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Using several reaction examples with experimentally determined rate equations, traditional 

mass action rate equations are shown to be simplified forms of polynomial approximation to a 

general rate function derived by non-equilibrium thermodynamics for a mixture of fluids with 

linear transport properties. The mass action kinetic law is thus proved also on the macroscopic 

level and limited to this type of fluids.  
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INTRODUCTION 

The mass action law is a well established instrument of chemical kinetics for formulating 

reaction rate equations. According to this law, the forward or backward reaction rate is written 

as a product of the rate constant and concentrations of reacting species raised to reaction or-

ders; the overall rate of a reversible reaction is then given by the difference between the for-

ward and backward rates. On the macroscopic level, this law is viewed as a result of experi-

mental experience and not of some theoretical derivation, cf. any textbook on physical chem-

istry or chemical kinetics, e.g. [1-4]. Explanations come only from microscopic approaches – 

collision or statistical theories. Indeed, several phenomenological theoretical (thermodynam-

ic) approaches to mass action kinetics have been published; they were reviewed in details in 

ref. [5]. Briefly, some of them only tested the mass action rate equations for thermodynamic 

consistency, i.e. used the mass action a priori [6-12]. In a paper by García-Colín et al. [13] it 

is claimed that the kinetic mass-action law was derived from extended irreversible thermody-

namics. In fact, an equation for the time derivative of reaction rate was derived, which is de-

termined by the affinity, heat and diffusion fluxes and some undetermined function. Resulting 

equation is thus not in the form of traditional mass action law. Lebon et al. [14] postulated 

that the time evolution of difference of the degree of advancement and the equilibrium degree 

of advancement is a function of temperature, pressure and this difference. They derived an 

equation relating the time evolution of this difference to the affinity and some undetermined 

function of temperature, pressure and this difference, which is claimed to be the standard law 

of mass-action. However, no explicit mass-action rate equation was derived. Lengyel in a 

series of papers [15-18] introduced the mass-action law into the non-equilibrium thermody-

namics based on Gyarmati’s variational approach and reformulated it into a form containing 

affinities in the forward and reverse reaction directions. Similar approach was used by Oláh 

[19-24] who prefers chemical potentials instead of affinities. Continuum thermodynamics 

[25-31] provides only very general statements on the functional form of reaction rate, e.g., 

reaction rate is a function of densities (i.e., mass concentrations) of components present in a 

reacting mixture, temperature, and gradients of density, temperature and deformations. No 

particular form of the function is derived. 

There is, however, a result of macroscopic theory that can be considered as a derivation of 

the mass action law. Samohýl and Malijevský [32] proved, using phenomenological non-
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equilibrium (rational) thermodynamics, that in a reacting mixture of linear fluids, reaction 

rates are functions of temperature and concentration only, r = f(T, c1, c2,…, cn). This is a gen-

eral statement of what the mass action law says specifically. Moreover, this general proof 

limits its validity to the linear fluids only; in more complex material systems, reaction rates 

may be functions of additional variables, e.g. density, temperature or deformation gradients. 

Briefly, linear fluids are a class of fluid materials with (general) Newtonian flow behavior, 

with heat transfer and mass transport, i.e., material model covering a broad spectrum of sys-

tems encountered in practical chemistry.  

The general rate function will be analyzed here for several examples to find conditions un-

der which the function is really transformed into traditional mass action reaction rates that can 

be thus derived on the basis of a purely macroscopic approach. It should be noted that this 

approach works with independent reactions only because they are sufficient for mathematical 

description of transformations in chemically reacting systems and their kinetics. Independent 

reactions are defined by linear algebra as a set of reactions which cannot be obtained as a lin-

ear combination of other reactions occurring in the system; for more details see Bowen [33]. 

The number of independent reactions is determined by the number of components in reacting 

mixture and by the number of atoms from which they are formed.  

 

THEORY 

Samohýl [32, 34, 35] (see also [5]) suggested to approximate the general rate function r = 

f(T, c1, c2,…, cn), resulting from non-equilibrium thermodynamics of linear fluids, by a poly-

nomial of  suitable degree (M) in concentrations (cα): 
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where r is the vector containing rates of independent reactions. The vector 
βν

k contains poly-

nomial coefficients dependent on temperature only, the vectors νβ = (νβ1, νβ2,…, νβn) contain 

the polynomial powers (exponents) and are used also as subscripts to index vectors of the 

polynomial coefficients (
βν

k ). When used in the subscripts of vectors 
βν

k , the components 

of vectors νβ are written without commas and parenthesis. Note that the vector component νβα 

determines the power of concentration of component α in the corresponding polynomial term 
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β. Z, the number of polynomial terms, is determined by the number of reacting components 

(n) and the polynomial degree [34, 35]. The polynomial approximation should satisfy also 

equilibrium conditions which, after introducing the equilibrium constants of independent re-

actions (assumption of ideal behavior is sufficient in this work), put restrictions on some of 

the polynomial coefficients – some of them turn out to be zero, some can be expressed 

through others [34, 35]; see also the first example below. Because the coefficients are de-

pendent on temperature only, these restrictions are valid also out of equilibrium and the ap-

proximating polynomial is greatly simplified. Resulting polynomial, expressing the reaction 

rate equation, is called here the thermodynamic polynomial.  

To formulate the approximating polynomial (1) and to transform it to final rate equation, 

the thermodynamic polynomial, only the list of all components detected in a reacting mixture 

is needed as a starting point. The polynomial approximation directly uses equilibrium con-

stants, i.e. it does not need the backward rate constants; thus also detailed balancing (micro-

scopic reversibility) is automatically satisfied.  

To make discussion clear, textbook reaction examples were selected but such that were 

published with experimentally determined rate equation. 

 

RESULTS AND DISCUSSION 

The first example is NOBr decomposition: 

2 NOBr → 2 NO + Br2 (R1) 

with a simple second order rate equation, r = k(cNOBr)2 [36]. In this case of three atoms and 

three components, only one independent reaction is possible [33]. Let us select just the stoi-

chiometric reaction R1. The equilibrium condition in the case of the first and second degree 

approximating polynomial leads to a conclusion that these polynomials are identically zero. 

Consequently, the general rate function r = f(T, c1, c2,…, cn) should be approximated by a 

polynomial of degree not smaller than three. The third degree approximating polynomial is as 

follows: 
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(1 = NOBr, 2 = NO, 3 = Br2). To apply the equilibrium condition, the concentration of bro-

mine is expressed from the equation for the equilibrium constant of R1 (K), 

eqeq )()( 2
2

2
13

−= ccKc , and substituted into the equilibrium polynomial (req = 0). Two terms of 

resulting polynomial can be then merged, viz. the terms with 2
1c , and the coupled term reads 

eq))(( 2
1021200 cKkk + . Because the equilibrium polynomial should be zero for any equilibrium 

concentrations, it follows that all coefficients in the equilibrium polynomial are zero [34, 35]. 

Consequently, most coefficients kijl are zero and only from the coupled term follows that 
1

200021
−−= Kkk . These conclusions are valid also outside the equilibrium because the coeffi-

cients are functions of temperature only. The resulting thermodynamic polynomial then is: 

)( 3
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The experimental mass action rate equations is recovered if k ≡ k200 and K–1 → 0. The latter 

condition is a result of reaction irreversibility expressed by the experimental rate equation. In 

this example, the traditional and experimentally determined mass action law is thus a simpli-

fied form of the third degree thermodynamic polynomial.  

The second example is the reaction between nitrogen dioxide and carbon monoxide: 

NO2 + CO → NO + CO2 (R2) 

In experiments, another component of the reacting mixture was detected – NO3. In this mix-

ture of five components formed from three atoms two independent reactions are possible [33]. 

They can be selected as the two steps of experimentally confirmed mechanism [36]: 

2 NO2 → NO + NO3 (R2-1) 

NO3 + CO → NO2 + CO2 (R2-2) 

Thermodynamic polynomial resulting from the first degree approximating polynomial is iden-

tically zero. The second degree thermodynamic polynomial is as follows: 
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(1 = NO2, 2 = CO, 3 = NO, 4 = CO2, 5 = NO3) where ri is the rate of i-th independent reaction 

and Ki its equilibrium constant. The experimental rate law is 2
1kcr =  [36] and represents the 

reaction rate for NO2 (consumption). From stoichiometry of the two independent reactions 

follows: 212 rrr +−=
2NO . The experimental rate law is obtained selecting 2

20000
1
200002 kkk +−=  
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and 00100111000 == ii kk , and if 01
1 →−K  (irreversibility of R2-1) or if the concentration of NO3 

is very low (reactive intermediate). In this example, the mass action law has been shown to be 

a simplified form of the second degree thermodynamic polynomial. It should be stressed that 

the rate equations (4) contain three mass-action terms in total, corresponding either to the in-

dependent reactions or to the (dependent) stoichiometric equation R2. Thus, rate of any inde-

pendent reaction can be generally influenced also by other reactions and even thermodynami-

cally dependent reactions are not excluded from effects on kinetics.   

The last example is the following reaction 

2 N2O5 → 4 NO2 + O2 (R3) 

The reacting mixture contains also NO3 and NO as intermediates [36]. In this reacting mixture 

of five components formed from two atoms three independent reactions are possible. They 

can be selected as the three steps of proposed mechanism [36]:  

N2O5 → NO2 + NO3 (R3-1) 

NO3 → O2 + NO (R3-2) 

NO3 + NO → 2 NO2 (R3-3) 

Thermodynamic polynomial resulting from the first degree approximating polynomial is iden-

tically zero. The second degree thermodynamic polynomial is as follows: 
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(1 = N2O5, 2 = NO2, 3 = O2, 4 = NO3, 5 = NO). The experimentally determined mass action 

rate law concerns the oxygen production: 1kcdtdcr =≡ /
2O . Because 2rr =

2O  the experi-

mental law is recovered selecting 02
00011

2
00010 == kk  and when 01

1 →−K  or the concentration 

of NO3 is very low (irreversibility of R3-1 or very low concentration of the reactive interme-

diate, respectively), and identifying 2
10000kk =  . The mass action law is thus proved to be a 

special form of the second degree thermodynamic polynomial. Note that the original thermo-

dynamic polynomial (5) contains all three mass action terms corresponding to individual in-

dependent reactions in any rate of any independent reaction, i.e. rate of an independent reac-

tion can be generally influenced also by other (independent) reactions. 

In summary, traditional kinetic mass action laws were shown to be simplified forms of the 

thermodynamic polynomial which itself is a result of polynomial approximation of general 
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reaction rate function proved by non-equilibrium continuum thermodynamics. The whole 

procedure is resumed in the following scheme: 

 
 The starting polynomial is transformed into the thermodynamic polynomial to ensure zero 

reaction rate in equilibrium; this equilibrium condition leads to vanishing many terms in the 

starting polynomial. Polynomial basis of the kinetic mass action law is quite natural because 

polynomial powers represent, in fact, stoichiometric coefficients in independent reactions or 

in their linear combinations. The further simplification just means that only those terms are 

retained in thermodynamic polynomial, expressing the rate of particular step in reaction net-

work, which contain concentrations of species directly participating in this step, as is usual in 

the traditional mass action approach. Actually, the thermodynamic polynomial in its non-

simplified version allows also more complex rate equations as noted at the second and third 

non-equilibrium thermodynamics 
reaction rate function 

r = f(T, c1, c2,…, cn) 

polynomial approximation 

of the rate function 

polynomial in equilibrium 

(req = 0) 

thermodynamic polynomial 

(= rate equation) 

mass action rate equation 

equilibrium constant 

simplification 
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examples. Detailed analysis of this feature is beyond the scope of this letter and will be sub-

ject of future work. It should be added that selecting different independent reactions, different 

thermodynamic polynomials are obtained; however, they are easily transformable to each 

other [34, 35].  

 

CONCLUSIONS 

Three simple examples showed that traditional mass action rate laws are, in fact, simplified 

forms of polynomial approximation of the general reaction rate function that was derived in 

non-equilibrium continuum thermodynamics of linear fluids. Mass action rate laws are usual-

ly weaker approximations than polynomial of degree equal to the highest kinetic order (or 

molecularity) of independent reactions in reacting mixture. This way, the mass action kinetic 

law is derived also on the phenomenological, macroscopic level. The original thermodynamic 

proof further shows that the law is limited to mixtures of ideal linear fluids.  
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