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MACROSCOPIC MODELS FOR SUPERCONDUCTIVITY*
S. J. CHAPMAN'} S, D. HOWISON'S anp J. R. OCKENDON'

Abstract. This paper reviews the derivation of some macroscopic models for superconductivity and also
some of the mathematical challenges posed by these models. The paper begins by exploring certain analo-
gies between phase changes in superconductors and those in solidification and melting. However, it is soon
found that there are severe limitations on the range of validity of these analogies and outside this range many
interesting open questions can be posed about the solutions to the macroscopic models.
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1. Introduction. The aim of this paper is to review some macroscopic models for
the composition and electromagnetic behavior of solids that can change their phase from
normal to superconducting.® This transformation is popularly associated with a transition
temperature T, but, in fact, it occurs across a curve Hy = H.(T) in the plane of the
applied temperature and the magnitude of the applied magnetic field Hy as in Fig. 1; T,
is the largest temperature at which superconductivity is possible, which is when Hy = 0.
The coupling between the thermal and electromagnetic effects principally takes place
through a latent heat release at the phase change and because of ohmic heating, and
both these effects are usually small. Hence we can make a good mathematical model by
assuming isothermal conditions and considering what happens when Hj, is close to H,,
with the temperature only appearing parametrically.

The observation that normal materials can change into superconductors as H is
decreased through H. was made by Onnes [1]; the other key ingredient for a mathe-
matical model was noted by Meissner and Ochsenfeld [2], namely, that magnetic flux is
completely expelled from any region that is in the superconducting phase.

The simplest configuration in which to describe these phenomena is that of a cylin-
drical wire, with cross section Q (Fig. 2(a)), placed in an axial magnetic field (0,0, Hy)
[3]. Here and throughout the paper we assume that Maxwell’s equations hold every-
where, with the displacement current being negligible. Thus the electric and magnetic
fields E, H, the current density j, and the charge density p satisfy

divE = ’g’, divH =0,

curl H = j, curlE+/taa—11;I =0

where the permeability x4 and permittivity € are assumed constant. When the wire is
entirely normal we assume Ohm’s law

j =0k,
where o is the constant electrical conductivity.
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F1G. 2. Evolution of a superconducting wire (a) Ho < H., (b) Ho > H..

'We nondimensionalize these equations by setting

H, eH,
H=HMH, E=—"F =2,
€ 9 o_e ? p 0'62 p’
H,
j= —e—ej’, x=0x, t=pocl?t,

where £ is a typical length scale for the sample and H, is a typical value of the external

magnetic field. Dropping the primes, so that Hy and H, are henceforth dimensionless,
yields the dimensionless system

(la—d) divE=p, divH=0, curlH=j, curlE+ %I =0,
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with

(2) j=E

when the wire is entirely normal. For the moment we shall only consider situations in
which p = 0, but in §3 we shall be forced to abandon charge neutrality.

We now seek a solution H = (0,0, Hz(z,y,t)),E = (E\(z,y,t), B2z, y,t),0). All
of (1), (2) can be satisfied if

6Hjg
©) % = AH;
with H; = Hj on 01, together with a suitable initial condition. However, when the
wire is entirely superconducting, the solution of (1), (2) would be H = 0 = E every-
where in 2, assuming that the Meissner effect were strictly true. If this were so, H would
be discontinuous on 92, which would suggest a superconducting current sheet in 952,
perpendicular to the z-axis.

In modelling the evolution of one of these configurations, we follow [3] and con-
sider the so-called intermediate state, defined to be one in which both normal and super-
conducting regions are present simultaneously as in Fig. 2(b). We begin by assuming a
configuration in which part of the wire is normal and is separated from the remaining
superconducting region by a smooth cylinder I'. This assumption is questionable, and
we shall return to it later, but the configuration might be achieved by taking Hy to be a
suitable function of ¢ which increases (or decreases) through H.. Thus, in the normal
region, (1)—(3) hold, and we expect

(4) H3 l Hc

aswe approach I'. Hence we expect the superconducting current in I to be perpendicular
to the z-axis and to have magnitude H.. Now by writing (1d) as

% -+ diV(EQ, —El,O) =0

and noting that E and Hj vanish in the superconducting region, we derive the jump con-
dition across I" that its normal velocity v,, towards the superconducting region satisfies

[H3]Y vn = Hovn = (Bani — Eina)w,

where, for definiteness, we take n = (n1,ny,0) to be the outward normal vector to the
normal region. Finally, since E = j = curl H in the normal region, we assert that

O0H;3
on
as I is approached from the normal region.

This model (3)—(5) for the intermediate state is convenient in that it just involves H
and not E, although we note that it has no nontrivial steady-state solutions (as we shall

(5) =—H.,
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see, this is not the case for the fully three-dimensional generalization). More impor-
tantly, it is nothing more than a one-phase “Stefan” model [4], which is itself the sim-
plest macroscopic model that could be written down for an evolving phase boundary in
the classical theory of melting or solidification. In its simplest dimensionless two-phase
form, the Stefan model is

(6) L AT, T#Tn,

where T is the temperature and T, is the melting temperature, together with an energy
balance for the velocity v, of the phase boundary in the form

9

Liquid
[8T] I

9 | solia

where L is the latent heat. When T, is constant, and this model is supplemented by
suitable initial and boundary conditions, it is known to be well posed just as long as nei-
ther superheating nor supercooling occurs, i.e., Tsolid < T, Tliquid > Tm [5]. However,
when either of these conditions is violated, the model appears to be ill-posed and thus
needs to be regularized [6]. The most popular way of doing this is by writing

(8) T = —0/R — By,

where 1/ R is the mean curvature of the surface T' = T, with a suitable sign, and ¢ and 3
are positive constants. The mathematical effects of (8) are not well understood, although
some well-posedness results are beginning to appear ([7], [8]), but (8) is often accepted
as covering many practical cases of unstable crystal growth.

The layout of the rest of this paper will be strongly influenced by the analogy between
models for solidification and models for superconductivity. A particularly useful link is
provided by the so-called “phase field” regularization of (6)—(8) [9], whereby the phase
boundary T = T;,, is smoothed by introducing an “order parameter” Fe(—1, 1) such that
(6) is replaced by

0T LOF
E+§—a—t~AT.

The order parameter represents the mass fraction of material to have changed phase,
say from liquid (F = 1) to solid (F = —1). We then append a “Ginzburg-Landau”
equation for F', obtained by relating the evolution of F' to the variational derivative of a
suitably chosen free energy functional, in the form

©)

OF 1
10 — = af?AF + —(F - F?
(10) s of +2a(F F°)+ 2T,
together with suitable initial and boundary conditions; a, £, and a are all constants. Al-
though (9), (10) have been studied extensively, they are difficult to analyze, and most of
the evidence for their well-posedness comes from numerical simulation. However, their
most intriguing feature from the viewpoint of superconductivity modelling is their ability
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to reduce formally to the classical and regularized Stefan models (6)-(8) as a, o, € — 0.2
When these parameters are small, the structure comprises liquid and solid regions sepa-
rated by a thin transition layer in which F' and T are smoothly varying “travelling wave”
solutions of self-consistent local approximations to (9), (10).

We shall now begin our discussion of macroscopic superconductivity modelling, start-
ing with free boundary models analogous to (3)—(5) and then proceeding to models in
which the phase boundary is smoothed as in (9), (10). In §2 we shall write down the gen-
eralization of (3)—(5) to a three-dimensional superconductor undergoing a phase change.
This will take the form of a “vectorial” Stefan problem, albeit a very different one from
the alloy solidification vector equation, as described say in [10]. Nonetheless, this vecto-
rial Stefan model will be shown sometimes to have instabilities that are similar to those
which cause ill-posedness in the classical Stefan model (6), (7) in superheated or su-
percooled situations. This means that the model is only capable of describing certain
superconductor configurations. In particular, for intermediate states when both phases
are present simultaneously, we shall only expect well-posedness when the normal region
is expanding and the superconducting region is contracting. In these circumstances the
model predicts the evolution of a smooth boundary I' separating the two phases. We
shall see in §5 that a further constraint is also necessary for (3)—(5) to be applicable; this
will restrict the use of these equations to what will later be called Type I superconductors
in which the normal region is expanding.

In order to understand other Type I configurations, and what will later be called
Type II superconductors, we must consider the behavior near the phase boundary more
carefully. This problem was attacked by London {11], who proposed that the supercon-
ducting region should not be modelled simply by writing H = 0, but rather that there
should be a distributed superconducting current j in that region, such that

(11a) J, A,
and hence

)5 .
(11b) 5 & E, curl j, « H,

where A is a suitable magnetic vector potential which, in the superconducting region, is
only appreciable near I". We shall see in §3 that this kind of model can be written down
more systematically by again using a statistical Ginzburg-Landau theory. For Type I
superconductors, this theory will stand in relation to the vectorial Stefan model as does
the phase field theory to the scalar Stefan model for solidification. However, it will also
permit us to analyze the more commonly occurring Type II superconductors in which,
when both normal and superconducting phases are simultaneously present, there is a
“filament” morphology for the normal phase. Such a state is called a mixed state.

In §4 we shall study some implications of the Ginzburg-Landau theory and in par-
ticular the asymptotic limits in which it reduces to the relatively simple Type I model of
§2. The more intricate Type II configuration does not yet seem to be amenable to such a
reduction. Indeed the very problem of demarcating between Type I and Type II behav-
ior can be tackled in a variety of ways, which we shall discuss in §§4-6, but many of the
details remain obscure.

Finally, in §6, we shall present some conjectures and open questions concerning the
solutions of the various models in certain interesting situations.

21t is even possible formally to retrieve the so-called Cahn-Hilliard model for solid/solid phase transitions
from (9), (10) in a suitable limit.
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2. Free boundary models. In (3)—(5) we have already seen a simple configuration
that permits a Stefan free boundary model to be formulated. To generalize this model
to three dimensions, we begin by assuming that the material extends to infinity in all di-
rections, and that a uniform field is applied there. Later we shall consider more general
boundary conditions. As in the introduction, we assume that H = 0 in the supercon-
ducting phase and that Ohm’s law applies in the normal phase, so that

(12a) %—Itl = —curl curl H,
ie.,

(12b) %I; = AH
since

(13) divH=0

there. The generalization of (4) is

(14) H| | H,

as the phase boundary I', which now has curvature in two directions, is approached from
the normal region.
We write (1d) in the form

0 —FE; Ej
oH .
Bt + div E3 0 —-FE =0
-E, E; 0

and apply the divergence theorem to obtain

[EAn)§ = —v,[H]F.

However, E = curl H in the normal region and E = H = 0 in the superconducting
region. Hence, approaching I' from the normal region, we find that

(15) curl HAn = —v,H;

this condition was written down in [12].

We can make some elementary observations about (12)—(15).

(i) Itis a consequence of (12a) and (15) that (13) holds; this fact is proved in Ap-
pendix 1.

(ii) Unlike the situation for the scalar case in an aligned external field (3)-(5), non-
trivial steady states are now possible in which H = Va, Aa = 0 with da/0n = 0, |Va| =
H.onT. (Since divH = 0,H.n = 0 on I by the divergence theorem.) Thus the scalar
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potential o can be identified with that in an ideal fluid flow around a constant pressure
cavity I" [13}.

(iii) Whether the problem is steady or unsteady I', H is tangential and of constant
modulus on I'. Hence if T is finite, then it is topologically equivalent to a torus, by the
Gauss—Bonnet theorem.

(iv) Similarity solutions can be found, as in the Stefan problem, when there is cir-
cular symmetry and H is either aligned (as in (3)-(5)) or azimuthal [14].

(v) The local stability of steady and unsteady solutions to (12)—(15) can be studied
by methods similar to those employed for the Stefan problem [14]. We may consider
a locally planar phase boundary T, whose equation is z = V¢, with the normal region
being in x > Vt, and we seek perturbations to the exact solution

(16) H=H’=(0,H,e V=YD 0), z>Vt

Wg, have the option of considering boundary perturbations perpendicular or parallel to
H".

In the first case, we have a situation described by the model (3)-(5), and hence the
classical analysis for the Stefan problem carries over to show that the solution is stable
to all wavelengths when the normal region is expanding (V' < 0), but unstable to all
sufficiently short wavelengths when it is contracting (V > 0).

In the second case we can write I as

z=Vt+eesinny, n>0, e<1,

and

(17) H = H° + ¢(H;, Hy, Hs),

where H;(z,y,t) satisfy the diffusion equation. The free boundary conditions (13), (14)
now enable us both to find a unique H, that decays spatially as we move away from the
free boundary, and also to find a dispersion relation for o which gives stability for all
wavenumbers n. The field components H; and H; can be computed subsequently.
These formal arguments lead us to believe that the status of the vectorial Stefan
model (12)-(15) is analogous to that of the classical Stefan model in that it is only likely
to be well posed when the normal region is expanding: some preliminary results are
given in [15]. When the normal region is contracting, the model needs to be regularized,
and the Stefan analogy suggests that this might be done either by introducing higher
order derivatives into the free boundary condition (as in (8)) or by smoothing the phase
boundary altogether (as in (9), (10)). The former is difficult to do in the absence of
further uncontroversial physical evidence, but a first step in the direction of the latter was
taken by London [11] who proposed that the superconducting phase should be endowed
with a structure given by (11). Since j = curl®A, this would imply a boundary layer
structure for the vector potential in the superconducting region when the constant of
proportionality in (11a) is large; H would no longer need to be discontinuous on the
phase boundary I'.3> However, it is possible to formulate a model in which H is perfectly
smooth everywhere in the specimen, and this is what we shall do in the next section.

3However, H might still be discontinuous at a boundary between a superconducting region and foreign
material.
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3. Ginzburg-Landau models. It might appear at first sight that modelling the tran-
sition layer between normal and superconducting regions would require quantum me-
chanical considerations as in the “BCS” theory [16]. Fortunately, in the steady state, a
phenomenological theory can be written down quite easily without such quantum mod-
elling. It is even more satisfying that this phenomenological Ginzburg-Landau theory
can be derived as a formal limit of the BCS theory {17].

We first need to define real vector and scalar potentials A and ¢ such that, from (1),

(18) H = curl A, E+ %‘% =-V¢;
A is unique up to the addition of a gradient, and, once A is given, ¢ is unique up to the
addition of a function of ¢, and we shall give their precise specifications shortly.

We next need the idea that macroscopic superconductivity models must incorporate
the long-range interactions between superconducting electrons and hence, unlike the
phase transitions described by the phase field model (9), (10), they must be described by
a complex order parameter

(19) U = fe'X,

where f and y are real and f is positive. Here f? measures the number density of su-
perconducting electrons during the transformation from f = 0 (normal) to f = 1 (su-
perconducting).

3.1. Steady state. In [18], Ginzburg and Landau consider only the steady case with
E = 0, ¢ = 0 as would be the case, for example, when no current enters or leaves the
device. They proceed by expanding the free energy as a power series in |¥|%, together
with the all-important term proportional to [V¥|2. The addition of a term of this form
penalizes variations of the order parameter ¥; in the phase-field for solid/solid transfor-
mations such a term can be thought of as representing the surface energy. However, we
have yet to take into account the interaction between the magnetic field and the electric
current associated with the presence of a gradient in ¥, which is most conveniently done
in terms of A rather than H. This interaction must be such that the free energy density
is gauge-invariant in the sense that, if A is replaced by A + Vw, then w can be added
to x to make the resulting free energy density independent of w. We must, therefore,
append a term proportional to :A¥ to V¥ and thus, when we add the magnetic field
energy v |H|?, we obtain an expanded and truncated free energy density

— )2 4 L)t £ 2H]? + |EVE — iy TIAT2,
2

Herey = H,/v/2H,., where H, is the critical magnetic field strength; A and ¢ are material
constants independent of H,, which will shortly be seen to be dimensionless length scales
for variations in H and ¥, respectively; when A < &, the field boundary layer thickness is
much less than the order parameter boundary layer thickness and vice versa. The ratio
of these “penetration depths” is k = A/¢, called the Ginzburg—-Landau parameter, and
we shall henceforth assume it is O(1). In dimensional terms, the penetration depths are
often about 1 um. For completeness the free energy is given in dimensional form in
Appendix 2.
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We note that the final term in the energy density may be written

EVS? + FAyAIA - eV

The first term represents the previously mentioned surface energy, and the second term
can be interpreted as a gauge invariant “kinetic energy density” associated with the su-
perconducting currents (we shall see that the superconducting current density is given
byj = —(f?/X*)(A — (M/7)VX).

When we now minimize the total free energy with respect to the conjugate of ¥,
denoted by ¥*, and A, we obtain the following dimensionless coupled equations for ¥
and A:

(20) (EV — iyATIAT 4+ (1 — |¥)?) = 0,

€A

(21) — X2curl’A = >

(T*V¥ — UVT*) + [12A.
Here (20) can be thought of as a nonlinear Schrédinger equation in which £ gives the

length scale for variations in ¥, and the corresponding natural boundary condition for
¥ at the surface of a specimen in vacuo is

(21a) n.(¢V — iy ATIA) = 0,

where n is the normal to the surface.? From (21) it can be seen that A varies on
the length scale A. Also, conditions on A at the specimen surface will be that A and
n A curl A are continuous, as is usual in classical electromagnetism. There it is also
conventional to choose the gauge for A such that

divA =0,

for reasons of convenience in calculations and for proving well-posedness; moreover,
with this gauge and when A vanishes at infinity, A has the convenient integral repre-
sentation A(x) = (4m)~! [j(x')dx’/|x — x'|. We shall also make this choice here, but,
more importantly, for f # 0 we can rewrite the equations in terms of real variables by
introducing the new vector potential

(22) Q=A-7"'XVx

so that div Q = —y~1A¢Ayx. Then we obtain coupled equations for just f and Q:

(23) EAf =2~ f+7 272 f1QP,

4This boundary condition has been shown by de Gennes [19] to be modified to n.(§V — iy A~1A)¥ =
—W /b at a boundary with another material; b is very large for insulators and very small for magnetic materials,
with nonmagnetic metals lying in between.
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(24) — Acurl®Q = f2Q.

The equation

div(f2Q) = 0

is also a consequence of (20), (21), but it is now a trivial deduction from (24). We note
that, from (1c),

(25a,b) j = curl’A = — = 72Q,

so that (23), (24) permit not only the calculation of f and Q everywhere, but also the
spatially distributed and (in the steady state) divergence-free superconducting current.
Note that this formula differs from (11a) by the factor f2. We also note that the vector
potential that determines this current from (25b) is not in general divergence-free, but
that (25a) can always be used to determine the current irrespective of the gauge.

The natural boundary condition (21a) becomes

nVi=0, n(fQ =0,

and when we impose the condition that n AQ and nA curl Q are continuous at the bound-
ary of the specimen, we expect to have enough boundary conditions for f and Q just as
long as f > 0. However, when f vanishes at some point or in some simply connected
region, we must return to (20), (21) and prescribe the change in x around the set where
f=0.

This can be illustrated by looking for a solution of the form

U = f(r)em?,
Q = Q(r)ey,

where n is an integer. Such a solution is motivated by a local expansion near a zero of f.
We find that f and @ are solutions of

2 2
L2 (D) + F@ -1,

v dr \"dr
e (3500) = ra

r

with

f—1,Q—0 asr — oo,

~ —@,fbounded asr — 0,
yr
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and Berger and Chen [20] have shown the existence of a solution for f and @ for all n,
which necessarily has f(0) = 0. The superconducting current is given by

1
= _}\_gszeGa

and this solution represents a superconducting current “vortex.” The axial flux through

the vortex is
//H.dS - 27r§)\n;
Y

thus the flux is quantized and a single “fluxon” has magnitude 27 £/~ in our scaled units,
We shall return to these vortex solutions, which are of considerable importance in
what we shall later term Type II superconductors, in §5.

3.2. Evolution model. It is not as easy to make the above model time-dependent as
it is, say, with the phase field model, because of the coupling with Maxwell’s equations.
Fortunately an alternative approach is available, namely, that of averaging the micro-
scopic BCS theory [16]. The procedure requires that the temperature 7T is close to T,. It
is described in [21] and results in the equations

(26) N e L
(27) — Mcurl’Q = f2Q + A2 (Q + vq>)
(28) af’® + div(f?Q) =

where « is a dimensionless relaxation time, A and £ are as before, and

EA Ox

o=
v

In the steady state, and in the absence of an electric field, so that ¢ = 0, these equations
reduce to (23), (24) and thereby give independent support to the earlier phenomenolog-
ical theory of Ginzburg and Landau. For completeness, (26)-(28) are written down in
dimensional form in Appendix 3.

We expect that when suitable initial conditions are given for f, ®, and Q, together
with appropriate boundary conditions, then, with the usual proviso that f > 0, (26)-(28)
constitute a well-posed problem for f, ®, and Q from which the physical fields E, H can
be computed using (18). These fields will then automatically satisfy (1b—d) but we note
that in this unsteady case, the charge density need not vanish. It is given by

divE = —div (aa*? + vq>) = A"%div f2Q = -2 2 f2®.
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Moreover, the current j, which now has both superconducting and normal components,
is givenby j = —(1/22)f2Q + E.

Having written down equations somewhat analogous to the phase field model, our
next task is to try to relate these equations to the free boundary model (12)-(15) by
taking suitable asymptotic limits in ¢, A, and £.

4. Asymptotic solutions of the Ginzburg-Landau model: reduction to a free bound-
ary problem. We now proceed to try to relate the above models (23), (24) and (26)—(28)
to the free boundary models of §2 in the same way that it was possible to relate the phase
field model to the Stefan problem. As well as obviating the need for any quantum me-
chanical considerations, it would be slightly easier to carry out this procedure just in the
steady state first; however, the extra complication caused by the time derivatives in (26)—
(28) is not great, and we shall proceed directly to the evolution case. As with the phase
field model, we initially anticipate that the solution structure will comprise normal and
superconducting regions separated by a transition layer; however, we shall soon see that
this expectation will often not be warranted.

We seek limiting behavior as \,& — 0 with x = A/§ = O(1). Away from any
transition regions, we look for asymptotic expansions of the form

&~ 0O L 2AeMD 4 ...
Q~Q® 4+ xQW ...,
H~H®  HD 4 ...,
frfO LA

(29)

When we assume smooth variations for ®, Q, and f, we soon find that either f © =9
or Q@ = 0; such variations will correspond to “outer” normal and superconducting
regions respectively. Proceeding to second order in these outer expansions, we find that
in the normal region, f(!) = 0, and hence

(0)
Qgt— +Ve® = —curl’Q®,  HO = curl QO
so that
SH©
> (0)
(30) 5 = AH

as in (12a). Indeed, this equation holds to arbitrary order in A in the normal region as
does the equation Q©® = 0in the superconducting region; the perturbations to these
equations are exponentially small in .

It remains to consider a local analysis in a transition layer between these two re-
gions. When local coordinates parallel and perpendicular to such a transition region are
introduced, as in [14], the lowest-order equations correspond to a one-dimensional trav-
elling wave. If z is the normal coordinate, scaled with A, we may take Q = (0, —Q, 0) so
that H is tangential to the transition region to lowest order and of magnitude Q’, where
" = d/dz. To lowest order, the order parameter and potential satisfy
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(31) "=rf2 - f+7fQ),

(32) Q" = f*Q.

Now if the solutions of these equations are to match with the previously derived outer
normal and superconducting regions, we require

(33) Q@ —0,f—1 asz— —oo (superconducting),

(34) f—0 asz— 4oo (normal).

By integrating (31) and (32) once, it is now a simple matter to deduce® that

(35) Q

1
— —— asz — +o00.
W2
By matching, this means that, as we approach the phase boundary from the normal re-
gion, the magnitude of H®, as given by (30), must tend to 1/y+/2 (in addition to H®
being tangential to the phase boundary). Thus, the magnitude of the dimensional mag-
netic field

H
36 H JHO| ~ == = H,
(36) [H| o

to lowest order in A. The functions f, Q' and j = Q" are shown schematically in Fig. 3.
Beyond this level, the asymptotic analysis becomes even more intricate, but, by pro-

ceeding to QW H®M in the transition region and using the Fredholm alternative, we find
that in our local coordinate system

z~——+00

)
(37) lim {ﬂ +HO /Rg")} =@ lim HO,
0z zt-00

where, to lowest-order, v is the normal velocity of the phase boundary, (H §0) , Héo))
is the component of H tangential to this boundary and 1/ Rz(o) are the phase boundary

curvatures in the H. fo), Héo) directions with appropriate signs. By matching with the
normal region in a suitable curvilinear coordinate system, (37) can be seen to imply (14).

We have thus retrieved our vector Stefan model (12)-(15) in general circumstances,
assuming only that k = O(1). Our first surprise comes when we compute |H| in the
transition region to second order; we find that the second-order matching condition for
the outer normal field is that

5For a rigorous demonstration of this result, see [22].
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Q@ —1/7v2
f—1
Q —0 f—0
F1G. 3. Solution near a phase boundary.
1
38 H —» —= — {80 + 6(1/R” + 1/R) } 1.
(38) ] = — = { ol + s/RY +1/B) |

As expected, there is a correction proportional to the velocity and the mean curvature of
the phase boundary, the constants § and § being determined by « and the structure of the
solutions to (31)—(34). The remarkable fact is that these constants are only both positive
when £ < 1/4/2, and, when k > 1/+/2, at least one of them is negative. We recall that
when the corresponding constants ¢ and £ in the limiting phase field boundary condition
(8) were both positive, they stabilized what would have been an ill-posed problem in their
absence. Here it seems that the bracketed terms in (38) are only stabilizing when £ <
1/+/2. However, we should not read too much into this analogy because the Ginzburg-
Landau model only allows the possibility of stabilizing terms to enter (38) at first order;
in the corresponding phase field analysis [9], the fact that the order parameter F' changes
from —1 to +1 rather than 0 to +1 means that an asymptotic limit can be taken in which
stabilization occurs at Jowest order.

5. Superconductor classification and type II superconductors. The preceding sec-
tion has attempted to give a microscopic basis for the free boundary models described
in §2, but, in view of (38), the sharp-interface theory is only satisfactory mathematically
in the case x < 1/+/2; hence it is only in this case that we can justify the use of the model
(12)-(15) to describe the incomplete phase diagram in Fig. 4. It predicts that, for materi-
als satisfying this criterion, called Type I superconductors, the change of phase occurs by
means of phase boundaries propagating through the material in ways analogous to, say,
solid/liquid phase boundaries. Moreover, it predicts that these phase boundaries will be
prone to instability in cases when the normal region contracts, in the same way that the
freezing of supercooled liquids is unstable.

These predictions for Type I superconductors are more or less in agreement with
observation [23]-[25], the only exception being that the phase diagram in Fig. 4 does
not indicate the hysteresis which is observed in such materials. The experimental ob-
servations that indicate that some new mechanism operates when x > 1/+/2 are shown
schematically in Fig. 5(a), (b). For such materials, called Type II superconductors, the
superconducting phase does not switch off abruptly as Hj increases through some criti-
cal value (which was H, for Type I materials and is now called H,, ), but rather shrinks
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FIG. 4. Phase diagram for a Tipe 1 Superconductor.

until Hy reaches a new value H,.,. Moreover, some small “surface” superconductivity is
observed for H,, < Hy < H,,; the reason for this terminology will become apparent
shortly.

Our task is now to explain the hysteresis in Fig. 5a and, more importantly, how phase
changes occur when £ and A are small in Type II superconductors. The first mathematical
clue to this behavior can be discerned if we consider small, steady perturbations about the
exact solution of (23), (24) that represent purely normal material in a field perpendicular
to the z-direction, namely,

(39) f=0, Q=(0,—(Hoz+ Q0),0), Qo,Ho = const.

When f depends on z alone (i.e., x = 0,¥ = f(z) in (20)), the linearized equation for
f, namely,

(40) e+ (1 - (F(Hoz + Qo))2> f=0,

is easy to solve for a variety of boundary conditions. For a film of thickness 2d, we impose
the natural boundary conditions

f(xd) =0
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F16.5. Type 1vs. Type 11 Superconductors.

and zero perturbation for H at = = +d. As Hj is decreased, a nonzero solution first
exists for d = oo when Hy = «/+ and f is proportional to e=¢’%"/2 The amplitude is
obtained in [26], [27] from a weakly nonlinear analysis of (31), (35) but the important
result is that the value of H, at which a localized planar region of weak superconductivity
first appears is H,,, where
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F1G. 6. One-dimensional solution bifurcating from the normal state.
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Fi1G. 7. Response diagrams for Type 1 and Type 11 Superconductors.

according as x = 1/4/2. The results of the weakly nonlinear analysis give the current
flow and bifurcation diagrams shown in Figs. 6 and 7.

This approach can be adapted to consider finite slabs of material and other bound-
ary conditions. We shall not give any details here but merely note that the field at which
superconductivity first appears is even larger than «/~ for finite slabs, and that by con-
sidering boundary layers near the surface of slabs of size much greater than &, the theory
can predict the existence of the previously-mentioned third critical field H,, [28]. How-
ever, this third critical field only exists in configurations in which the imposed magnetic
field has a component parallel to the boundary of the material.

These ideas go some way towards explaining the phenomena in Fig. 5, and, in par-
ticular, the gross features of Fig. 5b and the hysteresis in Fig. Sa, because the bifurcation
at H,, in a Type I superconductor can now be thought of as an analogy of nucleation in
supercooled freezing. However, we have not yet elucidated the structure of the phases
in Type I superconductors when H., < Hy < H,,. Some indication of this can be ob-
tained by considering two-dimensional perturbations to (39). One possibility would be
to write ¥ = e"™¥ f(z) where m and f are real, but, from (25), this would simply give
a superconducting current of the form j = —(f2/2?)(0, Hoz + Qo — méA/~,0), ie., a
shift in the origin of z of size m¢\/ Hyy. However, in the case when Q, = 0, we see that
e~ ™Y f(—2) is also a solution of the linearized equations, and when we write

W = €M f(2) + T f(—)

(so that f # |W]), it is easy to see that x, the phase of ¥, varies by 27 as we go around

any zero of ¥ at z = 0,y = (n + 3)m/m. Hence the associated superconducting current
is

\1,2 \1,2
j:—l—l—— 0, Hoz — 2vy.0) ~ (0, | |£vx,o
A2 Ay
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F1G. 8. Two-dimensional solution bifurcating from the normal solution. As Hy decreases further the varia-
tions in f and H become more pronounced and resemble Fig. 9.

and is nearly azimuthal, as is the vortex solution of §3.1 (see Fig. 8). The situation in Fig.
8 is dramatically different from Fig. 6 because |¥| vanishes at the “quantized” vortices.
It is the basis of the work in [26], [29], where solutions periodic both in x and y as in Fig.
9 are sought for Hy, slightly less than H,,. The zeros of ¥ are found to lie on the points of
a lattice with the phase of ¥ varying by 27 around each zero. In [30] a hexagonal lattice
is shown to have the lowest free energy; there seems to be no prescription for the vortex
spacing, but it must be such that the vortices and their surrounding normal material can
transmit the whole of the applied magnetic field. As the field Hy is lowered further it is
conjectured that the lattice points move further apart with f tending closer to unity in
the regions between, so that the solution resembles a lattice of “normal filaments,” each
surrounded by a superconducting current vortex, embedded in a superconducting matrix
(see Fig. 9). When the distance between filaments is large compared to the penetration
depths A, € (i.e., when interaction between the filaments is negligible), we expect each
filament to resemble the vortex solution given in §3.

As the separation between filaments increases, filaments will migrate to the bound-
ary of the specimen and be lost. As Hj reaches the critical value H,,, the last filament
disappears and the material becomes wholly superconducting. The value of H,, hasbeen
estimated in [29] using an energy argument.

Of course the wholly superconducting state will still have a boundary layer at the
surface of the material in which H decreases from its surface value to its value of zero in
the bulk of the material. Such a solution was given in [18].

We are now in a position to complete the response diagram Fig. 4; this is done in Fig.
10. For Type II superconductors the state in which H,, < Hy < H,, and in which the
phase morphology is that of normal cores embedded in a superconducting matrix, with
the magnetic field and superconducting current being axial and azimuthal respectively,
is called Abrikosov’s mixed state. We emphasize that the response to variations in Hy
for Type II materials is reversible, with the normal cores growing and multiplying as Hy
increases from H,, , but for Type I materials it is not.
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H MIXED STATE

TYPE I TYPE II

FiG. 10. Completion of Fig. 4.

6. Open questions.

6.1. “Melting” of the mixed state. Perhaps the most important technological ques-
tion concerns the modelling of Type II materials in the mixed state. When « is large we
may be able to simplify (26)—(28) by exploiting the fact that the normal filaments are suf-
ficiently thin to be represented as distributions in the field equation for H. Since f ~ 1,
this equation reduces to the London model

(41) MAH-H=0

away from the filaments, and, indeed, this simplification has been justified in [20]. The
model must be closed by relating the strength and velocity of the filaments to H, and
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this has been attempted in [31] by assigning a force and mobility to each filament, using
energy arguments similar to those used in dislocation dynamics in metal plasticity. It
seems that vortex filaments in superconductors have almost as much freedom to move as
do vortices in an inviscid liquid except that they can be pinned at defects in the underlying
lattice.

Bulk motion, or “melting,” of the filaments in the presence of defects is the prin-
cipal phenomenon to be modelled; when large numbers of filaments are present, one
possibility would be a homogenization of the distributions on the right-hand side of the
London model (41).

6.2. Behavior at x = 1/+/2. Clearly there is singular bifurcation behavior in the
vicinity of this critical value of «, and it would be of interest to see how a material with
such a composition arranges its morphology and reversibility. It may be a coincidence,
but the Ginzburg-Landau equations have several other special properties at x = 1/+/2.

Firstly, in one dimension with f = f(z) and Q = (0, Q(2), 0), the free energy density

2 2 _ 1)\2
52(fl)2+ }5sz2 + (f 5 1) +’)’2(QI)2

may be written as

oy
o <1_2_;2)

(er+250) + (v
1
2
f{ _ r2
LiQa - £
Hence, when k = 1/+/2, the equations exhibit “self-duality symmetry” [32], in that the
free energy can be written as an integral of a sum of squares of just two first-order op-
erators together with an exact differential. In this case solutions of the second-order
equations (31), (32) are given by solutions of the first-order equations®

&' +11Q =0,

4 f -1
Q' + o =0

This reduction depends on the application of compatible boundary conditions, which is
automatic when the transition layer conditions (33), (34) are assumed. Similar solutions
may be found in two dimensions with the magnetic field perpendicular to the plane of
interest. In this case, with Q = (Q1(x,y), @2(z, y), 0) solutions of (23), (24) are now
given by setting each of three squares in the free energy equal to zero, yielding the first-
order equations

5Note that the exact differential in the free energy density integrates to give a constant in the free energy
that depends on the boundary conditions and may be infinite.
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of v _
§%+XfQ2—0,

of v _
§a—y—fo1—0,

0Q2 0Q (f2-1)
7<8m—8y>+ 2k =0

Hence, when f # 0, w = log f? satisfies the inhomogeneous Liouville equation

NAw+1—e¥ =0,

but again this reduction requires the application of compatible boundary conditions.

Secondly, [33] has shown that the force between two superconducting current vor-
tices is attractive for £ < 1/+/2 and repulsive for k > 1/+/2; for k = 1/+/2, there is
no force between vortices. In this latter case multivortex solutions to the steady-state
Ginzburg-Landau equations exist, and [34] has shown that the solutions containing N
quanta of flux may be parametrized by the points of the plane where f vanishes together
with their vortex numbers. Thus such a solution can be thought of as a superposition of
N vortices, although the details of their interaction remain an interesting open problem;
some numerical calculations are reported in [35].

Because of the nature of the forces between vortices when k < 1/ V2andk > 1 V2,
we conjecture that in these cases the only steady vortex solutions to the equations are for
an isolated vortex, or an infinite number of vortices as in the Abrikosov vortex lattice; we
expect the latter configuration to be stable for hexagonal arrays of identical unit vortex-
number vortices when k > 1/ V2, and the former when x < 1 / V2, even for higher vortex
numbers [36].

6.3. Type I morphologies. Although the modelling of Type I materials seems to be
easier than that of Type II materials, interesting questions remain concerning even quite
simple configurations. Consider, for example, what happens when a superconducting
wire carries a prescribed current I down its surface. As [ is increased, the correspond-
ing azimuthal magnetic field will increase until it reaches H,., when the surface of the
wire must become normal. If a normal sheath were then to form around the surface of
the wire, leaving a superconducting core, the superconducting current would lie on the
surface of this core. This increased current density there would then cause an increased
field, meaning that the sheath would contract inwards. However, if the whole wire be-
came normal, the current would be uniformly distributed over its cross section, leading
to a reduced current density, with a magnetic field everywhere below H,.! The wire can
thus be neither wholly normal nor wholly superconducting, and the intermediate state
may have a noncylindrical morphology or even be unsteady; several proposals have been
made for this [37]-[39]. A similar argument can be applied to the problem in Fig. 1 in
the case when the wire is initially superconducting, and an applied transverse field of
magnitude Hy is increased.

6.4. Thermal effects. As mentioned in the introduction, thermal effects are not usu-
ally significant, at least for Type I superconductors with T not too near T.; in other
words, the thermal response is assumed instantaneous, and 7" only enters as a param-
eter. When the thermal response is less rapid, thermal effects can be incorporated into
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the free boundary model (12)—(15) by allowing H, in (13) to depend on T as in Fig. 1,
and appending equations for T" on either side of the free boundary, together with Stefan-
type conditions on the boundary itself. This has been done in one space dimension in
[40]. Heat is generated via Ohmic heating in the normal phase, and 8, the dimensionless
temperature difference from 7T, scaled with T, satisfies

06
(42) A = ﬂﬁ
in the superconducting region, and
89 . 2
Af=p T linl

(43)
— 09 2
—ﬂa —T)I CUI'IHI

in the normal region. On the interface between the two regions,

(44) [B1% =0
N
(45) [Z_fiL = —L(0)v,.

Here L(0) is the (dimensionless) latent heat associated with the change of phase;
B = pc/pck and n = HZ/okT, are dimensionless parameters measuring the ratios of
thermal to electromagnetic timescales and ohmic heating to thermal conduction respec-
tively (the density p, specific heat ¢, and thermal conductivity k are assumed constant).
In some respects this model resembles the one-phase alloy solidification problem, with
H playing the role of the impurity concentration. We also note that it bears a superficial
resemblance to the “thermistor” problem [41] with a step-function conductivity, but a
closer examination shows that the interface conditions for the two problems are quite
different.

Of more interest, however, is the interaction between thermal and electromagnetic
effects for a Type II superconductor. In particular “hot spots” generated near vortex
filaments may have a significant effect on their motion. This situation can be modeiled by
a generalization of the Ginzburg-Landau equations in which temperature appears as a
variable rather than a parameter. As shown in Appendix 3, the resulting time-dependent
Ginzburg-Landau equations are

- ~ ~2
(46) —a@Se@ar=pror+ Laar,

(47) — X2 (curl)?2Q = f2Q + X2 (%—?— + vq>> ,
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(48) af?*® + div(f?Q) =0,
together with a temperature equation of the form

(49) 20 =% iy - L2,

We note that 6 appears as a coefficient in (46), and that, where previously £, A, and -y de-
pended on § (see Appendix 2), their equivalents £, X, and 7 are temperature-independent
(see Appendix 3). If this temperature-independent scaling had not been made, as T' 1 T,
in (26)—(28) we would have had £, A — oo as (T, —~ T) /2 and y — cc as T, — T. We
also remark that # < 0 in the transition layer and in the superconducting region.

It is now possible to derive the temperature-dependent free boundary problem (42)-
(45) as a formal asymptotic limit of (46)-(49) as A and £ — 0 as in §4, but we will not
give the details here (see [42]). Also we note that the steady version of (46)—(48) can be
used to study bifurcation behavior similar to Fig. 7 by varying the applied temperature
rather than Hy (see [42], [43]).

Appendix 1. Here we show that div H = 0 everywhere is a consequence of (12a) and
(15). We denote the normal region by Q, and assume that it is entirely bounded by the
free boundary I' (the result holds even when some portion of the normal region meets a
fixed boundary of the sample; see [42]). For ease of notation we denote div H by w.

We first note that

div(uH) = H.Vu + v%.

Hence

/ (H.Vu 4+ u?)dV = div(uH)dV
QN QN

= / uH.ndS
r

= (),

since H.n = 0 on I'. Hence

/ widV = ~ H.VudV.
QN QN
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Differentiating this equation with respect to ¢ we have

d d

—_— 2 _ —
& Jo. u“dV & Jo, H.VudV
6H i}
= _/QN [—~8t—.Vu+H.a(Vu)] av — /F(H.Vu)vndS.

Taking the divergence of equation (12a) yields

Ou
5 0.
Hence, using (12a) and (15) we have
— u?dV = ((curl)*H.Vu) dV + / (curl H A n).VudS
dt Ja, Qn r

= div(curl H A Vu)dV + / (curlH A n).VudS
QN I

= /(curlH AVu)ndS — /(curlH AVu)ndS
r r
=0.

Hence

/ u?dV =0,
Qn

since initially div Hy = 0 everywhere. Hence

divH=0 in QN,
as required.

We prove also that div H is zero when (12a) is replaced by (12b) and v,, > 0, which
is the case of interest. As before, we have

/ uidV = — H.VudV.
QN QN
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Differentiating this equation with respect to ¢t we have

d
— 2V = —— H.VudV
& Jo. U it o, ud

- /Q ) [%_?.w + H.%(Vu)] qv — /F (H.Vu)vndS
- /QN [(AH.Vu) + H%(Vu)] av
- /F(curlH Am).VudS,

by (12b) and (15). Now

AH = Vu — (curl)*H.
Also

ou Ou ou
div <—H> dV = / u— + H.V <—> dv
/QN ot ay Ot ot

ou
= | —H.ndS
r Ot
= 0,

since H.n = 0 on I'. Hence

4 2 v 2 _ 2 Ou
p /QNu dv = /QN ((curl) H.Vu — |V +u6t av

- / (curl H A m).VudS
r

1 Bu?
= —— — |Vu|?dV,
LNzat [Vl

since

(curl)?H.VudV — / (curl H A n).VudS = 0,
On r

as before. We also have that

2
A - / o / uv,dS.
dt Qn Qn at T
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Hence

2
1 / O gy — — / |Vul2dV — / w?v,dS.
2 QN at QN r

Hence, for v, > 0,

2
/ & v <o,
ay Of

Hence

4 / w2dV < 0.
dt Jo,

However, [, 4?dV >0,and [, «?dV = 0 initially. Hence

/ u2dV =0,
Qn

and, therefore, div H = 0, as required.

Appendix 2. The Ginzburg-Landau free energy functional. The expanded and trun-
cated Ginzburg-Landau free energy density is, in dimensional variables”,

2, B(T) gt L P2 1 . 2
= A7 Lt — | — ihVT — 2¢AT
& =ao(T)|¥)* + 5 |®|* + 5 H]| +4m| AY eAY|
where m is the electron mass, e the electronic charge, u the permeability, and A Planck’s
constant. Consider first a uniform superconductor in the absence of a magnetic field, so
that

£ = o(m)|uf + 52wt

In equilibrium 8€/9|¥|? = 0,02€/9(|¥|?)? > 0, with [¥|?2 =0 for T > T, |¥| > 0 for
T < T,. It follows that «(T,) = 0,5(T.) > 0,a(T) < 0 for T < T.. For temperatures
in the vicinity of 7, the coefficients «, 5 may be expanded in powers of § = (T — 1) /T,
and only the first nonzero terms retained. Then

T-T,
T

[4

a(T):a( ) B(T)=b,  ab>0.

2
7In Gaussian units the free energy density is oo(T')| %2 + 28 |4 4 J%Ir— + 2| — ihVY — ZeAw)2,

m
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Thus in equilibrium for T’ < T,

9= -2 =

(57).

o e

We nondimensionalize by setting

X = IX, &= ?8.
Then
- ) A
£=01v+ '%L + 72 H? + | - VT ~ %\IIAF,
where

. He jub : h ~_1 mb
=V 6_26 'ma’ A_eév2a;z’

and @ is included as a variable; 3, ), £ are independent of temperature. Under isothermal
conditions we may rescale

U= |9]Y20, £ =62,
ﬁZHI, A:AI, i:x,’
to give
14
&= |V + %‘— + Y|P 4| — itV — }\I”A’I"’,

where

I S S
€_|0|1/2? )‘_l9|1/27 ’Y—m,

so that the temperature appears in the equations only through the parameters £, A, 7.
In [18] it is noted that H, = |a|/v/uB = ald|/+/ub, and hence v = H./v/2H.. The
nonlinear dependence of H, on T shown in Fig. 1 may be obtained by retaining further
powers of 6.
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Appendix 3. Time-dependent “Ginzburg-Landau” equations. Gor’kov and Eliashberg
[21] average the microscopic BCS theory and arrive at the following macroscopic equations:®

%\f+2 \I:¢+—[—1r2(T2 T2)+|\III]\II D(V — 2ieA)?¥ = 0,

i= lcurle
7
BA 2 ' * *
= 5 +Vo ) —207s [ AP — e(\Il V¥ — VT ],

where 7g is a microscopic parameter, D is the diffusion coefficient, ¢ is the conductiv-
ity of the normal electrons, e is the electronic charge, p is the permeability, T is the

temperature, and T is the critical temperature. Under isothermal conditions we nondi-
mensionalize by setting

x=/0x', U=n/2T2-TH¥,
H=HMH, A=HA
t=poltt, ¢="1c,
a
to give (dropping the primes)
20¥ | afy.

oY | oly 2 _ g _ YAV =
0o + SLitg + VY - ¥ (gv z)\A)\II 0,

Acurl’A = ,\2%%x +A%Vé + %i(w*v\p ~ UVT*) + [T)%A,

where

1 1 3D
 r\ Ts(T2 - T2)

8In Gaussian units these equations are
; 2
%lf-+2em:¢+%s [—#’(T2 724 ¥ | ] v D(V Zie ) U =0

——(curl)2A =0 (1%% + v¢) 2‘”3 (|\11|2A (\p*vqf - qzv\p*)) .
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_ 1 _ eH, [3Dp
onl/oTsu(T2 — T2) v m2rs(IT2 -T2V o

These expressions give the values of A, £, -y in terms of microscopic parameters and hence
determine the coefficients a, b in the Ginzburg-Landau free energy in terms of these
parameters.

Writing
A
Q= EVX,
AED
gt af

leads to equations (26)—(28). Retaining temperature as a variable we nondimensionalize
by setting

x = %/, U = 27T,
H=HH, A=ulHA,

H
t= M0€2t/7 ¢ = —&iqﬁ/,

T=T.+0T,
to give
~ 2
52 "57\1@ +\1:|\p|2+9(1+9>\1/— (g”v—i-;-A) ¥ =0,
Mcurl’A = A2 ‘;;A +,\2v¢+ 28 (\I/*V\If TVT*) + |U)2A,
where

] H D
A =1/2n0To\/2omsp, 5= e [3DK

are independent of temperature. Neglecting the quadratic term in 4 leads to (46)—(48).
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