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Abstract: We present and apply a medium-dependent quantum optics
formalism for describing the exciton dynamics of two spatially-separated
quantum dots on-chip, in the regime of coupled-cavity quantum electrody-
namics. With each dot placed in a spatially-separated cavity and coupled
through a periodic waveguide channel, the quantum dot excitons behave
as a composite entangled pair, exhibiting pronounced entanglement over
distances of 300 μm and more. The computed light spectra above the two
cavities show clear signatures of pronounced photon coupling including
increased vacuum Rabi splitting and cavity-induced transmission and ab-
sorption. The macroscopic entanglement is confirmed by investigating the
Bell inequality, which is shown to be violated for hundreds of picoseconds.
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1. Introduction

The formation of entanglement between quantum bits (qubits) can produce entangled states,
namely non-factorizable composite wave-functions whose separated parts may be correlated
over large distances, resulting in what Einstein termed: “spooky action at a distance.” Besides
fundamental interest, entangled states may be used to realize quantum information protocols
such as the transmission of secret messages via quantum key distribution [1], teleportation of
quantum information [2], and dense coding [3]. With regard to solid-state qubits, individual
semiconductor quantum dots (QDs) have generated much interest as they behave like “artificial
atoms” due to their characteristic discrete energy spectra and long excitonic lifetimes. Quantum
dots also have a number of other attractive features for generating entangled states: i) they can
be fixed in position (unlike atoms), ii) discrete excitons have large optical dipole moments, iii)
exciton frequencies are compatible with telecom components, and iv) QDs can be integrated
with on-chip cavity structures such as those facilitated by planar photonic crystals (PCs) [4–6]
[see Fig. (1)].

Significant progress has been made on nanophotonic systems based on single QD-cavity
systems, such as the enhancement and suppression of single photon spontaneous emission [7],
strong coupling cavity-QED [6, 8–10], and single exciton control of nanocavity reflectiv-
ity [11, 12]. Cavity-QED coupling between two QDs in a single PC cavity [13] has also been
shown to lead to sizable entanglements for QDs that are coupled nearby to the same cavity
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Fig. 1. Schematic diagram of our system, which is composed of two cavities and one waveg-
uide, with one QD in each cavity. The distance between the two cavities is L, and as an
example, we show that QD a is initially excited and QD b is in the ground state.

mode; while an interesting scheme, the experimental verification of measuring and using parts
of the same composite pair for coupled QDs and proving non-local behavior such as the vio-
lation of Bell’s inequalities is very difficult. Nevertheless, the proof-of-principle entanglement
between spatially separated quantum states in a pair of vertically aligned, self-assembled QDs
has been indirectly demonstrated by Bayer et al. through investigating the QD emission spec-
tra [14]; the maximum entanglement of the coupled excitons was found to be around 0.8 at an
inter-dot separation of only 8.5 nm, which quickly diminishes for larger and smaller inter-dot
distances [15]. A major disadvantage of nearby QDs is that it is not possible to individually
tune/excite the QD, nor probe the quasi-degenerate excitons separately.

In this work, we propose, and develop the theory for, an integrated solid-state device that en-
ables pronounced entanglement between macroscopically separated QDs on-chip. We demon-
strate that, with suitably excited QDs in a planar PC medium, long lived entangled states can be
maintained, showing the violation of the Bell inequality over hundreds of picoseconds. More
fundamentally, this coupled QD system gives rise to rich coupling effects including modified
strong coupling regimes of cavity-QED. The structure of interest is depicted above in Fig. 1,
which includes two single-mode nanocavities and one coupling waveguide. The nanocavities
can be formed by localized defects created within the PC, for example by removing and rear-
ranging two of the air holes [16]. The distance between the two nanocavities is L and no direct
coupling is assumed. The PC waveguide and cavity resonances are considered to be deep inside
the PC photonic bandgap and the propagating waveguide mode is below the light line (lossless).

2. Theory

To establish a quantitative theory, we closely follow the approach introduced by Wubs et
al. [17]. Specifically, we adopt a canonical Hamiltonian that quantizes the macroscopic elec-
tromagnetic fields, and use the dipole approximation for the QD-medium coupling. We label
the two QDs a and b, which are embedded in cavities 1 and 2, respectively. Subsequently, we
obtain the multipolar-coupling Hamiltonian:

Ĥ = ∑
m=a,b

h̄Ωmσ̂+
m σ̂−

m +∑
λ

h̄ωλ â†
λ âλ − ih̄ ∑

m=a,b;λ
(σ̂−

m + σ̂+
m )(gmλ âλ −g∗mλ â†

λ ), (1)
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where âλ represents the field mode operators and σ̂+/−
m are the Pauli operators of the QD ex-

citons; we assume one exciton in the spectral region of interest per QD. In addition, Ωm is the
resonant frequency of each QD, and ωλ is the eigenfrequency corresponding to the transverse
modes of the system (fλ (r)), excluding the dots; gmλ is the field-dot coupling coefficient, de-

fined through gmλ =
√

ωλ
2h̄ε0

μμμm · fλ (rm), where μμμm = nnnmμm is the optical dipole moment of the

QD electron-hole pair.
The Heisenberg equations of motion for the operators can be derived from ˙̂Oi =

−ih̄−1[Ôi, Ĥ], yielding dynamical equations for âλ , â†
λ , σ̂+/−

m , and σ̂mz = σ̂+
m σ̂−

m − σ̂−
m σ̂+

m .
In an electron picture, σ̂+ = ĉ†

e ĉg creates an electron in the excited state (conduction band)
and σ̂− = ĉeĉ†

g destroys an electron in the excited state [or creates an electron in the ground
state (valence band)]; similarly, σ̂+σ̂− = ĉ†

e ĉe, where ρaa/bb = 〈σ̂+
aa/bbσ̂−

aa/bb〉 is the excited
state population in each QD. After carrying out the Laplace transform of operators [17], where
Ôi(ω) =

∫ ∞
0 Ô(t)eiωtdt, then

âλ (ω) =
iâλ (t = 0)

ω −ωλ
+

h̄−1 ∑m g∗mλ [σ̂−
m (ω)+ σ̂+

m (ω)]
ω −ωλ

, (2)

â†
λ (ω) =

iâ†
λ (t = 0)
ω +ωλ

− h̄−1 ∑m gmλ [σ̂−
m (ω)+ σ̂+

m (ω)]
ω +ωλ

, (3)

σ̂−
m (ω) =

iσ̂−
m (t = 0)

ω −Ωm
+

h̄−1μmÊμ(rm,ω)∗ σ̂mz(ω)
ω −Ωm

, (4)

σ̂+
m (ω) =

iσ̂+
m (t = 0)

ω +Ωm
− h̄−1μmÊμ(rm,ω)∗ σ̂mz(ω)

ω +Ωm
, (5)

σ̂mz(ω) =
iσ̂mz(t = 0)

ω
+

2h̄−1μmÊμ(rm)∗ [σ̂−
m (ω)− σ̂+

m (ω)]
ω

. (6)

Here, Êμ(rm,ω) = Ê(rm,ω) ·nm, and the symbol ‘∗’ represents a convolution operator. Using

the formal definition of electric-field operator, Ê(r, t) = i∑λ

√
h̄ωλ
2ε0

âλ (t)fλ (r)+H.c., we obtain
the “exact” electric-field operator in frequency space:

Ê(r,ω) = Ê0(r,ω)+∑
m

1
ε0

K(r,rm;ω) · d̂m(ω)

−∑
m

K(r,rm;ω) ·nmαm(ω)[Êμ(rm,ω)∗ σ̂mz(ω)], (7)

where αm(ω) = 2Ωmμ2
m/[h̄ε0(Ω2

m − ω2)] is a bare polarizability term, and K(r,r′;ω) =
∑λ ω2

λ /(ω2
λ −ω2)fλ (r)[fλ (r′)]∗ is a medium Green function [17, 18] in the absence of QDs.

To derive the above electric-field operator, we have assumed that the dipole moments are real,
and have exploited the fact that, for real ε media, both fλ and f∗λ are used per λ in the mode
summation. The K Green function is then obtained only through the transverse modes of the
system and is related to the more familiar G = GT +GL (including both transverse and longi-
tudinal modes), through [17] K = G + 1δ (r− r′)/ε(r), with 1 the unit tensor, and ε(r) is the
spatially-dependent dielectric constant. These Green functions are classical and can be defined
in the usual way from Maxwell’s equations, solved with a polarization dipole. Under the weak
excitation approximation, where we consider at most one excitation in the system, and assuming
that the ensuing dynamics will be driven by the initially excited QD(s), then the electric-field
operator can be expressed explicitly as

Ê(r,ω) = ∑
m=a,b

ε−1
0 K(2)(r,rm;ω) · d̂m(ω), (8)
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where QD a/b is located at ra/b, and we have introduced the quantum dipole source d̂m(ω) =

iμμμm

[
σ̂−

m (t=0)
ω−Ωm

+ σ̂+
m (t=0)
ω+Ωm

]
, and a QD-modified Green function for the medium:

K(2)(r,ra;ω) =
K̃(r,ra;ω)+ K̃(r,rb;ω) ·nb αb(ω)nb · K̃(rb,ra;ω)

1−nb · K̃(ra,rb;ω) ·nb αb(ω)na · K̃(rb,ra;ω) ·naαa(ω)
, (9)

where K̃(r,rm;ω) = K(r,rm;ω)/[1−nm ·K(rm,rm;ω) ·nmαm(ω)]. We stress that K(2) exactly
includes the full dynamical coupling effects between the two QDs, and fully covers both weak
and strong coupling regimes in a self-consistent way. Similar expressions have been derived
classically for the medium-dependent QD polarizabilities [19], and quantum mechanically for
coupled atoms (using a harmonic oscillator model) [17].

Next, we require the classical Green functions for the coupled-cavity planar PC medium.
These have been derived before [18], so here we just introduce the main points, and extend the
theory for the problem at hand. The analytic Green function for the waveguide-plus-two-cavity
medium (Kwcc) can be derived by assuming weakly coupled cavity-to-waveguide channels and
employing a matrix inversion technique [11, 18, 20]. We can conveniently choose different
modal components through K(r,r′;ω) = ∑αβ 〈r|Kαβ |r′〉, where Kαβ is the projection of K
on |Eα〉 from the left and 〈Eβ | from the right, and we use the notation fα(r) = 〈r |Eα〉 and
f∗α(r) = 〈Eα |r〉. Assuming a positive group velocity for the waveguide mode (vg > 0), example
projections include [18]

K11
wcc =

ω2 |E1〉〈E1|
ω2

1 −ω2 − iωΓ0
1 − iωΓw

1 [1+ ei2kwLr2(ω)]
, (10)

K12
wcc =

ω2r1(ω)eikwL |E1〉〈E2|
ω2

2 −ω2 − iωΓ0
2 − iωΓw

2 [1+ ei2kwLr1(ω)]
, (11)

where r1(ω) = iωΓw
1 /[ω2

1 −ω2 − iω(Γ0
1 +Γw

1 )] is the waveguide mode reflection coefficient
from cavity 1, Γw

c is the cavity-to-waveguide coupling rate whose explicit form depends on the
overlap between the cavity mode and the waveguide mode [11], and Γ0 � Γw

c is the bare cavity
coupling rate caused by coupling to radiation modes above the light line. We note that these
functions are not simple Lorenzian lineshapes, and the cavity decay process is a complicated
function of frequency and waveguide length L.

The quantum dynamics of the spatially separated qubits can be obtained from the inverse
Laplace transform of the QD operators, which in the weak excitation regime has the form

σ̂−
a/b(ω) =

iσ̂−
a/b(t = 0)

ω −ωa/b
+

h̄−1μμμa/b · Ê(ra/b,ω)

ω −ωa/b
. (12)

Exploiting the definition of the time-dependent wave function, |ψ(t)〉 = ∑m=a,b Cu
m(t) |ae

m,0〉+
∑m=a,b Cg

m,λ (t) |ag
m,λ 〉, we define the amplitude coefficient of the QD upper excited state as

Cu
a/b(t) =

∫ ∞
−∞〈0|σ̂−

a/b(ω)|ψ(t = 0)〉e−iωtdω , with |0〉 the lower level eigenstate of the QDs.

The upper state population of each QD is then obtained from ρmm = |Cu
m|2.

Finally, we also derive exact analytical expressions for the light spectrum and the entan-
glement of formation [21]. From the first-order quantum correlation function, the spectrum is
defined as S(r,ω) = 〈(Ê(ω))†Ê(ω)〉, yielding

S(r,ω) = ∑
m=a,b

|K(2)(r,rm;ω) ·μμμm|2
ε2

0

〈σ̂+
m (t = 0)σ̂−

m (t = 0)〉
(ω −Ωm)2 , (13)
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which can be spatially projected to separately obtain the emitted spectrum detected above
cavity 1 and (or) cavity 2. To compute the quantum correlations between the coupled QD
qubits, the entanglement of formation is obtained from the concurrence [21], Con(t), through

E(t) =−x log2(x)−(1−x) log2(1−x)[x = (1+
√

1−Con2(t))/2], where Con = |〈ψ|ψ̃〉| (tilde
represents a spin flip) [21]. For this we need the reduced density matrix of our two-qubit sys-
tem ρ , which is obtained by tracing out the electric field modes, where the elements of the
wave function |ψ〉 are obtained from the QD operators, i.e., Eqs. (12) and (8). For our system
of interest, where the initial excitation resides in the QDs, the concurrence becomes simply
Con = 2|Cu

a ||Cu
b |.

3. Quantum dynamics, entanglement of formation, and cavity-emitted spectra

For calculations, we use bare quality factors of cavity Q0
1/2(= ω1/2/Γ0

1/2) = 20000, and a

cavity-waveguide quality factor of Qw
1/2(= ω1/2/Γw

1/2) = 500 for both cavities. Increasing Q0
1/2

actually has little influence on our results because the decay of PC system is dominated by
the coupling between the cavities and the waveguide; and for the regime of coupled-cavity
QED [18], the most important parameter is the ratio Γw/Γ0 or Q0/Qw. In addition, we choose
ω1/2 = Ωa/b, h̄ω1 = h̄Ωa = 0.95eV, effective cavity mode volume Vc1/c2 = 0.07 μm3, and a
background dielectric constant of the PC slab, εb = 12; for the QD dipole moments we use
parameters similar to those in experiments [22, 23], and first use an effective dipole moment
μa = 30D(Debye) and μb = 60D (this asymmetry helps to ensure maximum entanglement for
QD a initially excited). In practise, the effective dipole moments can be achieved from differ-
ent orientations, or, equivalently, by different spatial positioning with respect to the cavity field
antinode positions; though we could also easily change other parameters within the formalism.
We note that, according to the recent fabrication improvements [6], the error of precise spatial
positioning of the QD to a cavity field antinode can be less than 10% (so gexp

c > 0.9gmax
c ), and

to within this accuracy, we have tested that our proposed scheme is robust. Necessarily taking
causality into consideration, the chromatic dispersion of the waveguide is introduced linearly
and the group velocity vg = dω/dk = c/10; also, unless stated otherwise, the cavity-cavity
separation L = 3−300 μm, which yield waveguide retardation times of 0.1 ps to 10 ps.

Experimentally, the QDs are usually optically excited far off resonance, and the initial exci-
tons are created incoherently. Thus, a suitable initial condition for the two QD system is |ψ(t =
0)〉QD = cos(θ)|10〉+ eiφ sin(θ)|01〉, corresponding to an exciton shared between the two dots
with the field in vacuum. With only one QD in the system, we assume |ψ(t = 0)〉QD = |1〉.

For a reference calculation, we first perform simulations with only 1 QD in the system, with
QD b removed, and set ω1 = ω2 = Ωa. In Figs. 2(a,c,e), we show the excited QD dynamics
for various cavity separation distances of L = 3,30, and 300 μm, respectively. In Fig. 2(a), we
clearly see strong coupling phenomena and vacuum Rabi oscillations, which is enhanced over
the one cavity result because cavity 2 acts to increase the local density of photon states at the
position of QD a (in cavity 1) [18]. Interestingly, for increasing L, the Rabi oscillation period
increases (smaller effective cavity coupling), and we eventually recognize weak retardation
oscillations in the excited state population dynamics; these oscillations are caused by the single
photon being recycled between the two cavities with a period that corresponds to the round trip
time of the coupled cavity system. The corresponding emitted spectra from cavity 1 and cavity
2 are shown in Figs. 2(b,d,f), which show that the vacuum Rabi doublet decreases in width as
a function of waveguide length L. In this latter case, we highlight that the length L = 300 μm
would correspond to around 700-800 PC unit cells. A clear advantage of our formalism is the
ease with which we can study various structural parameters such as waveguide length, where
direct numerical approaches would be impractical and cumbersome.
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Fig. 2. One QD dynamics and emitted spectra. (a,c,e) Population decay of only one QD
(QD b is a removed, and μa = 30D), when the cavities are separated by L = 3, 30, and
300 μm, respectively; the dot and cavity resonance frequencies are ω1/2 = Ωa. (b,d,e)
Corresponding emitted spectra above cavity 1 and cavity 2, shown by the red and blue
curves, respectively; all spectra are normalized to the peak emitted spectrum from cavity 1.
Note that the small oscillations slightly visible on the early time dynamics of QD a (first
few ps) is a numerical artifact caused by the finite frequency bandwidth used to compute
the inverse Laplace transform; it has no effect on the later dynamics or the spectrum.
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Fig. 3. Two QD dynamics, entanglement of formation, and emitted spectra. (a) Population
decay and entanglement when QD a (μa = 30D) and QD b (μb = 60D) are separated by
L=3 μm, with ω1/2 = Ωa/b. The red solid curve (blue solid curve) represents the exciton
decay of QD a(b), while the green dashed curve corresponds to the entanglement of for-
mation. (b) Corresponding vertically-emitted spectra, where the solid red curve (solid blue
curve) represents the emission spectrum of cavity 1(2). (c-d) as in (a-b) but with L = 30 μm.
(e-f) As in (a-b) but with L = 300 μm.

Next, we explore the two QD dynamics by adding in the second dot b. We study the resonant
condition of ω1(=Ωa) = ω2(= Ωb), and also the case with detuning, ω1(= Ω1) �= ω2(= Ωb).
For both cases, only QD a is initially excited (Cu

a(0) = 1, Cu
b(0) = 0). The resonant case is

shown in Fig. 3, which demonstrates that pronounced entanglement values can be realized (see
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Fig. 3(a), green dashed curve), reaching a maximum value of around 0.67 ebits for L = 3μm.
The oscillations in the QD dynamics are caused by both the dot-dot photon exchange interac-
tions and the cavity-dot interactions, and we find that the vacuum Rabi oscillations are much
faster than the one QD scenario (cf. red curves in 2(a,c) and 3(a,c)). For the emitted spectra, in
addition to the expected vacuum Rabi doublet (now with a significantly larger splitting than be-
fore), we also obtain a pronounced constructive or destructive center peak that originates from
the photon emission from the excited dot in the opposite cavity propagating back and resonantly
scattering from the cavity (e.g., the dot in cavity 2 can act as a source for pumping the dot in cav-
ity 1); this is analogous to dipole-induced transparency or dipole-induced absorption [11, 24],
where one obtains interference between the excitation field and the field emitted from the ex-
cited QD. The lineshape from cavity 1 is also similar to the well-known Mollow triplet [25].
More interestingly, in the context of coupled QDs, we also see an additional doublet (larger
splitting of around 0.4 meV for L = 300 μm) which is caused by the dynamic photon coupling
that takes place from cavity to cavity, as discussed above.The latter spectral doublet give clear
evidence to the formation of a macroscopic molecule. Again for the longer cavity separations,
the vacuum Rabi oscillations (coherent oscillations) are suppressed, and for L = 300 μm, a
clear retardation feature of around 10 ps is observed. When L is increased to a larger value
of 300 μm, the entanglement peak is still reasonable (∼ 0.3). While the usual coupled-QD
entanglement distance between excitons is only about 10 nm, here we obtain a macroscopic
entanglement by indirect cavity-cavity coupling, via the integrated waveguide. Furthermore,
this macroscopic entanglement has the added advantage that the coupling phenomena can be
probed by measuring the individual cavity-emitted light spectra.

These coherent coupling phenomena naturally become less pronounced in the presence of
non-radiative exciton decay and spectral detuning between the cavities and QDs, though sig-
nificant qubit coupling is still be apparent for a wide range of parameters. For single QDs, at
low temperatures of T = 4K, even for regular (non-cavity) structures, the exciton relaxation
is typically dominated by radiative decay, and the non-radiative decay times (rates) are around
2 ns (∼ 2 μeV) [26]; thus, for studying the early time dynamics of the first 500 ps or so, their
influence can be approximately neglected. A more significant effect on the QD photon trans-
fer mechanisms would result from detuning between the two QD-cavity sections, though these
could be individually tuned to ensure resonance with each QD-cavity pair. As an example, in
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Fig. 4. As in Fig. 3, but with a detuning of ω1(=Ωa)−ω2(=Ωb) = 25 μeV.
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Fig. 4 we add a detuning of Ωa −Ωb = 25 μeV and repeat the same investigation as shown in
Fig. 3. While the entanglement and photon coupling effects are reduced, we still obtain signifi-
cant coupling between the QDs via the coupling waveguide.

4. Bell inequalities

Finally, we address the non-local coupling of our proposed PC system by analyzing the
Bell inequality. The Bell inequality [27], if violated, is a proven way to test the EPR para-
dox [28] and the non-local realism of a coupled quantum state. For quantum spin systems,
which mathematically map on to our two-coupled QD excitons, the Bell inequality of inter-
est [29]: Bs = |E(θa,θb)−E(θa,θ ′

b)+E(θ ′
a,θb)−E(θ ′

a,θ ′
b)| ≤ 2, where the correlation function

E(θa,θb) = 〈σ̂ θa
a σ̂ θb

b 〉, σ̂ θm
m = cos(θm)σ̂mx + sin(θm)σ̂my , σ̂mx = σ̂+

m + σ̂−
m , σ̂my = −iσ̂+

m + iσ̂−
m

and θm(θ ′
m) is a real-angle parameter. Thus, if one chooses θ = θa −θb = θb −θ ′

a = θ ′
a −θ ′

b,
then above inequality will be simplified to Bs = |3E(θ ,0)−E(3θ ,0)| ≤ 2, where E(θ ,0) =
eiθ 〈σ̂+

a σ̂−
b 〉+ c.c. = C∗

a(t)Cb(t)ei[(Ωa−Ωb)t+θ ] + c.c. The Bell inequality is therefore violated if
Bs > 2.

One can consider the evolution of an initial maximally-entangled two-qubit state |ψ〉±QD =
1√
2
(|01〉± |10〉). The Bell states can in principle be generated by a single photon source, where

the single photons are first split by a 50%− 50% beam splitter, and then undergo a different
phase delay (0 or π), which then excite the pair of QDs. More elaborate schemes could, in
principle, send in an incident field through a leaky waveguide mode, that could prepare the QDs
pair in the correct superposition state. Inspecting the symmetry properties of Eq. (12), is can be
recognized that Cu

a(t) = ±Cu
b(t) if cavity 1 is symmetric with cavity 2 and QD a is resonant

with QD b, and their evolution will be governed by the term K(ra/b,ra/b;ω)±K(rb/a,ra/b;ω).
The decay of the state 1√

2
(|01〉+ |10〉) will be faster than 1√

2
(|01〉− |10〉) if K(ra,ra;ω) is in

phase (interferences constructively) with K(ra,rb;ω). On the contrary, if K(ra,ra;ω) is out of
phase (interferences destructively) with K(ra,rb;ω), then the decay of the state 1√

2
(|01〉− |10〉)

will be faster than 1√
2
(|01〉+ |10〉). For our waveguide example, the violation time of the Bell

inequality for the initial condition |ψ〉−QD is shorter than that of the initial condition |ψ〉+QD,
which is caused by the destructive interference between K(ra,ra;ω) and K(ra,rb;ω). Thus,
we will only show the initial condition of |ψ〉+QD.

The Bell inequality simulations are summarized in Fig. 5, which display a selection of popu-
lation and Bell parameter dynamics, for various L and QD dipole moments. To better understand
these results, we note that the violation of the Bell inequality for the initial condition |ψ〉+QD is
largely insensitive to the distance L, but more sensitive to the dipole moments (or effective
dipole moments, as ultimately the coupling is controlled through gλ ). In Fig 5(a-b), we show
the QD population dynamics and Bs for a QD dipole of da/b = 30D, with L = 3 μm (red curve)
and L = 300 μm (blue curve); the Bell inequality is found to be violated for both waveguide
lengths for a timescale of up to 50 ps, with the longer system simply exhibiting more pro-
nounced retardation dynamics (oscillations). When the effective dipole moment reduces from
30D to 8D, the violation time increases from around 50ps to more than 800ps (see Fig. 5(d)).

For a detuning of 25 μeV, then this violation is reduced to around 200-300 ps (see Fig.5(f)),
though can be increased by having a larger L. There is also an interesting entanglement revival
for the longer waveguide, where the Bs increases about 400 ps. Note that for sufficiently large L,
one must be careful of disorder-induced losses in the PC waveguide [30], though an increased
entanglement duration can also be achieved by using smaller dipole moments or dots that are
not maximally positioned on the cavity antinode, since this reduces the radiative decay; in
this case, the ultimate limit will likely come from the non-radiative decay processes such as
electron-phonon scattering, which we have neglected in this study. With the appropriate PC
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Fig. 5. Decay of a maximally entangled state and the violation of the Bell inequality (Bs >
2). Temporal decay of ρaa (a,c,e) and Bs (b,d,f), with the initial condition of |ψQD(t = 0)〉=
|ψ+

QD〉 (see text); note that in (e), ρaa is shown by the solid curve and ρbb is shown by the
dashed curve, but in (a) and (c), ρbb = ρaa, so we only show one curve for both. (a-b) μa =
μb = 30D and L = 3 μm (red curves) and L = 300μm (blue curves). (c-d) μa = μb = 8D
and L = 300 μm (red curves) and L = 3000 μm (3 mm) (blue curves). (e-f) As in (c-d) but
with a detuning of ω1(=Ωa)−ω2(=Ωb) = 25 μeV.

medium coupling, we expect that the entanglement dynamics will be robust for up to several
hundred picoseconds using experimentally accessible parameters.

5. Conclusions

We have introduced a novel coupled-cavity QED scheme that can entangle two spatially sepa-
rated QDs over macroscopic distances. By first developing an essentially exact photon Green-
function technique, we have presented analytical formulas for the important system operators
and experimental observables, allowing one to investigate a wide range of QD coupling scenar-
ios in a remarkably simplistic and intuitive way – including the full non-Markovian dynamics.
We find that effective “QD molecules” can be formed over several hundred microns and more,
and that rich dot-cavity and dot-dot coupling dynamics occurs that can be observed indirectly
by looking at the emitted light spectrum above each dot-cavity pair. The coupled-cavity QED
technique also facilitates a way to test the violation of the Bell inequality using planar PC chips
and two QDs that can be fixed in position, locally tuned, and separately probed experimentally.

Acknowledgements

This work was supported by the National Sciences and Engineering Research Council of
Canada and the Canadian Foundation for Innovation. We thank Martijn Wubs and Jeff Young
for useful discussions.

#109910 - $15.00 USD Received 9 Apr 2009; revised 12 Jun 2009; accepted 18 Jun 2009; published 24 Jun 2009

(C) 2009 OSA 6 July 2009 / Vol. 17,  No. 14 / OPTICS EXPRESS  11514


