, apart from vectors of the form UO(K). In

particular, we wish to show that the simultaneous equations

T- 3 M v Ag(K) + Uy (B) (xg > 0) (E.57a)
and
=z v Ag(K) + Ul () (xé > 0) (E.570)

imply that T = UO(K):,-Ué(E ). Adding (E.57a) to (E.57b) we obtain

W= 2 (O +21) Va(K) : ' (E.58)
g g g g
where W = —UO(E) - Ué(ﬁ). Define {sec (& w2
V= 2 (g ) VyTg(@). (E.59)
g

This V gives the positions of all the vertices of a diagram with external

y 'a
lines specified by W. Because all the ,62 are contractiong of [9, we

have

AB(V) - 2 Ong + xé) Aﬁ(vﬁé)

= : (g *+ 25) X5 (V@)

Because the xg,_xé, ng and Aﬁ(VQE)) are all nonnegative, so are the

ﬁB(V). But the positions of the external lines of V are given by
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W= —UO(K) - Ué(f). Therefore V must be a trivial diagram, since for
X ¢ZQ) no nontrivial cénnected causal diagram can have its external
lines coincident with those of a trivial diagram; But if V is trivial
then (E.6Q) implieé that _kg + xé is zero, for all éf Thus Xg and
xé vanish separatgly and U =“UO(R) = -Ub(i).

To complete the proof the U = (Ul""UBn;h) qf Theorem 10
is chosen to contain a subset S of the set of vectors V%g(ﬁ) such
that S together with the n+h vectors of UO(K) are a set of
linearly independent vectors that span a space thaf contains all of
the vectors. V Ag(ﬁ). The set ofv?ectors of the form &' N V’Ag(ﬁ)
‘with A, >0 and ng # 0, where %' is over S, 1is a convex set
by thé argument given above. Then Thebrem 1l insures that PC(U;E) is
contained in a single set of the form (4.11), and Theorem 10 completes

the proof.
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APPENDIX &

A, Proof of Theorem 7.

The first step of the proof is to show that Vﬁl(K) =
XVAg(K) + UO(K), where A 1is real and UO(K) is of the
form (4.8). The more difficult second step is tc show that
the number A must be positive.

Since afO+L92] is a submanifold of codimension 1 in

% at K, there exists a local coordinate system ]
. [f.)ee. (E.0)

(AC(K)gﬂﬁ,DC(K)) at K such that z, = AE(K).A The fact

that ,ZO+L91] and jo+[&2] coincide in some neighborhood
77 of K means that in some neighborhood NcHK_l(ﬂ(1Aé(K))

of z =1 —I(K), the function Kl(z) z Al(K(z)) vanishes

K
whenever z, = 0. That is, in some neighborhood N'eN of

Z the real analytic function Kl(z) has a power series

expansion

Kl(Z) =

: m
_ am(zg,,..,zg)n_q)zl s (F.1)

™8

1

where the a, are real analytic functions. Explicit

computation then shows that

o . (E) = A Iz (Z)av (F2)
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where A 1is some real number. Since Al(K) and AE(K) ~are

real analytic functions of K, we have

)

=

= (VAg)'%gj , (g = 1,2). ' (F.3)

gt

&

[See.(E.l).] Equationé (F.2) and (F.3) combine to yield
[vA () - avay(B)] 25 (2) = o | (F.4)

for aii J e Since‘the only Vecﬁors thét'aré annihilated by
the matrix 9K/3z. have the form (4.8) [see (B.11)], equation
(F.4) implies that VAl(K) = Xvkz(K) + UO(K), where A is
real and UC(K) has the form (4.8).

We first examine the case where A 1is strictly positive;
the other case (A<0) will then be easy to rule out.

For each value of g [g=1,2] equation (E.MZ) gives

ol (2) ST a0 (QlK(z))) 80, 3ky (o 5a)
3z, 3Q,, ok, = 9z, o8
rviu v : ;p
30 Bk,
= E g =B (F.5b)
aQiu 9z

iy

where Qi is the vertex momentum Qr that depends on ki.
According to (B.1l1) the left side of this equation determines

aég/aQiu,' apart from vectors of the form UO[K(Z)]. Then,
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in view of (E.U5), Vﬁg determines the positions of the.
external vertices ofiﬁhe diagrams AQg apart from scalings,
overall translations, and.trahslations of the position of the
vertex A that is connected tQ Li along Li' The Li’
are here considered to be complete lines, not just line
segments.

It is useful to introduce diagrams agl(z) and ,&2(2)
that differ from the original diasrams .0_1. and zDé by .
scaling and choicé of origin. The fact that -91 is a non-
trivial connected causal diagram ensures that there is a
pair of vertices, Vo and Vs such that Vo 1s connected
to two initial lines, Vi 18 connected to two final lines,
and v

F
position and scale of ¢@1(z) be fixed by placing vy at the

is in the positive 1light cone of V- Let the

origin and requiring that IVI—VEI = 1. According tc the
results established above, the external lines whose inter-

section defines v in &l must also cross in ‘@2, and

I

similarly for v Thus the position and scale of £)2(z)

i
can also be fixed by placing. \ at the origin and normal-

» - o b N >\ [} ""\D\""‘-“‘"i' K '3“ '{."'7 L"M--.r‘i\x,

. ilzing so that [VI~Vp! = 1. ] Ix effect, ’ - 4}

Liagrams constructed according to the rule just described
will be called adjusted diagrams. The result (E.U5) 1s also
applicable to them. In particular, equation (E.45) implies
that for a sufficiently small neighborhood 7 (Z) of Z |

that does nct intersect the Landau surfaces for any. contrac-

tions of ‘&g’ each point =z of ’H(E)C{Kg(z) = 0} corresponds
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to a uniQue'adjusted diagram Ag(z)E[IQ(E)]. This is because
all ambiguities of translation and scaling have been removed.
The'vertex_of é%(z) ‘that is connected to the external

line L; 1s called v (z), and the line parallel to k
pass1ngvthrough-.vgi(z) is called Lgiizjéalh .
. . B . ) A [
" The arguments givewabove show‘thatA-Lli(z) colncides

i

with in(z); but they do not shew'that Vli(Z) coincides
with;lv2i(z);:these two points could be different polints of
Li(z).' The main part'ef the proof consists in showing that'
li(z): and‘:vgi(:)-fdo in fact coincide 1f
either is connected to two different initial lines (including

the vertices v

Li)‘or two different final lines (including Li).'

Let L, be an initial particle line. If both vy; and

V2i are connected to the same additional initial external

line nj(l#J),(.then vli(z) and Vgi(Z) must coincide.

For since K does not lie on. M., the two diffefent initial
_lines intersect in at most one point. More generally, suppose

that v is connected to the two initial lines L, and

11

'Lj(i#j), ‘and that v is connected to the two initial

21
'1inesveLi. anav‘Lk(i#k, j#k). Then again vli(i) and V2i(§)
must coincide. For a small retation of the two intersecting
lines L, and Lj_ about the axis ki(E) + kj(i) through'
vli(E)' gives a nearby‘boint z!' of {Al(z)'= 0}. This is
because the sum ki + kj is not changed. The new point z'

‘must belong also to '{Az(z) = 0}. Thus there must be a point

v2i(z') = Vék(z'). But then Li(z') must intersect the 1line
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" Lk(z') =-Lk(E). ‘This can be true for several gz' mnear =z
only if Lk(i) passes through the point vli(E). This.
(z).

implies that the point vgi(E) must coincide with Vi

We now show that this result (vli(E) = vzi(E)) also

holds provided only that the vertex . v i1s contained in -

1i
two initial lines L; and Lj(i#j). For every 2z in some
neighborhood of 2z the line Li(z) ‘contains both vlj(z)

and v2i

of’,Dg(z). In either case one can construct a causal diagram

(z). The pdint Vli(z) may or may not be a vertex

93(2) containing vli(z) as an external vertex and with
external lines coinciding with those of .&2(2). One simply
regards the part of Li(z). lying between vli(z) and
v,;(z) as an internal 1in§ of .03(2), and similarly for all

lines L that in diagram ﬂ]» are connected to All

L, Vi
the conditions for a causal diagram are satisfied by these
diagrams ‘03(z)e[£g(i)]. Since the external lines Li(z)'

of &3(2) are the same as those of 492(2), we see that in
some neighborhood N of Z the surface o(+[ﬂ3(2)] contains
the surface {z|A, (z) = 0}.

We will now show that K belongs to J%*[ﬁB(Eﬂ .
Suppose that this is not true, and that X belongs to
Jﬁ[ﬁ'3(5)], where ,@'3(E)Clg(§).' According to the arguments
of Appendix E [see (E:lO)J the internal lines of &'3(5)
must be pafallellto’tﬁe corresponding internal lines of

ﬁg(i). But then there-would be a diagram &'P(Z) contained

in 3'3(2) that would have the same external lihes as ,@2(5).
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This diag‘ram A',(z) would ve 'eit.her' an element of [9,(2)]
that has the same external lines as 4 (z),_ or a contraction
of such a dlagram.‘ The conditions Qf the theofem ensure

that no contractlon of .& (z) ‘has the same exterha] lines as
ﬂz(z) : And (E. 45) shows that the only element of [192(2)]
‘that has the same external llnes ‘as A (z) is 52(2) itself.
This would make §',(Z) identical to .82(z). ' But then the
contraction A (E)' of f£g(§) would be.identicel to .&3(5),
which is not pos51ble ' it-fqllows that K belongs to
:cf [ﬁ (zﬂ o
The surface .{ [.-&3(2)] is 'a".submani'fold of # of
| cddimension;l‘in_avneighborhodd.ofs K. In.the_Space of

local eeordinates z  let ifb+L93(§)] be fepresented by
{Iy(2) = 0). Since £y '[85(2)] contains W4T [8,(E)] in
some neighborheed of K, ana since beth are submanifolds of
JL of codimension-l;'it foliows from the arguments leading

to (F.1) that the‘twe surfaces are identical in some neighbor-
hood of K. =~

A rotation of ‘the-lines Ly(z): and. Lj(z) which inter-
sect atv vji(z) about the axis 'ki(z) +_kj(z) takes one to
a' nearby point on Y{Ki(z) = 0}, and herice on ‘{KBCZ) = 0}.
The vertices ef_the unique corresponding diagram .93(2) ‘must
" be the same as those of .53(5), since the positions of the
' by vietue oF (£.45)

-vertices depend only on the Q[K(z)],A,and'these_remain
unaltered, However, the:vertex~of,.@3(z) at v i(z) will

not coincide with the vertex of a83(2) at':vzi(
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arbitrary rotations unless v2i(2) = ngi(Z).A'ThiS is the
desired result.

Since 491 and ﬁ2 are interchangeable, the above result
shows that Vii

connected to two different initial lines.

(z) and v2i(E) must coincide if either is

Similar arguments hold for vertices connected to final
lines.

The preceding result 1s useful in the following way.

For any : VI'(Z) that is connected to two initial lines

there is a Vp' connected to two final lines that lies 1in

the positive light cone of VI' or coincides with VI'

and v, ‘can be chosen to satisfy the

Thus the original Vi B

additional conditions that there is-no VF' positive time-

like relative to Vi and there is no VI' negative time-
. ’ ‘f/!.»\ 2% .
like relative to Ve The total external momentum QF at .

v must be positive timelike, and QI at Vo must be

F

negative timelike. This is because the internal lines connected

to VF

connected to vI

The above discussion refers to the case in which the

must all terminate at Vo and the internal lines
must all originate at Vi
signs of vKl and vK2 are the same. If thesé signs were
opposite, the external lines and vertices of .92(2) would
be obtained from those bf ﬂl(E) by reflection through the
origin. But this clearly cannot give a causal diagram, for
the vertex 3?@(5 —VF) .of w92(2) would have no vertices

617(5 —VIQ of 02(2) 1lying negative timelike to it. No
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internal lines could terminate on it and . QF could not be
positive timelike, contrary to fact. Thus the‘gradiehts

VA and .VA2 must have the same sign.

1

B. Proof of Theorem 10.

The first step is to show that if the conditions of Defi-
nition 5 are met for any particular set U= {ﬁl3..;,ﬁ3n_u}
that deflnes a simple ¢oordinate system at K, they are met
for all such sets. To see this consider an’ n-particle
fdisplacemenp U. According to (B.10) it has:the unique

representation

3n-4 : : .
U = E t,0, + Uy(K) . (F. &)
A=1 '

-where UO(K) 'is linearly independent of the vectors in the

set U. Provided t = (tl""’t3n—4) is not zero, the pro-
jection of U onto T(W) is ¥ = Z%AUk’ where €A.= Ztklt]-l.
Since (F.6) is valid for any displaéement U, it is valid in
particular for the members of any set U = {Ul""’U3n-4}

that define a simple coordinate system at K. For these

Us the equation (F.6) becomes
Uy = igtv_xﬁx +'UO,& (K). (F.7)

Finally, since any displacement U “has a uniqﬁe representa-

tion of the type (F.6) with the Ux replaced by the Up s
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we have
U= 1Z BakU» + US(K) =z (Z Bz\t}f.)) {'j)\'.;. UO (K. (F.8)
* Y \
That is,
t, = ie»-tm. - - (F.9)

‘Because both U and U define-simple coordinate systems at
K, the matrix M of coefficients t%‘k is nonsingular.
Therefore, the vector thich defines the projection of U
onto T(ﬁ)) also uniquely defines the projection of U onto
'(®). Thus, the sets ch(ﬂ;n) of Definition 5 are isomorphic
to the corresponding sets ch(u;n) for any other cholice of
the set U . Moreover, if e 1is some vector in Egn—q, the
equation (F.9) yields (t,e) = (B,Me). Hence, if the pro-
jection of U onto T(¥) 1is in F+(ﬁ;e), the projection of
U onto T(U) is in T+(u,Me). This proves the statement
that i1f the conditions of Definition 5 are met for any
particular set U= {Ul""’ﬁ3n-ﬂ} that defines a simple

coordinate system at K, they are met for all such sets.
Ngx*‘ we  preve the ;:oﬂo‘.u;mg .Le-th‘b\__.l.‘-

Al
4 M:}_

for any 6>0 one can find a product neighborhood 72 of, K& M-,

such that

r.smer, (usk,s), (F.10)



-135-

- where ‘ : ' : : . .

P RN . L QPR o ; . SRR B Vo , -
I (UsK,8) = {UHU + Je g (RnT W) 50 = :Fixpx’”dx 1% <8} (F.11) v
‘To prove this we first express T _(¥;71) 1in a different
way. Let Vé<Ki'5Hi) be the set obtained from‘ Vs(wi3ui)>
- by replacing supp ¥, by ;ki'. Let C(K) be the set of
connected CauSal’diagrams'& that satisfy K = K(8),
Iv_ (@) = 0, and 28, (V) = 1. Define |

L g | . L
I (‘u,K,‘K",e) {U_ (U zt\A Uy vr(i)(,&);ve(ki suy '+ a),

(F.12)
ZQeC(K)},

_where  vr(i)00) is the vertex of & that is connected to
thé éxtérnal’linev Li’ and a iS;“' rf“¢'”“’ﬂber.ﬁunuj an oveva b
translation.. _Define
TCCu;K,K',E) =‘{UIU£F(u), gU = U'ETC'(uiK,K',S),B > 0}. (F.13)
Finally, define

I (UsHse) ="_{U|Uerc(u;K,K',e), K and K' inZ}. (F.14)

. o o ; produ t .
Then 's’ov" 3‘4 . c4 Ch‘“ﬂ SW‘AHA " o£ K € L= o we Fiawe
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rc(u;n)c /} 'I‘C('u;Vi,e). _ (F.15)
0

To prove (F.15), assume it is false. Then for some e > O there is some

U in Pc(y,( ;N ) that is not in rc(u 3 1,T). Since this U is in

Pc(lngl) one can, for each € > 0, find a d)e that satisfies the

conditions of Definition 4, with this U and with supp v = 7 . Thus

a sequence of Qje can be constructed for any sequence ei - 0. The

norms N(&)E y = = ‘lAﬁ(V(ﬁ)e.)) || either approach zero or they do not.
i

i

If they dowuot, then the normalized Ei = €i/N(é)€i) must reach values

less than €. But then Fc(l(;)Q,E) would contain U, contrary to

assumption. Thus the norms N(é}e ) must approach zero. This means

the diagrams 6)6: approach trivi;l diagrams. But for sufficiently small
N = supp ¥ abo;t X eM - hﬁo the U ¢ (W) cannot satisfy the
conditions of Definition 4 with any trivial (or nearly trivial) @)
for ¢ smaller than some €, > 0, because the various Ve(wi;ui) can
have no common point, (or nearly common point), in these circumstances.
This rules out the possibility that the norms N(ﬁ)e.) approach zero, and
hence proves (F.15). ’

Because. of (F.15) it is sufficient for the pfoof of Lemma 1

to prove Lemma 1': For any 3 > O one can find a product neighborhood

VI of any X e - W?O such that

/] FC(L(;71,€) < FC(EZ; K, 8) (F.10")
>0
To prove Lemma 1', assume it is false. Then there must be some & > O

such for any product neighborhood Y of X there is some’ U(}) that

belongs to Fc(1(;14,e) ‘for all ¢ > O, but does not belong to
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T (14 ;K,8). Thus for any sequence (egs YZS], s =1,2," ", with

€, ™ 0 and )?S'» K_ there is a sequencé of US such that
' Uy v F.l6a
U, € T(Us 11 ,e) (F.262)
and
U, £ 1 (1K,8). , (F.16b)

Each U satisfying (F.l6a) corresponds to a Uy = U/B that generates

a diagram 5)8 satisfying

" o 1 . ~
Vr(i)(u}s) € V€S<k 1905 * as) | (F.172)

and

D, e etxy, ‘ L Fap)

4where Ks > K and Ké - K.

It has been shown eiséwherel9 that the number of different
positive-a Landau surfaces that pass through any.bounded région'is finite.
The infinite sequence 1)) < must therefore be di&ided between a finite
number of classes [@) ], at least one of which must have an infinite
nurber of thé:diagyams ) s Let this class be denoted by [ 5)1], and

let the &) , Dot in [4 .] be disregarded. The sets V(O S) are

1

confined to a bounded region and must have at least one accumulation

point V = V(Eﬁ). 'The argument for this was given in Appendix E below

(E.37). The argumenté of Appendix E [seé(E.éo)]‘ also show that X = K(3).
If we can show that the sequence {Usj has an accumulation point

U in G;(R)f)P(ZC), .~ we shall have established a contradiction with

(F.16b), and shall therefore have proved Lemma 1'.
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Each displacement US corresponds to a unigue displacement US'
in T '(l(;KS,KS’,es). The points US' have a wique limit point U’
c ) .
defined by the condition

- A
1 t ] _ ! - t .
U' e (U'|Ur = £t UyoV(sy €V (ki,ui +a)). (r.18)

0

The fact that the U' defined by (F.18) is unique follows from (B.10),
since the various U' that satisfy the second condition in (F.18) differ

by vectors of the form UO(K). The U ' of (F.16a) -satisfy, according

to (F.1h4) and (¥F.12), the condition

] v"_ vi Sb-:_ I'q > [
U’ o€ {ur |u" = th Ux, Ve(i) = Vr(i)(b s) € Ve<ki’ui + a)

k' e i) (r.19)

The continuity properties of the set on the right of (F.19) ensure that
the U ' approach the U' of (F.18).
If the U' is nonzero then the US = US'/BS must approach the

- - — o .. —
limit U = U'/B  where 82 =5 tX(U') is nonzero. This U would lie

in (:C(E)n I'(U), thus contradicting (F.16b). Thus the proof will be com-
pleted by showing that U' is nonzero.
To see that the vector U' is different from zero notice first

that, because és is nontrivial, the earliest vertex 51 must be definitely

earlier than the latest vertex VF' By virtue of the stability requirement,

the initial vertex Vi must be connected to at least twovinitial lines and
the final vertex §f must be connected to two final lines. Because K

does not belong to.TﬁO the initial lines connected to V. meet only

I

at 51 and the final lines connected to Vf meet only at V%. Such

a configuration
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does not allow the U' of (F.18) to be zero, éinée bﬁ' = O means that
all the extérnal.lines.pasé through a cémﬁon.point [See(ﬁ.lO)]. This
completes the proof of Lemma 1' and by virtue'of'(F.l5), the proof of
Lemma 1. |

Given Lemma 1 and. the result proved just before it, the proof of

Theorem 10 is trivial.

C. Proof of Theorem 11.

» Let &‘C(K) be the set of U that generate @) that satisfy
K(D) = K. What must be shown is that for each K e M- 7ﬁo
5 o— E - ‘ 5
(;’C(K) = C(K> _ | (F.20)
It is obvious that g [B)e ﬁc(i) and that (‘fo(i{')c‘- 4 c('IZ). What must
be shown is that for each X e W -37?0'
c

£ (&) - fo(f)ﬂf i’/c(f{‘) (F.21)

To prove this,first define

(T ' (7 S (s eyt )

éc(K,e) = (U ivr(i)(i))e Ve(Ri,u.i +a), J’) e C(X))
where C(K) is defined above (F.12). And define

& (K,e) = (U [BU=0" € 1(K,€e), B >0) | (F.22)
Then for X e ”7- ”40 we have

f@ -t 6 e
.e>0

(F.23)

The proof of (F.23) is the same as the proof of (F.15), except for the

obvious substitutions. It remains only to show that



w/

_1593‘-

/] C®e e §.®.

>0

The proof of this is similar to the proof of Lemma 1'. If (F.24k) were
not true then there would be some U ¢ Efc(ﬁ) that belongs to each

6C(E,e) on the left. Thus for each € > 0 there would be a Q}E.e c(X)

such that the conditions of Definition 4 can be satisfied with this U,

and with supp ¢ replaced by K. A sequence € - 0 gives then a

corresponding sequence Q)S € ¢(X). As in Lemma 1 the V(&) ) must

(F.2ok)

accumulate at a V that corresponds to a Eb that satisfies K(Jﬁ) = K.

AL

But then U would belong to [, (K). This contradiction proves (F.24),

~<

hence also the theoren.

and
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