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1Center for Brain and Cognition. Department of Information and

Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
2Instituto de Fı́sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, 39005 Santander, Spain
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A major goal of neuroscience, statistical physics and nonlinear dynamics is to understand how brain function

arises from the collective dynamics of networks of spiking neurons. This challenge has been chiefly addressed

through large-scale numerical simulations. Alternatively, researchers have formulated mean-field theories to

gain insight into macroscopic states of large neuronal networks in terms of the collective firing activity of the

neurons, or the firing rate. However, these theories have not succeeded in establishing an exact correspondence

between the firing rate of the network and the underlying microscopic state of the spiking neurons. This has

largely constrained the range of applicability of such macroscopic descriptions, particularly when trying to de-

scribe neuronal synchronization. Here we provide the derivation of a set of exact macroscopic equations for

a network of spiking neurons. Our results reveal that the spike generation mechanism of individual neurons

introduces an effective coupling between two biophysically relevant macroscopic quantities, the firing rate and

the mean membrane potential, which together govern the evolution of the neuronal network. The resulting equa-

tions exactly describe all possible macroscopic dynamical states of the network, including states of synchronous

spiking activity. Finally we show that the firing rate description is related, via a conformal map, with a low-

dimensional description in terms of the Kuramoto order parameter, called Ott-Antonsen theory. We anticipate

our results will be an important tool in investigating how large networks of spiking neurons self-organize in time

to process and encode information in the brain.

PACS numbers: 87.19.lj 05.45.Xt 87.10.-Ed 05.65.+b

Processing and coding of information in the brain necessar-

ily imply the coordinated activity of large ensembles of neu-

rons. Within sensory regions of the cortex, many cells show

similar responses to a given stimulus, indicating a high de-

gree of neuronal redundancy at the local level. This suggests

that information is encoded in the population response and

hence can be captured via macroscopic measures of the net-

work activity [1]. Moreover, the collective behavior of large

neuronal networks is particularly relevant given that current

brain measurement techniques, such as electroencephalogra-

phy (EEG) or functional magnetic resonance imaging (fMRI),

provide data which is necessarily averaged over the activity of

a large number of neurons.

The macroscopic dynamics of neuronal ensembles has been

extensively studied through computational models of large

networks of recurrently coupled spiking neurons, including

Hodgkin-Huxley-type conductance-based neurons [2] as well

as simplified neuron models, see e.g. [3–5]. In parallel, re-

searchers have sought to develop statistical descriptions of

neuronal networks, mainly in terms of a macroscopic observ-

able that measures the mean rate at which neurons emit spikes,

the firing rate [6–22]. These descriptions, called firing-rate

equations (FREs), have been proven to be extremely useful

in understanding general computational principles underlying

functions such as memory [23, 24], visual processing [25–27],

motor control [28] or decision making [29].

Despite these efforts, to date there is no exact theory link-

ing the dynamics of a large network of spiking neurons with

that of the firing rate. Specifically, current macroscopic de-

scriptions do not offer a precise correspondence between the

microscopic dynamics of the individual neurons, e.g. individ-

ual membrane potentials, and the firing rate dynamics of the

neuronal network.

Indeed, FREs are generally derived through heuristic ar-

guments which rely on the underlying spiking activity of the

neurons being asynchronous and hence uncorrelated. As such,

firing rate descriptions are not sufficient to describe network

states involving some degree of spike synchronization. Syn-

chronization is, however, an ubiquitous phenomenon in the

brain, and its potential role in neuronal computation is the

subject of intense research [14, 30–36]. Hence, the lack of

firing rate descriptions for synchronous states limits the range

of applicability of mean-field theories to investigate neuronal

dynamics.

Here we propose a method to derive the FREs for networks

of heterogeneous, all-to-all coupled quadratic integrate-and-

fire (QIF) neurons, which is exact in the thermodynamic limit,

i.e. for large numbers of neurons. We consider an ansatz for

the distribution of the neurons’ membrane potentials that we

denominate the Lorentzian ansatz (LA). The LA solves the

corresponding continuity equation exactly, making the system

amenable to theoretical analysis. Specifically, for particular

distributions of the heterogeneity, the LA yields a system of

two ordinary differential equations for the firing rate and mean

membrane potential of the neuronal population. These equa-

tions fully describe the macroscopic states of the network —

including synchronized states—, and represent the first exam-

ple of an exact firing-rate description for a network of recur-

rently connected spiking neurons. We finally show how the

LA transforms, via a conformal mapping, into the so-called

Ott-Antonsen ansatz (OA) that is extensively used to inves-

tigate the low-dimensional dynamics of large populations of

phase oscillators in terms of the Kuramoto order parameter

[37].

http://arxiv.org/abs/1506.06581v1
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I. MODEL DESCRIPTION

Hodgkin-Huxley-type neuronal models can be broadly

classified into two classes, according to the nature of their

transition to spiking in response to an injected current [38, 39].

Neuronal models with so-called Class I excitability, generate

action potentials with arbitrarily low frequency, depending on

the strength of the applied current. This occurs when a resting

state disappears through a saddle-node bifurcation. In con-

trast, in neurons with Class II excitability the action potentials

are generated with a finite frequency. This occurs when the

resting state loses stability via a Hopf bifurcation. The QIF

neuron is the canonical model for Class I neurons, and thus

generically describes their dynamics near the spiking thresh-

old [5, 40, 41]. Our aim here is to derive the FREs correspond-

ing to a heterogeneous all-to-all coupled population of N QIF

neurons. The correspondence is exact in the thermodynamic

limit, i.e. when N → ∞ (this convergence has been recently

studied in [42]).

The microscopic state of the population of QIF neurons is

given by the membrane potentials {Vj}j=1,...,N , which obey

the following ordinary differential equations [5]:

V̇j = V 2
j + Ij , if Vj ≥ Vp, then Vj ← Vr . (1)

Here the overdot denotes the time derivative, and Ij represents

an input current. Each time a neuron’s membrane potential Vj

reaches the peak value Vp, the neuron emits a spike and its

voltage is reset to the value Vr. In our analysis we consider

the limit Vp = −Vr → ∞. This resetting rule captures the

spike reset as well as the refractoriness of the neuron. Without

loss of generality we have rescaled the time and the voltage in

(1) to absorb any coefficients which would have appeared in

the first two terms. The form for the input currents is:

Ij = ηj + Js(t) + I(t), (2)

where the external input has a heterogeneous, quenched com-

ponent ηj as well as a common time-varying component I(t),
and the recurrent input is the synaptic weight J times the mean

synaptic activation s(t), which is written:

s(t) =
1

N

N
∑

j=1

∑

k\tk
j
<t

∫ t

−∞

dt′aτ (t− t′)δ(t′ − tkj ). (3)

Here, tkj is the time of the kth spike of jth neuron, δ(t) is the

Dirac delta function, and aτ (t) is the normalized synaptic ac-

tivation caused by a single pre-synaptic spike with time scale

τ , e.g. aτ (t) = e−t/τ/τ .

A. Continuous formulation

In the thermodynamic limit N → ∞, we drop the indices

in Eqs. (1), (2) and denote ρ(V |η, t)dV as the fraction of neu-

rons with membrane potentials between V and V + dV , and

parameter η at time t. Accordingly, parameter η becomes now

a continuous random variable distributed according to a prob-

ability distribution function g(η). The total voltage density at

time t is then given by
∫∞

−∞ ρ(V |η, t) g(η) dη.

The conservation of the number of neurons leads to the fol-

lowing continuity equation:

∂tρ+ ∂V
[

(V 2 + η + Js+ I)ρ
]

= 0, (4)

where we have explicitly included the velocity given by (1)

and (2).

II. RESULTS

The continuity equation (4) without temporal forcing

I(t) = 0 has a trivial stationary solution. For each value

of η, this solution has the form of a Lorentzian function:

ρ0(V |η) ∝ (V 2+ η+ Js)−1. Physically, the Lorentzian den-

sity means that firing neurons with the same η value will be

scattered with a density inversely proportional to their speed

(1), i.e. they will accumulate at slow places and thin out at

fast places on the V axis. In addition, for those η values cor-

responding to quiescent neurons, the density ρ0 collapses at

the rest state in the form of a Dirac delta function.

Next we assume that, independently of the initial condition,

solutions of (4) generically converge to a Lorentzian-shaped

function, so that all relevant dynamics occur inside that lower

dimensional space. This fact is mathematically expressed by

the following Lorentzian Ansatz (LA) for the conditional den-

sity functions:

ρ(V |η, t) = 1

π

x(η, t)

[V − y(η, t)]
2
+ x(η, t)2

, (5)

which is a Lorentzian function with time-dependent half-

width x(η, t) and center at y(η, t). In the following we as-

sume that the LA (5) completely describes the macroscopic

dynamics of the network of QIF neurons and postpone the

mathematical justification of its validity to Sec. II E.

A. Macroscopic observables: Firing rate and mean membrane

potential

The half-width x(η, t) of the LA has a particularly simple

relation with the firing rate of the neuronal population (i.e. the

number of spikes per unit time). Indeed, the firing rate for

each η value at time t, r(η, t), can be computed by noting that

neurons fire at a rate given by the probability flux at infinity:

r(η, t) = ρ(V →∞|η, t)V̇ (V →∞|η, t). The limit V →∞
on the right hand side of this equation can be evaluated within

the LA, and gives the simple identity

x(η, t) = πr(η, t). (6)

The (total) firing rate r(t) is then

r(t) =
1

π

∫ ∞

−∞

x(η, t)g(η)dη. (7)
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FIG. 1. (color online). Analysis of the steady states of FREs (12). (a) Phase diagram: In the wedge-shaped cyan-shaded region there is

bistability between a high and a low activity state. The boundary of the bistability region is the locus of a saddle-node bifurcation which is

exactly obtained in parametric form: (η̄, J)SN = [−π2r2 − 3∆2/(2πr)2, 2π2r +∆2/(2π2r3)]. To the right of the dashed line, defined by

η̄f = −[J/(2π)]2 − (π∆/J)2, there is a stable focus (shaded regions). (b) r-η̄ and (c) v-η̄ bifurcation diagrams for J/∆1/2 = 15. Square

symbols: Results obtained from numerical simulations of QIF neurons (see Appendix A for details). (d) Phase portrait of the system in the

bistable region (η̄/∆ = −5, J/∆1/2 = 15, triangle in panel (a)) with three fixed points: a stable focus (with its basin of attraction shaded), a

stable node, and a saddle point.

Additionally, the quantity y(η, t) is, for each value of η, the

mean of the membrane potential:

y(η, t) = P.V.

∫ ∞

−∞

ρ(V |η, t)V dV. (8)

Here we take the Cauchy principal value, defined as

P.V.
∫∞

−∞ f(x)dx = limR→∞

∫ R

−R f(x)dx, to avoid the oth-

erwise ill-defined integral. The mean membrane potential is

then

v(t) =

∫ ∞

−∞

y(η, t)g(η)dη. (9)

B. Firing-rate equations

Substituting the LA (5) into the continuity equation (4), we

find that, for each value of η, variables x and y must obey two

coupled equations which can be written in complex form as

∂tw(η, t) = i
[

η + Js(t)− w(η, t)2 + I(t)
]

. (10)

where w(η, t) ≡ x(η, t) + iy(η, t). Closing this equation re-

quires expressing the mean synaptic activation s(t) as a func-

tion of w(η, t). The simplest choice is to take the limit of in-

finitely fast synapses, τ → 0 in (3), so that we get an equality

with the firing rate: s(t) = r(t). This allows for the system of

QIF neurons (1)-(3) to be exactly described by Eqs. (10) and

(7); an infinite set of integro-differential equations if g(η) is a

continuous distribution.

Equation (10) is useful for general distributions g(η) (see

Appendix B), but a particularly sharp reduction in dimension-

ality is achieved if η is distributed according to a Lorentzian

distribution of half-width ∆ centered at η̄:

g(η) =
1

π

∆

(η − η̄)2 +∆2
. (11)

Note that this distribution accounts for the quenched variabil-

ity in the external inputs. The fact that it is Lorentzian is

unrelated to the LA for the density of membrane potentials.

Assuming (11) the integrals in (7) and (9) can be evaluated

closing the integral contour in the complex η-plane and using

the residue theorem[43]. Notably, the firing rate and the mean

membrane potential depend only on the value of w at the pole

of g(η) in the lower half η-plane:

πr(t) + iv(t) = w(η̄ − i∆, t).

As a result, we only need to evaluate (10) at η = η̄ − i∆, and

thereby obtain a system of FREs composed of two ordinary

differential equations

ṙ = ∆/π + 2rv, (12a)

v̇ = v2 + η̄ + Jr + I(t)− π2r2. (12b)

This nonlinear system describes the macroscopic dynamics of

the population of QIF neurons in terms of the population firing

rate r and mean membrane potential v.

It is enlightening to compare mean-field model (12) with

the equations of the spiking neurons. Note that Eq. (12b) re-

sembles equations (1) and (2) for the individual QIF neuron,

but without spike resetting. Indeed, the macroscopic firing-

rate variable r enters as a negative feedback term in Eq. (12b),

and impedes the explosive growth of the mean membrane po-

tential v.

This negative feedback, combined with the coupling term

on the right hand side of (12a), describe the effective interac-

tion between the firing rate and mean membrane potential at

the network level. Therefore, the FREs (12) describe the ef-

fect of the single-cell spike generation and reset mechanism at

the network level.

In the following we examine the dynamics described by

Eq. (12), and show that they fully reproduce the macro-

scopic dynamics of the network of QIF neurons, even during

episodes of strong spike synchrony.
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FIG. 2. (color online). The transient dynamics of an ensemble of QIF model neurons (1)-(2) are exactly described by the FREs (12). The

instantaneous firing rate (Panels a,b) and mean membrane potential (Panels c,d) of the QIF neurons and the FREs are depicted in black and

orange, respectively. Panels (e,f) show the raster plots of 300 randomly selected QIF neurons of the N = 104 in the ensemble. Left Panels

(a,c,e,g): At time t = 0, a current I = 3 is applied to all neurons, and set to zero again at t = 30; stimulus I(t) shown in panel (g). Right

panels (b,d,f,h): At time t = 0 a sinusoidal current is applied to all neurons I(t) = I0 sin(ωt), with I0 = 3, ω = π/20; stimulus I(t) shown

in panel (h). Parameters: J = 15, η̄ = −5,∆ = 1.

C. Analysis of the firing-rate equations

To begin with the analysis of Eq. (12), we first note that in

the absence of forcing, I(t) = 0, the only attractors of (12) are

fixed points. Figure 1(a) shows a phase diagram of the system

as a function of the mean external drive η̄ and synaptic weight

J , both normalized by the width of the input distribution [44].

There are three qualitatively distinct regions of the phase dia-

gram: 1 - A single stable node corresponding to a low-activity

state (white), 2 - A single stable focus (spiral) generally cor-

responding to a high-activity state (gray), and 3 - A region of

bistability between low and high firing rate (cyan; see a phase

portrait of this region in Fig. 1(d)). Comparison of a sample

bifurcation diagram of the fixed points from numerical simu-

lation of networks of QIF neurons with that obtained from the

FREs (12) shows an excellent correspondence, see Fig. 1(b,c).

A similar phase diagram can be readily reproduced by tra-

ditional heuristic firing-rate models, with one significant qual-

itative difference: the presence of a stable focus —and hence

damped oscillations. Specifically, in the gray region of the

phase diagram in Fig. 1(a), the system undergoes oscillatory

decay to the stable fixed point. This oscillatory decay occurs

as well for the high-activity state over a large extent of the

region of bistability (cyan), see e.g. Fig. 1(d).

The presence of damped oscillations at the macroscopic

level reflects the transitory synchronous firing of a fraction

of the neurons in the ensemble. This behavior is common in

spiking neuron models with weak noise, and is not captured

by traditional firing rate models (see e.g. [22]).

D. Analysis of the firing-rate equations: Non-stationary inputs

To show that the FREs (12) fully describe the macroscopic

response of the population of QIF neurons to time-varying

stimuli (up to finite-size effects), we consider two types of

stimulus I(t): 1 - a step function and 2 - a sinusoidal forcing.

In both cases we simulate the full system of QIF neurons and

the FREs (12).

Figure 2 shows the system’s response to the two different

inputs. In both cases the system is initially (t < 0) in a

bistable regime and set in the low activity state, with parame-

ters corresponding to those of Fig. 1(d). Left panels of Fig. 2

show the response of the system to a step current, applied at

t = 0. The applied current is such that the system abandons

the bistable region —see Fig. 1(a)— and approaches the high

activity state, which is a stable focus. This is clearly reflected

in the time series r(t), v(t), where the rate equations (12) ex-

actly predict the damped oscillations exhibited by the mean-

field of the QIF neurons. The raster plot in panel (e) shows

the presence of the oscillations, which is due to the transitory

synchronous firing of a large fraction of neurons in the popula-

tion. Finally, at t = 30, the current is removed and the system

converges —again, showing damped oscillations— to the new

location of the (focus) fixed point, which clearly coexists with

the stable node where it was originally placed (t < 0).

The right hand panels of Fig. 2 show the response of the

model to a periodic current, which drives the system from one

side of the bistable region to the other. As a result, we observe

periodic bursting behavior when the system visits the stable

focus region of the phase diagram Fig. 1(a).

To further illustrate the potential of the FREs (12) to pre-

dict and investigate complex dynamics in ensembles of spik-

ing neurons, we present here a simple situation where the sys-

tem of QIF neurons exhibits macroscopic chaos. This is ob-

served by increasing the frequencyω of the sinusoidal driving,

so that the system cannot trivially follow the stable fixed point

at each cycle of the applied current.

Figure 3(a) shows a phase diagram obtained using Eq. (12).

The shaded regions indicate parameter values where the rate
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FIG. 3. (color online). Firing rate model predicts the existence of

macroscopic chaos in a ensemble QIF neurons (1) with an injected

periodic current I(t) = I0 sin(ωt). (a) Phase diagram with the re-

gions where chaos is found, obtained using the rate model (12). In the

black-shaded region, there is only one chaotic attractor, whereas in

the cyan region the chaotic attractor coexists with a periodic attractor.

Dotted lines correspond to the bistability boundary of Fig. 1(a), de-

picted to facilitate comparison. (b) Chaotic trajectory obtained sim-

ulating the FREs (12); the Lyapunov exponent is λ = 0.183 . . .. (c)

Chaotic trajectory obtained from the QIF neurons —parameters cor-

responding to the (yellow) triangle symbol in panel (a). (d) Time

series for the rate model (orange) and QIF model (black). (e) Raster

plot corresponding to 300 randomly selected neurons. (f) Same raster

plot as in (e), ordering neurons according to their intrinsic current ηk .

Parameters: I0 = 3, ω = π; and η̄ = −2.5, J = 10.5 (triangle sym-

bol in (a)).

model has either a single chaotic attractor (in black) or a

chaotic attractor coexisting with a periodic orbit (in cyan). A

trajectory on the chaotic attractor is depicted in Fig. 3(b), and

the clearly irregular time series of the firing rate is shown in

orange in Fig. 3(d). Using the same parameters we performed

numerical simulations of the QIF neurons (1)-(2), finding a

similar attractor and irregular dynamics as in the rate model,

see Figs. 3(c) and (d). To obtain the time series shown in

Figs. 3(d), we ran the QIF neurons numerically and, after a

long transient, at time t = 0, the rate model (12) was initiated

with the values of r and v obtained from the population of

QIF neurons. The time series of the two systems, which are

initially close, rapidly diverge reflecting the chaotic nature of

the system.

Finally, to illustrate this chaotic state at the microscopic

level, Fig. 3(e) shows the raster plot for 300 randomly chosen

neurons, corresponding to the time series in Fig. 3(d). The

irregular firing of neurons in Fig. 3(e) has some underlying

structure that may be visualized ordering the same set of neu-

rons according to their intrinsic currents as ηk < ηk+1, with

k ∈ [1, 300], see Fig. 3(f). Clearly, the maxima of the firing

rate coincide with the synchronous firings of clusters of neu-

rons with similar η values. The size of these clusters is highly

irregular in time, in concomitance with the chaotic behavior.

E. Validity of the Lorentzian ansatz

Thus far, we have shown that the LA (5) solves the conti-

nuity equation (4), and confirmed that these solutions agree

with the numerical simulations of the original system of QIF

neurons (1)-(2). Here we further clarify why the LA holds for

ensembles of QIF neurons.

Transforming the voltage of the QIF neuron into a phase via

Vj = tan(θj/2), the system (1)-(2) becomes an ensemble of

‘theta neurons’ [40]:

θ̇j = (1− cos θj) + (1 + cos θj)[ηj + Js(t) + I(t)]. (13)

In the new phase variable θ ∈ [0, 2π), the LA (5) becomes:

ρ̃(θ|η, t) = 1

2π
Re

[

1 + α(η, t)eiθ

1− α(η, t)eiθ

]

, (14)

where the function α(η, t) is related with w(η, t) as

α(η, t) =
1− w(η, t)

1 + w(η, t)
. (15)

Equations (5) and (14) are two representations of the so-

called Poisson kernel on the half-plane and on the unit disk,

respectively. These representations are related via equation

(15), that establishes a conformal mapping from the half-plane

Re(w) ≥ 0 onto the unit disk |α| ≤ 1. In the next section we

show that variables r and v can be related, via the same con-

formal map, with the Kuramoto order parameter, which is a

macroscopic measure of phase coherence [45, 46].

The key observation supporting the applicability of the LA

is the fact that equation (14) turns out to be the ansatz dis-

covered in 2008 by Ott and Antonsen [37]. According to the

Ott-Antonsen (OA) theory, in the thermodynamic limit the dy-

namics of the class of systems

∂tθ(η, t) = Ω(η, t) + Im
[

H(η, t)e−iθ
]

, (16)

generally converges to the OA manifold (14). In our case, for

equation (13), we have Ω(η, t) = 1+η+Js+I and H(η, t) =
i(−1 + η + Js + I). Thus far, the convergence of (16) to

the OA manifold has been proven only for H(η, t) = H(t).
This includes the well-known Kuramoto and Winfree models

[47, 48], but not system (13). However, there are theoretical

arguments [49] that strongly suggest that the OA manifold is

also attracting for η-dependent H , as numerically confirmed

by a number of recent papers using theta neurons [50–52] and

other phase-oscillator models [53–57].
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FIG. 4. (color online). The conformal map (18) transforms the right

half-plane onto the unit disk. This transformation and its inverse

define a one-to-one mapping between the Kuramoto order parameter

Z and the macroscopic quantities of the population of QIF neurons:

r: firing rate, and v: mean membrane potential. Note that in the limit

Z = eiΨ (full coherence, ρ̃(θ) = δ(θ − Ψ)) we recover v = i(1 −
eiΨ)/(1+eiΨ) = tan(Ψ/2), as the original mapping V = tan(θ/2)
between QIF- and theta-neurons dictates.

F. Firing rate and Kuramoto order parameter

There exists a mapping between the macroscopic variables

r and v and the so-called Kuramoto order parameter Z . Equa-

tion (15) relates, for each value of η, the firing rate and the

mean membrane potential, both contained in w, with the uni-

formity of the phase density, measured by α —note that α = 0
in (14) yields a perfectly uniform density. The Kuramoto or-

der parameter is obtained by integratingα over the whole pop-

ulation as

Z(t) =

∫ ∞

−∞

g(η)

∫ 2π

0

ρ̃(θ|η, t)eiθdθ dη

=

∫ ∞

−∞

g(η)α∗(η, t) dη, (17)

where we assumed that the density ρ̃ is the OA ansatz Eq. (14).

The quantity Z can be seen as the center of mass of a popula-

tion of phases distributed across the unit circle eiθ.

For a Lorentzian distribution of currents, g(η), we may de-

rive the exact formula (see Appendix B)

Z =
1−W ∗

1 +W ∗
. (18)

relating the Kuramoto order parameter Z with the firing-rate

quantity W ≡ πr + iv. Figure 4 illustrates this conformal

mapping of the right half-plane (r ≥ 0) onto the unit disk

(|Z| ≤ 1).

III. CONCLUSIONS

We have presented a method for deriving firing rate equa-

tions for a network of heterogeneous QIF neurons, which is

exact in the thermodynamic limit. To our knowledge, the re-

sulting system of ordinary differential equations (12) repre-

sents the first exact FREs of a network of spiking neurons.

We would like to emphasize that the derivation of the FREs

does not rely on assumptions of weak coupling, separation of

time-scales, averaging, or any other approximation. Rather,

the assumptions underlying the validity of equation (12) are

that i) the QIF neurons be all-to-all connected, ii) heterogene-

ity be quenched, and iii) inputs be distributed according to a

Lorentzian distribution.

The last two assumptions may seem particularly restric-

tive. Concerning (iii), it must be stressed that for arbitrary

distributions of quenched heterogeneity the LA (5) remains

generally valid, and therefore equation (10) can be used to

discern the stability of the network states (see Appendix C).

Furthermore, in Appendix C we also show numerical simu-

lations using uniform- and Gaussian-distributed inputs, that

reveal very similar macroscopic dynamics in response to time

varying inputs. Even relaxing assumption (ii), numerical sim-

ulations with identical QIF neurons driven by external inde-

pendent Gaussian noise sources show qualitative agreement

with the FREs (12) (see Appendix D). In sum, the choice of

a quenched Lorentzian distribution g(η) is thus a mere math-

ematical convenience, whereas the insights gained from the

resulting firing-rate description are valid more generally.

Our derivation represents a sharp departure from, and a ma-

jor advance compared to previous studies in several regards.

Firstly, in the past it has only been possible to calculate the

approximate firing rate of networks of spiking neurons for

stationary states, or for weak deviations of such states [9–

12, 15, 20, 22]. The equations which result from these deriva-

tions are difficult to solve, and typically require special nu-

merical methods. In contrast, FREs (12) can be easily ana-

lyzed and simulated, and exactly reproduce the behavior of the

spiking network far from any fixed point and for arbitrary ex-

ternal currents. Secondly, firing-rate descriptions traditionally

assume that the activity of a population of neurons is equiva-

lent to a set of uncorrelated stochastic processes with a given

rate, see e.g. [13, 14]. However, in simulations of spiking net-

works it is well known that the response of the network to

non-stationary inputs generally involves some degree of spike

synchrony. Recent theoretical work has sought to improve

on classical rate models, which act as a low-pass filter of in-

puts, by fitting them with linear filters extracted from the cor-

responding Fokker-Planck equation for the network [20, 22].

These filters tend to generate damped oscillations when the

external noise level is not too high, reflecting the presence of

spike synchrony [15, 22]. The FREs (12) also capture this

phenomenon, and reveal that the underlying mechanism is an

interplay between firing rate and subthreshold voltage. Fur-

thermore, because these equations are exact, we can explore

the full nonlinear response of the network, such as the gen-

eration of chaotic states of synchronous bursting as shown in

Fig. 3.

Recently it has been shown that, not only Kuramoto-like

models, but a much wider class of phase-models, evolve in

the OA manifold defined by (14). Specifically, networks of

pulse-coupled oscillators [48] and theta-neurons [50–52] al-

low for an exact, low-dimensional description in terms of the

Kuramoto order parameter (17). Although these later works

use a finite-width phase coupling function that differs from the
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synaptic coupling (3), the obtained low-dimensional descrip-

tion in terms of the Kuramoto order parameter is analogous to

ours, but in a different space [58]. Indeed, we showed that the

OA ansatz (14) is related, via the nonlinear transformation of

variables (15), to the LA ansatz (5). Remarkably, this transfor-

mation establishes an exact correspondence between the Ku-

ramoto order parameter and a novel, biophysically maningful

macroscopic observable which describes the firing rate and

mean membrane potential of the neuronal network. Interest-

ingly, the low-dimensional description in terms of firing rates

seems to be a more natural description for networks of spik-

ing neurons, compared to that in terms of the Kuramoto order

parameter. The firing rate equations (12) take a surprisingly

simple form in the LA manifold, what makes them a valuable

tool to explore and and understand the mechanisms governing

the macroscopic dynamics of neuronal networks.

Finally, since the OA ansatz is the asymptotic solution for

systems of the form in equation (16), applying the change of

variables V = tan(θ/2) automatically implies that the LA

should hold for populations governed by:

V̇j = A(ηj , t) +B(ηj , t)Vj + C(ηj , t)V
2
j , (19)

where A, B, and C are related with Ω and H as A =
[Ω + Im(H)]/2, B = −Re(H), C = [Ω − Im(H)]/2. No-

tably, equation (19) defines a wide family of ensembles of QIF

neurons.

Therefore, the LA is actually valid for more general net-

works beyond the one investigated here —ηj in Eq. (19) may

also be a vector containing several forms of disorder. As par-

ticularly relevant cases, in Appendix E we provide the FREs

governing the dynamics of an excitatory network with both,

heterogeneous inputs η and synaptic weights J , as well as pair

of interacting excitatory and inhibitory populations of QIF

neurons. In addition, according to Eq. (19), the LA is also

valid if synapses are modeled as conductances, in which case

the reversal potentials may be distributed as well. Moreover,

the role of gap-junctions or synaptic kinetics may be consid-

ered within the same framework.
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[21] A. Roxin and E. Montbrió, “How effective delays shape oscilla-

tory dynamics in neuronal networks,” Physica D 240, 323–345

(2011).

[22] Evan S Schaffer, Srdjan Ostojic, and LF Abbott, “A complex-

valued firing-rate model that approximates the dynamics of

spiking networks,” PLoS Comput. Biol. 9, e1003301 (2013).

[23] J. J. Hopfield, “Neurons with graded response have collective

computational properties like those of two-state neurons,” Pro-

ceedings of the national academy of sciences 81, 3088–3092

(1984).

[24] G. Mongillo, O. Barak, and M. Tsodyks, “Synaptic theory of

working memory,” Science 319, 1543–1546 (2008).

[25] R Ben-Yishai, R Lev Bar-Or, and H Sompolinsky, “Theory of



8

orientation tuning in visual cortex.” Proc. Nat. Acad. Sci. 92,

3844–3848 (1995).

[26] David Hansel and Haim Sompolinsky, “Modeling feature selec-

tivity in local cortical circuits,” in Methods in Neuronal Mod-

elling: From Ions to Networks, edited by C. Koch and I. Segev

(MIT Press, Cambridge, 1998) pp. 499–567.

[27] Rubén Moreno-Bote, John Rinzel, and Nava Rubin, “Noise-

induced alternations in an attractor network model of perceptual

bistability,” J. Neurophysiol. 98, 1125–1139 (2007).

[28] K. Zhang, “Representation of spatial orientation by the intrin-

sic dynamics of the head-direction cell ensemble: a theory,” J.

Neurosci. 16, 2112–2126 (1996).

[29] K.-F. Wong and X.-J. Wang, “A recurrent network mechanism

of time integration in perceptual decisions,” J. Neurosci. 26,

1314–1328 (2006).

[30] Moshe Abeles, Corticonics: Neural circuits of the cerebral cor-

tex (Cambridge University Press, 1991).

[31] F. Varela, J.-P. Lachaux, E. Rodriguez, and J. Martinerie, “The

brainweb: phase synchronization and large-scale integration,”

Nature reviews neuroscience 2, 229–239 (2001).

[32] Andreas K Engel and Wolf Singer, “Temporal binding and the

neural correlates of sensory awareness,” Trends in cognitive sci-

ences 5, 16–25 (2001).

[33] L. M. Ward, “Synchronous neural oscillations and cognitive

processes,” Trends in cognitive sciences 7, 553–559 (2003).

[34] P. Fries, “A mechanism for cognitive dynamics: neuronal com-

munication through neuronal coherence,” Trends in cognitive

sciences 9, 474–480 (2005).

[35] Gyorgy Buzsaki, Rhythms of the Brain (Oxford University

Press, 2006).

[36] J. Fell and N. Axmacher, “The role of phase synchronization

in memory processes,” Nature Reviews Neuroscience 12, 105–

118 (2011).

[37] E. Ott and T. M. Antonsen, “Low dimensional behavior of large

systems of globally coupled oscillators,” Chaos 18, 037113

(2008).

[38] AL Hodgkin, “The local electric changes associated with repet-

itive action in a non-medullated axon,” The Journal of physiol-

ogy 107, 165–181 (1948).

[39] J. Rinzel and B. Ermentrout, “Analysis of neural excitability

and oscillations,” in Methods in Neuronal Modelling: From

Ions to Networks, edited by C. Koch and I. Segev (MIT Press,

Cambridge, 1998) pp. 251–291.

[40] B. Ermentrout and N. Kopell, “Parabolic bursting in an ex-

citable system coupled with a slow oscillation,” SIAM J. Appl.

Math. 46, 233–253 (1986).

[41] PE Latham, BJ Richmond, PG Nelson, and S Nirenberg, “In-

trinsic dynamics in neuronal networks. i. theory,” Journal of

Neurophysiology 83, 808–827 (2000).

[42] M. A. Buice and C. C. Chow, “Dynamic finite size effects in

spiking neural networks,” PLoS Comput. Biol. 9, e1002872

(2013).

[43] We make an analytic continuation of w(η, t) from real η into

complex-valued η = ηr + iηi. This is possible into the lower

half-plane ηi < 0, since this guarantees the half-width x(η, t)
remains positive zero: ∂tx(η, t) = −ηi > 0 at x = 0. There-

fore we closed the integrals in (7) and (9) with an arc |η|eiϑ with

|η| → ∞ and ϑ ∈ (−π, 0). This contour encloses one pole of

the Lorentzian distribution (11), which written in partial frac-

tions reads: g(η) = (2πi)−1[(η−η̄−i∆)−1−(η−η̄+i∆)−1].
[44] The number of effective parameters can be reduced by nondi-

mensionalizing the system as: η̃ = η̄/∆, J̃ = J/
√
∆, (r̃, ṽ) =
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APPENDIX A: NUMERICAL SIMULATIONS

To numerically simulate the population of QIF neurons (1)

we used the Euler method, with time step dt = 10−4. The

population had N = 104 neurons, and the Lorentzian dis-

tribution (11) was deterministically generated using: ηj =
η̄+∆arctan[π/2(2j−N−1)/(N+1)], where j = 1, . . . , N ,

and ∆ = 1.

The time it takes for the membrane potential of a QIF neu-

ron (with Ij > 0) to reach infinity from a given positive

value of the membrane potential is arctan(
√

Ij/Vp)/
√

Ij .

For
√

Ij ≪ Vp, this expression can be approximated as:

arctan
(√

Ij/Vp

)

√

Ij
≈ 1

Vp
.

In simulations we considered Vp = −Vr = 100, and used

the previous approximation. Thus, the time for the neurons to

reach infinity from Vp is 1/Vp ≈ 10−2. Additionally, the time

taken from minus infinity to Vr is 1/Vr ≈ 10−2. Numerically,

once a neuron’s membrane potential Vj satisfies Vj ≥ Vp the

neuron is reset to −Vj and held there for a refractory time

2/Vj . The neurons produce a spike when Vj reaches infinity,

i.e. a time interval 1/Vj after crossing Vp. The exact time of

the spike can not be evaluated exactly in numerical simula-

tions, since dt is finite. However, simulations agree very well

with the theory provided that 1/Vp ≫ dt.
To evaluate the mean membrane potential v, the popula-

tion average was computed discarding those neurons in the

refractory period. The choice Vp = −Vr is not needed, but

in this way the observed mean membrane potential v agrees

with the theory, consistent with the definition in (8). The mean

synaptic activation (3) was evaluated using the Heaviside step

function aτ (t) = Θ(τ − t)/τ with τ = 10−3. The instan-

taneous firing rates were obtained binning time and counting

spikes within a sliding time window of size δt = 2 × 10−2

(Figs. 2, C2, C3, D1) and δt = 4× 10−2 (Fig. 3).

APPENDIX B: PROOF OF EQUATION (18)

The inverse of Eq. (18) reads:

W =
1− Z∗

1 + Z∗
(B1)

Recalling Eqs. (7) and (9), we write the macroscopic field W
as

W (t) =

∫ ∞

−∞

w(η, t)g(η)dη.

where w ≡ x + iy. Inserting the conformal mapping w =
(1− α)/(1 + α) —the inverse of Eq. (15)– we get

W (t) =

∫ ∞

−∞

[

1− α(η, t)

1 + α(η, t)

]

g(η)dη.
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Using the geometric series formula, and grouping the powers

of α, we may evaluate the integrals obtaining

W (t) = 1− 2Z∗(t) + 2Z∗
2 (t)− 2Z∗

3 (t) + · · · , (B2)

where the Zm are the generalized order parameters [63]:

Zm(t) =

∫ ∞

−∞

g(η)

∫ 2π

0

ρ̃(θ|η, t)eimθdθ dη

=

∫ ∞

−∞

g(η)[α∗(η, t)]m dη.

Since, for Lorentzian g(η), Zm(t) = [α∗(η = η̄− i∆, t)]m =
Z(t)m, we can revert the power series in (B2) and obtain the

result in (B1).

APPENDIX C: RESULTS FOR ARBITRARY

DISTRIBUTIONS OF CURRENTS

In this Appendix we compare the results in the main text,

obtained using a Lorentzian distribution of currents g(η), with

other distributions. The results are qualitatively similar as ev-

idenced by Figs. C1, C2 and C3 (cf. Figs. 1, 2, and 3 in the

main text).

Note that if a particular distribution g(η) has 2n poles (all of

them off the real axis) one can readily obtain the FREs con-

sisting of n complex-valued ordinary differential equations.

Even if g(η) does not fulfill this condition, as in the case of

Gaussian or uniform distributions, the Lorentzian Ansatz still

holds (see below).

Moreover, it is possible to efficiently simulate the dynamics

of a population by integrating Eq. (10) for a sample of η val-

ues that approximate a particular g(η) [64]. However, if g(η)
is a discrete distribution (or has a discrete part), —as in the

case of the Dirac delta function g(η) = δ(η − η̄)—, the so-

called Watanabe-Strogatz theory applies [49, 65, 66], and the

‘Lorentzian manifold’ is no longer attracting since the dynam-

ics is extremely degenerate, akin to a Hamiltonian system.

Steady states

Considering I(t) = 0 in Eqs. (1) and (2), it is possible to

find the solutions with steady firing rate r(t) = r0 for arbitrary

distributions of currents.

As we pointed out in the main text, the stationary solution

of the continuity equation (4) for those neurons that are intrin-

sically active (η > −Jr0) must be is inversely proportional to

their speed, that is

ρ0(V |η) =
c(η)

V 2 + η + Jr0
,

where the normalizing constant is c(η) =
√
η + Jr0/π. The

firing rate for each value of η is then

r0(η) = ρ0(V →∞|η)V̇ (V →∞|η, t) = c(η),

and integration over all the firing neurons, gives the self-

consistent condition for r0:

r0 =

∫ ∞

−Jr0

c(η)g(η) dη (C1)

which is valid for any distribution g(η) (an analogous expres-

sion was obtained in Eq. (45) of [42]). For Lorentzian g(η),
the integral in (C1) can be evaluated, and solving the result-

ing equation for r0 one obtains the steady states in agreement

with the result of setting ṙ = v̇ = 0 in the FREs (12).

Linear stability analysis of steady states

Assuming that the LA captures the actual dynamics of the

population of QIF neurons, one can also investigate the stabil-

ity of steady states for arbitrary distributions g(η). Indeed, the

evolution of infinitesimal perturbations from a steady state

w0(η) ≡ x0(η) + iy0(η) =

{√
η + Jr0 if η > −Jr0
−i
√
−η − Jr0 if η ≤ −Jr0

is determined by the linearization of Eq. (10):

∂tδw(η, t) = i(Jδr − 2w0δw) (C2)

where δr(t) = (2π)−1
∫∞

−∞
[δw(η, t) + δw∗(η, t)]g(η)dη.

To find the discrete spectrum of eigenvalues [67], we use

the ansatz δw(η, t) = b(η)eλt in (C2) and obtain

[λ+2w0(η)i]b(η)e
λt =

iJ

2π

∫ ∞

−∞

[b(η)eλt+b∗(η)eλ
∗t]g(η)dη.

Solving the equation for beλt, we find

b(η)eλt =
1

2w0(η) − iλ

J

2π

∫ ∞

−∞

[b(η)eλt+b∗(η)eλ
∗t]g(η)dη.

After summing the complex conjugate at each side of the

equation, we multiply by g(η) and integrate over η. This

allows one to cancel out the integrals
∫

(beλt + b∗eλ
∗t)gdη.

Then, imposing self-consistency, we find

1 =
J

2π

∫ ∞

−∞

[

1

2w0(η)− iλ
+ c.c.

]

g(η)dη. (C3)

Local bifurcations are associated with marginal stability of the

fixed points: Re(λ) → 0. In correspondence with the results

obtained for a Lorentzian distribution in the main text, we ex-

pect bifurcations of saddle-node type associated with λ = 0.

Therefore, from Eq. (C3) we find that the loci of the saddle-

node bifurcations are located at

JSN =
2π

∫∞

−∞
x0(η)

|w0(η)|2
g(η)dη

. (C4)

Since x0 =
√
η + Jr0 for η > −Jr0, and zero otherwise,

we can restrict the integration over η to the range (−Jr0,∞).
Now multiplying Eq. (C4) by Eq. (C1) we get, after defining
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FIG. C1. (color online). Phase diagrams for (a) uniform and (b)

Gaussian distributions of currents g(η). The cyan-shaded region

represents the bistable region, with the solid lines corresponding to

saddle-node bifurcations analytically obtained from Eqs. (C5) and

(C6). Square symbols are estimations of the bifurcations loci ob-

tained from by direct numerical simulations of N = 104 QIF neu-

rons. Triangle symbols indicate parameter values used in numerical

simulations of Figs. C2 and C3.

ξ = JSNr0, two equations that permit to find the locus of the

saddle-node bifurcations systematically for arbitrary distribu-

tions of currents:

JSN =
2π

∫∞

0
η−1/2g(η − ξ)dη

, (C5)

with ξ obtained solving

ξ =
2
∫∞

0
η1/2g(η − ξ)dη

∫∞

0
η−1/2g(η − ξ)dη

. (C6)

Bistability region for uniform and Gaussian distributions

Equations (C5) and (C6) are particularly easy to solve for

uniform distributions of currents:

g(η) =

{

1
2γ for |η − η̄| < γ

0 otherwise

After defining the rescaled parameters η̃ = η̄/γ and J̃ =
J/
√
γ, we find two branches of saddle-node bifurcations em-

anating from the cusp point at η̃ = −1/3:

J̃
(1)
SN =

2π√
3η̃ + 3

J̃
(2)
SN =

2π
√

η̃ + 1 + 2
√

1
3 + η̃2 −

√

η̃ − 1 + 2
√

1
3 + η̃2

These functions are plotted in Fig. S1(a). Numerical simula-

tions using the network of QIF neurons confirm the correct-

ness of these boundaries (see the square symbols in Fig. C1).

For Gaussian distributions,

g(η) =
1√
2πσ

e−(η−η̄)2/(2σ2),

the solutions of (C5) and (C6) can be numerically found. The

results are shown in Fig. C1(b). Again, there is a perfect

agreement between Eqs. (C5) and (C6) —derived assuming

the Lorentzian Ansatz— and the numerical estimations ob-

tained simulating the network of QIF neurons.

Excitatory networks with external periodic currents

Firing rate equations (12) predict the existence of a stable

focus in the shaded region of Fig. 1. Trajectories attracted to

this fixed point display oscillations in the firing rate and mean

membrane potential due to the transient synchronous firing of

the QIF neurons.

When an external periodic current is injected to all neurons

in the network, the spiral dynamics around the fixed point is

responsible for the bursting behavior observed in Fig. 2, as

well as for the emergence of the macroscopic chaos shown in

Fig. 3. Here we investigate whether similar phenomena oc-

cur when an external periodic current of the same frequency

is injected in an excitatory network with either uniform or

Gaussian-distributed currents.

We introduced a sinusoidal forcing I(t) = I0 sin(ωt) ob-

serving a behavior qualitatively identical to the one reported

in the main text with Lorentzian g(η). Under a low-frequency

forcing the system displays periodic bursting, see Fig. C2,

provided the parameters are set inside the bistable region (see

the black triangles in Fig. C1). Furthermore, note that the

range of firing rates and mean membrane potentials in Fig-

ure C2 are similar to those of Fig. 2 —for Lorentzian distribu-

tions of currents.

As for the simulations shown in Figure (3), we next increase

the frequency of the injected current up to ω = π to investi-

gate the emergence of macroscopic chaos in a network with

Gaussian-distributed currents. Fig. C3 shows the emergence

of an apparently chaotic state. The observed dynamics is sim-

ilar to that of Fig. 3, which suggests it is chaotic. This type

of chaos persists in the thermodynamic limit N → ∞. On

top of this, highly-dimensional but weakly chaotic dynamics

is probably also present due to ‘residual’ finite-size effects.

APPENDIX D: IDENTICAL QIF NEURONS DRIVEN BY

INDEPENDENT NOISE TERMS

We compare now the results obtained above and in the main

text for quenched heterogeneity g(η) with the results for iden-

tical neurons g(η) = δ(η − η̄) driven by noise. Specifically,

the inputs currents are now taken as

Ij = η̄ + Jr(t) + ξj(t), (D1)

where ξj are independent white noise terms with expected val-

ues 〈ξj(t)〉 = 0, and 〈ξj(t)ξk(t′)〉 = 2D δjk δ(t− t′).
In the thermodynamic limit, the density ρ(V, t) obeys the

Fokker-Planck equation:

∂tρ+ ∂V
[

(V 2 + η̄ + Jr)ρ
]

= D∂2
V ρ. (D2)

The Lorentzian ansatz is not a solution of this equation,

but we demonstrate here that the phenomena observed with

quenched heterogeneity arise also with independent noise

sources. This qualitative similarity at the macroscopic level

between quenched Lorentzian heterogeneity and Gaussian

noise has been noted in previous work [60].
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FIG. C2. Numerical simulations of the excitatory network of QIF neurons, Eqs. (1), and (2). with (a-d) uniform and (e-h) Gaussian distributions

of currents. As in Fig. 2, at time t = 0, an external sinusoidal current I(t) = I0 sin(ωt) —shown in panels (d,h)— is applied to all neurons.

Panels (a,e) show the time series of the firing rate, and (b,f) the mean membrane potential of all cells. In panels (c,g) we depicted the raster

plots of 300 randomly chosen neurons. Parameters correspond to the black triangle symbols in Fig. C1: (a-d) η̄ = −1, J = 8, γ = 1, I0 = 1;

(e-h) η̄ = −2, J = 10, σ = 1, I0 = 1.5.
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FIG. C3. Chaotic state in a network of N = 104 QIF neurons with

Gaussian-distributed currents. Network parameters correspond to the

yellow-triangle symbol in the phase diagram of Fig. S1(b). Like in

Fig. 3, neurons receive a common periodic current I(t) = I0 sin(ωt)
of frequency ω = π. Parameters: η̄ = −1, J = 8, σ = 1, I0 = 1.5.

A subtle point in Eq. (D2) is that its nondimensionalization

entails a different (compared to ∆) rescaling with D: Ṽ =
V/D1/3, η̃ = η/D2/3, J̃ = J/D1/3, t̃ = tD1/3 (implying

r̃ = r/D1/3).

Numerical simulations reveal the existence of a region of

bistability, see Fig. D1(a), analogous to the one observed for

quenched heterogeneity, cf. Figs. 1(a) and C1. Obviously, true

bistability only holds in the thermodynamic limit, while what

we observe are rather exceedingly long residence times close

to each fixed point (see figure caption for details).

Additionally, in order to investigate and compare the dy-

namical behavior of the identical noise-driven neurons with

that of the FREs (12), an external current of intensity I0 = 3
is injected to all neurons at time t = 0, like in Fig. 2. In

Fig. D1(b,c) the time series of the firing rate and the mean

membrane potential clearly display damped oscillations after

the injection of the current, confirming the existence of a sta-

ble focus, exactly as observed in the FREs (12). The existence

of a stable focus reflects the presence of transient spike syn-

chrony in the network, as seen by the raster plot in Fig. D1(d).

Remarkably, the raster plot and the time series closely resem-

ble those of Fig. 2. The resemblance is not just qualitative,

but rather there is a near quantitative fit between the network

of QIF neurons driven by Gaussian noise and the FREs (12),

which were derived assuming quenched Lorentzian hetero-

geneity (orange curves).

APPENDIX E: MODEL GENERALIZATIONS

To illustrate the potential of the LA for investigating more

sophisticated networks, here we provide the low-dimensional

FREs corresponding to an excitatory network of QIF neurons

with independently distributed currents and synaptic weights,

and to two interacting populations of excitatory and inhibitory

QIF neurons with distributed currents.

Excitatory population with heterogeneous currents and synaptic

weights

As a first example, let us assume that both the currents η
and the synaptic weights J are distributed —this type of het-

erogeneity was also considered in [42]. The input currents

read then [68]

Ij = ηj + Jjr(t) + I(t).
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FIG. D1. (color online). Numerically obtained phase diagram (a) and time series (b-d) for a network of identical QIF neurons driven by

independent white noise terms. The square symbols in panel (a) represent the boundaries that enclose the region of bistability between a

high and a low activity state. The boundaries have been obtained using a network of 104 neurons, and by numerical continuation of a low

activity solution (filled squares) and a high activity solution (empty squares). Specifically, using a noise intensity D = 1 and a particular

value of J , the system was initialized either at η̄ = −5 or at η̄ = 0 and, after t = 10 time units, parameter η̄ was decreased/increased an

amount 0.025/0.1, respectively. This continuation was made until the relative change of two successive values of the averaged firing rate

(time-averaged over the last time unit for each parameter value) was larger than 50%. Other parameters for the numerical simulations are

the same as in all other figures, and are described in the Material and Methods section. The triangle symbol indicates the parameter value,

(η̄/D2/3, J/D1/3) = (−5, 15), corresponding to the numerical simulations shown in black in the right panels —for the simulations we used

D = 1. To facilitate the comparison with the FREs (12), the orange curves show the time series of the FREs, using the same parameters

(η̄, J) = (−5, 15), but with ∆ = 1

For simplicity, let us additionally assume that η and J are

distributed independently, with a joint distribution p(η, J) =
g(η)h(J). In the simplest situation of Lorentzian g(η) and

h(J)

g(η) =
∆/π

(η − η̄)2 +∆2
; h(J) =

Γ/π

(J − J̄)2 + Γ2
.

the problem is extremely simplified using the Lorentzian

ansatz, which now trivially reads:

ρ(V |η, J, t) = 1

π

x(η, J, t)

[V − y(η, J, t)]2 + x(η, J, t)2
.

The firing rate and mean membrane potential are determined

only by the value of w ≡ x+ iy at the poles in the lower half

planes:

r(t) + iv(t) =

∫∫

w(η, J, t)g(η)h(J)dηdJ

= w(η̄ − i∆, J̄ − iΓ, t).

Finally, evaluating Eq. (10) in the main text at the poles (η =
η̄ − i∆, J = J̄ − iΓ) we get the exact FREs:

ṙ = ∆/π + Γr/π + 2rv, (E1a)

v̇ = v2 + η̄ + J̄r + I(t)− π2r2. (E1b)

These equations contain simply an extra term ‘+Γr/π’ com-

pared to equations (12). Figure E1 shows the bistability

boundaries obtained from (E1) for different ratios of Γ and

∆, and I(t) = 0. Note that the region of bistability shifts

to lower values of η̄/∆ and to higher values of J̄/
√
∆ as the

level of heterogeneity in the synaptic coupling Γ is increased.
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FIG. E1. (color online). Phase diagram for an excitatory population

with heterogeneous currents and synaptic weights obtained using the

FREs (E1).

Firing-rate equations for a pair of Excitatory-Inhibitory

populations

The microscopic state of each population of QIF neurons is

characterized by the membrane potentials {V (e,i)
j }j=1,...,N ,

which obey the following ordinary differential equations:

V̇
(e,i)
j = (V

(e,i)
j )2 + I

(e,i)
j , if V

(e,i)
j ≥ Vp, then V

(e,i)
j ← Vr.

Here, V
(e,i)
j represents the membrane potential of neuron j in

either the excitatory (e), or in the inhibitory population (i).
The external currents for the excitatory and inhibitory popula-
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tions are, respectively:

I
(e)
j = η

(e)
j + Jees

(e)(t)− Jies
(i)(t) + I(e)(t),

I
(i)
j = η

(i)
j + Jeis

(e)(t)− Jiis
(i)(t) + I(i)(t),

where the synaptic weights are Jee, Jii, Jie, Jei. Finally, the

mean synaptic activation for each population is

s(e,i)(t) =
1

N

N
∑

j=1

∑

k\(tk
j
)(e,i)<t

∫ t

−∞

dt′aτ (t−t′)δ(t′−(tkj )(e,i)).

Here, (tkj )
(e,i) is the time of the kth spike of jth neuron in

either the excitatory (e), or in the inhibitory population (i).
Additionally, δ(t) is the Dirac delta function, and aτ (t) is the

normalized synaptic activation caused by a single pre-synaptic

spike with time scale τ , e.g. aτ (t) = e−t/τ/τ .

It is straightforward to apply the LA and the method de-

scribed in the main text, to obtain the firing rate equations

corresponding to the two-population model. Considering the

limit of infinitely fast synapses, τ → 0, we get s(e,i)(t) =
r(e,i)(t). Finally, assuming the Lorentzian distributions of

currents for both populations:

ge,i(η) =
1

π

∆e,i

(η − η̄e,i)2 +∆2
e,i

,

we obtain the firing-rate equations:

ṙ(e) = ∆e/π + 2r(e)v(e),

v̇(e) = (v(e))2 + η̄e + Jeer
(e) − Jier

(i) + I(e)(t)− (πr(e))2,

ṙ(i) = ∆i/π + 2r(i)v(i),

v̇(i) = (v(i))2 + η̄i + Jeir
(e) − Jiir

(i) + I(i)(t)− (πr(i))2.


