
Macroscopic Description for Networks of Spiking Neurons

Ernest Montbrió,1 Diego Pazó,2 and Alex Roxin3
1
Center for Brain and Cognition, Department of Information and Communication Technologies,

Universitat Pompeu Fabra, 08018 Barcelona, Spain
2
Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, 39005 Santander, Spain

3
Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain

(Received 30 December 2014; published 19 June 2015)

A major goal of neuroscience, statistical physics, and nonlinear dynamics is to understand how brain
function arises from the collective dynamics of networks of spiking neurons. This challenge has been
chiefly addressed through large-scale numerical simulations. Alternatively, researchers have formulated
mean-field theories to gain insight into macroscopic states of large neuronal networks in terms of the
collective firing activity of the neurons, or the firing rate. However, these theories have not succeeded in
establishing an exact correspondence between the firing rate of the network and the underlying microscopic
state of the spiking neurons. This has largely constrained the range of applicability of such macroscopic
descriptions, particularly when trying to describe neuronal synchronization. Here, we provide the
derivation of a set of exact macroscopic equations for a network of spiking neurons. Our results reveal
that the spike generation mechanism of individual neurons introduces an effective coupling between two
biophysically relevant macroscopic quantities, the firing rate and the mean membrane potential, which
together govern the evolution of the neuronal network. The resulting equations exactly describe all possible
macroscopic dynamical states of the network, including states of synchronous spiking activity. Finally, we
show that the firing-rate description is related, via a conformal map, to a low-dimensional description in
terms of the Kuramoto order parameter, called Ott-Antonsen theory. We anticipate that our results will be
an important tool in investigating how large networks of spiking neurons self-organize in time to process
and encode information in the brain.
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I. INTRODUCTION

The processing and coding of information in the brain
necessarily imply the coordinated activity of large ensem-
bles of neurons. Within sensory regions of the cortex, many
cells show similar responses to a given stimulus, indicating
a high degree of neuronal redundancy at the local level.
This suggests that information is encoded in the population
response and, hence, can be captured via macroscopic
measures of the network activity [1]. Moreover, the
collective behavior of large neuronal networks is particu-
larly relevant given that current brain measurement
techniques, such as electroencephalography or functional
magnetic resonance imaging, provide data that are neces-
sarily averaged over the activity of a large number of
neurons.
The macroscopic dynamics of neuronal ensembles has

been extensively studied through computational models of

large networks of recurrently coupled spiking neurons,
including Hodgkin-Huxley-type conductance-based neu-
rons [2], as well as simplified neuron models; see, e.g.,
Refs. [3–5]. In parallel, researchers have sought to develop
statistical descriptions of neuronal networks, mainly in
terms of a macroscopic observable that measures the mean
rate at which neurons emit spikes, the firing rate [6–20].
These descriptions, called firing-rate equations (FREs),
have been proven to be extremely useful in understanding
general computational principles underlying functions such
as memory [21,22], visual processing [23–25], motor
control [26], or decision making [27].
Despite these efforts, to date there is no exact theory

linking the dynamics of a large network of spiking neurons
with that of the firing rate. Specifically, current macro-
scopic descriptions do not offer a precise correspondence
between the microscopic dynamics of the individual
neurons, e.g., individual membrane potentials, and the
firing-rate dynamics of the neuronal network.
Indeed, FREs are generally derived through heuristic

arguments that rely on the underlying spiking activity of the
neurons being asynchronous and hence uncorrelated. As
such, firing-rate descriptions are not sufficient to describe
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network states involving some degree of spike synchroni-
zation. Synchronization is, however, a ubiquitous phe-
nomenon in the brain, and its potential role in neuronal
computation is the subject of intense research [14,28–34].
Hence, the lack of firing-rate descriptions for synchronous
states limits the range of applicability of mean-field
theories to investigate neuronal dynamics.
Here, we propose a method to derive the FREs for

networks of heterogeneous, all-to-all coupled quadratic
integrate-and-fire (QIF) neurons, which is exact in the
thermodynamic limit, i.e., for large numbers of neurons.
We consider an ansatz for the distribution of the neurons’
membrane potentials that we denominate the Lorentzian
ansatz (LA). The LA solves the corresponding continuity
equation exactly, making the system amenable to theoreti-
cal analysis. Specifically, for particular distributions of the
heterogeneity, the LA yields a system of two ordinary
differential equations for the firing rate and mean mem-
brane potential of the neuronal population. These equations
fully describe the macroscopic states of the network—
including synchronized states, and represent the first
example of an exact firing-rate description for a network
of recurrently connected spiking neurons. Finally, we show
how the LA transforms, via a conformal mapping, into
the so-called Ott-Antonsen ansatz (OA) that is used
extensively to investigate the low-dimensional dynamics
of large populations of phase oscillators in terms of the
Kuramoto order parameter [35].

II. MODEL DESCRIPTION

Hodgkin-Huxley-type neuronal models can be broadly
classified into two classes, according to the nature of their
transition to spiking in response to an injected current
[36,37]. Neuronal models with so-called class I excitability
generate action potentials with arbitrarily low frequency,
depending on the strength of the applied current. This
occurs when a resting state disappears through a saddle-
node bifurcation. In contrast, in neurons with class II
excitability, the action potentials are generated with a finite
frequency. This occurs when the resting state loses stability
via a Hopf bifurcation. The QIF neuron is the canonical
model for class I neurons, and, thus, generically describes
their dynamics near the spiking threshold [5,38,39]. Our
aim here is to derive the FREs corresponding to a
heterogeneous all-to-all coupled population of N QIF
neurons. The correspondence is exact in the thermody-
namic limit, i.e., when N → ∞ (this convergence was
studied recently in Ref. [40]).
The microscopic state of the population of QIF neurons

is given by the membrane potentials fVjgj¼1;…;N , which
obey the following ordinary differential equations [5]:

_Vj ¼ V2
j þ Ij; if Vj ≥ Vp; then Vj ← Vr: ð1Þ

Here, the overdot denotes the time derivative and Ij
represents an input current. Each time a neuron’s mem-
brane potential Vj reaches the peak value Vp, the neuron
emits a spike and its voltage is reset to the value Vr. In our
analysis, we consider the limit Vp ¼ −Vr →∞. This
resetting rule captures the spike reset as well as the
refractoriness of the neuron. Without loss of generality,
we rescale the time and the voltage in Eq. (1) to absorb any
coefficients that would have appeared in the first two terms.
The form for the input currents is

Ij ¼ ηj þ JsðtÞ þ IðtÞ; ð2Þ

where the external input has a heterogeneous, quenched
component ηj as well as a common time-varying compo-
nent IðtÞ, and the recurrent input is the synaptic weight J
times the mean synaptic activation sðtÞ, which is written as

sðtÞ ¼ 1

N

X

N

j¼1

X

kntk
j
<t

Z

t

−∞

dt0aτðt − t0Þδðt0 − tkjÞ: ð3Þ

Here, tkj is the time of the kth spike of the jth neuron, δðtÞ is
the Dirac delta function, and aτðtÞ is the normalized
synaptic activation caused by a single presynaptic spike
with time scale τ, e.g., aτðtÞ ¼ e−t=τ=τ.

A. Continuous formulation

In the thermodynamic limit N → ∞, we drop the indices
in Eqs. (1) and (2) and denote ρðVjη; tÞdV as the fraction of
neurons with membrane potentials between V and V þ dV
and parameter η, at time t. Accordingly, parameter η

now becomes a continuous random variable distributed
according to a probability distribution function gðηÞ.
The total voltage density at time t is then given
by

R

∞

−∞
ρðVjη; tÞgðηÞdη.

The conservation of the number of neurons leads to the
following continuity equation:

∂tρþ ∂V ½ðV2 þ ηþ Jsþ IÞρ� ¼ 0; ð4Þ

where we explicitly include the velocity given by
Eqs. (1) and (2).

III. RESULTS

The continuity equation (4) without temporal forcing
IðtÞ ¼ 0 has a trivial stationary solution. For each value of
η, this solution has the form of a Lorentzian function:
ρ0ðVjηÞ ∝ ðV2 þ ηþ JsÞ−1. Physically, the Lorentzian
density means that firing neurons with the same η value
will be scattered with a density inversely proportional to
their speed [Eq. (1)]; i.e., they will accumulate at slow
places and thin out at fast places on the V axis. In addition,
for those η values corresponding to quiescent neurons, the
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density ρ0 collapses at the rest state in the form of a Dirac
delta function.
Next, we assume that, independently of the initial

condition, solutions of Eq. (4) generically converge to a
Lorentzian-shaped function, so that all relevant dynamics
occur inside that lower-dimensional space. This fact is
mathematically expressed by the following LA for the
conditional density functions:

ρðVjη; tÞ ¼ 1

π

xðη; tÞ
½V − yðη; tÞ�2 þ xðη; tÞ2 ; ð5Þ

which is a Lorentzian function with time-dependent half-
width xðη; tÞ and center at yðη; tÞ. In the following, we
assume that the LA Eq. (5) completely describes the
macroscopic dynamics of the network of QIF neurons
and postpone the mathematical justification of its validity to
Sec. III E.

A. Macroscopic observables: Firing rate

and mean membrane potential

The half-width xðη; tÞ of the LA has a particularly simple
relation with the firing rate of the neuronal population (i.e.,
the number of spikes per unit time). Indeed, the firing rate
for each η value at time t, rðη; tÞ, can be computed by
noting that neurons fire at a rate given by the probability
flux at infinity: rðη; tÞ ¼ ρðV → ∞jη; tÞ _VðV → ∞jη; tÞ.
The limit V →∞ on the right-hand side of this equation
can be evaluated within the LA, and gives the simple
identity

xðη; tÞ ¼ πrðη; tÞ: ð6Þ

The (total) firing rate rðtÞ is then

rðtÞ ¼ 1

π

Z

∞

−∞

xðη; tÞgðηÞdη: ð7Þ

Additionally, the quantity yðη; tÞ is, for each value of η, the
mean of the membrane potential:

yðη; tÞ ¼ p:v:
Z

∞

−∞

ρðVjη; tÞVdV: ð8Þ

Here, we take the Cauchy principal value, defined as
p:v:

R

∞

−∞
fðxÞdx ¼ limR→∞

R

R
−R fðxÞdx, to avoid the other-

wise ill-defined integral. The mean membrane potential is
then

vðtÞ ¼
Z

∞

−∞

yðη; tÞgðηÞdη: ð9Þ

B. Firing-rate equations

Substituting the LA Eq. (5) into the continuity
equation (4), we find that, for each value of η, variables

x and y must obey two coupled equations, which can be
written in complex form as

∂twðη; tÞ ¼ i½ηþ JsðtÞ − wðη; tÞ2 þ IðtÞ�; ð10Þ

where wðη; tÞ≡ xðη; tÞ þ iyðη; tÞ. Closing this equation
requires expressing the mean synaptic activation sðtÞ as
a function of wðη; tÞ. The simplest choice is to take the limit
of infinitely fast synapses, τ → 0 in Eq. (3), so that we get
an equality with the firing rate sðtÞ ¼ rðtÞ. This allows for
the system of QIF neurons [Eqs. (1)–(3)] to be exactly
described by Eqs. (10) and (7), an infinite set of integro-
differential equations if gðηÞ is a continuous distribution.
Equation (10) is useful for general distributions gðηÞ (see

Appendix B), but a particularly sharp reduction in dimen-
sionality is achieved if η is distributed according to a
Lorentzian distribution of half-width Δ centered at η̄:

gðηÞ ¼ 1

π

Δ

ðη − η̄Þ2 þ Δ
2
: ð11Þ

Note that this distribution accounts for the quenched
variability in the external inputs. The fact that it is
Lorentzian is unrelated to the LA for the density of
membrane potentials. Assuming Eq. (11), the integrals in
Eqs. (7) and (9) can be evaluated closing the integral
contour in the complex η plane and using the residue
theorem [41]. Notably, the firing rate and the mean
membrane potential only depend on the value of w at
the pole of gðηÞ in the lower half η plane:

πrðtÞ þ ivðtÞ ¼ wðη̄ − iΔ; tÞ:

As a result, we only need to evaluate Eq. (10) at
η ¼ η̄ − iΔ, and thereby obtain a system of FREs com-
posed of two ordinary differential equations:

_r ¼ Δ=π þ 2rv; ð12aÞ

_v ¼ v2 þ η̄þ Jrþ IðtÞ − π2r2: ð12bÞ

This nonlinear system describes the macroscopic dynamics
of the population of QIF neurons in terms of the population
firing rate r and mean membrane potential v.
It is enlightening to compare the mean-field model

Eq. (12) with the equations of the spiking neurons. Note
that Eq. (12b) resembles Eqs. (1) and (2) for the individual
QIF neuron, but without spike resetting. Indeed, the
macroscopic firing-rate variable r enters as a negative
feedback term in Eq. (12b) and impedes the explosive
growth of the mean membrane potential v.
This negative feedback, combined with the coupling

term on the right-hand side of Eq. (12a), describes the
effective interaction between the firing rate and mean
membrane potential at the network level. Therefore, the
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FREs (12) describe the effect of the single-cell spike
generation and reset mechanism at the network level.
In the following, we examine the dynamics described by

Eq. (12) and show that they fully reproduce the macro-
scopic dynamics of the network of QIF neurons, even
during episodes of strong spike synchrony.

C. Analysis of the firing-rate equations

To begin with the analysis of Eq. (12), we first note that
in the absence of forcing, IðtÞ ¼ 0, the only attractors of
Eq. (12) are fixed points. Figure 1(a) shows a phase
diagram of the system as a function of the mean external
drive η̄ and synaptic weight J, both normalized by the width
of the input distribution [42]. There are three qualitatively
distinct regions of the phase diagram: (1) a single stable
node corresponding to a low-activity state (white), (2) a
single stable focus (spiral) generally corresponding to a
high-activity state (gray), and (3) a region of bistability
between low and high firing rate [cyan; see a phase portrait
of this region in Fig. 1(d)]. Comparison of a sample
bifurcation diagram of the fixed points from numerical
simulation of networks of QIF neurons with that obtained
from the FREs (12) shows an excellent correspondence; see
Figs. 1(b) and 1(c).
A similar phase diagram can be readily reproduced by

traditional heuristic firing-rate models, with one significant
qualitative difference: the presence of a stable focus—and
hence, damped oscillations. Specifically, in the gray region
of the phase diagram in Fig. 1(a), the system undergoes
oscillatory decay to the stable fixed point. This oscillatory
decay occurs as well for the high-activity state over a large
extent of the region of bistability (cyan); see, e.g., Fig. 1(d).
The presence of damped oscillations at the macroscopic

level reflects the transitory synchronous firing of a fraction

of the neurons in the ensemble. This behavior is common in
spiking neuron models with weak noise, and is not captured
by traditional firing-rate models (see, e.g., Ref. [20]).

D. Analysis of the firing-rate equations:

Nonstationary inputs

To show that the FREs (12) fully describe the macro-
scopic response of the population of QIF neurons to time-
varying stimuli (up to finite-size effects), we consider two
types of stimulus IðtÞ: (1) a step function and (2) a
sinusoidal forcing. In both cases, we simulate the full
system of QIF neurons and the FREs (12).
Figure 2 shows the system’s response to the two different

inputs. In both cases, the system is initially (t < 0) in a
bistable regime and set in the low-activity state, with
parameters corresponding to those of Fig. 1(d). The left-
hand panels of Fig. 2 show the response of the system to a
step current applied at t ¼ 0. The applied current is
such that the system abandons the bistable region—see
Fig. 1(a)—and approaches the high-activity state, which is
a stable focus. This is clearly reflected in the time series
rðtÞ; vðtÞ, where the rate equations (12) exactly predict the
damped oscillations exhibited by the mean field of the QIF
neurons. The raster plot in Fig. 2(e) shows the presence of
the oscillations, which is due to the transitory synchronous
firing of a large fraction of neurons in the population.
Finally, at t ¼ 30, the current is removed and the system
converges—again, showing damped oscillations—to the
new location of the (focus) fixed point, which clearly
coexists with the stable node where it was originally
placed (t < 0).
The right-hand panels of Fig. 2 show the response of the

model to a periodic current, which drives the system from
one side of the bistable region to the other. As a result, we

-10 -5 0

η/Δ

-3

0

v
/Δ

1
/2

-10 -5 0

η/Δ

0

10

20

J
/Δ

1
/2 -10 -5 0

0

1

r/
Δ

1
/2

0 0.5 1 1.5 2

r/Δ
1/2

-2

-1

0

1

v
/Δ

1
/2

Bistability

Stable node

Stable

focus

(a) (b)

(c)

(d)

FIG. 1. Analysis of the steady states of FREs (12). (a) Phase diagram: In the wedge-shaped cyan-shaded region there is bistability
between a high- and a low-activity state. The boundary of the bistability region is the locus of a saddle-node bifurcation which is exactly
obtained in parametric form: ðη̄; JÞSN ¼ ½−π2r2 − 3Δ2=ð2πrÞ2; 2π2rþ Δ

2=ð2π2r3Þ�. To the right of the dashed line, defined by
η̄f ¼ −½J=ð2πÞ�2 − ðπΔ=JÞ2, there is a stable focus (shaded regions). (b) r − η̄ and (c) v − η̄ bifurcation diagrams for J=Δ1=2 ¼ 15.
Square symbols: Results obtained from numerical simulations of QIF neurons (see Appendix A for details). (d) Phase portrait of the
system in the bistable region [η̄=Δ ¼ −5; J=Δ1=2 ¼ 15, triangle in (a)] with three fixed points: a stable focus (with its basin of attraction
shaded), a stable node, and a saddle point.
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observe periodic bursting behavior when the system visits
the stable focus region of the phase diagram, Fig. 1(a).
To further illustrate the potential of the FREs (12) to

predict and investigate complex dynamics in ensembles of
spiking neurons, we present here a simple situation where
the system of QIF neurons exhibits macroscopic chaos.
This is observed by increasing the frequency ω of the
sinusoidal driving, so that the system cannot trivially follow
the stable fixed point at each cycle of the applied current.
Figure 3(a) shows a phase diagram obtained using

Eq. (12). The shaded regions indicate parameter values
where the rate model has either a single chaotic attractor (in
black) or a chaotic attractor coexisting with a periodic orbit
(in cyan). A trajectory on the chaotic attractor is depicted in
Fig. 3(b), and the clearly irregular time series of the firing
rate is shown in orange in Fig. 3(d). Using the same
parameters, we perform numerical simulations of the QIF
neurons [Eqs. (1) and (2)], finding a similar attractor and
irregular dynamics as in the rate model; see Figs. 3(c)
and 3(d). To obtain the time series shown in Fig. 3(d), we
run the QIF neurons numerically and, after a long transient,
at time t ¼ 0, the rate model Eq. (12) is initiated with the
values of r and v obtained from the population of QIF
neurons. The time series of the two systems, which are
initially close, rapidly diverge, reflecting the chaotic nature
of the system.
Finally, to illustrate this chaotic state at the microscopic

level, Fig. 3(e) shows the raster plot for 300 randomly
chosen neurons, corresponding to the time series in
Fig. 3(d). The irregular firing of neurons in Fig. 3(e) has
some underlying structure that may be visualized ordering
the same set of neurons according to their intrinsic currents
as ηk < ηkþ1, with k ∈ ½1; 300�; see Fig. 3(f). Clearly, the
maxima of the firing rate coincide with the synchronous
firings of clusters of neurons with similar η values. The size

of these clusters is highly irregular in time, in concomitance
with the chaotic behavior.

E. Validity of the Lorentzian ansatz

Thus far, we have shown that the LA Eq. (5) solves the
continuity equation (4) and confirmed that these solutions
agree with the numerical simulations of the original system
of QIF neurons [Eqs. (1) and (2)]. Here, we further clarify
why the LA holds for ensembles of QIF neurons.
Transforming the voltage of the QIF neuron into a phase

via Vj ¼ tanðθj=2Þ, the system [Eqs. (1) and (2)] becomes
an ensemble of “theta neurons” [38]:

_θj ¼ð1− cosθjÞþð1þ cosθjÞ½ηjþJsðtÞþ IðtÞ�: ð13Þ

In the new phase variable θ ∈ ½0; 2πÞ, the LA Eq. (5)
becomes

~ρðθjη; tÞ ¼ 1

2π
Re

�

1þ αðη; tÞeiθ
1 − αðη; tÞeiθ

�

; ð14Þ

where the function αðη; tÞ is related to wðη; tÞ as

αðη; tÞ ¼ 1 − wðη; tÞ
1þ wðη; tÞ : ð15Þ

Equations (5) and (14) are two representations of the so-
called Poisson kernel on the half-plane and on the unit disk,
respectively. These representations are related via Eq. (15),
which establishes a conformal mapping from the half-plane
ReðwÞ ≥ 0 onto the unit disk jαj ≤ 1. In the next section,
we show that variables r and v can be related, via the same
conformal map, to the Kuramoto order parameter, which is
a macroscopic measure of phase coherence [43,44].
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FIG. 2. The transient dynamics of an ensemble of QIF model neurons [Eqs. (1) and (2)] are exactly described by the FREs (12).
(a),(b) Instantaneous firing rate and (c),(d) mean membrane potential of the QIF neurons and the FREs are depicted in black and orange,
respectively. (e),(f) Raster plots of 300 randomly selected QIF neurons of the N ¼ 104 in the ensemble. (a),(c),(e),(g) At time t ¼ 0,
a current I ¼ 3 is applied to all neurons, and set to zero again at t ¼ 30; stimulus IðtÞ shown in (g). (b),(d),(f),(h) At time t ¼ 0,
a sinusoidal current is applied to all neurons IðtÞ ¼ I0 sinðωtÞ, with I0 ¼ 3, ω ¼ π=20; stimulus IðtÞ shown in (h). Parameters:
J ¼ 15, η̄ ¼ −5;Δ ¼ 1.
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The key observation supporting the applicability of the
LA is the fact that Eq. (14) turns out to be the ansatz
discovered in 2008 by Ott and Antonsen [35]. According to
the OA theory, in the thermodynamic limit, the dynamics of
the class of systems

∂tθðη; tÞ ¼ Ωðη; tÞ þ Im½Hðη; tÞe−iθ� ð16Þ

generally converges to the OA manifold [Eq. (14)]. In our
case, for Eq. (13), we have Ωðη; tÞ ¼ 1þ ηþ Jsþ I and
Hðη; tÞ ¼ ið−1þ ηþ Jsþ IÞ. Thus far, the convergence
of Eq. (16) to the OA manifold has been only proven for
Hðη; tÞ ¼ HðtÞ. This includes the well-known Kuramoto

and Winfree models [45,46], but not Eq. (13). However,
there are theoretical arguments [47] that strongly suggest
that the OA manifold is also attracting for η-dependent H,
as numerically confirmed by a number of recent papers
using theta neurons [48–50] and other phase-oscillator
models [51–55].

F. Firing rate and Kuramoto order parameter

There exists a mapping between the macroscopic var-
iables r and v and the so-called Kuramoto order parameter
Z. Equation (15) relates, for each value of η, the firing rate
and the mean membrane potential, both contained in w,
with the uniformity of the phase density, measured by
α—note that α ¼ 0 in Eq. (14) yields a perfectly uniform
density. The Kuramoto order parameter is obtained by
integrating α over the whole population as

ZðtÞ ¼
Z

∞

−∞

gðηÞ
Z

2π

0

~ρðθjη; tÞeiθdθdη

¼
Z

∞

−∞

gðηÞα�ðη; tÞdη; ð17Þ

where we assume that the density ~ρ is the OA ansatz
Eq. (14). The quantity Z can be seen as the center of mass
of a population of phases distributed across the unit
circle eiθ.
For a Lorentzian distribution of currents, gðηÞ, we may

derive the exact formula (see Appendix B)

Z ¼ 1 −W�

1þW� ; ð18Þ

relating the Kuramoto order parameter Z with the firing-
rate quantity W ≡ πrþ iv. Figure 4 illustrates this con-
formal mapping of the right half-plane (r ≥ 0) onto the unit
disk (jZj ≤ 1).
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model (black). (e) Raster plot corresponding to 300 randomly
selected neurons. (f) Same raster plot as in (e), ordering neurons
according to their intrinsic current ηk. Parameters: I0 ¼ 3, ω ¼ π

and η̄ ¼ −2.5, J ¼ 10.5 [triangle symbol in (a)].

FIG. 4. The conformal map Eq. (18) transforms the right half-
plane onto the unit disk. This transformation and its inverse
define a one-to-one mapping between the Kuramoto order
parameter Z and the macroscopic quantities of the population
of QIF neurons: r, firing rate; v, mean membrane potential. Note
that in the limit Z ¼ eiΨ [full coherence, ~ρðθÞ ¼ δðθ −ΨÞ], we
recover v ¼ ið1 − eiΨÞ=ð1þ eiΨÞ ¼ tanðΨ=2Þ, as the original
mapping V ¼ tanðθ=2Þ between QIF and theta neurons dictates.
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IV. CONCLUSIONS

We present a method for deriving firing-rate equations
for a network of heterogeneous QIF neurons, which is exact
in the thermodynamic limit. To our knowledge, the result-
ing system of ordinary differential equations (12) repre-
sents the first exact FREs of a network of spiking neurons.
We emphasize that the derivation of the FREs does not

rely on assumptions of weak coupling, separation of time
scales, averaging, or any other approximation. Rather, the
assumptions underlying the validity of Eq. (12) are that
(i) the QIF neurons are all-to-all connected, (ii) hetero-
geneity is quenched, and (iii) inputs are distributed accord-
ing to a Lorentzian distribution.
The last two assumptions may seem particularly restric-

tive. Concerning assumption (iii), it must be stressed that
for arbitrary distributions of quenched heterogeneity, the
LA Eq. (5) remains generally valid, and, therefore, Eq. (10)
can be used to discern the stability of the network states
(see Appendix C). Furthermore, in Appendix C, we also
show numerical simulations using uniform- and Gaussian-
distributed inputs that reveal very similar macroscopic
dynamics in response to time-varying inputs. Even relaxing
assumption (ii), numerical simulations with identical QIF
neurons driven by external independent Gaussian noise
sources show qualitative agreement with the FREs (12) (see
Appendix D). In summary, the choice of a quenched
Lorentzian distribution gðηÞ is, thus, a mere mathematical
convenience, whereas the insights gained from the resulting
firing-rate description are valid more generally.
Our derivation represents a sharp departure from and a

major advance compared to previous studies in several
regards. First, in the past it has been possible to calculate
only the approximate firing rate of networks of spiking
neurons for stationary states, or for weak deviations of such
states [9–12,15,19,20]. The equations that result from these
derivations are difficult to solve, and typically require
special numerical methods. In contrast, FREs (12) can
be easily analyzed and simulated, and exactly reproduce the
behavior of the spiking network far from any fixed point
and for arbitrary external currents. Second, firing-rate
descriptions traditionally assume that the activity of a
population of neurons is equivalent to a set of uncorrelated
stochastic processes with a given rate; see, e.g.,
Refs. [13,14]. However, in simulations of spiking networks,
it is well known that the response of the network to
nonstationary inputs generally involves some degree of
spike synchrony. Recent theoretical work has sought to
improve on classical rate models, which act as a low-pass
filter of inputs, by fitting them with linear filters extracted
from the corresponding Fokker-Planck equation for the
network [19,20]. These filters tend to generate damped
oscillations when the external noise level is not too high,
reflecting the presence of spike synchrony [15,20]. The
FREs (12) also capture this phenomenon and reveal that the
underlying mechanism is an interplay between firing rate

and subthreshold voltage. Furthermore, because these
equations are exact, we can explore the full nonlinear
response of the network, such as the generation of chaotic
states of synchronous bursting, as shown in Fig. 3.
Recently, it has been shown that not only Kuramoto-like

models, but a much wider class of phase models, evolve in
the OA manifold defined by Eq. (14). Specifically, net-
works of pulse-coupled oscillators [46] and theta neurons
[48–50] allow for an exact, low-dimensional description in
terms of the Kuramoto order parameter [Eq. (17)].
Although these later works use a finite-width phase-
coupling function that differs from the synaptic coupling
[Eq. (3)], the obtained low-dimensional description in
terms of the Kuramoto order parameter is analogous to
ours, but in a different space [56]. Indeed, we show that the
OA ansatz Eq. (14) is related, via the nonlinear trans-
formation of variables Eq. (15), to the LA ansatz Eq. (5).
Remarkably, this transformation establishes an exact cor-
respondence between the Kuramoto order parameter and a
novel, biophysically meaningful macroscopic observable
that describes the firing rate and mean membrane potential
of the neuronal network. Interestingly, the low-dimensional
description in terms of firing rates seems to be a more
natural description for networks of spiking neurons, com-
pared to that in terms of the Kuramoto order parameter. The
firing-rate equations (12) take a surprisingly simple form in
the LA manifold, which makes them a valuable tool to
explore and understand the mechanisms governing the
macroscopic dynamics of neuronal networks.
Finally, since the OA ansatz is the asymptotic solution

for systems of the form in Eq. (16), applying the change of
variables V ¼ tanðθ=2Þ automatically implies that the LA
should hold for populations governed by

_Vj ¼ Aðηj; tÞ þ Bðηj; tÞVj þ Cðηj; tÞV2
j ; ð19Þ

where A, B, and C are related to Ω and H as
A ¼ ½Ωþ ImðHÞ�=2, B ¼ −ReðHÞ, C ¼ ½Ω − ImðHÞ�=2.
Notably, Eq. (19) defines a wide family of ensembles of
QIF neurons.
Therefore, the LA is actually valid for more general

networks beyond the one investigated here—ηj in Eq. (19)
may also be a vector containing several forms of disorder.
As particularly relevant cases, in Appendix E, we provide
the FREs governing the dynamics of an excitatory network
with both heterogeneous inputs η and synaptic weights J, as
well as a pair of interacting excitatory and inhibitory
populations of QIF neurons. In addition, according to
Eq. (19), the LA is also valid if synapses are modeled
as conductances, in which case the reversal potentials may
be distributed as well. Moreover, the role of gap junctions
or synaptic kinetics may be considered within the same
framework.

MACROSCOPIC DESCRIPTION FOR NETWORKS OF … PHYS. REV. X 5, 021028 (2015)

021028-7



ACKNOWLEDGMENTS

D. P. and A. R. acknowledge support by MINECO
(Spain) under the Ramón y Cajal program. E. M. and A.
R. acknowledge support from a grants from the Spanish
Ministry of Economics and Competitiveness PSI2013-
42091 and BFU2012-33413.

APPENDIX A: NUMERICAL SIMULATIONS

To numerically simulate the population of QIF neurons
[Eq. (1)], we use the Euler method, with time step
dt ¼ 10−4. The population has N ¼ 104 neurons, and
the Lorentzian distribution Eq. (11) is deterministically
generated using ηj¼ η̄þΔarctan½π=2ð2j−N−1Þ=ðNþ1Þ�,
where j ¼ 1;…; N and Δ ¼ 1.
The time it takes for the membrane potential of a QIF

neuron (with Ij > 0) to reach infinity from a given positive
value of the membrane potential is arctanð

ffiffiffiffi

Ij
p

=VpÞ=
ffiffiffiffi

Ij
p

.

For
ffiffiffiffi

Ij
p

≪ Vp, this expression can be approximated as

arctan ð
ffiffiffiffi

Ij
p

=VpÞ
ffiffiffiffi

Ij
p ≈

1

Vp

:

In simulations, we consider Vp ¼ −Vr ¼ 100, and use
the previous approximation. Thus, the time for the neurons
to reach infinity from Vp is 1=Vp ≈ 10−2. Additionally, the
time taken from minus infinity to Vr is 1=Vr ≈ 10−2.
Numerically, once a neuron’s membrane potential Vj

satisfies Vj ≥ Vp the neuron is reset to −Vj and held there
for a refractory time 2=Vj. The neurons produce a spike
when Vj reaches infinity, i.e., a time interval 1=Vj after
crossing Vp. The exact time of the spike cannot be
evaluated exactly in numerical simulations, since dt is
finite. However, simulations agree very well with the
theory, provided that 1=Vp ≫ dt.
To evaluate the mean membrane potential v, the pop-

ulation average is computed discarding those neurons in the
refractory period. The choice Vp ¼ −Vr is not needed, but
in this way the observed mean membrane potential v agrees
with the theory, consistent with the definition in Eq. (8).
The mean synaptic activation Eq. (3) is evaluated using
the Heaviside step function aτðtÞ ¼ Θðτ − tÞ=τ, with
τ ¼ 10−3. The instantaneous firing rates are obtained
binning time and counting spikes within a sliding
time window of size δt ¼ 2 × 10−2 (Figs. 2,6–8) and
δt ¼ 4 × 10−2 (Fig. 3).

APPENDIX B: PROOF OF EQ. (18)

The inverse of Eq. (18) reads

W ¼ 1 − Z�

1þ Z� : ðB1Þ

Recalling Eqs. (7) and (9), we write the macroscopic
field W as

WðtÞ ¼
Z

∞

−∞

wðη; tÞgðηÞdη;

where w≡ xþ iy. Inserting the conformal mapping
w ¼ ð1 − αÞ=ð1þ αÞ—the inverse of Eq. (15)—we get

WðtÞ ¼
Z

∞

−∞

�

1 − αðη; tÞ
1þ αðη; tÞ

�

gðηÞdη:

Using the geometric series formula, and grouping the
powers of α, we may evaluate the integrals, obtaining

WðtÞ ¼ 1 − 2Z�ðtÞ þ 2Z�
2
ðtÞ − 2Z�

3
ðtÞ þ � � � ; ðB2Þ

where the Zm are the generalized order parameters [57]:

ZmðtÞ ¼
Z

∞

−∞

gðηÞ
Z

2π

0

~ρðθjη; tÞeimθdθdη

¼
Z

∞

−∞

gðηÞ½α�ðη; tÞ�mdη:

Since, for Lorentzian gðηÞ, ZmðtÞ¼½α�ðη¼ η̄−iΔ;tÞ�m ¼
ZðtÞm, we can revert the power series in Eq. (B2) and obtain
the result in Eq. (B1).

APPENDIX C: RESULTS FOR ARBITRARY

DISTRIBUTIONS OF CURRENTS

In this Appendix, we compare the results in the main
text, obtained using a Lorentzian distribution of currents
gðηÞ, with other distributions. The results are qualitatively
similar, as evidenced by Figs. 5–7 (cf. Figs. 1–3).
Note that, if a particular distribution gðηÞ has 2n poles

(all of them off the real axis). one can readily obtain the
FREs consisting of n complex-valued ordinary differential
equations. Even if gðηÞ does not fulfill this condition,
as in the case of Gaussian or uniform distributions, the
Lorentzian ansatz still holds (see below).
Moreover, it is possible to efficiently simulate the

dynamics of a population by integrating Eq. (10) for a
sample of η values that approximate a particular gðηÞ [58].
However, if gðηÞ is a discrete distribution (or has a discrete
part), as in the case of the Dirac delta function
gðηÞ ¼ δðη − η̄Þ, the so-called Watanabe-Strogatz theory
applies [47,60,61], and the “Lorentzian manifold” is no
longer attracting since the dynamics is extremely degen-
erate, akin to a Hamiltonian system.

1. Steady states

Considering IðtÞ ¼ 0 in Eqs. (1) and (2), it is possible to
find the solutions with steady firing rate rðtÞ ¼ r0 for
arbitrary distributions of currents.
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As we point out in the main text, the stationary solution
of the continuity equation (4) for those neurons that are
intrinsically active (η > −Jr0) must be inversely propor-
tional to their speed; that is,

ρ0ðVjηÞ ¼
cðηÞ

V2 þ ηþ Jr0
;

where the normalizing constant is cðηÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηþ Jr0
p

=π. The
firing rate for each value of η is then

r0ðηÞ ¼ ρ0ðV → ∞jηÞ _VðV → ∞jη; tÞ ¼ cðηÞ;

and integration over all the firing neurons gives the
self-consistent condition for r0:

r0 ¼
Z

∞

−Jr0

cðηÞgðηÞdη; ðC1Þ

which is valid for any distribution gðηÞ [an analogous
expression was obtained in Eq. (45) of Ref. [40]]. For
Lorentzian gðηÞ, the integral in Eq. (C1) can be evaluated,
and solving the resulting equation for r0, one obtains the
steady states in agreement with the result of setting
_r ¼ _v ¼ 0 in the FREs (12).

2. Linear stability analysis of steady states

Assuming that the LA captures the actual dynamics of
the population of QIF neurons, one can also investigate the
stability of steady states for arbitrary distributions gðηÞ.
Indeed, the evolution of infinitesimal perturbations from a
steady state,

w0ðηÞ≡ x0ðηÞ þ iy0ðηÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηþ Jr0
p

if η > −Jr0

−i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−η − Jr0
p

if η ≤ −Jr0;

is determined by the linearization of Eq. (10):

∂tδwðη; tÞ ¼ iðJδr − 2w0δwÞ; ðC2Þ

where δrðtÞ ¼ ð2πÞ−1
R

∞

−∞
½δwðη; tÞ þ δw�ðη; tÞ�gðηÞdη.

To find the discrete spectrum of eigenvalues [62], we use
the ansatz δwðη; tÞ ¼ bðηÞeλt in Eq. (C2) and obtain

½λþ 2w0ðηÞi�bðηÞeλt ¼
iJ

2π

Z

∞

−∞

½bðηÞeλt þ b�ðηÞeλ�t�gðηÞdη:

Solving the equation for beλt, we find

bðηÞeλt ¼ 1

2w0ðηÞ − iλ

J

2π

Z

∞

−∞

½bðηÞeλt þ b�ðηÞeλ�t�gðηÞdη:

After summing the complex conjugate at each side of the
equation, we multiply by gðηÞ and integrate over η. This
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FIG. 5. Phase diagrams for (a) uniform and (b) Gaussian
distributions of currents gðηÞ. The cyan-shaded region represents
the bistable region, with the solid lines corresponding to saddle-
node bifurcations analytically obtained from Eqs. (C5) and (C6).
Square symbols are estimates of the bifurcations’ loci obtained by
direct numerical simulations of N ¼ 104 QIF neurons. Triangle
symbols indicate parameter values used in numerical simulations
of Figs. 6 and 7.
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FIG. 6. Numerical simulations of the excitatory network of QIF neurons, Eqs. (1) and (2). with (a)–(d) uniform and (e)–(h) Gaussian
distributions of currents. As in Fig. 2, at time t ¼ 0, an external sinusoidal current IðtÞ ¼ I0 sinðωtÞ—shown in (d) and (h)—is applied to
all neurons. (a),(e) Time series of the firing rate and (b),(f) the mean membrane potential of all cells. In (c) and (g), we depict the raster
plots of 300 randomly chosen neurons. Parameters correspond to the black triangle symbols in Fig. 5: (a)–(d) η̄ ¼ −1, J ¼ 8, γ ¼ 1,
I0 ¼ 1; (e)–(h) η̄ ¼ −2, J ¼ 10, σ ¼ 1, I0 ¼ 1.5.
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allows one to cancel out the integrals
R

ðbeλt þ b�eλ
�tÞgdη.

Then, imposing self-consistency, we find

1 ¼ J

2π

Z

∞

−∞

�

1

2w0ðηÞ − iλ
þ c:c:

�

gðηÞdη: ðC3Þ

Local bifurcations are associated with marginal stability of
the fixed points: ReðλÞ → 0. In correspondence with the
results obtained for a Lorentzian distribution in the main
text, we expect bifurcations of saddle-node type associated
with λ ¼ 0. Therefore, from Eq. (C3) we find that the loci
of the saddle-node bifurcations are located at

JSN ¼ 2π
R

∞

−∞

x0ðηÞ
jw0ðηÞj2

gðηÞdη
: ðC4Þ

Since x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ηþ Jr0
p

for η > −Jr0, and zero otherwise, we
can restrict the integration over η to the range ð−Jr0;∞Þ.
Now, multiplying Eq. (C4) by Eq. (C1), we get, after
defining ξ ¼ JSNr0, two equations that permit us to find the
locus of the saddle-node bifurcations systematically for
arbitrary distributions of currents:

JSN ¼ 2π
R

∞

0
η−1=2gðη − ξÞdη ; ðC5Þ

with ξ obtained solving

ξ ¼ 2
R

∞

0
η1=2gðη − ξÞdη

R

∞

0
η−1=2gðη − ξÞdη : ðC6Þ

3. Bistability region for uniform

and Gaussian distributions

Equations (C5) and (C6) are particularly easy to solve for
uniform distributions of currents:

gðηÞ ¼
�

1

2γ
for jη − η̄j < γ

0 otherwise:

After defining the rescaled parameters ~η ¼ η̄=γ and
~J ¼ J=

ffiffiffi

γ
p

, we find two branches of saddle-node bifurca-
tions emanating from the cusp point at ~η ¼ −1=3:

~J
ð1Þ
SN ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffi

3~ηþ 3
p ;

~J
ð2Þ
SN ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~ηþ 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi

1

3
þ ~η2

q

r

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~η − 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi

1

3
þ ~η2

q

r :

These functions are plotted in Fig. 5(b). Numerical sim-
ulations using the network of QIF neurons confirm the
correctness of these boundaries (see the square symbols
in Fig. 5).
For Gaussian distributions,

gðηÞ ¼ 1
ffiffiffiffiffiffi

2π
p

σ
e−ðη−η̄Þ

2=ð2σ2Þ;

the solutions of Eqs. (C5) and (C6) can be numerically
found. The results are shown in Fig. 5(b). Again, there is a
perfect agreement between Eqs. (C5) and (C6)—derived
assuming the Lorentzian Ansatz—and the numerical esti-
mations obtained simulating the network of QIF neurons.

4. Excitatory networks with external periodic currents

Firing-rate equations (12) predict the existence of a
stable focus in the shaded region of Fig. 1. Trajectories
attracted to this fixed point display oscillations in the firing
rate and mean membrane potential due to the transient
synchronous firing of the QIF neurons.
When an external periodic current is injected to all

neurons in the network, the spiral dynamics around the
fixed point is responsible for the bursting behavior
observed in Fig. 2, as well as for the emergence of the
macroscopic chaos shown in Fig. 3. Here, we investigate
whether similar phenomena occur when an external
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FIG. 7. Chaotic state in a network ofN ¼ 104 QIF neurons with
Gaussian-distributed currents. Network parameters correspond to
the yellow triangle in the phase diagram of Fig. 5(b). As in Fig. 3,
neurons receive a common periodic current IðtÞ ¼ I0 sinðωtÞ of
frequency ω ¼ π. Parameters: η̄ ¼ −1, J ¼ 8, σ ¼ 1, I0 ¼ 1.5.
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periodic current of the same frequency is injected in an
excitatory network with either uniform or Gaussian-
distributed currents.
We introduce a sinusoidal forcing IðtÞ ¼ I0 sinðωtÞ

observing a behavior qualitatively identical to the one
reported in the main text with Lorentzian gðηÞ. Under a
low-frequency forcing, the system displays periodic burst-
ing, see Fig. 6, provided the parameters are set inside the
bistable region (see the black triangles in Fig. 5).
Furthermore, note that the range of firing rates and
mean membrane potentials in Fig. 6 are similar to those
of Fig. 2—for Lorentzian distributions of currents.
As for the simulations shown in Fig. 3, we next increase

the frequency of the injected current up to ω ¼ π to
investigate the emergence of macroscopic chaos in a
network with Gaussian-distributed currents. Figure. 7
shows the emergence of an apparently chaotic state. The
observed dynamics is similar to that of Fig. 3, which
suggests it is chaotic. This type of chaos persists in the
thermodynamic limit N → ∞. On top of this, highly
dimensional but weakly chaotic dynamics is probably also
present due to “residual” finite-size effects.

APPENDIX D: IDENTICAL QIF NEURONS

DRIVEN BY INDEPENDENT NOISE TERMS

Now, we compare the results obtained above and in the
main text for quenched heterogeneity gðηÞ with the results
for identical neurons gðηÞ ¼ δðη − η̄Þ driven by noise.
Specifically, the input currents are now taken as

Ij ¼ η̄þ JrðtÞ þ ξjðtÞ; ðD1Þ

where ξj are independent white noise terms with expected
values hξjðtÞi ¼ 0, and hξjðtÞξkðt0Þi ¼ 2Dδjkδðt − t0Þ.
In the thermodynamic limit, the density ρðV; tÞ obeys the

Fokker-Planck equation:

∂tρþ ∂V ½ðV2 þ η̄þ JrÞρ� ¼ D∂2
Vρ: ðD2Þ

The Lorentzian ansatz is not a solution of this equation, but
we demonstrate here that the phenomena observed with
quenched heterogeneity also arise with independent noise
sources. This qualitative similarity at the macroscopic level
between quenched Lorentzian heterogeneity and Gaussian
noise has been noted in previous work [63].
A subtle point in Eq. (D2) is that its nondimensionaliza-

tion entails a different (compared to Δ) rescaling with D:
~V¼V=D1=3, ~η ¼ η=D2=3, ~J ¼ J=D1=3, ~t ¼ tD1=3 (implying
~r ¼ r=D1=3).
Numerical simulations reveal the existence of a region of

bistability, see Fig. 8(a), analogous to the one observed for
quenched heterogeneity, cf. Figs. 1(a) and 5. Obviously,
true bistability holds only in the thermodynamic limit,
while what we observe are rather exceedingly long resi-
dence times close to each fixed point (see Fig. 8 caption for
details).
Additionally, in order to investigate and compare the

dynamical behavior of the identical noise-driven neurons
with that of the FREs (12), an external current of intensity
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FIG. 8. Numerically obtained phase diagram (a) and time series (b)–(d) for a network of identical QIF neurons driven by independent
white noise terms. The square symbols in (a) represent the boundaries that enclose the region of bistability between a high- and a low-
activity state. The boundaries have been obtained using a network of 104 neurons, and by numerical continuation of a low-activity
solution (filled squares) and a high-activity solution (empty squares). Specifically, using a noise intensityD ¼ 1 and a particular value of
J, the system is initialized either at η̄ ¼ −5 or at η̄ ¼ 0 and, after t ¼ 10 time units, parameter η̄ is decreased or increased an amount
0.025 or 0.1, respectively. This continuation is made until the relative change of two successive values of the averaged firing rate (time
averaged over the last time unit for each parameter value) is larger than 50%. Other parameters for the numerical simulations are the
same as in all other figures, and are described in Appendix A. The triangle symbol indicates the parameter value,
ðη̄=D2=3; J=D1=3Þ ¼ ð−5; 15Þ, corresponding to the numerical simulations shown in black in the right-hand panels—for the simulations.
we use D ¼ 1. To facilitate the comparison with the FREs (12), the orange curves show the time series of the FREs, using the same
parameters ðη̄; JÞ ¼ ð−5; 15Þ, but with Δ ¼ 1.
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I0 ¼ 3 is injected to all neurons at time t ¼ 0, like in Fig. 2.
In Figs. 8(b) and 8(c), the time series of the firing rate and
the mean membrane potential clearly display damped
oscillations after the injection of the current, confirming
the existence of a stable focus, exactly as observed in the
FREs (12). The existence of a stable focus reflects the
presence of transient spike synchrony in the network, as
seen by the raster plot in Fig. 8(d). Remarkably, the raster
plot and the time series closely resemble those of Fig. 2.
The resemblance is not just qualitative, but rather there is a
near quantitative fit between the network of QIF neurons
driven by Gaussian noise and the FREs (12), which are
derived assuming quenched Lorentzian heterogeneity
(orange curves).

APPENDIX E: MODEL GENERALIZATIONS

To illustrate the potential of the LA for investigating
more sophisticated networks, here we provide the low-
dimensional FREs corresponding to an excitatory network
of QIF neurons with independently distributed currents and
synaptic weights and to two interacting populations of
excitatory and inhibitory QIF neurons with distributed
currents.

1. Excitatory population with heterogeneous

currents and synaptic weights

As a first example, let us assume that both the currents η
and the synaptic weights J are distributed—this type of
heterogeneity was also considered in Ref. [40]. The input
currents then read [66]

Ij ¼ ηj þ JjrðtÞ þ IðtÞ:

For simplicity, we additionally assume that η and J are
distributed independently, with a joint distribution
pðη; JÞ ¼ gðηÞhðJÞ. In the simplest situation of
Lorentzian gðηÞ and hðJÞ,

gðηÞ ¼ Δ=π

ðη − η̄Þ2 þ Δ
2
; hðJÞ ¼ Γ=π

ðJ − J̄Þ2 þ Γ
2
;

the problem is extremely simplified using the Lorentzian
ansatz, which now trivially reads

ρðVjη; J; tÞ ¼ 1

π

xðη; J; tÞ
½V − yðη; J; tÞ�2 þ xðη; J; tÞ2 :

The firing rate and mean membrane potential are deter-
mined only by the value of w≡ xþ iy at the poles in the
lower half-planes:

rðtÞ þ ivðtÞ ¼
ZZ

wðη; J; tÞgðηÞhðJÞdηdJ

¼ wðη̄ − iΔ; J̄ − iΓ; tÞ:

Finally, evaluating Eq. (10) at the poles (η ¼ η̄ − iΔ,
J ¼ J̄ − iΓ), we get the exact FREs:

_r ¼ Δ=π þ Γr=π þ 2rv; ðE1aÞ

_v ¼ v2 þ η̄þ J̄rþ IðtÞ − π2r2: ðE1bÞ

These equations simply contain an extra term þΓr=π
compared to Eq. (12). Figure 9 shows the bistability
boundaries obtained from Eq. (E1) for different ratios of
Γ and Δ, and IðtÞ ¼ 0. Note that the region of bistability
shifts to lower values of η̄=Δ and to higher values of J̄=

ffiffiffiffi

Δ
p

as the level of heterogeneity in the synaptic coupling Γ is
increased.

2. Firing-rate equations for a pair of

excitatory-inhibitory populations

The microscopic state of each population of QIF
neurons is characterized by the membrane potentials

fVðe;iÞ
j gj¼1;…;N , which obey the following ordinary differ-

ential equations:

_V
ðe;iÞ
j ¼ ðVðe;iÞ

j Þ2þ I
ðe;iÞ
j ; if Vðe;iÞ

j ≥ Vp; then V
ðe;iÞ
j ← Vr:

Here, Vðe;iÞ
j represents the membrane potential of neuron j

in either the excitatory ðeÞ or the inhibitory ðiÞ population.
The external currents for the excitatory and inhibitory
populations are, respectively,

I
ðeÞ
j ¼ η

ðeÞ
j þ Jees

ðeÞðtÞ − Jies
ðiÞðtÞ þ IðeÞðtÞ;

I
ðiÞ
j ¼ η

ðiÞ
j þ Jeis

ðeÞðtÞ − Jiis
ðiÞðtÞ þ IðiÞðtÞ;

where the synaptic weights are Jee; Jii; Jie; Jei. Finally, the
mean synaptic activation for each population is
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FIG. 9. Phase diagram for an excitatory population with
heterogeneous currents and synaptic weights obtained using
the FREs (E1).
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sðe;iÞðtÞ ¼ 1

N

X

N

j¼1

X

knðtk
j
Þðe;iÞ<t

Z

t

−∞

dt0aτðt − t0Þδðt0 − ðtkjÞðe;iÞÞ:

Here, ðtkjÞðe;iÞ is the time of the kth spike of the jth neuron in
either the excitatory ðeÞ or the inhibitory ðiÞ population.
Additionally, δðtÞ is the Dirac delta function, and aτðtÞ is
the normalized synaptic activation caused by a single pre-
synaptic spike with time scale τ, e.g., aτðtÞ ¼ e−t=τ=τ.
It is straightforward to apply the LA and the method

described in the main text to obtain the firing-rate equations
corresponding to the two-population model. Considering
the limit of infinitely fast synapses, τ → 0, we get
sðe;iÞðtÞ ¼ rðe;iÞðtÞ. Finally, assuming the Lorentzian dis-
tributions of currents for both populations,

ge;iðηÞ ¼
1

π

Δe;i

ðη − η̄e;iÞ2 þ Δ
2
e;i

;

we obtain the firing-rate equations:

_rðeÞ ¼ Δe=π þ 2rðeÞvðeÞ;

_vðeÞ ¼ ðvðeÞÞ2 þ η̄e þ Jeer
ðeÞ − Jier

ðiÞ þ IðeÞðtÞ − ðπrðeÞÞ2;
_rðiÞ ¼ Δi=π þ 2rðiÞvðiÞ;

_vðiÞ ¼ ðvðiÞÞ2 þ η̄i þ Jeir
ðeÞ − Jiir

ðiÞ þ IðiÞðtÞ − ðπrðiÞÞ2:
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