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The macroscopic electric polarization of a crystal is often defined as the dipole of a unit cell. In
fact, such a dipole moment is ill defined, and the above definition is incorrect. Looking more
closely, the quantity generally measured is differential polarization, defined with respect to a
"reference state" of the same material. Such differential polarizations include either derivatives
of the polarization (dielectric permittivity, Born effective charges, piezoelectricity, pyroelectricity)
or finite difFerences (ferroeiectricity). On the theoretical side, the difFerential concept is basic as
well. Owing to continuity, a polarization difference is equivalent to a macroscopic current, which
is directly accessible to the theory as a bulk property. Polarization is a quantum phenomenon
and cannot be treated with a classical model, particularly whenever delocalized valence electrons
are present in the dielectric. In a quantum picture, the current is basically a property of the
phase of the wave functions, as opposed to the charge, which is a property of their modulus.
An elegant and complete theory has recently been developed by King-Smith and Vanderbilt, in
which the polarization difference between any two crystal states —in a null electric Beld—takes
the form of a geometric quantum phase. The author gives a comprehensive account of this theory,
which is relevant for dealing with transverse-optic phonons, piezoelectricity, and ferroelectricity.
Its relation to the established concepts of linear-response theory is also discussed. %ithin the
geometric phase approach, the relevant polarization difference occurs as the circuit integral of a
Berry connection (or "vector potential" ), while the corresponding curvature (or "inagnetic field" )
provides the macroscopic linear response.
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I. INTRODUCTION

Macroscopic electric polarization is a fundamental con-
cept in the physics of matter, upon which the phe-
nomenological description of dielectrics is based (Landau
and Lifshitz, 1984). Notwithstanding, this concept has
long evaded even a precise microscopic definition. A typ-
ical incorrect statement —often found in textbooks —is
that the macroscopic polarization of a solid is the dipole
of a unit cell. It is easy to realize that such a quantity is
neither measurable nor model-independent: the dipole
of a periodic charge distribution is in fact ill defined
(Martin, 1974), except in the extreme Clausius-Mossotti
model, in which the total charge is unambiguously de-
composed into an assembly of /ocalized and neutral charge
distributions.

One can adopt an alternative viewpoint by considering
a macroscopic and finite piece of matter and defining its
polarization P as the dipole per unit volume:

1p = — —e) z,a„f dr rp(r)
I

where e is the electron charge, V is the sample volume,
the l summation is over the ionic sites, —eZ~ are the
bare ionic charges, and p(r) is the electronic charge den-
sity. Although such a dipole is in principle well defined,
P is not a bulk property, being dependent upon trun-
cation and shape of the sample. The key point is that
the variations of P are indeed measured as bulk material
properties in several circumstances.

Some macroscopic physical properties are just deriva-
tives of P with respect to suitably chosen perturbations.
This is the case for dielectric permittivity, piezoelectric-
ity, efFective charges (for lattice dynamics), and pyro-
electricity, which are phenomenologically measured as
bulk material tensors. As for ferroelectric materials,
they are known to sustain a spontaneous polarization
P, which persists at null field; but again the quantity
measured via hy—steresis cycles—is only the digj'erence
LP between two enantiomorphous metastable states of
the crystal (see, for example, Lines and Glass, 1977).
Froxn the theoretical side, I wish to stress three funda-
mental concepts. First: Any Clausius-Mossotti-like ap-
proach does not apply, particularly in materials where
delocalized covalent charge is present (see Sec. II). Sec-
ond: It is the occurrence of differences —at the very
level of definition —that makes polarization accessible
to quantum-mechanical calculations, as shown in the
work of Posternak et aL (1990; for subsequent discus-
sions, see also Resta et al. , 1990; Tagantsev, 1991, 1992;
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Baldereschi et a/. , 1992; Resta, 1992). Third: The elec-
tronic xoaue functions —as opposed to the charge —of the
polarized crystal do contain the relevant information, as
is demonstrated from several linear-response calculations
of macroscopic tensor properties which have been per-
formed over the years (see Sec. VIII for a review).

I present here a comprehensive account of a mod-
ern theory of macroscopic polarization in crystalline di-
electrics, which elucidates the fundamental quantum na-
ture of the phenomenon. The scope of this work is
limited to cases in which the polarization is due to a
source other than an "external" electric field; a zero-
temperature &amework is furthermore adopted, in which
the ionic positions are "frozen. " The present formulation
applies therefore mainly to lattice dynamics, piezoelec-
tricity, and ferroelectricity. Even when the polarization
of the solid is not due to an electric fieM.—as in the
above-mentioned cases—the polarization may (or xnay

not) be accompanied by a field, depending on the bound-
ary conditions chosen for the macroscopic sample. The
formulation given here concerns the polarization in a nul/

field. In the case of lattice dynamics the theory applies to
transverse-optic zone-center phonons, whose polarization
is measured by the Born (or transverse) efFective charge
tensors.

According to the present viewpoint, the basic quantity
of interest is the difFerence AP in polarization between
two difFerent states of the same solid; this quantity is
obtained &om a formulation whose only ingredients are
the ground-state electronic wave functions of the crys-
tal in the two states. The first step towards a theory
of polarization was made by Resta (1992), who cast AP
as an integrated macroscopic current. New avenues were
then opened. by the historic contribution of King-Smith
and Vanderbilt (1993), who identified in AP a geoxnetric
quantum phase (Berry, 1984, 1989). Besides being very
elegant, such an approach is extremely powerful on com-
putational grounds, as has been demonstrated in some
calculations for real materials (King-Smith and Vander-
bilt, 1993; Dal Corso et a/. , 1993b; Resta et a/. , 1993a,
1993b). I present these recent findings from a slightly
difFerent perspective, developing the formulation along a
different logical path &om that of the original King-Smith
and Vanderbilt paper. In full analogy with other geomet-
ric phase problems (Berry, 1984; Jackiw, 1988), I define a
"connection" (gauge-dependent, nonobservable) and its
generalized curl, the "curvature" (gauge-invariant, ob-
servable). These two quantities play the same role as
the ordinary vector potential and magnetic field in the
theory of the Aharonov-Bohm (1959) effect, which is the
archetypical geometric phase in quantum mechanics. I
then cast the physical observable AP as a circuit integral
of the connection. An outline of the present formulation
has been presented elsewhere (Resta, 1993).

In Sec. II I discuss the nature of polarization and
screening as quantum phenomena; I then outline some
analogies between the present case and. Other known oc-
currences of geometric phases in quantum mechanics.

In Sec. III I establish the main formalism, arriving at
the basic definition of b.P, Eqs. (2) and (12), assumed
throughout this work. In Sec. IV I prove that these equa-
tions define a macroscopic physical observable. In Sec.
V I show the equivalence of Eq. (12) with the geometric
phase formulation. In Sec. VI I prove that LP origi-
nates &om the circuit integral of a Berry connection, in
a four-dimensional parameter space; its curvature yields
straightforwardly the macroscopic linear response of the
system. In Sec. VII I d.iscuss the general strategy for nu-
merical computation of Berry phases, and in particular of
those leading to LP. In Sec. VIII I show the equivalence
of the geometric phase approach with the well-established
perturbative approach as far as the macroscopic linear
response of the crystalline solid is concerned. Then I
outline briefl. y the main features of linear response in the
presence of macroscopic fields and review the most recent
calculations of the Born efFective charge tensors and of
the piezoelectric efFect. In Sec. IX I de6ne the concept of
spontaneous polarization in ferroelectrics and illustrate
the first quantum calculation of such polarization. In
Sec. X I ofFer some conclusloIls.

II. PGI ARIZATIGN AND QUANTUM MECHANICS

Macroscopic polarization is a manifestation of screen-
ing. Quite generally, screening can be defined as the ef-
fect of competition between electrical forces and some
hind. ering mechanism of a difFerent kind. Within the
present context (zero-temperature electronic screening)
the restoring forces are provided by quantum mechanics;
roughly speaking by the Pauli principle. In some spe-
cial cases, a purely classical modeling of the quantum
forces is possible. Within the popular Clausius-Mossotti
picture, one schematizes the dielectric solid as an as-
sembly of well separated and independently polarizable
units. All of the quantum mechanics of the problem is
then integrated out in a single parameter, the dipolar
polarizability of a single unit. I wish to stress that the
Clausius-Mossotti picture safely applies only to extreme
cases, such as ionic or molecular crystals. At the other
extreme are covalent materials, in which the electronic
charge is delocalized and no local-dipole picture is accept-
able. In this case the dipole of a unit cell is completely ill
defined (Martin, 1974). Well studied covalent materials
are the simplest semiconductors, in which the behavior
of valence electrons is known to be strongly nonclassi-
cal. Covalent bonding is a purely quantum phenomenon,
and the consequent dielectric behavior is a quantum phe-
nomenon as well (this viewpoint is emphasized, for exam-
ple, by Phillips, 1973). Even oversimplified model screen-
ing theories for covalent materials must explicitly invoke
quantum mechanics in some approximate form. This is
the case for the popular screening models of Penn (1962;
Grimes and Cowley, 1975) and Resta (1977). The latter
is based on the Thomas-Fermi approximation. Within
both these models, the valence electrons are schematized
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as a "semiconducting electron gas." Polarization is due
to a uniform current Bowing across the sample, while the
role of local dipoles is totally ignored. In real materi-
als the two extreme mechanisms —uniform polarization
and local dipoles —coexist (for a thorough discussion, see
Resta and Kunc, 1986).

The dipole of a macroscopic sample, Eq. (1), is gener-
ally neutralized at equilibrium by electrically active de-
fects and/or surface charges (Landau and Lifshitz, 1984),
whose relaxation times may nonetheless be extremely
long (e.g. , hours). Therefore even a very slow pertur-
bation may induce a measurable LP. The important
point is that LP is phenomenologically known to be a
bulk property, i.e. , independent —in the thermodynamic
limit —of the surface conditions of the sample. The basic
quantity addressed in this work is therefore the difFer-
ence AP in macroscopic polarization between two dif-
ferent states of the same solid. We consider this difFer-
ence within the adiabatic approximation at zero temper-
ature, and we separate its ionic and electronic terms as
in Eq. (1):

LP=AP; „+LP ), (2)

1AP, i = — dr r Ap(r).
V

(3)

Using this definition, AP is a property of the charge of
the finite sample. To define a bulk property requires tak-
ing the thermodynamic limit: LP has contributions Rom
both the bulk and the surface regions, which in general
cannot be disentangled. A successful strategy for arriv-
ing at a bulk definition is to switch &om charge to current
(Resta, 1992). While the former is the squared modulus
of the wave function, the latter is fundamentally related
to its phase. Within a Bnite system, two alternate de-
scriptions are equivalent, owing to the continuity equa-
tion: the charge that piles up at the surface during the
continuous transformation is related to the current that
fI.ows through the bulk region. This link is lost for an
infinite crystal in the thermodynamic limit: the charge
and the current (alias the wave function's modulus and
phase) then carry quite distinct pieces of information. In
this same limit, macroscopic polarization is a property
of the current, not of the charge (contrary to a rather
common belief, found in many textbooks).

Therefore, in order to evaluate LP in an infinite peri-
odic crystal, one has to monitor the macroscopic current
fm.owing through the unit cell. The geometric phase per-
forms precisely this task in an elegant and effective way.
An adiabatic macroscopic current was previously identi-
Bed with a geometric phase in quite different contexts—
such as the quantum Hall effect (e.g. , Prange and Girvin,
1987; Morandi, 1988) or sliding charge-density waves
(Thouless, 1983; Kunz, 1986)—owing to the work of
Thouless (1983); this work in fact inspired the origi-
nal King-Smith and Vanderbilt derivation. This is not
the approach taken here: I follow instead an indepen-

dent proof of the main King-Smith and Vanderbilt result
(Resta, 1993).

The occurrence of nontrivial geometric phases in the
band theory of solids was first discovered by Zak (1989)
and attributed to the breaking of crystal inversion sym-
metry. The Zak phase is an essential ingredient of the
present approach to macroscopic polarization, and in fact
a nonvanishing value of LP is allowed only if the crys-
tal transformation breaks inversion symmetry. Need-
less to say, the breaking of the same symmetry within
a finite system does not produce any geometric phase,
while instead the most common occurrence of a geomet-
ric phase is due to breaking of time-reversal symmetry,
as in a magnetic field. Some formal analogies of the mag-
netic case with the present electrostatic one can be found
at the level of the Hamiltonian (8) below, having dis-
crete eigenstates, where a very peculiar (r-independent,
q-dependent) vector potential appears. Some precursor
considerations on this point can be found in an early
(1964) paper of Kohn.

The geometric phase approach —in its present status-
is basically a one-electron theory, in the same sense as is
the whole band theory of solids (Blount, 1962). The main
results can therefore be stated in terms of any mean-Beld
theoretical framework. I have chosen here to formulate
the theory within the familiar language of the density-
functional theory (see for example, Lundqvist and March,
1983) of Kohn and Sham, which has at least two main
advantages: it is a formally exact theory of the electronic
ground state, and is currently implemented —within the
local-density approximation —in numerical work. It is a
trivial exercise to rephrase all of the results of the present
paper within the language of the Hartree-Pock theory of
solids (Pisani et aL, 1988), or that of any other mean-
field theory. Finally I observe that no genuine many-
body generalization is available so far, that is able to
cope with highly correlated dielectrics: in these cases
one expects unphysical features in the Kohn-Sham po-
tential, and therefore density-functional theory —despite
being formally exact—is probably useless.

Density-functional theory is quite appropriate for deal-
ing with LP, which is an adiabatic observable of the elec-
tronic ground state. I shall show that LP is a property
of the manifold of the occupied Kohn-Sham orbitals as
a whole, as is the crystal density; but at variance with
the density —where any phase information is deleted—
LP depends in a gauge-invariant way on the phases of
the Kohn-Sham orbitals.

III. MICROSCOPICS AND MACROSCOPICS

We start &om the basic definitions of Eqs. (2) and (3),
and we address the thermodynamic limit V —+ oo. The
basic assumption of the present theory is the existence of
a continuous adiabatic transformation of the Kohn-Sham
Hamiltonian connecting the two crystal states. It must
fulfill two important hypotheses: (i) the transformation
is performed at null electric field, and (ii) the system
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remains an insulator in the sense that its Kohn-Sham
gap does not close throughout the transformation. For
the sake of simplicity we parametrize the transformation
with a variable A, chosen to have the values of 0 and 1
at the initial and final states, respectively (Resta, 1992):

H" (q) = (p+ hq)2+ Vi~&(r),
1

2m.

where m, is the electron mass. They obey —owing to
Eq. (7)—the iinportant phase relationship

dA P'(A).
u~"l(q+G, r) =e—' 'u~"l(q, r), (9)

If one identifies the variable A with time (in appropriate
units), then Eq. (4) can be spelled out by saying that
LP is the integrated current fIowing through the sample
during the adiabatic transformation. This current is the
very quantity that is phenomenologically measured.

As for the physical nature of the transformation, we re-
main quite general about it. As an example, A could. be
taken to be an internal coordinate. In this case the trans-
formation is a relative displacement of sublattices in the
periodic crystal. This example is relevant for the polar-
ization induced by zone-center transverse-optic phonon
modes (in polar crystals) and for ferroelectric polariza-
tion. To start with, only transformations that conserve
the volume and the shape of the unit cell are explic-
itly considered, but the approach applies with no major
change to cell-nonconserving transformations as well, to
cope with piezoelectric polarization. The discussion on
this point is deferred to the end of Sec. V.

Since the crystalline solid is in a null electric field, pe-
riodic boundary conditions can be used at any A: the
Kohn-Sham orbitals g (q, r) then have the Bloch form.(A)

For an insulating system with n doubly occupied bands,
the electronic charge density is

~'"'( ) = 2, ): «I&."'(& )I'
(2ir)

where BZ is the Brillouin zone, and a plane-wave-like
normalization is assumed for the Bloch functions. Any
phase information about the Kohn-Sham orbitals is lost
in Eq. (5).

An alternative expression is obtained via a band-by-
band Wannier transformation (Blount, 1962):

(A)( ) (2ir) ' dq qE'l(q, r),

@„"l(q, r) = e' i'u~ "l (q, r) = ~O) e'~' & al "l (r —R ).

The periodic functions u (q, r) will be a basic ingredi-
ent of the present theory. At a given q, they are discrete
eigenstates of the Kohn-Sham Hamiltonian

where 0 is the cell volume. Wannier functions displaced
by lattice vectors R~ are orthogonal to each other and de-
Gne a unitary transformation; the inverse transformation
is

where C is any reciprocal lattice vector. The Wannier-
transformed form of the electronic charge density is

(1O)

We are interested in the periodic charge Qp= p~ ~ —p~ ~,

which occurs in the thermodynamic limit of Eq. (3):

Ap(r) = 2e ) ) [Ia~'l(r —Ri)I' —Ia~'l(r —Ki)I'].
n=l

Since the periodic density difFerence is now decomposed
into a sum of localized and neutral charge distributions-
as in simple Clausius-Mossotti models —its dipole mo-
ment per cell is well defined and given by

b,P,i = —) dr r [Ia&'&(r)I' —Iaiol(r)I'].
=l

(12)

The convergence of the integrals follows &om the results
of Blount (1962).

The above derivation is mathematically correct; none-
theless Eqs. (2) and (12) cannot be accepted as the ba-
sic definition of a physical observable without further
analysis. In fact the phases of Bloch functions entering
Eq. (6) are arbitrary, thus making the Wannier transfor-
mation strongly nonunique; in a three-dimensional sys-
tem with composite bands, further nonuniqueness comes
from separating the states in overlapping energy regions
into difI'erent bands. Ever since the pioneering work
of Kohn (1959, 1973) and des Cloizeaux (1964), it has
been well known that difFerent choices provide difI'er-

ent shapes, symmetries, and even asymptotic behaviors
for the Wannier functions. From a more fundamental
density-functional point of view, the individual Kohn-
Sham orbitals carry no physical meaning: electronic
ground-state properties are in fact a globa/property of the
occupied. manifold as a whole. I shall therefore consider a
quite general unitary transformation of the occupied u's
amongst themselves at a given q. Such a gauge transfor-
mation is defined by the unitary n x n matrix U(q). Any
physical electronic ground-state property must be gauge
invariant.

Any nonpathological gauge transformation ensures
convergence of the first moments appearing in Eq. (12).
Higher moments could be more problematic (Blount,
1962). To ensure that Eqs. (2) and (12) define AP as a
macroscopic observable of the system, it remains to prove
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gauge invariance and translational invariance; these steps
are accomplished below.

S".'(q q') = (u'"'(q) lu."'(q'))

dr u~'l*(q, r) u~"l(q', r).
cell

IV. GAUGE AND TRANSLATION INVARIANCES

The overlap Inatrix is obviously gauge dependent; when
q' —q equals a reciprocal vector G, it fulfills the relation-
ship

S'".'(q q+G) = (u"'(q)le * 'lu."'(q))* (14)
It proves useful to transform AP i back in terms of the

u wave functions. We introduce, following Blount (1962),
the nx n overlap matrix S&"&(q, q'), whose elements are

owing to Eq. (9). Straightforward manipulations trans-
form Eq. (12) into the equivalent form

2eAP, i=i dq t ~V' S~'l(q, q') —V'„S~ol(q, q'))
z

tr ('|7~ S~"l (q, q'))
q' =q

= tr {V~ S~ l(q, q')) + tr (U '(q)V~U(q) ),=q

(16)

where I have used the cyclic invariance of the trace and
the fact that S( ) coincides with the unit matrix: at q=q'.
I then transform the last term using the well-known ma-
trix identity (Schiff, 1968)

det exp A = exp tr A,

which, applied to A = lnU, yields

tr (U VU) = V' lndet U =i%'8, (18)

where 8 is the phase of the determinant of U. Although

where tr indicates the trace, and we consider only the
gauges in which S( ) is a di8'erentiable function of its
arguments. Despite the integrand's being gauge depen-
dent, Eq. (15) is gauge invariant, as well as Eq. (12).
The proof is reported in the venerable paper of Blount
(1962), although for the case of nonoverlapping bands
only. More recently, Zak (1989) recognized that expres-
sions such as those on the right-hand side of Eq. (15)
are geometric phases, but again he focused on properties
of the individual bands only. These geometric phases
were not related to any physical observable of the crys-
talline solid until the major contribution of King-Smith
and Vanderbilt, who identified their fundamental link to
the macroscopic electric polarization.

I generalize the gauge-invariance proof of Zak (1989;
Michel and Zak, 1992) to the multiband case upon
considering the most general gauge transformation
which changes the matrix S~"l(q, q') into S~"l(q, q') =
U i(q)S~"l(q, q')U(q'). The integrands in Eq. (15) then
become

otherwise arbitrary, U must conserve Eqs. (9) and (14);
this implies that U is periodic in reciprocal space, yield-
ing

i8(q+G) i8(q) (19)

The general form for 8 is then

~(q) =~(q)+q Ri (2O)

where n(q) is a periodic function and Ri is any lattice
vector: the gradient of this phase when integrated over
the Brillouin zone contributes to Eq. (15) the constant
term

2e
Pi = —Ri.0 (21)

The Gnal value of LP ~ is therefore gauge invariant and
well defined, modulo the "quantum" P~. One often ex-
pects lAP, il and —most important —lAPl itself to be
much smaller than such quanta, in which case no am-
biguity arises. Otherwise LP cannot be determined as a
function of the initial and final states only, as in Eq. (15).
Additional intermediate points in the A interval [0,1] have
to be considered to resolve the ambiguity. In the latter
case, when A is in a multiparameter space, the value of
LP ~ may depend on the actual path joining the initial
and Anal states. It is worth pointing out that —in both
cases—the hypothesis that A transforms the crystal with
continuity and via insulating states for all A's is essential
to get an unambiguous gauge-invariant result.

We have proved that the two terms in Eq. (15), origi-
nating from S( ) and S( ), are separately gauge invariant.
It is therefore tempting to identify each with an "abso-
lute" electronic polarization of a specific crystal state.
Such a concept is ill defined. To realize this, consider
Eq. (12), where we see that each of these two terms is
the dipole of a non-neutral charge distribution. Accord-
ingly, neither is separately translationally invariant. To
better illustrate this point, let us consider a uniform rigid
translation of the crystal as a whole by an amount Aro,
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where rp is fixed and A is between 0 and 1, as usual.
One gets the S& ~ matrix elements simply by multiplying
those of S~ & by the phase expi(q —q')ro, whence the
rigid translation induces a change in polarization:

2neLP ) —— rp.0
Since a bulk macroscopic property must be translation-
ally invariant, there is no way of defining the absolute
electronic polarization of the crystal in a given state.

The translational invariance is of course recovered.
when we consider the contribution of the ions as well,
starting Rom Eq. (1). The ionic contribution exactly can-
cels that of Eq. (22), due to the overall charge neutrality
of the crystal cell. The relationship between charge neu-
trality and translational invariance of the macroscopic
polarization is indeed fundamental, as is emphasized in
the classic work of Pick, Cohen, and Martin (1970). In
the present formulation the total LP correctly vanishes
for a rigid translation of the crystal as a whole.

V. GEOMETRIC QUANTUM PHASES

We start by introducing the scalar function p~ ~ as the
phase of the determinant of S~ ~:

y~" l (q, q') = Im ln det S~"l (q, q'), (23)

defined modulo 2m, which measures the "phase differ-
ence" between the Kohn-Sham orbitals at q' and those at
q, once the Bloch phase is removed. In the jargon of geo-
metric phases, Eq. (23) would be a Pancharatnam (1956)
phase. Here it is a property of the occupied Kohn-Sham
manifold as a whole and is of course gauge dependent;
its infinitesimal variation is expressed as

dp = V', .p~"l(q, q') dq. (24)

The differential phase can be equivalently expressed in
terms of the trace of S~ &, since

as is easily proven by applying the same identity in
Eq. (18), to S~"l. One then exploits the fact that, at
q'=q, S~"l(q i, q') coincides with the identity, while the
trace of its q gradient is purely imaginary, owing to or-
thonormality. Equation (25) leads to an alternative ex-
pression for AP, i, since substituting it in Eq. (15) yields

dq [
—&, y" (q, q')+&g v "(q q')I (26)

In numerical implementations the determinant form of
Eq. (23) is essential in order to yield gauge-invariant re-
sults. This point will be further elaborated in Sec. VII.

I et us take the two points qIp and qp+G in reciprocal
space. Their phase difference p~"l(qo, qo+G) is easily
proven to be gauge invariant using the results of the pre-
vious section. If we now consider a continuous path C
joining these two points, the line integral of the differen-
tial phase

~"'(&) = —f dv

is gauge invariant as well and has the properties of a ge-
ometric phase. This result is a simple generalization of
the work of Zak (1989; Michel and Zak, 1992), in which
a similar result is proved for a single band. Nonetheless,
the present generalization to the occupied manifold as
a whole is essential to cope with valence-band. crossings
in real solids. A standard Berry phase is a circuit inte-
gral of the differential phase in a parameter space (Berry,
1984, 1989; Jackiw, 1988). In the following I shall call
a "Zak phase" the peculiar form of Eq. (27), in which
the line integral is evaluated over a special open path in q
space, and I reserve the name of Berry phases for line in-
tegrals evaluated along arbitrary closed paths in arbitrary
parameter spaces.

The three-dimensional Brillouin-zone integral in

Eqs. (15) and (26) can be evaluated upon performing
two Zak phase calculations —such as the line integral of
Eq. (27)—and a surface integration in succession: this is
in fact the approach followed in King-Smith and Vander-
bilt. In the following I explicitly illustrate such integral
reduction in the most general case of an arbitrary Bravais
lattice.

First of all we observe that the Brillouin-zone integrals
in Eqs. (15) and (26) can be equivalently performed upon
a unit cell of the reciprocal lattice, since this amounts to
a simple gauge transformation. We then map the (non-
rectangular) unit reciprocal cell into a unit cube via a
linear change of variables. We call the basic translations
of the reciprocal lattice C~ (with j=1,. . . ,3) and those of
the direct lattice R~. The transformation to the dimen-
sionless (~ variables is

1
q = 6C i + bc 2 + (sG s, (g = —q . R -.2 2' 2

One gets a more compact form upon defining (4=% and
considering the four-dimensional vector $ as a single pa-
rameter. The notation Iu (g)) = Iu (q)) is adopted(A)

for the state vectors. The differential phase for in6nites-
imal variation of both q and A is provided by the linear
differential form
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(29) LP) ——— d1d2

The change of variables transforms Eq. (26) into three
equations, which provide the components of LP,~ along
the C~ directions. Let us focus for the sake of simplicity
upon one of these components, say j=3. The result is
cast as

2e
Cs b.P,~

= — d(~d(2 dy — dy0 Cp Cg
(30)

where the two-dimensional integral is over the unit square
[O,l]x[0,1], and the two Zak phases are evaluated along
appropriate unit segments. The points of Co are defined
by g = ((q, (2, x, O), 0 & x & 1, and those of Cq by
g = ((q, $2, 2:, 1), 0 & x & 1. The derivation of Eq. (30)
is given in the Appendix. Analogous expressions can be
obtained for the remaining C~ components.

Whenever crystal symmetry restricts the polarization
to be along R3—and the two other basic translations
to be orthogonal to it—Eq. (30) is most conveniently
written

LP ) —— CL 1d 2 +P (31)

which coincides with the main result of King-Smith and
Vanderbilt.

In both Eq. (30) and Eq. (31) it proves better to use
the alternative determinant form, as in Eqs. (23) and
(24). This is obtained via the obvious generalization of
the overlap matrix,

~ -(& 4') = (u (&)l~-(&')).

The Pancharatnam phase, Eq. (23), is generalized to this
augmented parameter space as

p (f, g') = Im ln det S($,g'), (33)

and the di8'erential phase, Eq. (29), has the alternative
equivalent expression

dv = «v(C, C') t. ~
dC. (34)

The expressions given above, Eqs. (30) to (34), are those
used in practical applications of the approach to real ma-
terials (King-Smith and Vanderbilt, 1993; Dal Corso et
aL, 1993b; Resta et al. , 1993a, 1993b), which have been
performed within the local-density approximation (e.g. ,
Lundqvist and March, 1983) to density-functional theory.

So far, I have considered only transformations at con-
stant volume and shape of the unit cell, i.e. , transforma-
tions in hicwh the Rz vectors do not vary with A (alias
(4). Thanks to the present scaled formulation, this re-
striction can be eliminated with no harm. The expres-
sion is particularly simple for the special case of Eq. (31),
which is generalized to

At this point we may look back at our starting defini-
tion of AP, ~, Eq. (12), to notice that it does not apply
as it stands to the cell-nonconserving cases. This is not
a serious problem, since a fully satisfactory generalized
definition, based on Eq. (12), can be obtained upon per-
forming a two-step transformation on the solid: first a
pure scaling of the charge of one of the two crystal states,
and then a suitable cell-conserving transformation of the
electronic Hamiltonian. Further elaboration on this point
is unnecessary, since the geometric phase approach pro-
vides an equivalent, and. more useful, formulation, e.g. ,
in Eq. (35).

Vl. CONNECTION AND CURVATURE

The four-dimensional formulation —introduced in the
previous section for the purpose of simplifying notation-
is more than just cosmetic, in that it allows us to look at
the problem &om a quite general viewpoint and. offers a
deep insight into the fundamental quantum nature of the
macroscopic polarization as a "standard" Berry phase in

space.
The state vectors lu (g)) are discrete eigenstates of the

parametric Kohn-Sham Hamiltonian H(g) = H~"l (q),
Eq. (8). We define the Berry connection of the problem
in the usual way (Jackiw, 1988):

(36)

At the most elementary level, the connection is defined
for a single state; the generalization to the set of the n
lowest states is trivial, provided these n states are not de-
generate with the higher ones at any point of the domain
(Jackiw, 1988). This is indeed the case, since we have
assumed the solid to be an insulator for all A' s. It is no
surprise that we have met this very same Berry connec-
tion before, in the expressions for the differential phase,
Eqs. (29) and (34). The circuit integral of the connection
along any closed path C in g-space is just a "nonexotic"
Berry phase,

2e
Gs . EP,) = — d(yd(2 p(C),0 (38)

p(C) = — dry = A(g) dg,
C C

whose gauge invariance is by now almost obvious (Berry,
1984, 1989; Jackiw, 1988). I shall show that the quan-
tity of interest, LP,~, can be expressed in terms of such
circuit integrals.

Let us consider only the LP ~ component along G3.
Equation (30) is then equivalent to
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when the closed path C is the contour of the unit square
in the plane parallel to the (s and (4 axes, at given val-
ues of (i and (2 (this is illustrated in Fig. 1). The proof
of the equivalence is straightforward. The path consists
of four straight-line segments. Two of them coincid. e by
construction with Co and Ci in Eq. (30), and their contri-
butions to p(C) are exactly the Zak phases of Eq. (30),
with the appropriate sign; the contributions of the re-
maining two segments cancel. This is most easily seen in
the (q, A) variables, since the points of these two segments
difFer by the reciprocal vector Gs, and Eq. (9) implies

(u"'(q+Cs)
I &&~."'(q+Cs)) = (u'"'(q)

I &&u-'"'(q)).

(39)

Incidentally, Eq. (38) proves the gauge invariance of KP, )

in an alternative —and more elegant —way with respect
to the proof given in Sec. IV; in both derivations, the role
of Eq. (9) is pivotal.

I stress once more that the connection is gauge de-
pendent and nonobservable, while its circuit integral is
gauge invariant and provides the relevant physical quan-
tity b,P,i. The connection A'(g), therefore, plays the
same role as the ordinary vector potential in the the-
ory of the Aharonov-Bohm (1959) effect, which is the
archetype of geometric quantum phases.

The appropriate generalization of Stokes's theorem
(Arnold, 1989) traiisforms Eq. (37) into the surface in-
tegral of the curl of A', i.e. , using Berry's (1984, 1989)
notations,

p)c) = —Im) /da (%au (g)~ x ~'veau )5)),

&v (&) =
~ &~(&) —

~ &'(&)
2

(41)

The surface integral over the unit square in Fig. 1 pro-
vides the Berry phase as

v(&) = f&b~(4 xs4(4); (42)

therefore Eq. (38)—and its analogs —are equivalent to

2e
C AP, i = — d$ P 4($), j = 1, . . . , 3,

where the four-dimensional g integral is performed over
the urut hypercube [0,1]x [0,1) x [0,1]x [0,1].

Written in the form of Eq. (41), g is not explicitly
gauge invariant. Following Berry (1984), I insert a com-
plete set of states in Eq. (41). Straightforward manipu-
lations lead to the equivalent form

(44)

which explicitly shows invariance under unitary transfor-
mations of the occupied u's amongst themselves.

Comparison of Eq. (43) with Eq. (4) shows immedi-
ately that the curvature provides the C~ components of
the electronic term in the polarization derivative with
respect to A (alias (4):

where do. denotes the area element in g space, and the
integral is performed over any surface enclosed by the
contour C. The integrand itself is now gauge invariant, as
opposed to the connection, which is not. The curvature
g is defined as the generalized curl of the connection
(Jackiw, 1988),

(45)

The equivalence of Eq. (45) with the established results
of linear-response theory (Vogl, 1978; Giannozzi et aL,
1991; Resta, 1992) is discussed in Sec. VIII.A. The for-
inal analogy with the Aharonov-Bohm (1959) phase —in
which the curvature is just the ordinary magnetic Geld—
shed. s new light on dielectric polarization as a fundamen-
tal quantum phenomenon. In Eq. (45) we get the macro-
scopic linear response as a basic phase feature of the elec-
tronic ground state.

Vll. NUMERICAL CONSIDERATIONS

FIG. 1. Projection over the ((3, (4) plane of the contours
where the Berry phase, Eq. (37), is evaluated as a line integral
of the connection (thick solid line). By Stokes's theorem, the
Berry phase equals the integral of the curvature over a surface
whose projection is also shown (shaded area).

The application of the geometric phase approach to
actual calculations requires the evaluation of q gradients
of the Kohn-Sham eigenstates, as in Eq. (25), or equiv-
alently of (' gradients, as in Eqs. (29), (34), or (36). At
first sight, first-order q p perturbation theory (see, for
example, Bassani and Pastori Parravicini, 1975) would
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appear as the most natural tool. In fact, this is not the
case. On quite general grounds, perturbation theory can
be safely used in evaluating gauge-invariant quantities,
but it is useless for the gauge-dependent ones (Mead and

Truhlar, 1979), as is the difFerential phase d&p. This can
be shown as follows. I et us consider the nth eigenstate
of H(g), Eq. (8), whose eigenvalue is E„($); standard
first-order perturbation theory yields

Iu-(&+ «)) = Iu-(&))+ ).Iu-(4)) & (&) —&-(&) (46)

(It)) ) I (g))
&u (&)I+&~(&)lu (&))

&-(&) —& (&)
(47)

Use of this gradient in Eqs. (29) and (36) provides a van-
ishing connection (and difFerential phase) at any g. The
apparent paradox is solved by recognizing that Eq. (46)
fixes a particular gauge, corresponding to the so-called
"parallel transport" (Berry, 1989). Within this gauge,
the phase of the Iu„(g)) state is in general multiple val-
ued for a cyclic evolution in parameter space. At a given
g+«, the perturbed state is undetermined by an ar-
bitrary phase. A continuous single-valued behavior can
be recovered upon multiplying the right-hand member of
Eq. (46) by a noinntegrable phase (linear in «). This
phase provides the only nonvanishing contribution to the
connection, but perturbation theory is useless in deter-
mining it.

The successful numerical strategy for coping with geo-
Inetric phases is direct discretization of the line integrals.
By this I mean performing both the gradient and the in-
tegration entering the geometric phase expression over
a discrete mesh. I illustrate discretization of the Berry
phase in. Eq. (37), and for the most general closed path,
schematically shown in Fig. 2. We take a discrete set of N
contiguous points g, on the path, with s=O, . . . ,N 1;we-
further define g~ ——go, whereas it is understood that the
eigenstates at g~ and at go are the same (same phases,
same n ordering). A simple-minded discretization yields

FIG. 2. Discretization of the circuit integral for numerical
evaluation of Berry phases: an arbitrary path in g space is
shown.

where Ay, is the phase difFerence between g,+i and
Such discretization is safe only if the phase varies

smoothly &om point to point. This is far &om being the
case. The approximated eigenstates are in fact usually
obtained &om numerical diagonalization of the Hamilto-
nian, Eq. (8), over a finite basis. The gauge is thus ar-
bitrarily chosen by the diagonalization routine, and the
behavior of the phase is erratic; valence-band crossings
along the path are a further source of nonsmoothness. A
stable algorithm must therefore be numerically gauge in-
variant, in the sense that arbitrary fluctuations of the
gauge phase do not afFect the result; this is the case
for the algorithm proposed by King-Smith and Vander-
bilt, based on the Pancharatnam phase in its determi-
nant form, Eq. (33). When we use this equation, the
discretization becomes

Arp, = Im ln det S($„$,+i), (49)

dy Im ln
~ 4 h

s=o
det S(g„g,+i), (50)

which is obviously correct if the diagonalization rou-
tine is gentle enough to provide a smooth phase.
A nasty routine —or even an ordinary one—will in-
stead provide the overlap matrix S($„$,+i)
U i((,)S($„$,+i)U((', +i), where the U's are unitary
random matrices. The efFect of these matrices on the de-
terminant of S($„$,+i) is a multiplication by the overall
gauge phase exp i(8,+i —8,). One can immediately ver-
ify that the gauge phases cancel in the cyclic product of
Eq. (50). Therefore, despite wild fluctuations of the fac-
tors in Eq. (50) from point to point, their cyclic product is
numerically gauge invariant and the discretization of the
circuit integral stable. This basic property is not shared
by a discretization of the trace expression, Eq. (29).

The calculation of a given component of LP, start-
ing from Eq. (38), proceeds as follows. One evaluates
the surface average over the ((i, (2) unit square on a fi-

nite mesh. For each of the chosen ((i, (2) points, one
then considers the loop integral over the circuit shown in
Fig. 1. As explained in the previous section, the vertical
sides do not contribute. In several cases of interest, the
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$, = ((i, (2, s/N, 1), s = 0, . . . , K —1, (51)

and then the overlap matrices S($„$,+i) between the n
occupied u orbitals are evaluated. The important point
is that the orbitals at s=0 and s=N (whose q vectors
differ by Cs) must not be obtained from independent di-

bottom horizontal side does not contribute either. This
occurs whenever the crystal Hamiltonian is centrosym-
metric at ('4 ——0. It is therefore enough to evaluate the
line integral over the top horizontal side at (4——1, i.e. ,

using the self-consistent Kohn-Sham Hamiltonian of the
final state, which is evaluated within the local-density
approximation. This Hamiltonian is diagonalized over
a discrete mesh on the relevant segment, i.e., at the N
points

agonalizations. The basic relationship of Eq. (9) must be
used instead to get the orbitals at 8=% &om the corre-
sponding ones at 8=0. The line integral is finally com-
puted from Eq. (50), as discussed above.

Vill. INDUCED POLARIZATION

A. Linear-response theory

The curvature P, Eqs. (41) and (44), is a gauge-
invariant quantity. Therefore the g derivatives entering
it can be safely evaluated via perturbation theory and in
a given gauge. Following again the derivation of Berry
(1984), and using Eq. (47), one gets

(u-(&) I~II(&)/~('lu-(&)) (u-(I!)I~~(4)/&flu-(&))
[&-(4) —&-(&)I'

(52)

It has already been observed that the curvature provides, after Eq. (45), the A derivative of the macroscopic polariza-
tion. Within density-functional theory (Lundqvist and March, 1983), the linear response is a property of the electronic
ground state, involving the occupied Kohn-Sham orbitals only. This feature is evident in Eq. (41). In contrast, this
same feature is somewhat obscured in the equivalent expression, Eq. (52), which apparently depends on the empty
orbitals as well.

Expressions for evaluating polarization derivatives have been known for several years, having been obtained in other
ways than the present geometric phase approach. In order to make contact with the more traditional linear-response
theory and to show the equivalence explicitly, it proves better to switch back to the (q, A) variables. Using Eqs. (8)
and (28) one gets

whence Eqs. (45) and (52) read

BII($) h

B(~ m, C, (p+hq), j =1, . . . , 3,

aU~"~(r)
BA

(54)

4he I ~- ~ „(u-' '(q) lplu-''(q))(u-'"'(q) I~U'"'/»lu-'"'(q))

which &ndeed coincides with the standard linear-response
expression for the macroscopic polarization, as reported,
for example, by Resta (1992). This same expression
was previously derived &om a first-order perturbative
expansion of the occupied orbitals. Owing to time-
reversal (q -+ —q) symmetry, the Brillouin-zone inte-
gral in Eq. (55) is purely imaginary. Macroscopic linear-
response tensors involve explicitly the Kohn-Sham or-
bitals (as opposed to the density). In the context of the
present geometric phase approach, these tensors are ob-
tained as Brillouin-zone integrals of the curvature, and
therefore assume the meaning of a gauge-invariant phase
feature of the Kohn-Sham orbitals.

An expression like Eq. (55) was first proposed by Vogl
(1978) in order to deal with the polarization induced
by zone-center transverse-optic phonons in polar crys-
tals; the more general case of an arbitrary —albeit cell-
conserving —transformation of the Hamiltonian is consid-
ered by Resta (1992), who gives a straightforward proof.

II(~) (q) ; II~"~(q) + Re hU(~)e' '. (56)

The induced electronic current is then

2he
&&(~)=

(2 )

x Re Q dq (u„" (q)l (p+ hq) lbu~" (q, ~)).
n=1 BZ

(57)

First-order perturbation theory (see Landau and Lifshitz,
1977), followed by straightforward manipulations, yields

l

Here I give an alternate proof, which emphasizes the
meaning of Eq. (4) as the integrated macroscopic cur-
rent induced by the adiabatic transformation. Suppose
we add a small time-dependent (and lattice-periodic) per-
turbation to the Hamiltonian of Eq. (8), i.e.,
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(u-' '(q) lplu-''(q)) (u-'"'(q) l«(~) lu-'"'(q))

+ (~-'"'(q) lpl~-' '(q)) (~-' '(q) I~V(~) l~-''(q))
z'"'(q) —z„'"'(q) —n

(58)

v = —[H~ l (q), r] = (p + hq) + —[V~"i, r].
me

(59)

It has been demonstrated by Baroni and Resta (1986)
that the matrix elements of this extra term are well de-
fined and do not cause any harm (see also Hybertsen and
Louie, 1987; Giannozzi et al. , 1991).

An alternative linear-response method, due to Baroni,
Giannozzi, and Testa (1987), has become fashionable
recently. This is usually called density-functional per-
turbation theory, and its applications to semiconduc-
tor physics are performed within the local-density ap-
proximation to density-functional theory (Lundqvist and
March, 1983), in a pseudopotential framework (Pickett,
1989). A somewhat difFerent implementation of this ap-
proach has been developed by Gonze et al. (1992). The

Taking then the static (w -+ 0) limit of hP, ~(w)
j,](u)/iw, and identifying hV(0) with bA DV~"&/BA, one
gets immediately Eq. (55).

In practical implementations with modern nonlocal
pseudopotentials (Pickett, 1989) an extra term appears
in the expression for the current, Eq. (57), and hence in
Eq. (55) as well. The velocity in this case is in fact

I

basic idea is the same as in the "direct" self-consistent
methods, which are well known in atomic (Sternheimer,
1954, 1957, 1959, 1969, 1970; Mahan, 1980) and molecu-

lar (Dalgarno, 1962; Amos, 1987) physics. The density-
functional perturbation theory directly provides the self-

consistent A derivatives of the occupied Kohn-Sham or-
bitals. Upon transforming Eqs. (41) and (45) into the

(q, A) variables one gets

P'.,(A) = Im ) dq (&~ii~"~ (q) l

u~"l (q)).
(2vr)s Bz

(60)

&.(q) = 1 —) l~.'"'(q))(~.'"'(q)
I (61)

and in terms of it Eq. (60) is easily transformed to

The q gradient could be evaluated via perturbation the-

ory, but it is preferable to avoid the occurrence of slowly

convergent perturbation sums. One writes the projector
over the empty states as

(62)

This expression coincides with the finding of Baroni et al.
(1987) for the macroscopic response The Gr. een's func-
tion appearing in Eq. (62) is not explicitly calculated, and
its relevant matrix elements are evaluated via solution of
linear systems; for a detailed account, see Giannozzi et
aL (1991).

B. IVlacroscopic electric fields

Whenever a macroscopic electric Geld is present inside
the dielectric, the Kohn-Sham orbitals no longer have
the Bloch form, and the whole geometric phase approach
does not apply. On the other hand, all of the various
implementations of linear-response theory do allow the
study of the polarization induced by a macroscopic field,
or even induced by a difFerent source and accompanied—
because of the chosen boundary conditions —by a Geld.
This has been well known since the early work with di-
electric matrices reviewed, for example, by Baldereschi
and Resta (1983) in which appropriate q -+ 0 limits of

I

nonanalytic dielectric-matrix elements solve the problem.
The way in which linear-response theory copes with

macroscopic Gelds can be easily illustrated starting from
the formulation given above. Let us consider Eq. (55),
where we identify the parameter A with a Geld 8'. In
this case OV/M includes a macroscopic term equal to
—er, in addition to a periodic (so-caQed local-field) term.
Although r is not a lattice-periodical operator, its oK-

diagonal matrix elements appearing in Eq. (55) can be
easily evaluated in boundary-insensitive form —using the
velocity operator, Eq. (59)—at the price of an extra en-

ergy factor in the denominator of Eq. (55), or equiva-
lently of an extra Green's function in Eq. (62). It is fur-
ther worth pointing out that density-functional pertur-
bation theory —in its most recent implementations (Gi-
annozzi et a/. , 1991)—exploits an additional appealing
feature: the (screened) macroscopic field 8 may be used
as an explicitly adjustable boundary condition for solving
Poisson's equation. Therefore one may choose to per-
form the iterative calculation to self-consistency (say for
a zone-center optic phonon) either in a null field or in
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a depolarizing Geld. The former case is transverse, and
the latter is longitudinal. A further possible choice is to
assign a nonzero constant Geld, which does not vary dur-
ing the iteration process, and to calculate the electronic
ground state in this Beld self-consistently (to linear order
in the Beld magnitude).

The theory presented. here allows us to evaluate po-
larization difFerences —due to adiabatic variations of a
parameter A in the crystal Hamiltonian —in a null Geld.
Suppose instead that we are interested in the same crys-
tal transformation, but in a field. The key quantity to
consider (Landau and Lifshitz, 1984) is then the ther-
modynamic potential E(A, E'), in which the field 8 is
regarded as an independent variable (or boundary con-
dition). For instance, if A is identified with macroscopic
strain, then E coincides with the (zero-temperature) elec-
tric enthalpy defined, for example, in Chapter 3 of Lines
and Glass (1977). The most general expansion of E to
second order in E', and to all orders in A, reads

E(A, 8) = E(A, 0) —P(A) 8 ——8 s (A) 8',
Svr

(63)

where e(A) is the macroscopic dielectric tensor and P(A)
is the macroscopic polarization in zero field. The latter
is defined only modulo the arbitrary additive constant
vector P(0), which depends on sample termination and
does not affect any bulk property.

The generalized force f and the electric displacement
17 are obtained from Eq. (63) as conjugate variables:

f (A, 8') = — E(A, C)
8

E(A, 0) + P'(A) 8'+ —8s'(A) 8, (64)

27(A, Z) = 47rVgE(A, E—') = E(A) E+4~P(A) . (65)

The second expression relates the macroscopic polariza-
tion in a field to the one in zero Geld as

P(A, 8) = P(A) + y(A) 8, (66)

where the macroscopic polarizability tensor y = (s—
1)/4vr has been used. In a bulk solid, the macroscopic
field does not depend on the local charge density. Qn
the contrar'y, it is an arbitrary boundary condition for
the Poisson equation, which can often be controlled by
the experimental setup. Throughout this work we have
used the "transverse" boundary conditions, i.e., 8'=0; an-
other interesting case of Eq. (66) is when the adiabatic
transformation of the Hamiltonian is per formed imposing
"longitudinal" boundary conditions on the sample, i.e. ,
AE' = —47rAP.

Insofar as the second-order expansion in 8 Eq. (63)
is justiGed, the geometric phase approach can be used
even to study polarization in macroscopic fields (to all or-
ders in A), provided the macroscopic polarizability tensor
y(A) of the dielectric is available by other means (typi-
cally from linear-response theory).

C. Bern efFective charges

The Born (or transverse) efFective charge tensors mea-
sure by definition the macroscopic polarization linearly
induced by a unit sublattice displacement in a null elec-
tric field (Pick et al. , 1970; see also Pick and Takemori,
1986). These tensors represent therefore the simplest
application of the formal results discussed in this work.
When A is identified with a suitable phonon coordinate,
the Born effective charge tensors are obtained from the
polarization derivative P (A,~), where A,~ is the equilib-
rium value, i.e. , the minimum of E(A, O).

In the past, these tensors have been evaluated either
from Eq. (55) or from more complex linear-response tech-
niques, typically involving the calculation of dielectric
matrices in the small-q limit (Baldereschi and Resta,
1983). On a few occasions, supercell calculations have
also been performed in order to evaluate the effective
charges (Kunc, 1985). In more recent times, most calcu-
lations of the efFective charge tensors in semiconductors
are performed within the d.ensity-functional perturbation
theory of Baroni, Giannozzi, and Testa (1987), using
the local-d. ensity approximation. Por systematic appli-
cations to lattice-dynamical problems see de Gironcoli et
al. (1989, 1990), Giannozzi et al. (1991), Gonze et al.
(1992), and Dal Corso et al. (1993a, 1993b). Within such
an approach, the efFective charges can be evaluated (and
have indeed been evaluated) in several alternative ways.
One choice is to calculate the perturbed ground state in
zero Beld and to compute Eq. (62) after such perturbed
wave functions. This gives directly the Born efFective
charges. A second choice—in fact the original one of Ba-
roni et al. is to perform the self-consistent calculation
for the perturbed crystal in a depolarizing Geld. One cal-
culates in this way the Longitudinal polarization; a simi-
lar calculation provides the macroscopic dielectric tensor,
whence the Born (alias transverse) effective charges are
easily evaluated.

A third choice is to exploit Eq. (64), where the Born
effective charge tensors appear as the forces linearly in-
duced on the ions by a macroscopic Geld, at vanishing
phonon amplitude (A=A, z). One then performs the self-
consistent calculation for the perturbed solid in a given
Geld and with no ionic displacements: the forces on the
ions are Gnally evaluated from the Hellmann-Feynman
theorem (Feynman, 1939; Deb, 1973; Kunc, 1985).

Linear response is a powerful tool, but it requires spe-
cialized. computer codes and, furthermore, is easily im-
plemented only in a pseudopotential scheme (Pickett,
1989), using a plane-wave basis set. This fact has hin-
dered first-principle calculations of the effective charge
tensors in many interesting materials, where different ba-
sis sets are typically used in order to get state-of-the-art
results. In contrast, the geometric phase approach re-
quires standard ground-state calculations for the solid
with "frozen-in" phonons. All that must be evaluated
additionally are the overlap matrices between occupied
orbitals at the neighboring points of a suitable grid in
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reciprocal space, as explained at the end of Sec. VII. The
polarization derivatives are obtained as finite difFerences.
When the problem can be studied in both ways —and
all technical ingredients are kept the same —the two ap-
proaches provide identical results within computational
noise. Some examples have been published by Dal Corso
et al. (1993b).

The materials in which first-principles access to the ef-
fective charge tensors is most badly needed are probably
the perovskites oxides, whose cubic paraelectric phase
is illustrated in Fig. 3. Since the early work of Slater
(1950) the efFective charge tensors have been expected to
be relevant for understanding the ferroelectric instabil-
ity in these materials; classical models (e.g. , Axe, 1967)
predict highly nontrivial values of the effective charge
tensors. In ferroelectric perovskites delocalized electrons
are present (Cohen, 1992). For the reasons given in Sec.
II, no estimate even rough —of the effective charges is
possible without a quantum treatment of the electronic
system. Experiment is not very informative either, since
only partial data are available via Raman spectroscopy
(for a recent outline of the problems, see Dougherthy et
al. , 1992).

It happens that the constituents of ferroelectric per-
ovskites are "unfriendly" atoms (in a computational
physics sense), such as oxygen and transition metals.
Several very informative first-principles studies of these
materials exist in the literature, using basis sets more
complex than the plane waves. I cite here a paper of
Cohen (1992) as a single example. Nonetheless, no quan-
tum calculation of the Born effective charge tensors in a
ferroelectric perovskite was available until the advent of
the geometric phase approach. The first such calculation,
performed for KNbOs, is due to Resta et aL (1993a); a
few technical details are given below in Sec. IX, when
dealing with spontaneous polarization. In the paraelec-
tric phase, K and Nb sites have cubic symmetry, and
the effective charge tensors are isotropic; their calculated
values are ZK ——0.8 and ZNb ——9.1. The 0 ions sit at

I rI r
I r

I
I

g

r

FIG. 3. Cubic perovskite structure, with general formula
ABOs, where A is a mono- or divalent metal (solid circles)
and B is a tetra- or pentavalent metal (shaded circle). The
oxygens (empty circles) form octahedral cages, with B at their
centers, and arranged in a simple cubic pattern. The calcula-
tions reviewed here are for KNb03.

noncubic sites, and the efFective charge tensor has two
independent components: one (Zoi) relative to displace-
ments pointing towards the Nb ion, and the other (ZO2)
for displacements in the orthogonal plane. The calculated
valu s are Zoi = 6 6 an Zo2 = 1-7 These first
principles data demonstrate strong asymmetry of the 0
effective charge tensor and large absolute values of ZNb
and Zoi. The latter fact indicates that relative displace-
ments of neighboring 0 and Nb ions against each other
trigger highly polarizable electrons. Roughly speaking, a
large, nonrigid, delocalized charge is responsible for both
Z~b and Zoi.

D. Piezoelectricity

The piezoelectric tensor is defined as the polarization
derivative with respect to strain, when the macroscopic
field is kept vanishing. In a milestone paper, Martin
(1972a) proved that piezoelectricity is a well defined bulk
property, independent of surface termination. Notwith-
standing, Martin's proof was challenged, and the debate
lasted until recent times (Martin, 1972b, Woo and I an-
dauer, 1972, I andauer, 1981, 1987; Kallin and Halperin,
1984; Tagantsev, 1991).

Using the formulation of the present paper, the main
reason why piezoelectricity looks like a dificult problem
is that Eq. (55) does not apply. Indeed, OV(")/DA is not
a lattice-periodical operator when A is identified with the
macroscopic strain. In 1989, de Gironcoli et a/. found an
alternative path for ab initio studies of piezoelectricity
in real materials (the case studied was III-V semicon-
ductors). The calculations performed therein are lattice-
periodical and boundary-insensitive, therefore providing
further evidence (if any was needed) that piezoelectricity
is a bulk effect. The key idea—using the electric enthalpy
E(A, C) of Eq. (63)—is to exploit Eq. (64). Since the con-
jugate variable to strain is macroscopic stress, the piezo-
electric response appears therein as the stress linearly in-
duced by unit field at zero strain (A=A, q). Starting with
this definition, de Gironcoli et al. use density-functional
perturbation theory to evaluate the linear change in the
eigenfunctions induced by a macroscopic field, as outlined
in Sec. VIII.B; they then compute the linear change in
macroscopic stress, using the stress theorem of Nielsen
and Martiii (1983, 1985).

Within the geometric phase approach the (linear and
nonlinear) piezoelectric coefficients are accessible via fi-
nite differences —much in the same way as are the Born
effective charges. It is enough to compare ground-state
calculations performed at difFerent shapes and volumes of
the unit cell. This poses no problem, and the approach
applies almost as it stands, as discussed here at the end of
Sec. V. Indeed, King-Smith and Vanderbilt in their orig-
inal paper use the linear-response piezoelectric constant
of GaAs —calculated by de Gironcoli et al. (1989) as
a benchmark. Since the technical ingredients are not
the same, they find a 20'%%uo disagreement, which is not
a serious drawback. The final figure results in fact from
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a large cancellation of two terms, which are separately
computed. A. Dal Corso (unpublished calculation) has
performed an independent check: the calculated values of
the piezoelectric constant of GaAs —via the two different
approaches disagree by no more than 3% when all tech-
nical ingredients are kept the same. Other examples have
been published by Dal Corso et al. (1993b), who also per-
form the first ab initio study of nonlinear piezoelectricity
(the case study is CdTe, which has experimental interest
for strained-layer superlattices).

IX. SPONTANEOUS POLARIZATION IN
FERROELECTRICS

The geometric phase approach, as formulated through-
out this work, deals with the polarization difference LP
for a couple of arbitrary initial and final states, in a gen-
eral crystal. Suppose now that the initial (A=O) state
corresponds to a highly symmetric crystal structure, such
as the typical prototype (or aristotype) structure of a fer-
roelectric material (Lines and Glass, 1977). In this struc-
ture any bulk vector property is symmetry forbidden, as
is the case with centrosymmetric and tetrahedral solids.
The polarization P(0) is then zero. This looks like a use-
Ful convention (on crystal termination) more than a phys-
ical statement, since the "absolute" bulk electric polar-
ization has never been measured. A typical experiment—
performed via a hysteresis cycle—measures in fact only
an integrated current, which coincides with the polariza-
tion difference between two enantiomorphous ferroelec-
tric crystal states. The present approach provides theo-
retical access to precisely this kind of observable.

Once the above symmetry-based convention is as-
sumed, the prototype structure can be taken as a ref-
erence, and. the spontaneous polarization of the low-
symmetry structures can be de6ned through the differ-
ence. This is unambiguously possible under two condi-
tions: (i) there must exist a continuous adiabatic trans-
formation of the Kohn-Sham Hamiltonian which relates
the initial and final states in such a way that the crys-
tal remains insulating throughout the transformation;
and (ii) the difFerence in polarization between the final
and initial states must be smaller than the polarization
quanta, Eq. (21). Under these hypotheses, the polariza-
tion of the final state is—according to the expressions
given in this work —independent of the particular path
chosen in parameter space.

The wave functions of the reference state can be elimi-
nated &om the formalism, through a choice of origin and
phases such that the A=O contribution to Eqs. (15) and
(26) vanishes. For centrosymmetric prototype crystals
this is realized by choosing real u wave functions, which
imply a vanishing geometric phase. Strictly speaking-
as remarked by Zak (1989)—the geometric phase in the
centrosymmetric case is either 0 or 7r (modulo 2'). The
latter occurrence has never been found in the cases stud-
ied so far and would anyhow have little practical effect
within the present approach. Incidentally, it is worth

XL
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FIG. 4. Centrosymmetric tetragonal structure of KNb03,
with c/a = 1.017, taken as the (A=O) reference structure.
Solid, shaded, and empty circles represent K, Nb, and O
atoms, respectively. Internal displacements (indicated by ar-
rows, and magnified by a factor of 4) transform the reference
structure into the ferroelectric (A=1) structure.

mentioning that the occurrence of the value of vr for the
geometric phase in a system having real wave functions
is well known in molecular physics (Mead and Truhlar,
1979; Mead, 1992). After eliminating the reference state,
one gets an expression for the spontaneous electronic po-
larization, which can be evaluated using the wave func-
tions of the low-symmetry structure as the only ingredi-
ents. Since the reference state can be eliminated &om
the formalism, it looks as if the polarization difference
LP ~ was measured with respect to an "internal" refer-
ence, no longer depending on any explicit choice of ref-
erence system. Such a viewpoint is incorrect: only the
total difFerence AP is a macroscopic (i.e., translationally
invariant) observable, owing to charge neutrality. Since
the partition of AP into an electronic and an ionic term is
nonunique —notably when the prototype crystal has sev-
eral centrosymmetric sites in the cell—one must always
consider both terms together.

The paradigmatic materials in which it is relevant to
investigate spontaneous polarization are the ferroelectric
perovskites, having a cubic prototype phase above the
Curie temperature and displaying a series of structural
transitions to low-symmetry ferroelectric phases when
temperature is lowered. Typically, the first transition
is to a tetragonal phase, characterized by a small uniax-
ial macroscopic strain accompanied by microscopic dis-
placements of the ions out of their high-symmetry sites.
The latter distortion —henceforth called internal strain—
determines a preferred polarity of the tetragonal axis and
is responsible for the occurrence of spontaneous polariza-
tion. This is illustrated in Fig. 4 for the specific exam-
ple of KNb03, which has been studied by Resta et al.
(1993a, 1993b) via the geometric phase approach. The
main features of this calculation, and some of the re-
sults are discussed in the remainder of this section. No
study of the spontaneous polarization of a ferroelectric
Inaterial —based on quantum mechanics in any form-
has been available up until now.
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Within the present approach, the material is studied
in a "&ozen-ion" structure. The parameters of the ferro-
electric (A=1) structure are taken &om the experimen-
tal crystallographic data, measured at finite temperature.
As for the reference (A=O) structure, the obvious choice
is a tetragonal structure in which the internal strain is
taken as vanishing, and whose primitive cell is the same
as for the ferroelectric structure. In this material, the in-
ternal strain leaves the oxygen cage almost undistorted,
while the two cation sublattices undergo different dis-
placements with respect to it; this is shown in Fig. 4,
where the origin has been conventionally fixed at the Nb
site. The adiabatic transformation of the Hamiltonian
is cell conserving by construction for all A' s. The re-
ciprocal cell is rectangular. Therefore the King-Smith
and Vanderbilt expression, Eq. (31), can be used to eval-
uate LP,i, where K3 is chosen along the polarization
axis. Since the A=O reference structure is centrosymmet-
ric, only the line integrals along Ci are explicitly needed,
as explained above. Both the line integral and the two-
dimensional ((i,(2) average are performed on a discrete
mesh, as explained in Sec. VII. The Kohn-Sham occu-
pied wave functions entering the overlap matrix, Eq. (32),
are obtained by Resta et aL (1993a, 1993b) within
the local-density approximation from the full-potential
linearized augmented-plane-wave (FLAPW) method, as
implemented by Jansen and Freeman (1984).

The calculation provides for the ((i,(q)-averaged Berry
phase the value of —3.95, modulo 2'. Indeed this value,
shown in Fig. 5(a), solid line, is definitely not much
smaller than 2m and seems to leave much ambiguity. One
has to bear in mind, however, that the genuine macro-
scopic observable is LP rather than LP i. The ionic
term LP; „can be converted in phase units using the ob-
vious recipe p; „=BGsAP; „/2e, analogous to Eq. (38),
and then added to the Berry phase. Amongst the pos-
sible quantized values of the total (electroiuc plus ionic)
phase, the one leading to the minimum ~AP~ is shown
in Fig 5(a), shaded sector. Its value is —1.11, i.e. , —63.5
degrees, which can be considered much smaller than 2'.
As a check of the correct choice of the quantized phase,
Resta et al. have performed independent calculations
with the internal strain scaled to smaller values, obtain-
ing a total phase that monotonically decreases towards

(b)

FIG. 5. Berry phase in ferroelectric KNbOs (solid line); clas-
sical ionic contribution (dashed line); total phase, due to elec-
trons and ions (shaded sector). (a) The internal distortion is
performed while keeping the origin at the Nb site, as in Fig. 4.
(b) The origin is fixed at the K site.

zero. It is also worth recalling that the partition in elec-
tronic and ionic terms is nonunique: if the origin is kept
fixed at the K site instead of at Nb, the corresponding
phases are those shown in Fig 5(b).

The Berry phase calculation provides for the spon-
taneous polarization of KNbOs the value ~AP~ = 0.35
C/m, to be compared with the inost recent experimen-
tal figure of 0.37 by Kleeinan et aL (1984). This kind of
agreement could appear embarrassing, particularly given
the fact (Edwardson, 1989; Dougherty et aL, 1992) that a
real ferroelectric at finite temperature looks rather differ-
ent &om the &ozen-ion schematization of the theoretical
approach. Indeed, the agreement is not embarrassing at
all, since Resta et al. have demonstrated that the polar-
ization in this material is linear in the ferroelectric distor-
tion (i.e. , in A). This fact implies that the time-averaged
polarization can be safely computed &om a &ozen crystal
structure, where time-averaged crystallographic data are
used. Linearity is a nontrivial finding, given that ferro-
electricity is essentially a nonlinear phenomenon; further-
more, it is worth recalling that the accepted theory of the
pyroelectric efFect, due to Born (1945), crucially depends
on the assumption that the polarization is nonlinear in
the ionic displacements.

X. CONCLUSIONS

This paper describes a modern theory of macroscopic
polarization in crystalline solids. The dielectric behavior
of a solid is essentially a quantum phenomenon. A model-
independent microscopic approach to bulk macroscopic
polarization involves the current operator, that is, the
phases of the wave functions. I present here several recent
advances, amongst which the most significant is the King-
Smith and Vanderbilt approach to the problem. The for-
mal derivation of the whole theory is given in such a way
as to show very naturally the links with previously estab-
lished concepts and results, and in particular with state-
of-the-art linear-response theory. The main message of
the present work is that macroscopic polarization —both
induced and spontaneous —is a gauge-invariant phase fea-
ture of the electronic wave function, and bears in general
no relationship to the periodic charge distribution of the
polarized dielectric. The geometric phase viewpoint leads
to definition of the observed bulk quantities (such as AP
and P') in terms of a Berry connection (or "vector po-
tential") and of a curvature (or "inagnetic field" ). In
addition to being important in terms of formulation, the
geometric phase approach provides an extremely pow-
erful computational tool for dealing with Born effective
charges, linear and nonlinear piezoelectricity, and —last
but not least —spontaneous polarization in ferroelectric
materials.

Note added. After this work was completed, the many-
body generalization of the present theory was obtained
by Ortiz and Martin [Phys. Rev. B 49, 14202 (1994)].
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APPENDIX

the q gradient of an arbitrary function f into
3

V'~f = —) Rs
i=1 s

which is equivalent to
t9

Cs V.f =

(A1)

(A2)

I provide here the transformation &om Eq. (26) to
Eq. (30). The change of variables of Eq. (28) transforms

The basic expressions for EP,i, Eqs. (15) and (26), are
then equivalent to the set of three equations

Q QP.&

—i— d, d 2d 3 u' ' q ~„q — ~„q ~„q
n=1 2 n=1 2

(A3)

+3'++el — ~ 1d 2 f3 1y 2 P3 1) 2

(A4)

where the two-dimensional integral is over the unit square
[0,1]x [0,1], and the p's are the Zak phases:

1 n

&' '(& &) = 4 ).(.'"'(q)I .'"'( )). (A5)
0 n=1 3

Upon defining (4——A, as in Sec. V, and considering g as a
single four-dimensional parameter, we find that the geo-
metric phase of Eq. (A5) coincides with the line integral
of the difFerential phase dip, Eq. (29), over a unit segment
parallel to the $s axis, at constant values of (i, (z, and.

(4 ~ We therefore arrive at Eq. (30):

2c
Cs AP, i = — d(id(2 dp — dp0 CP C1'

(A6)

where the integration domains are those given in the
main text.
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