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Abstract. Rapid experimental progress has recently allowed the use of light to
prepare macroscopic mechanical objects into nearly pure quantum states. This
research field of quantum optomechanics opens new doors toward testing quantum
mechanics, and possibly other laws of physics, in new regimes. In the first
part of this paper, I will review a set of techniques of quantum measurement
theory that are often used to analyze quantum optomechanical systems. Some of
these techniques were originally designed to analyze how a classical driving force
passes through a quantum system, and can eventually be detected with optimal
signal-to-noise ratio — while others focus more on the quantum state evolution
of a mechanical object under continuous monitoring. In the second part of this
paper, I will review a set of experimental concepts that will demonstrate quantum
mechanical behavior of macroscopic objects — quantum entanglement, quantum
teleportation, and the quantum Zeno effect. Taking the interplay between gravity
and quantum mechanics as an example, I will review a set of speculations on
how quantum mechanics can be modified for macroscopic objects, and how these
speculations — and their generalizations — might be tested by optomechanics.
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1. Introduction

The macroscopic world is governed by classical physics, a set of deterministic laws
that govern particles in terms of their precise trajectories, fields in terms of their
precise distribution of amplitudes — both in a space-time which has a geometry that
is determined by the distribution and flow of energy and momentum due to particles
and fields.

Quantum mechanics is the law of motion for the microscopic world. In quantum
mechanics: each canonical degree of freedom in classical physics (e.g., a particle moving
along one dimension, a single spatial mode of a field, etc.), which has one pair of
canonical coordinate and momentum, gets elevated into a one-dimensional, complex-
valued wave:

{q, p} → {ψ(q), ψ∗(q)} (1.1)

These waves evolve deterministically under quantum mechanics.
By applying the short-wavelength approximation, quantum dynamics can be

reduced to classical dynamics — in a way similar to the transition from wave optics to
geometric optics. A more subtle process that often takes place during such a quantum-
to-classical transition is that for a quantum system that has, or interacts with, a large
number of degrees of freedom (sometimes a “heat bath”), any imprecision in initial
data or subsequent observation (“coarse-graining”) will lead to decoherence [1], a loss
of coherence between the waves that describe all these degrees of freedom, and the
disappearance of their interference patterns.

This article reviews a set of theoretical techniques and experimental concepts
that will lead to answering the question of whether macroscopic objects — even
human-sized objects — satisfy the same laws of quantum mechanics, if we consider
those of their mechanical degrees of freedom ‡ that are well isolated from the
environment, therefore well-protected from decoherence. Studying this type of
Macroscopic Quantum Mechanics has become possible with recent progress in quantum
optomechanics: physicists have been able to use light (sometimes microwaves) to
prepare macroscopic mechanical objects into nearly pure quantum states [2, 3]. They
will soon be able to let these mechanical objects evolve without much decoherence,
and measure the final states, thereby making comparison with predictions of quantum
mechanics.

‡ For example the center of mass, or any mechanical eigenmode that has a long relaxation time.
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1.1. The Quantum Measurement Process

Unfortunately for the human beings, the realization of the existence of the microscopic
quantum world does not convert into an ability to directly perceive it. The initial
condition and the final results of quantum experiments must still be communicated
to and from the experimentalist in the form of classical information. Among other
things, we can only infer the quantum state of a system, and the way we infer them
is based on the quantum measurement process.

In a quantum measurement process, we always try to obtain classical information
in the form of a definitive answer on the value of a physical observable O of a system S
at a state |ψ〉, even though “the value of O” usually does not have a definition within
quantum mechanics. In such cases, we will inevitably be hit by quantum uncertainty:
the answer we obtain each time can be any one of the operator Ô’s eigenvalues —
only as we perform the same measurement process many times on exact copies of
the same state (destroying each one of them after each measurement) will we obtain
a predictable answer, in the form of the probability distribution of obtaining all the
eigenvalues of Ô, which is given by the projection of the quantum state |ψ〉 onto
eigenstates of Ô. This repetition in measurements is a necessary consequence of the
fact that a much larger amount of information is stored in the quantum description
of a system than in its classical description [Cf. Eq. (1.1)].

In this way, the validation of quantum mechanics as a deterministic law is
quite involved, because both the preparation of the initial state and the verification
of the final state require quantum measurements which can only be characterized
probabilistically. A preparation-verification experiment will therefore have to be
carried out repeatedly for many times in order to gather statistics. In particular,
for preparation, only in special cases can we unconditionally prepare a quantum state
— and that preparation procedure depends heavily on the state we intend to prepare;
in other cases, we will have to discard incidences which are not compatible with our
intention — and wait till our intended quantum state to appear. For verification,
the same final state can only be verified by measuring the statistical distributions of
several observables, and then synthesizing those distributions.

Despite the above peculiarity in its mode of attack, quantum mechanics has so
far proven tremendously successful, not only for microscopic systems (interactions
between atoms, nuclei and fundamental particles), but also in determining properties
of macroscopic objects that are governed by collective motions of microscopic objects
(e.g., electrons’ motion in solids). Due to the faster time scales of the above physical
processes, quantum nature of microscopic degrees of freedom are more easily visible.
For macroscopic quantum mechanics, on the other hand, we will have to pay more
attention to the issue of quantum measurement.

1.2. Two Approaches to Quantum Measurement

Historically, physicists have studied quantum measurement theory, in particular, the
theory on the evolution of a single system under continuous monitoring, because of
two different reasons — and these have lead to two different approaches.

The first approach arose from the need of precision measurement, e.g., detecting
weak classical forces like those due to gravitational waves, in presence of thermal and
ultimately quantum fluctuations of the transducers [4, 5, 6]. The aim is to bypass
as much as possible the quantum fluctuations of the transducer (test masses) and
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the measuring device (light, microwave or electric field), and detect the classical
signal at the output port with minimum additional noise. It was realized that, as
the position of a macroscopic test mass is being monitored continuously, Heisenberg
Uncertainty relation between position and momentum often imposes a Standard
Quantum Limit (SQL) on the device’s sensitivity [4]. It was later realized that the SQL
can be circumvented by Quantum Non-Demolition (QND) devices [7, 8], although the
design and implementation of such devices requires careful consideration of quantum
correlations that are built up between the measuring device and the test mass being
measured.

Further theoretical developments in this direction of research includes the
characterization of the maximal amount of information extractable from a system
by a measuring device, and the best observable of the system to measure in
order to extract a certain type of information [9, 10, 11, 12, 13]. In the field of
gravitational-wave detection, a program exploring laser interferometer configurations
that can best achieve sub-SQL sensitivity is being pursued, both theoretically and
experimentally [14, 15, 16, 17]. As for the methodology employed by this approach,
because one focuses on the detection of a classical signal, and because most of the
scenario is a linear system or a system operating within a range of linearization, the
Heisenberg picture is often employed, and for many such situations, the quantum-ness
of the problem only shows up in the spectrum of fundamental field fluctuations.

A second approach focuses on the quantum state of a system under continuous
measurement, and therefore stays in the Schrödinger Picture. This approach can
be traced back to the study of non-equilibrium quantum statistical physics, where
physicists, motivated by applications to condensed matter physics and chemistry, and
later quantum optics, were interested in studying the evolution of an ensemble of
quantum systems in contact (but not in equilibrium) with a heat bath (which has an
infinite number of degrees of freedom, and causes dissipation) [18, 19, 20, 21]. These
systems are also called open quantum systems. The methodology initially was to
derive equations of motion (Master Equations) for the density matrix of the ensemble
of systems alone, while the bath degrees of freedom are traced out.

The master equation was later adapted to the situation in which the system
is under continuous measurement, and Stochastic Master Equations (SMEs) were
obtained to describe the evolution of such systems, conditioned upon the measurement
result [22, 23, 24, 25, 26, 27]. For a single system under an idealized (lossless)
measurement, the random walk of its conditional state, which is pure, is described
by a Stochastic Schrödinger Equation (SSE), and is also referred to as a “quantum
trajectory” [28, 29]. Quantum trajectories have also been used as a mathematical
technique to analyze systems coupled to heat baths, when Master Equations are
“unravelled” into averages over Stochastic Schrödinger Equations [30, 31].

In this paper, being more interested in the state of a macroscopic mechanical
object under continuous measurement, we shall mostly take the second approach.
Nevertheless, we shall often make connections to the first approach, mainly because
for many optmechanical systems, their noise levels are often characterized in terms of
their performance as measuring devices.

1.3. A Detailed Outline of This Paper

In the first part of this paper (Secs. 2, 3 and 4), we will use a straw-man linear
optomechanical system to illustrate the key features of quantum measurement
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processes, and to introduce theoretical tools for treating such systems. [This part
is mainly pedagogical, the expert reader already familiar with quantum measurement
theory is strongly encouraged to skip Secs. 2 and 3, and quickly browse through Sec. 4.]
More specifically:

In Sec. 2, we will describe the simplest optomechanical system, and write
down the its linear Heisenberg Equations of motion. We shall subsequently discuss
the Standard Quantum Limit (SQL) in Secs. 2.2 and 2.3, a sensitivity limitation
for weak-force measurements, which arises when the noise due to the measuring
device’s stochastic back action to the system being measured significantly influences
measurement sensitivity. Even in classical measurement processes, attachment of the
measuring device may modify the dynamics of the system being measured. As we shall
discuss in Sec. 2.6, in quantum measurement processes, the level of this modification
can often be connected to the level of back-action noise.

In Sec. 3, we will discuss the Stochastic Schrödinger Equation (SSE) and the
Stochastic Master Equation (SME), which describe the stochastic evolution of a
system’s pure state (SSE), or the density matrix of an ensemble (SME), when the
system or ensemble is subject to a continuous measurement and the measurement
result is recorded. We shall refer to such a state as the conditional state, because it
is conditioned on the measurement result. For the simplest example of a harmonic
oscillator: the conditional expectation values of its position and momentum will always
undergo a random walk, although the conditional covariance matrix will reach a
constant shape after an initial transient period. As the measurement strength becomes
stronger, the scale of the conditional covariance matrix will be set by the measurement
timescale, and tends to be highly position squeezed. Although the SSE/SME approach
is valid for nonlinear systems, it is only directly applicable to Markovian systems,
i.e., those driven by quantum and/or classical noise with white spectra. In order to
incorporate fluctuations that are correlated in time (i.e., in non-Markovian systems),
one must explicitly include the dynamics that generate those correlations.

In Sec. 4, we will return to the Heisenberg Picture, and show that for linear
systems, one can bypass the stochastic approach in Sec. 3, and directly obtain
statistical characteristics involving the conditional state using tools of classical linear
regression — this will often lead to formulas that are more compact and therefore more
informative about the physical nature of the process. Unlike the SSE/SSE approach in
Sec. 3, these formulas here are not limited to Markvoian systems. This approach can
be formulated in terms of path integrals, and will later be used to study non-Markovian
linear systems driven by highly non-classical light.

For more pedagogical treatments of quantum measurement theory, the reader is
referred to the recent textbook of Wiseman and Milburn [32]; for detailed discussions
that emphasizes on force measurements, the reader is referred to the textbook of
Braginsky and Khalili [6] and a recent review article by A. Clerk et al. [33].

In the second part of the paper (Secs. 5, 6, 7, 8), we will outline a set of
experimental concepts that can be performed to illustrate and test quantum mechanics
— with focus on the quantum state of the mechanical object. Owing to the author’s
own background, many of the experimental concepts that are discussed in detail
were originally designed for gravitational-wave detectors and prototype experiments;
however, they can be easily converted to mechanical oscillators in other regimes.
Because these concepts apply to a large set of experiments with a huge span in physical
scales, we shall often describe optomechanical systems using dimensionless quantities
— for example, by comparing their various noise spectra with the free-mass Standard
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Figure 1. Simple optomechanical device used in Sec. 2 as a strawman system.
The mechanical object being measured is the movable end mirror of the cavity,
which is driven near resonance.

Quantum Limit. More specifically:
In Sec. 5, we describe basic experimental strategies that can bring the linear

optomechanical system into the quantum regime (state preparation, or sometimes
referred to as “cooling”), and to reconstruct the quantum state of the mechanical object
with an error less than Heisenberg Uncertainty (state verification). In this section, we
establish a direct connection between the device’s ability to beat the free-mass SQL
and our ability to use it to perform macroscopic quantum mechanics experiments.

In Sec. 6, we review experimental strategies that take further advantage of a
linear quantum optomechanical system, and illustrate features of quantum mechanics
— often involving the creation and detection of quantum entanglement. Many of these
further strategies will be based on the concepts of the more basic strategies discussed
in Sec. 5. In Sec. 7, we shall study two scenarios of non-linear optomechanical systems;
both turns out to require the “strong coupling condition” that the momentum transfer
from a single photon to the mechanical oscillator must be comparable to the quantum
uncertainty of the oscillator.

In Sec. 8, we will look beyond demonstration of standard quantum mechanics
and quantum measurement theory with macroscopic mechanical objects, and consider
examples of alternative theories for macroscopic quantum mechanics, and speculate
on how a more general program on testing macroscopic quantum mechanics can be
built.

Finally, Sec. 9, summarizes the main conclusions of the paper, and comments on
topics of research in optomechanics that are left out from this paper. The Appendix
contains several elementary facts about statistics and quantum mechanics, in order to
make this paper more self contained.

2. A strawman optomechanics system and linear quantum measurement

theory

In this section, we will describe a straw man optomechanical system, namely a simple
harmonic oscillator, which is also the movable mirror of a high-finesse cavity; the
cavity is driven from outside at a nearly resonant frequency; the out-going light is
sensed by homodyne detection (see Sec. 2.2) as a measure of the mirror’s position.
Let us first write down the Hamiltonian [34]:

Ĥ = ~ωmB̂
†B̂ − Fx̂+ ~(ω0 +∆)Â†Â− ~gx̂Â†Â
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+ i~
√

2γ

∫ +∞

0

dω

2π

[

Â†cω − Âc†ω
]

+

∫ +∞

0

dω

2π
~ωĉ†ω ĉω . (2.1)

In this Hamiltonian, the mirror’s mechanical resonant frequency is ωm (with B̂ and B̂†

the annihilation and creation operators, x̂ is position operator), the pumping frequency
is ω0 (ĉω and ĉ†ω are the annihilation and creation operators of the external field), and
cavity’s nearest resonant frequency is ω0+∆ (Â and Â† are annihilation and creation
operators for this cavity mode). We have ignored all other modes of the cavity, which
do not get excited in our case. Note that the external field (ĉω, ĉ

†
ω) contains an infinite

number of degrees of freedom; we have chosen to use ω to represent the spatial mode
with spatial angular frequency (wavenumber) of ω/c. The mirror is under an external
classical force F , and also coupled to the cavity mode via the coupling constant

g = ωc/L ; (2.2)

this parametric coupling term accounts for the shift of the cavity’s resonant frequency
when the mirror is displaced, and the force acting on the mirror due to radiation
pressure. The cavity mode is coupled to the external vacuum with a coupling constant
of

√
2γ, and we shall later identify γ as the decay rate of the cavity mode. The

cavity mode is to be driven from outside at ω0, although this is not reflected in this
Hamiltonian.

2.1. Linearized Treatment: Hamiltonian and Input-Output Relation

In this section, let us assume that the level of pumping at ω0 is high, so that there
is on average a large number of photons inside the cavity, and we can linearize the
system’s dynamics, using

Â→ Ā+ δÂ (2.3)

where Ā is the expectation value of Â at a steady state close to the states we are going
to consider. Here by assuming Ā ∈ R and Ā > 0, we have fixed the phase of light
inside the cavity, the value of Ā will later be related to the power circulating in the
cavity [See Eq. (2.6)]. We then simply write δÂ as Â itself. We shall also go into an
interaction picture with ~ω0Â

†Â removed, as well as the corresponding ~ω0 part of
the external continuum field. This results in:

Ĥ = ~ωmB̂
†B̂ + ~∆Â†Â− Fx̂− ~Gx̂(Â+ Â†)

+ i~
√

2γ

∫ +∞

−∞

dΩ

2π

[

Â†ĉω0+Ω − Âĉ†ω0+Ω

]

+

∫ +∞

−∞

dΩ

2π
~Ωĉ†ω0+Ωĉω0+Ω. (2.4)

Here we have also restricted ourselves to field fluctuations around ω0 — therefore the
integration bounds ±∞ should be understood as numbers that are much larger than
the frequency scale we care about, yet much lower than ω0. The linear optomechanical
coupling is

G = Āg. (2.5)
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where Ā is related to circulating power Ic in the cavity by calculating the total energy
E stored in the cavity:

E = 2IcL/c = ~ω0Ā
2 (2.6)

Here one should be careful to note that the integrals involving Ω, although related
to frequencies at which c oscillate, is actually a decomposition into spatial modes. We
can define (setting the speed of light to unity)

ĉz =

∫ +∞

−∞

dΩ

2π
ĉω0+Ωe

+iΩz , (2.7)

this gives

[ĉz, ĉz′ ] =
[

ĉ†z, ĉ
†
z′

]

= 0 ,
[

ĉz, ĉ
†
z′

]

= δ(z − z′) (2.8)

and terms involving (ĉω, ĉ
†
ω) in the Hamiltonian will be written as (after having

removed a constant):

i~
√

2γ
[

Â†ĉz=0 − Âĉ†z=0

]

+ i~

∫ +∞

−∞
ĉ†z (∂z ĉz) dz . (2.9)

This describes a wave propagating along the +z axis, but coupled locally with (Â, Â†)
at the position of z = 0. This leads to the Heisenberg equations of

dĉz
dt

= ∂z ĉz −
√

2γÂδ(z) , (2.10)

dÂ

dt
=

√

2γĉz=0 +
(

other

terms

)

(2.11)

One way to resolve this δ-function is to first integrate Eq. (2.10) across z = 0, which
leads to a jump of

ĉz=0+ = ĉz=0− −
√

2γÂ (2.12)

and then use [ĉz=0− + ĉz=0+] /2 to replace the ĉz=0 in Eq. (2.11):

ĉz=0 → ĉz=0− + ĉz=0+

2
. (2.13)

The averaging here can be justified if we instead consider a distributed coupling
between cz and A near z = 0, for example

∫
u(z)ĉzÂ

†dz + h.c.. Note that the

substitution (2.13) will bring a damping to Â — if we use Eq. (2.12) to re-express
Eq. (2.11) as having Â driven by the incoming field ĉz=0− alone:

dÂ

dt
= −γÂ+

√

2γĉz=0− +
(

other

terms

)

. (2.14)

In the subsequent treatment, we will only need to use Eqs. (2.12) and (2.14). We

shall use â to represent the Heisenberg operator of ĉz=0−, the incoming field, and b̂ to
represent the the Heisenberg operator of ĉz=0+, the out-going field.

From the Hamiltonian (2.4) and the above input-output formalism, we can easily
obtain linear Heisenberg equations of motion in the frequency domain. For the mirror,
we have it moving under the influence of the classical force and the radiation-pressure
force:

− iΩx̂Ω = p̂Ω/M , (2.15)

−iΩp̂Ω = −Mω2
mx̂Ω + ~G[Â†

Ω + ÂΩ]
︸ ︷︷ ︸

F̂BA

+FΩ . (2.16)
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Here the Fourier transform of the radiation-pressure force is:

FBA = ~G[Â†
Ω + ÂΩ] . (2.17)

For the cavity mode, we have it driven not only by the incoming field, but also by the
motion of the mirror: §

− iΩÂΩ = (−i∆− γ)ÂΩ + iGx̂Ω +
√

2γâω0+Ω , (2.18)

−iΩÂ†
Ω = (+i∆− γ)Â†

Ω − iGx̂Ω +
√

2γâ†ω0−Ω . (2.19)

Finally for the out-going field, it picks up a certain amount of the cavity mode,

b̂ω0+Ω = âω0+Ω −
√

2γÂΩ , (2.20)

b̂†ω0−Ω = â†ω0−Ω −
√

2γÂ†
Ω . (2.21)

We can also organize the creation-annihilation operators into quadrature operators
(following the Caves-Schumaker two-photon formalism [35, 36]):

â1Ω =
âω0+Ω + â†ω0−Ω√

2
, â2Ω =

âω0+Ω − â†ω0−Ω√
2i

. (2.22)

In this way, if the quadratures are superimposed with a classical carrier light ∝ cosω0t,
then â1 represents the amplitude quadrature of the field, while â2 the phase quadrature
(both for “in” and “out” fields). See Appendix C for more details.

Equations (2.15)–(2.21) are analytically solvable, and characterizes all aspects of
the system’s evolution. This will be the dynamical system that underlies most of our
discussions in Secs. 5 and 6. In Sec. 2.5, this system will be further simplified to
eliminate the dynamics of the cavity’s optical mode.

2.2. Weak force measurement and the Standard Quantum Limit

Let us first look at the issue of measuring a classical force. Starting from the simplest
case, we assume cavity detuning ∆ = 0, and obtain, from Eqs. (2.15)–(2.22), an
input-output relation [37]:

b̂1 = e2iβ â1 , (2.23)

b̂2 = e2iβ [â2 −Kâ1] + eiβ

∣
∣
∣
∣
∣

2K
SF
SQL

∣
∣
∣
∣
∣

1/2

F . (2.24)

Here we have defined

e2iβ =
Ω− iγ

Ω+ iγ
(2.25)

which is due to the storage of light in the cavity, and

K =
2Θ3γ

(Ω2 − ω2)(Ω2 + γ2)
, (2.26)

with

Θ3 ≡ 2G2

M
=

4ω0Ic
(MLc)

. (2.27)

§ Note that Â†
Ω

is the Ω-Fourier component of the Heisenberg operator Â†(t). It is not the same

as (ÂΩ)
†, which is the Hermitian conjugate of the Ω-Fourier component of the Heisenberg operator

Â(t).
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Figure 2. Left panel: noise spectrum of SQL-limited interferometer
configurations, with phase-quadrature readout. The red solid curve depicts Θ = γ;
red dotted curve corresponds to 1/10 the power, and red dashed curve corresponds
to 10 times the power. The black solid line is the free-mass Standard Quantum
Limit. A typical GW detector may have Θ ≈ γ ≈ 2π × 100Hz. For M = 10 kg
(this corresponds to the reduced mass of the four mirrors in Advanced LIGO [38]),

we have
√

Sx(2π · 100Hz) = 1.5 × 10−20 m/
√
Hz. For an arm length of 4 km,

the solid curve is achievable when the circulating optical power in the arms is
Ic = 830 kW. [See Sec. 2.2 for details.] Right panel: solid curve is as in the
left panel; dashed curves correspond to back-action-evading interferometer with
variational readout scheme plus 10 dB frequency-independent squeezing (red for
lossless interferometer, blue for 1% total optical loss); dotted curve has 10 dB
frequency-dependent input squeezing (red for lossless, and blue for 1% total optical
loss; in this case a 1% loss does not significantly affect sensitivity). The black
dashed line indicates the limit of all variational readout schemes given 1% optical
loss and 10 dB squeezing. [See Sec. 2.4 for details.]

Being proportional to G2 and hence Ic (circulating power in the cavity), K represents
the strength of optomechanical coupling (Θ is a characteristic angular frequency). We
have also defined

SF
SQL = 2~M |Ω2 − ω2| (2.28)

which, as we shall explain below in Sec. 2.3, is the the Standard Quantum Limit for
force measurement. In the case of vacuum input field, we have

Sâ1 = Sâ2 = 1 , Sâ1â2 = 0 , (2.29)

see Appendix A for details on spectral density, and Appendix C for details on spectra
of quadrature fields.

Let us assume that a homodyne detection is made on the out-going light,
measuring a quadrature field, which is a linear combination of b1 and b2, for example

b̂ζ ≡ b̂1 cos ζ + b̂2 sin ζ . (2.30)

This can be achieved by detecting the beating amplitude between the out-going light
and a local oscillator light:

î(t) ∝
(

b̂1 cosω0t+ b̂2 sinω0t
)

D cos(ω0t− ζ) . (2.31)
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Here D is the amplitude, and ζ is the phase of the local oscillator. Note that quantum
fluctuations of the local oscillator, ideally, should not enter the photocurrent i(t).
Homodyne detection can be achieved in several ways: (i) using a highly transmissive
mirror to combine a high fraction of the light to be detected and a low fraction of a
nearly quantum-limited carrier field originally with high amplitude (this is somewhat
similar to the so-called DC readout scheme of gravitational-wave detectors), (ii) use a
50/50 beamsplitter, interfere the light to be detected with a nearly quantum-limited
carrier field, use two identical photodetectors to detect photocurrents i1(t) and i2(t)
at the two output ports, then subtract from each other. This is also referred to as
balanced homodyne detection.

Rigorously speaking, a field quadrature is not always the optimal out-going
observable to measure, especially when we are aiming at detecting a very weak
displacement signal [11, 39]. However, these more optimal observables to detect will
be nonlinear (i.e., in terms of field quadratures), and will likely depend on features
of a specific waveform we aim at — these would be undesirable because in practice
we have many families of possible waveforms that need to be detected. In addition,
in gravitational-wave detection, the mirror also moves due to classical noise, with
amplitude that is much higher than the SQL at low frequencies — this will likely
detract from the advantage of nonlinear detection schemes. In any case, let us restrict
ourselves to the linear regime, and consider homodyne detection.

In absence of any prior knowledge to F , our best estimator for F is simply to
filter bζ by inverse the coefficient in front of F . The most conventional to measure
would be ζ = π/2 or b2, because it is the one quadrature that contains all the signal.

Within b2 [Cf. Eq. (2.24)], the term containing F is signal, the term e2iβa2 is
shot noise, the term −e2iβKa1 is radiation-pressure noise. When we normalize b2 such

that coefficient in front of F is unity, the shot noise will be ∝ 1/
√
K, hence ∝ I

1/2
c ;

the radiation-pressure noise will be ∝
√
K, hence ∝ I

1/2
c . Combining the two types of

noise, we have a total noise spectral density of

SF =
1

2

[
1

K +K
]

SF
SQL ≥ SF

SQL . (2.32)

This is a direct consequence of the trade-off between shot noise and radiation-pressure
noise: the former is inversely proportional to optical power, yet the latter is directly
proportional. However, the independence of SF

SQL from the details of the experiments
(e.g., the optical bandwidth γ) indicates a more universal origin [6, 14, 40], as we shall
discuss below in Sec. 2.3.

The SQL can also be written for position, if we use the mechanical oscillator’s
response function as the converter, and we have

Sx
SQL =

2~

M |Ω2 − ω2| . (2.33)

When dealing with gravitational-wave detectors, whose test masses are suspended
as nearly free masses, we often use the free-mass SQL,

Sx
free-mass SQL =

2~

MΩ2
. (2.34)

In the left panel of Fig. 2, we show the noise spectral of several interferometers that
are limited by the free-mass SQL. Henceforth in the paper, unless explicitly noted,
we shall always use the SQL to indicate free-mass SQL. See Sec. 2.3.1 below for the
special significance of the free-mass SQL.
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In gravitational-wave detection on earth, in the long-wave regime (λGW much
greater than the size of the detector), it is best to consider the effect of the gravitational
wave as a classical force field acting on the test masses, one often quotes the strength
of the wave by the strain h it causes on an array of free test masses with separation
much less than wavelength— because that strain is also related to metric perturbation
in the so-called Transverse Traceless (TT) gauge, in which wave propagation is most
easily treated. Suppose the (polarization-dependent) conversion between h and free-
mass displacement is x = Lh, then the SQL for GW detection, for an oscillator with
frequency ω, is

Sh
SQL =

SF
SQL

MΩ4L2
=

2~|Ω2 − ω2|
MΩ4L2

. (2.35)

In this way, SQL-limited GW sensitivity for an oscillator with frequency ω is much
better than that of a free mass, in the narrowband of |Ω− ω| ≪ ω.

2.3. Linear Quantum Measurement Theory

After having introduced the SQL from a specific calculation, let us study some
more fundamental issues of quantum measurement that have been used in the above
calculations.

2.3.1. Significance of the free-mass SQL. The free-mass SQL can often be used as
a benchmark for the quantum-ness of a measurement process. Suppose we have a
measuring device with a classical position sensing noise better than the free-mass
SQL, and suppose we focus on a frequency Ω — then, after taking measurement for a
time scale of τ ∼ 1/Ω, our sensing position error will be

∆x ≈
√

Sx

τ
<

√

Sx
SQL

τ
≈

√

~

MΩ
≈ ∆xQ (2.36)

which is the ground-state uncertainty of the position of a harmonic oscillator with
resonant frequency Ω. Similarly, if we have a classical force noise below the free-mass
force SQL, and if we allow the force to act on the mirror for a duration of τ ∼ 1/Ω,
the momentum uncertainty it causes will be

∆p ≈
√

SF τ <

√

SSQL
F τ ≈

√
~MΩ ≈ ∆pQ (2.37)

which is the ground-state uncertainty of momentum of the same oscillator. This means,
if within a broad frequency band, we have a device with only classical force noise and
sensing noise, both below the level of the free-mass SQL, the device will be capable of
localizing both position and momentum of the test mass below the ground-state level.
As a consequence, quantum noise will be the main enforcer of Heisenberg Uncertainty
Principle for the test mass.

2.3.2. Origin of the Standard Quantum Limit. Let us now discuss the origin of the
free-mass SQL. From a quantum measurement point of view, we suffer from the SQL
because

[x̂(t), x̂(t′)] = i~(t′ − t)/m 6= 0 (2.38)

This means we cannot determine x̂(t) continuously without worrying about the
sequence of measurement and state reduction, because these operators we attempt
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test mass
classical

force
light

out-going

field
photodetector

continuous state reduction

unless QND measurement

one reduction for entire

measurement process

Figure 3. Two approaches toward the continuous quantum measurement of a test
mass with light: The first approach places the quantum-classical cut between the
test mass and light, and therefore the measurement process reduces the quantum
state of the test mass continuously; reductions at later times often causing
“demolition” of previously prepared quantum state. The second approach places
the cut between the light and the signal read out by the photodetector; demolition
of quantum state is unnecessary because observables measured at different times
have commuting Heisenberg operators.

to measure are not simultaneously measurable: subsequent measurements of x̂ will
demolish the quantum state prepared by previous measurements. From Eq. (2.38),
one can derive a Heisenberg Uncertainty relation for position measurement at two
different times,

∆x(t)∆x(t′) ≥ ~|t′ − t|
2m

(2.39)

which eventually can lead to the SQL.
By contrast, if Heisenberg Operators Â(t) of the observable A we measure all

commute with each other, namely,
[

Â(t), Â(t′)
]

= 0 (2.40)

then we can find simultaneous eigenstates of all these operators {Â(t)}, and
divide the system’s Hilbert space into a direct sum of eigen-subspaces, each one
corresponding to one particular measurement outcome. We will only need to project
the system’s quantum state once, into one particular simultaneous eigenstate of
all these observables, and all measurement results can be pre-determined, and pre-
assigned with aprobability density. Such a scenario has been called “Quantum Non-
Demolition” (QND) measurements. The signature of a QND measurement is the
absence of back-action noise, and hence the absence of a Standard Quantum Limit.
Obviously, if we sense a classical force by using a QND observable as the transducer,
we will be immune from the SQL. This is one approach toward devices that beat the
SQL [41, 42, 7, 43, 8].

2.3.3. Continuous linear indirect measurements. Coupling to a QND observable is
not the only way to beat the SQL. It was later realized that preparing the measuring
device into appropriate quantum states can also achieve the same goal [44, 45]. In order
to better treat such possibilities, it was necessary to study “indirect measurement”,
which refers to the inclusion of (more of) the measurement device into the Hamiltonian
of the system being measured. In other words, instead of considering “some
observable of the test mass” as being measured, one considers instead the coherent
quantum mechanical interaction between the test mass and the light — forming an
optomechanical system — and defer, but not eliminate, the state reduction process to
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a further level — inside of the photodetector — where the out-going light is measured.
In this way, we can easily treat the more complex structure of quantum correlations
that build up over time.

Taking the point of view of indirect measurement, instead of having to repeatedly
carry out state reduction state-reductions and evolutions of the test mass, like

|ψ〉 → P |ψ〉 → UP |ψ〉
→ PUP |ψ〉 → UPUP |ψ〉 → . . . . (2.41)

we simply need to project out, from the initial state in the Heisenberg Picture, the
simultaneous eigenstate of all the commuting operators that are to be measured:

|in〉 → PẐH(t1)=ξ1,...,ẐH(tn)=ξn
|in〉 (2.42)

This enlargement of the quantum system makes all continuous measurements QND.
For example, the quadrature operators â1(t) and â2(t) for a freely propagating field
would be QND observables — because at different times they represent different
degrees of freedom and therefore naturally commute. In this way, the construction of
QND observables is no longer the key issue.

This point of view hides very well the state reduction (2.42) that takes place
in the indirect measurement process. During our treatment in Sec. 2.2, the only
use of the state-reduction postulate is in obtaining the spectrum of the quadrature
fields a1,2 — probability distributions of different realizations of the successive stat-
reduction processes are all summarized succinctly in these random processes. This
simplicity and this de-emphasis of quantum-state reduction allows one to better focus
on optimizing the device’s sensitivity to the classical force it is supposed to measure.
In Sec. 4, we will discuss how to recover the “hidden” measurement process from an
indirect measurement process.

However, a QND measurement for the out-going fields does not directly convert
into a sub-SQL sensitivity for the motion of the test mass. In fact, having deferred
treatment of state reduction, we must provide an alternative derivation and motivation
for the SQL. We will do this right now following the treatment of Braginsky and
Khalili [6]. For each continuous linear measurement, the observable that corresponds
to measuring device’s output must have Heisenberg Operators Ẑ(t) that satisfy the
simultaneous measurability condition:

[

Ẑ(t), Ẑ(t′)
]

= 0 . (2.43)

Due to linearity, Ẑ must be the sum of x̂, the observable we would like to measure
(which could be the position of the test mass), and an operator N̂ that arise from the
device degrees of freedom:

Ẑ(t) = N̂(t) + x̂(t) . (2.44)

Because N̂ is an observable from the device, it must commute with x̂, and the only
way Eq. (2.43) can hold is to have

[

N̂(t), N̂(t′)
]

= − [x̂(t), x̂(t′)] . (2.45)

Namely, device commutator must cancel test-mass commutator.
Let us put the above argument into details. First, let us assume that the coupling

between x̂ and the measuring device is linear, through an interaction Hamiltonian of
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V̂ = −~αx̂F̂ , with α the measurement strength, and F an observable of the measuring
device. We shall make the simplifying assumption that

[

F̂ (0)(t), F̂ (0)(t′)
]

= 0 (2.46)

here the superscript “(0)” indicates before coupling is applied. As we will discuss in
lengths in Sec. 2.6, this means the evolution of F will not be affected by the fact that
it is now coupled with the system being measured. On the other hand, the evolution
of x will in general be affected, and we can write

x̂(t) = x̂(0)(t)

+ α

∫ t

−∞
χ(t− t′)

[

F̂ (0)(t′) +G(t′)
]

dt′ (2.47)

with χ the response function of x̂ to an external force. Moreover, we can write
[

x̂(0)(t), x̂(0)(t′)
]

= i~χ(t′ − t) . (2.48)

Having introduced a measurement strength, the linearity of the system and the
device dictates that the operator Ẑ which corresponds to the device’s output must
“pick up” x with α as a constant of proportionality:

Ẑ(t) = Ẑ(0)(t) + αx̂(t) . (2.49)

Note that here x̂(t) has already been acted back upon by F̂ , as in Eq. (2.47).
The simultaneous measurability condition,

[

Ẑ(t), Ẑ(t′)
]

= 0 (2.50)

being valid at all orders of α, requires that
[

Ẑ(0)(t), Ẑ(0)(t′)
]

= 0 (2.51)

we can also argue that only
[

Ẑ(0)(t), F̂ (0)(t′)
]

= −i~δ(t− t′) (2.52)

allows the commutator of x̂ at difference times to be cancelled out by those of Z and
F [See, e.g., [46]]. This allows us to view Z and F as independent degrees of freedom
brought to interact with the test mass at different times; the form of Eq. (2.52)
makes us compare Z and F to the position and momentum of harmonic oscillators;
mathematically, it leads to a frequency-domain Heisenberg Uncertainty Principle:

SZZSFF − |SZF |2 ≥ ~
2 + 2~|ImSZF | . (2.53)

If we turn to the total position-referred measurement noise spectrum, we have

Sx =
~
2

α2
SZZ + 2Re (χ∗SZF ) + α2|χ|2SFF + S(0)

x (2.54)

where SZZ is sensing noise, SFF is back-action noise, SZF is their correlation, while

S
(0)
xx is noise caused by the zero-point fluctuation of the test mass. In gravitational-

wave detection, we are often outside the frequency band in which S
(0)
xx is important [47]

— and we shall ignore this term here. Further assuming no correlation between Z
and F , we obtain

Sx ≥ 2|χ|~ ≡ SSQL
x (2.55)
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which is the Standard Quantum Limit [Cf. Eqs. (2.33) and (2.34)]. However, in
general, if SZF does not vanish but is instead chosen appropriately, the Uncertainty
Principle (2.53) does not impose any bound on the total noise spectrum. This means,
beating the SQL requires correlations between the sensing noise Z and back-action
noise F . We shall often refer to those schemes that beat the SQL as QND schemes,
even though mathematically it is sometimes difficult to formally make them equivalent
to a measurement of a QND observable of a test object.

2.4. Beating the SQL in Linear Quantum Measurement Devices

2.4.1. Gravitational-wave detectors and prototype experiments The need to beat
the free-mass SQL in gravitational-wave detectors had long been recognized, at the
conception of the LIGO project [48]. At this moment, the first generation of laser
interferometer gravitational-wave detectors have completed their first round of runs,
at sensitivities 10 times the free-mass SQL. Second-generations, such as Advanced
LIGO [38], Advanced VIRGO [49] and KAGRA [50], are under construction and
will become operational in several years. These detectors will operate very close
to or moderately beat the free-mass SQL. The gravitational-wave community has
already started designing third-generation detectors, e.g., the Einstein Telescope [16]
and LIGO-3 [17]; these detectors may have to surpass the SQL significantly in order
to achieve a significant gain in sensitivity compared with the second generation.

Before discussing techniques that allow the quantum noise to beat the SQL, we
must realize that the SQL is used also because it is a easy benchmark that has a simple
conceptual origin. Major technical challenge in building sub-SQL interferometers exist
in improving technology that first lower classical noise, and bring the detector into the
quantum regime, these include: (i) isolating the test masses from ground motion [51],
and removing the influence of oscillating Newtonian gravity field [52], (ii) building
a suspension system that has low thermal fluctuations [53, 54], (iii) manufacturing
mirrors that have less internal fluctuations [55, 56, 57, 58], (iv) minimize classical
laser fluctuations [59], and (v) building a control system that stabilizes the system
from parametric instabilities that typically arise for high-power systems [60], and lock
the interferometer at its working point. We will not discuss these techniques here in
detail, but refer to the review article by Adhikari [61].

Now returning to the SQL — having recognized the correlation between sensing
and back-action noise as the key to beating the SQL, when we examine Eq. (2.23), we
already see several major approaches towards beating the SQL:

(i) We can inject squeezed vacuum, while keeping measuring the output quadrature
b2 [62, 63, 64]. This requires squeezing the input quadrature which is proportional
to

b2 ∼ a1 −Ka2 . (2.56)

The frequency dependence in K requires frequency-dependent squeezing angle,
while in turn is realizable by filtering frequency-independent squeezing through
detuned Fabry-Perot cavities, as realized by Kimble et al. [37]. See right panel
of Fig. 2 for the noise spectrum of such a configuration (red dotted curve). We
have also shown the noise spectrum in presence of 1% of optical loss (blue dotted
curve).

(ii) We can also detect a different quadrature than the phase quadrature, for example

bζ ∝ b2 +Kb1 (2.57)



Yanbei Chen 19

so that back-action noise would cancel out, leading the same fraction of both
signal and shot noise. This is often referred to as the variational readout scheme,
and was originally proposed in the time domain by Vyatchanin et al. [65, 66]. This
is a back-action evading scheme — instead of trying to “squeeze” the back-action
noise, this scheme simply avoids looking at it. Similar to (i), this back-action
evasion approach requires detecting a frequency-dependent output quadrature —
also realizable by the filters invented by Kimble et al. [37]. See right panel of
Fig. 2 for the noise spectrum of such a configuration (dashed curve). We have
also shown the noise spectrum in presence of 1% of optical loss (blue dashed
curve). A scheme with equivalent sensitivity, proposed by Tsang and Caves [67],
is to filter the out-going light with an additional “squeezer”, which lets the signal
go through but “un-squeezes” the quantum noise. All these back-action-evading
schemes are very susceptible to losses; Khalili has estimated that they are all
limited by

√

SBAE
h /SSQL

h ≥
(
e−2qǫ

)1/4
. (2.58)

Here e−2q is the squeezing factor, and ǫ is the total optical loss. For this reason,
10 dB squeezing and 1% optical loss will be limited to factor ∼ 5.6 below the SQL.

(iii) Finally, we may also modify the optical system so that K does not have much
frequency dependence, so we do not have to rely (as much) on filters. Some of
these schemes [68, 69, 70, 71] were “speed meters”, motivated by the fact that
momentum of a free mass is a QND observable [72].

As we can see from here, injection of squeezed vacuum is important for achieving
sub-SQL sensitivity for a broad frequency band. Prior to application to gravitational-
wave detection, squeezing [73] was mostly performed for sideband frequencies much
higher than the most promising GW frequency band from astrophysical sources (up
to ∼ 10 kHz [74]). After McKenzie et al. demonstrated the possibility of squeezing
within the GW band [75], low-frequency squeezing has been perfected [76] and applied
to prototype [77] and large-scale interferometers [78]. Frequency-dependent squeezing
and variational readout has been demonstrated in table-top experiments [79].

As we have also seen from Fig. 2, optical loss may pose a serious limitation to
the application of squeezing. The second-generation detectors of Advanced LIGO
(currently under construction) is projected to have a 20% of optical loss, which will
only be able to take advantage of a 6 dB input squeezing, although efforts are being
made to suppress optical losses in large-scale interferometers in anticipation of the
application of squeezing [80]. Interested readers are referred to these review articles
on quantum noise of advanced gravitational-wave detectors [81, 82, 83, 84, 14]. In
the second part of this paper (Sec. 5 and on), we shall see some of these SQL-beating
techniques applied or adapted to the study of macroscopic quantum mechanics.

2.4.2. Beating the SQL in other optomechanical systems The above strategies of
beating the SQL for GW detectors have focused on obtaining broadband sensitivity
for a nearly free test mass — although additional strategies exists for beating the SQL
for high-Q oscillators. Most notable are the variational [41] and the stroboscopic [85]
approach.

The variational approach attempts to measure a particular quadrature of the
mechanical oscillator,

Xθ = x(t) cos(ωt+ θ)− p(t)

mω
sin(ωt+ θ) (2.59)
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which is a QND observable, by varying measurement strength as a function of time.
This has been implemented experimentally by Herzberg et al. [86] near the SQL.
The variational approach of beating the SQL has later been adapted to broad-band
detectors [66, 65, 37].

The stroboscopic approach [85] probes the position of an oscillator with pulses
of measurements, separated by half period of oscillation. This approach evades back
action because any pulsed force exerted instantaneously onto the mechanical oscillator
does not affect position of the oscillator at time delays that are exactly integer times
the half oscillation period.

2.5. Adiabatic elimination of cavity mode

The straw-man model described so far contains the interaction between the mirror
and the cavity mode. In fact, it is the cavity mode that couples directly to fields in
the external continuum, which in turn gets detected. In the limit when γ and ∆ are
large compared with Ω, the frequency of interest, the cavity mode will respond almost
instantaneously to the motion of the mirror. This kind of degrees of freedom can be
Adiabatically Eliminated from system dynamics. [In connection to this, certain linear
degrees of freedom can be non-adiabatically eliminated, see Ref. [87].]

In our problem, because of linearity, we can carry out adiabatic elimination of
the cavity mode (a, a†) in the Heisenberg Picture, converting Eqs. (2.15)–(2.21) into

− iΩx̂ = p̂/M , (2.60)

−iΩp̂ =

[

−Mω2
m +

2G2∆

γ2 +∆2

]

x̂

+
2
√
γG(γâ1 +∆â2)

γ2 +∆2
, (2.61)

and
[
b̂1
b̂2

]

=
1

∆2 + γ2

[
∆2 − γ2 −2γ∆
2γ∆ ∆2 − γ2

] [
â1
â2

]

− 2
√
γG

∆2 + γ2

(
∆
γ

)

x̂ (2.62)

We shall use this simpler model in most of our subsequent discussions.
Note that the response of the mechanical oscillator’s position x̂ to the external

force F is now modified due to the existence of the second term in the bracket on the
right-hand side of Eq. (2.61) — we shall explain the physical origin of this term in
Sec. 2.6 below. Here we only observe that this indicates a renormalized Hamiltonian
with a shifted mechanical eigenfrequency:

ω2
m → ω2

opt = ω2
m +

2G2∆

γ2 +∆2
(2.63)

After re-defining the input and output quadratures by applying constant rotations
(which corresponds to a microscopic propagation distance), we have a system with x̂
measured, with an interaction Hamiltonian of

VI = −~αx̂â1 , (2.64)

where

α = 2G

√
γ

γ2 +∆2
=

√

2MΘ3γ

γ2 +∆2
(2.65)
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It is often convenient to write

α2 =MΩ2
q (2.66)

with

Ω2
q =

2Θ2γ

γ2 +∆2
(2.67)

If we apply a constant rotation to quadratures a1,2 and b1,2 it is possible to write
an input-output relation in the same form as Eqs. (2.23):

b̂1 = â1 , b̂2 = â2 + αx̂ (2.68)

and

−M(Ω2 − ω2
opt)x̂ = αâ1 + F̂ (2.69)

In other words, we have

β = 0 , K =
Ω2

q

(Ω2 − ω2
opt)

, (2.70)

and

SSQL
F = 2M |Ω2 − ω2

opt| (2.71)

For a free mass (ωopt ≪ Ω, ωq), if we measure out-going field b2, our sensitivity to F
will be limited by the SQL, touching it at frequency Ω = ωq.

In the following sections, we shall often use this simplified model as our strawman
for studying quantum measurement. However, we should be aware that sometimes
adiabatic elimination ignores features of the system that may become important. One
example will be discussed in Sec. 2.6 below, where a full treatment reveals damping
or anti-damping plus additional noise imposed onto the mechanical object.

2.6. Optical rigidity (∆ 6= 0)

As we have already noted in the above section, if the cavity is detuned (ωc−ω0 = ∆ 6=
0), the dynamics of the mirror will be modified. The simplest way to understand this
is from a classical point of view. Suppose we slowly vary the location of the mirror by
a small amount (much less than the wavelength divided by the finesse of the cavity)
— because the zero point of the mirror is not on resonance with the injected carrier,
the power inside the cavity, and hence the radiation-pressure force on the mirror, will
depend linearly on δx. (This is illustrated in Fig. 4.)

The fact that F̂ has a non-zero response is mathematically equivalent to [88, 89,
90, 91],

[

F̂H(t), F̂H(t′)
]

6= 0 . (2.72)

In general, by solving for F̂BA from Eq. (2.18) and (2.19), we can obtain a frequency-
dependent spring constant

K(Ω) = − MΘ3∆

∆2 + γ2 − 2iγΩ− Ω2
. (2.73)
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Figure 4. For a cavity locked at non-zero detuning, its movable end mirror
not only feels a spring constant, which can be either positive or negative, but
also gets damped or anti-damped. For optical spring of a single carrier and at
low frequencies, the sign of the damping can be worked out by assuming that
the force lags the position by a small phase, in this way a restoring force always
comes with a negative damping — that is, the light always does positive work to
the mirror within each cycle of motion.

2.6.1. Modification of dynamics Assuming that the mechanical oscillator starts off at
a high quality factor, for low enough pumping power, this K only shifts the oscillator’s
eigenfrequency weakly, and we can write

ω2
m → ω2

m +
Re [K(ωm)]

m
, (2.74)

γm → γm − Im [K(ωm)]

2mωm
. (2.75)

On the other hand, for frequencies below optical frequency scales, or Ω ≪
√

∆2 + γ2,
we return to the “slowly varying” case mentioned at the beginning of this section, and
have

K(Ω) ≈ − mΘ3∆

∆2 + γ2
− 2mΘ3∆γ

(∆2 + γ2)2
(iΩ)

≡ K0 + iΩK1, (2.76)

then we basically find a shift in the oscillator’s eigenfrequency and damping, given by

ω2
m → ω2

m +
K0

m
, γm → γm − K1

2m
. (2.77)

which indicates that anti-damping (K1 > 0) is always associated with positive rigidity
(K0 > 0, both takes place when ∆ < 0, or the light frequency ω0 is higher than cavity
resonance ω0 + ∆, or blue detuned with respect to cavity resonance), while damping
(K1 < 0) is always associated with negative rigidity (K0 < 0, both takes place when
the cavity is red detuned, or ∆ > 0, or the light frequency ω0 is lower than cavity
resonance ω0 +∆, or red detuned with respect to cavity resonance). As illustrated by
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Figure 5. Noise spectrum of interferometers with optical springs [caused by non-
zero input impedance, from the point of view of the test mass, see Eq. (2.72)].
We have again normalized frequency to γ and noise spectrum to SSQL(γ).
Interferometers here have ∆ = −1.5γ (blue detuned) and Θ = γ (red curve) and
2−2/3γ (blue dashed), 2−4/3γ (blue dotted) and 2−6/3γ (blue dashed). These
roughly corresponds to optical spring constant decreasing by factors of 4, and
optical resonant frequency decreasing by factors of 2.

Fig. 4, for such a simple optical spring (arising from one optical mode), a restoring force
with time lag will be associated with anti-damping. As more complex optical modes
are used to generate the optical spring, any combinations of restoring/anti-restoring
vs damping/anti-damping could be possible [92].

2.6.2. Improving force sensitivity For gravitational-wave detection (a weak force
measurement), where we start from a pendulum with very low suspension frequency
(below the detection band), the blue detuned case (∆ < 0) is useful: the positive
rigidity upshifts the resonant frequency of test-mass translational motion, and allows
us to improve sensitivity in the detection band, see Fig. 5 for sample noise spectrum
for configurations where ∆ and γ are the same order of magnitude, while Θ gradually
increases from a low value to a value comparable to γ. Here we have chosen to represent
sensitivity not in terms of a noise spectrum referred to force FGW, but instead have
referred to the displacement xGW caused by the GW if the test masses were free.
This suppression in noise is in fact due to the test mass’s resonant response to the
weak classical force, instead of a suppression of quantum noise. More specifically, for
a strain h, xGW for a free mass is Lh, while for an oscillator, we should note that

F̃GW(Ω) = −MΩ2Lh̃(Ω) (2.78)

and therefore

Sh =
SF

M2Ω4L2
(2.79)

and therefore

SSQL
h =

SSQL
F

M2Ω4L2
=

2~|Ω2 − ω2
opt|

MΩ4L2
(2.80)

This means, near the new, optomechanical resonance of the test mass, Ω ∼ ωopt, the
SQL itself is highly suppressed from the free-mass value (2.71) — therefore simply
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following but not beating the new SQL would already indicate a strong improvement
in sensitivity and a strong beating of the free-mass SQL.

On the other hand, the anti-damping brought by the blue detuning may make the
system dynamically unstable, yet the control system already in place in these detectors
can be used to stabilize the system without (in principle) scarifying quantum-limited
sensitivity [90].

Although the optical spring’s improvement of detector sensitivity can often be
viewed as classical, it is not as trivial as simply replacing the free-mass detector by
a resonant detector: the optical spring’s shift of mechanical resonant frequency only
comes with a low amount of radiation pressure noise (a large fraction of which can
even be removed, as Korth et al. have later shown [93]), many other mechanisms of
doing so, e.g., through elasticity, will bring a significant amount of thermal noise.
When compared with back-action-evading techniques, optical spring’s improvement
of detector sensitivity is much more robust against optical losses. Unfortunately,
however, the improvements we are so far able to achieve have been narrowband —
around the resonant frequency of the optical spring. Progress has been made toward
constructing frequency-dependent optical springs that amplify weak force signal in
broad frequency bands [94, 95, 92], yet a scheme suitable for broadband gravitational-
wave detection has not been found.

Finally, let us comment on the relation between the existence of the back-action
noise (hence SQL) and the shift in test-mass dynamics. It is in fact a generic feature of
linear quantum measurement processes, that as we dial up the measurement strength
from zero, the change in dynamics of the system being measured is significant (due
to input impedance of F̂ ) when the back action noise (due to the fluctuations in F̂ )
is comparable to sensing noise. This originates from the fact that the noise spectrum
arises from the symmetric Green’s function of F̂ (evaluated in vacuum state), while
the rigidity arises from the anti-symmetric Green’s function.

2.6.3. Experimental demonstrations of optical rigidity. Electrical and optical rigidity
that arise due to parametric coupling was described theoretically by Braginsky
and Manukin in the 1960s [96], and experimentally studied in the 1970s [97].
It was later observed experimentally and studied theoretically for resonant-bar
gravitational-wave detectors (although those experiments used electronic instead of
optical readout) [98, 99, 100, 101, 102]. Optical spring in laser interferometers
was later studied in the gravitational-wave community as an effort to prototype the
Advanced LIGO interferometers [103, 104, 105]. Optical rigidity and damping turns
out to be very useful for studying macroscopic quantum mechanics. We shall devote
the entire Sec. 5.1 dealing with this issue.

3. Stochastic approach

Having finished introducing the first approach toward quantum measurement, we now
turn to the second approach, which focuses on the state of a quantum system that is
being measured continuously. We will illustrate this approach using the “adiabatically
eliminated model” of Sec. 2.5, which is equivalent to having no cavity but a redefined
mirror dynamics and a shifted coupling constant to incoming light. We can write the
linearized interaction Hamiltonian

V̂I = −~αx̂â1 (3.1)
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where x̂ is the position of the mechanical oscillator, â1 the amplitude quadrature of
the optical field, and α the coupling strength. We will assume that the out-going
phase quadrature b̂2 is measured.

We require that the incoming field degrees of freedom arriving at different times
are not correlated. This makes our measurement processMarkovian. During any small
interval of time, e.g., [t, t+∆t], a “fresh” (uncorrelated) section from the continuum
of the incoming â field is brought to interact with the mechanical object, it then
promptly returns to the outside world, and gets detected.

To understand this elementary process better, suppose we have two quantum
systems, A (the incoming field) and B (the mechanical object), initially at a pure
product state:

|Ψ0〉 = |φ〉A ⊗ |ψ〉B . (3.2)

The fact that B is at a pure state is a mere Ansatz, while the fact that A and B are
product states is due to Markovianity: the newly arriving field has no correlation with
our current system because it has no correlations with the fields that had entered the
system in the past. Suppose A and B are brought to interact with each other, and
the joint system evolves into a new state of

|Ψ1〉 = Û |φ〉A ⊗ |ψ〉B (3.3)

which is in general not a product state. Here Û is a unitary evolution operator.
A projective measurement on system A will bring system B back into a pure state,
although a stochastic one that depends on the measurement outcome: suppose we
measure Ô (of system A), which has eigenstates of |φ̃k〉A and eigenvalues ok, then the
probability of the k-eigenvalue to appear is

Pk =
∥
∥
∥A〈φ̃k|Û |φA〉 ⊗ |ψ〉B

∥
∥
∥

2

. (3.4)

in which case the system B will be left at a pure state of:

1√
Pk

A〈φ̃k|Û |φA〉 ⊗ |ψ〉B . (3.5)

This will often be referred as the conditional state of B. The fact that the conditional
state of B remains pure prepares the Ansatz we need for the next time step, and
assures the existence of a stochastic evolution of the system’s conditional pure state
as the measurement is to be repeated.

3.1. Derivation of the Stochastic Schrödinger Equation

In a continuous quantum measurement process, the above elementary process takes
place repeatedly, therefore requires the mathematical machinery of stochastic calculus
as we take the continuous-time limit. Suppose a system starts out at a pure state
independent from the measuring device, then its state will remain pure, but evolve
over time depending on the measurement outcome. Suppose we have already reached
t, and would like to proceed towards t+∆t. During this time, let us define

P̂ ≡ − 1√
∆t

∫ t+∆t

t

â1(t
′)dt′ , Q̂ ≡ 1√

∆t

∫ t+∆t

t

â2(t
′)dt′ , (3.6)

and
[

Q̂, P̂
]

= i, (3.7)
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a pair of canonical coordinate and momentum that satisfy the canonical commutation
relation. Suppose this degree of freedom is initially at ground state, and we measure
its location after it interacts with our system, through the interaction Hamiltonian.
The evolution operator here is

Û = exp
(

iαP̂ x̂
√
∆t

)

. (3.8)

The joint initial state of the system plus the measuring device is

|Ψ(t)〉 = |ψ(t)〉 ⊗ |0〉 =
∫

dQ
e−Q2/2

π1/4
|ψ(t)〉|Q〉 , (3.9)

with |Q〉 the Q̂ eigenstate of the measuring device. After application of Û , we obtain
[noting that when applied onto Q-wavefunctions, we have P̂ = −i∂/∂Q]

|Ψ(t+∆t)〉 =
∫

dQ
exp

[

− (Q−αx̂
√
∆t)2

2

]

π1/4
|ψ(t)〉|Q〉 . (3.10)

This new state needs to be projected onto a basis that corresponds to the observable
we are going to measure. Note that we measure the evolved quantity of

Q̂new = Û†Q̂Û = Q̂+ αx̂
√
∆t . (3.11)

This operator has an expectation value of α〈x̂〉
√
∆t, contributed only from x̂ (because

Q̂ has zero mean) while its variation is at the level of ∼ O(∆t0), therefore dominated
by the uncertainty of Q̂. Let us denote our measurement result as

Q̃ = α〈x̂〉
√
∆t+∆W/

√
2∆t (3.12)

then ∆W , in our limiting process of ∆t→ 0, will become a Wiener increment because
different ∆W ’s are independent, and each has variance ∆t, see App. A.3 for details
on the Wiener process. [Also note that 〈Q̂2〉 = 1/2.] We will then carry out the
projection, and obtain the non-normalized conditional state of

|ψ(t+∆t)〉
= 〈Q̃|Ψ(t+∆t)〉

=
1

π1/4
exp

{

−1

2

[

α(x̂− 〈x̂〉)
√
∆t+

∆W√
2∆t

]2
}

|ψ(t)〉

=
e−

∆W2

4∆t

π1/4

[

1 +
α(x̂− 〈x̂〉)∆W√

2
− α2(x̂− 〈x̂〉)2

4
∆t

]

|ψ(t)〉

(3.13)

Note that the factor in front represents a probability density for the value of ∆W , while
the evolution of the normalized conditional state at t + ∆t is given by the following
Stochastic Schrödinger Equation (SSE):

d|ψ〉 = − i

~
Ĥ|ψ〉dt+ α (x̂− 〈x̂〉)√

2
|ψ〉dW

− α2

4
(x̂− 〈x̂〉)2 |ψ〉dt . (3.14)

The SSE describes the evolution of a conditional state, which always stays normalized.
The measurement outcome, in the continuous-time limit, also satisfies a stochastic
differential equation:

dy = α〈x̂〉+ dW/
√
2 . (3.15)
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The SSE (3.14) is meant to be used together with Eq. (3.15) — they are simultaneously
determined by each realization of W (t), which is a Wiener process.

In case there is already uncertainty in the wave function, e.g., due to our initial
ignorance and/or other channels of decoherence, using the same technique as above, we
obtain the Stochastic Master Equation (SME) for the density matrix of the ensemble:

dρ̂ = − i

~

[

Ĥ, ρ̂
]

dt+
α√
2
{x̂− 〈x̂〉, ρ̂} dW

− α2

4
[x̂, [x̂, ρ̂]] dt . (3.16)

Here we have used “{...}” to denote the anti-commutator: {Â, B̂} = ÂB̂ + B̂Â]. In
Eq. (3.16), the second term on the right-hand side is due to the randomness of back
action, while the third term describes dissipation — it is often referred to as the
Lindblad Term. If we do not record measurement data, the dW will be averaged out
in Eq. (3.16), and we obtain a Master Equation, similar to one that describes a system
coupled to a bath with zero temperature. In other words, a measurement whose data
were thrown out is no different from a source of dissipation.

Note that the SSE and SME are nonlinear, because the evolutions of |ψ〉 and ρ̂
depend on the expectation value of x̂ on |ψ〉. For this reason, if we have two density
matrices ρ̂1 and ρ̂2 (both normalized, with tr ρ̂1,2 = 1) that are superimposed at t = 0,

ρ̂(0) = p1ρ̂1(0) + p2ρ̂2(0) (3.17)

with p1 + p2 = 1. Even for the same realization of {W (t′) : 0 < t′ < t}, the initial
state ρ̂(0) will not evolve to the same superposition of the final states that correspond
to ρ̂1(0) and ρ̂2(0), or

ρ(t) 6= p1ρ̂1(t) + p2ρ̂2(t) . (3.18)

In fact, one can show ‖ that there does exist (p′1, p
′
2) with p

′
1 + p′2 = 1 so that

ρ(t) = p′1ρ̂1(t) + p′2ρ̂2(t) . (3.19)

but in general (p′1, p
′
2) 6= (p1, p2). One can make the interpretation that state reduction

during 0 < t′ < t changes our understanding of the probability for the system to have
started out from the ensemble represented by ρ̂1 versus the ensemble represented by
ρ̂2 — this is the origin of the nonlinearity. In other words, (p1, p2) are the prior
probabilities, while (p′1, p

′
2) are the posterior probabilities — and they naturally differ

after observation. Within each ensemble, however, the individual SME starting from
ρ̂1(0) and ρ̂2(0) still predicts the correct evolution.

There are two specific uses for the SSE and SME. The first follows our derivation:
the SSE/SME simulates the continuous state-reduction process by producing a
stochastic evolution of the true state ρ̂ of the system/ensemble, driven by the
randomness of state reduction — described mathematically by dW , which has an
a priori probability distribution. This treats wave function as known, a priori, and
therefore corresponds to a frequentist approach to statistics.

The second treats ρ̂ as describing the experimenter’s knowledge (and uncertainty)
of the quantum system — this includes quantum uncertainty contained within the
wave function as well as his/her classical ignorance regarding the wave function of the
system itself. dW is the error between the measurement result and its conditional

‖ Noting that the only nonlinear term in Eq. (3.16) is the one containing 〈x̂〉, which simply provides
a time-dependent normalization factor for ρ̂.
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expectation from ρ̂ (which is a “best guess”) — the experimenter then should use
the SME to update ρ̂ continuously. This corresponds to the Bayesian approach to
statistics.

3.2. Filter Equations for Linear Systems with Gaussian States

For linear systems initially at Gaussian states, the states will remain Gaussian,
which can in turn be characterized by the first and second moments of position and
momentum. In order to derive equations for those moments, we can use the stochastic
differential equation satisfied by the Wigner function, which can be obtained using the
generating function approach (see Appendix D.2, although this equation also applies
to non-Gaussian states):

dW(x, p) +
[ p

M
∂x −Mω2x∂p

]

W(x, p)dt

=
√
2α(x− 〈x̂〉)W(x, p)dW +

α2

4
∂2pW(x, p)dt . (3.20)

Terms on the left-hand side arise from the free evolution of a simple harmonic oscillator
(which can be replaced to the free evolution of an arbitrary system), while those on
the right-hand side arise from the measurement. Suppose we have a Gaussian state,
Eq. (3.20) can be converted into a self contained evolution of the conditional first
moments (〈x〉c, 〈p〉c)

d〈x〉c =
〈p〉c
M

dt+
√
2αVxxdW , (3.21)

d〈p〉c = −Mω2
m〈x〉cdt+

√
2αVxpdW (3.22)

and second moments (V c
xx, V

c
xp, V

c
pp)

V̇xx =
2Vxp
M

− 2α2V 2
xx (3.23)

V̇xp =
Vpp
M

−Mω2
mVxx − 2α2VxxVxp (3.24)

V̇pp = − 2Mω2
mVxp +

α2

2
− 2α2V 2

xp (3.25)

which completely characterize the evolving conditional state: for any two linear
combinations of x̂ and p̂, for example Â and B̂, we have

〈ÂB̂ + B̂Â〉/2 =

∫ ∫

A(x, p)B(x, p)W(x, p)dxdp (3.26)

therefore defining covariance by symmetrizing the expectation value is the same as
using Wigner function as quasi-probability distribution.

Note that measurement affects the evolutions of first moments, i.e., the
expectation values 〈x〉 and 〈p〉, by inserting terms proportional to dW , which generate
random driving; for the second moments, the diffusion in momentum due to back
action leads to the α2 term that tends to increase V̇pp in Eq. (3.25). Measurement
also leads to decrease of Vxx and Vpp through terms in Eqs. (3.23)-(3.25) that contain
α2 as well as the product of second moments — these are due to the gathering of
information about the oscillator. The second kind of terms arise from the use of the
Ito rule; for example,

dVxx = d〈x2〉 − d〈x〉2
= d〈x2〉 − 2〈x〉 · d〈x〉 − d〈x〉 · d〈x〉 (3.27)
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and the last term on the right-hand side will contain terms like dW 2 = dt.
In Appendix B, we review the classical theory of Kalman Filtering, which

describes a classical system driven by random force and under continuous
measurement. As it turns out, Kalman filtering allows us to obtain the same
Eqs. (3.23)–(3.25). In fact, in the case of linear quantum systems with Gaussian
states, there is always a classical system whose Kalman filter equations are exactly
the same as the evolution equations for the first and second moments of the Gaussian
state. The reason why we can do so will be explained in Sec. 4.

Equations (3.23)–(3.25) can be viewed as a matrix Riccati equation, and this
particular set can be solved analytically. Here we only write down the steady-state
solution, which can be obtained by setting their left-hand sides to zero [106]:

Vxx =
~√

2Mωm

· 1
√

1 +
√
1 + Λ4

, (3.28)

Vxp =
~

2
· Λ2

1 +
√
1 + Λ4

, (3.29)

Vpp =
~Mωm√

2
·

√
1 + Λ4

√

1 +
√
1 + Λ4

, (3.30)

where we have continued to use the definition of

α2 =MΩ2
q , Ωq ≡ Λωm . (3.31)

Note that Vxp > 0, and

VxxVpp − V 2
xp =

~
2

4
, (3.32)

which means the steady-state conditional state is always minimum Gaussian, and
hence a pure state. We note that as the measurement strength (α, or Ωq) grows,
the position uncertainty of the conditional state decreases, while the momentum
uncertainty grows — and there is always non-trivial correlation between position and
momentum. In fact, in the limit of strong measurement, or Ωq ≫ ωm (e.g., for free
masses), we have

Vxx ∼ ~/(
√
2MΩq), (3.33)

Vpp ∼ ~MΩq/
√
2, (3.34)

Vxp ∼ ~/
√
2. (3.35)

This is a highly squeezed state for an oscillator with eigenfrequency ωm, but a mildly
squeezed state for an oscillator with eigenfrequency Ωq. As we recall from Sec. 2.5,
when Ωq ≫ ωm, and if we use our device to measure a weak force — detecting the
output field quadrature in which the entire signal is contained — then Ωq is also the
frequency at which the quantum noise touches the SQL. In other words, the “frequency
scale” of the quantum state we prepare, is set by the measurement frequency scale.
On the other hand, for very weak measurement, or Λ → 0, the steady state of the
oscillator is the ground state.

4. Non-Markovian linear systems

In Sec. 2, we presented the input-output Heisenberg formalism for linear
optomechanical systems, and applied it to the calculation of noise spectra when
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measuring a weak classical force. In Sec. 3, we presented the stochastic calculus
approach, and applied it to describe the evolution of a general system under continuous
measurement. These two approaches looked very different — although we know that
for linear systems, they are really two very different ways of dealing with the same
system, and therefore should provide the same answers, if we were to ask the the
same questions. Since in this article, we are less interested in estimating a weak
classical force acting on a quantum system, let us only show how the Heisenberg
formalism in Sec. 2 can be used to calculate quantum-state evolution in a continuous
measurement. In some sense, we will be exposing features of quantum measurement
that is “hidden” so well under the disguise of the Heisenberg formalism. This is not
only a sanity check: for linear systems, this exercise will actually turn out answers
that are often analytically simpler, especially for non-Markovian systems which are
driven by classical noise and/or quantum fluctuations that are correlated in time (see
Sec. 6.6 for the latter case).

4.1. State Reduction in an Indirect Quantum Measurement

As in Sec. 2, the formalism we shall present in this section best fits linear systems
— but unlike in Sec. 3, we do not require the system to be Markovian (driven by
white noise). Let us return to the formalism in 2.1, and assume that an out-going
quadrature field bζ is measured [Cf. Eq. (2.30)]. Here ζ can be a function of time.

Let us now expose the state reduction process that has been hidden from our view
in Sec. 2 — by putting Eq. (2.42) into use. Now, assuming bζ to have been projectively
measured during 0 < t′ < t, and the measurement result has been {ξ(t′) : 0 < t′ < t},
then in the Heisenberg picture, Eq. (2.42) indicates that we should have projected out
the conditional state of

|ψc〉 =
∫

D[k(t′)]ei
∫

t

0
k(t′)[b̂ζ(t′)−ξ(t′)]dt′ |ini〉 , (4.1)

where |ini〉 is the initial state of the optomechanical system at t = 0, b̂ζ(t) is the
Heisenberg operator of the quadrature of the out-going field which we measure, while
k(t′) is an auxiliary function over which a path integral is performed in order to yield a
projection operator at every instant of time. We shall often ignore writing |ini〉 when
using the Heisenberg picture, and simply use “〈. . .〉” when calculating expectation
values at this initial state. We are able to write Eq. (4.1) this way also because

[

b̂ζ(t
′), b̂ζ(t

′′)
]

= 0 . (4.2)

This means the Heisenberg operators which we claim to measure projectively
at different times are indeed simultaneously measurable, and therefore the entire
measurement process simply projects out a simultaneous eigenstate of all these
operators. In fact, given t > t′, we can also write

[

Ô(t), b̂ζ(t
′)
]

= 0 , t > t′ (4.3)

for any operator Ô (e.g., position and momentum of the mirror, excitation of the cavity
mode, etc., and any of their linear combinations) that belongs to the optomechanical
system [90]. This is valid because bζ is an out-going field, and anything acting on bζ
at a certain earlier time t′ would not propagate back to the system at a later time t;
vice versa, anything that acts on O at a certain later time wouldn’t retroactively be
reflected by bζ at an earlier time.
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Because of Eqs. (4.2) and (4.3), at time t, we can write the generating function
for the mechanical oscillator’s Wigner function as

Jc [u, v|ξ(t′)]
∝ 〈ψc|ei[µx̂(t)+νp̂(t)]|ψc〉

=

∫

D[k(t′)]
〈

eiµx̂(t)+iνp̂(t)+i
∫

t

0
k(t′)[b̂ζ(t′)−ξ(t′)]

〉

, (4.4)

and the conditional Wigner functionW can be written as an inverse Fourier transform:

Wc [x, p|ξ(t′)] =
∫

Jc [µ, ν|ξ(t′)] e−i(µx+νp) dµ

2π

dν

2π
. (4.5)

This can be readily calculated for Gaussian states (see App D.3 for details); as we
shall see in Sec. 6.6, the existence of such compact formulas also allow us to obtain
analytical results when non-Gaussian quantum states including individual photons are
injected.

Our path-integral formulation here is an extension of the earlier work of Caves [25];
the difference is that we consider a sharp projection of the out-going field, instead
of a smeared out measurement of a system observable. For simple measurement
processes, the two approaches are the same, but our extended approach will be able
to accommodate more complex quantum states of the injected light.

4.2. Relation to linear regression.

We note that the commutation relations (4.2) and (4.3) tell us that for any θ, the
oscillator’s θ quadrature ¶

x̂θ(t) ≡ x̂(t) cos θ +
p̂(t)

Mωm
sin θ (4.6)

and the quadratures {bζ(t′) : t′ < t} of the out-going field which had chosen to
measure, all commute with each other and hence can be treated as a classical random
variable plus a classical random process. [This equivalence is proven rigorously in
Appendix D.3.] We can therefore simply use linear regression theory [see Appendix
A.1 for details] to write down a predictor of any x̂θ(t):

E
[

x̂θ(t)|b̂(t′) : 0 < t′ < t
]

=

∫ t

0

Gθ(t, t
′)b̂ζ(t

′)dt′ (4.7)

with the predictor’s kernel given by

Gθ(t, t
′) =

∫ t

0

uθ(t, t
′′)V −1

b (t′′, t′)dt′′ , (4.8)

where the covariance matrices have been defined as

uθ(t, t
′) ≡ 〈x̂θ(t)b̂ζ(t′)〉 , Vb(t, t

′) ≡ 〈bζ(t)bζ(t′)〉 (4.9)

Here V −1
b is defined as

∫ t

0

dt2Vb(t1, t2)V
−1
b (t2, t3) = δ(t1 − t3) . (4.10)

Note that given a set of measurement results, b̂ζ in Eq. (4.7) should be replaced by
the results.

¶ To emphasize the distinction, henceforth in the paper we shall refer to x̂θ as “oscillator quadrature”
or “mass qudrature”, while âζ and b̂ζ as “optical quadratures”.
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The conditional variance is independent from the measurement outcome, and can
be written as

Var [x̂θ(t)|bζ(t′) : 0 < t′ < t]

= Var [x̂θ(t)]−
∫ t

0

uθ(t, t1)uθ(t, t2)V
−1
b (t1, t2)dt1dt2. (4.11)

In this way, we have been able to get compact formulas for conditional expectations
and conditional variances — even when the process is non-Markovian, and during
transients. This approach is equivalent to the SME/SSE approach in the previous
section, although directly applicable to non-Markovian systems.

Here we note the only difference from classical linear regression: although we can
calculate the symmetrized conditional covariance between x̂θ1 and x̂θ2 by

Cov [x̂θ1(t), x̂θ2(t)|bζ(t′) : 0 < t′ < t]

=
1

2
〈x̂θ1(t)x̂θ2(t) + xθ2(t)x̂θ1(t)〉

−
∫ t

0

uθ1(t, t1)uθ2(t, t2)V
−1
b (t1, t2)dt1dt2 , (4.12)

this covariance does not have a direct physical meaning because x̂θ1 and x̂θ2 do not
commute with each other, and cannot be measured simultaneously. However, this
covariance can be written as being obtained from a covariance matrix:

Cov
[

x̂θ1(t), x̂θ2(t)|b̂ζ(t′) : 0 < t′ < t
]

= (cos θ sin θ)

[
V cond
xx V cond

xp

V cond
xp V cond

pp

](
cos θ
sin θ

)

, (4.13)

This possibility can be traced back to the linearity of the estimator [Cf. Eq. (4.9)]. This
covariance matrix enters the conditional Wigner function of the mechanical object;
even though we cannot directly measure this matrix by measuring the covariance
between x and p, it can be fully determined if we measure the variances of all
quadratures.

4.3. Steady-state solution: causal Wiener filtering.

Suppose we measure a constant out-going quadrature, then Vb(t, t
′) = Vb(t − t′). If

both t and t′ run from −∞ to +∞, then Vb can be inverted simply using Fourier
transform. The other case in which we do not always have to resort to numerical
computation is when we consider the half-infinity region of −∞ < t′ < t.

In this case, we can first approximate the spectrum of b̂ζ as a rational function
of Ω, and write

Sb(Ω) = φ+(Ω)φ−(Ω) , (4.14)

with φ+ having no zeros or poles on the upper-half complex plane, φ− having no zeros
or poles on the lower-half complex plane, and

φ+(Ω) = φ∗−(Ω
∗) . (4.15)

This allows us to obtain a causal filter φ−1
+ (meaning φ−1

+ (t) = 0 for t < 0), which
yields

ẑ(t) =

∫ t

−∞
dt′φ−1

+ (t− t′)b̂ζ(t
′) (4.16)
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a white noise. It is then easy to obtain

E[x̂θ(t)|b̂ζ(t′) : t′ < t]

=

∫ t

−∞
dt′

∫ t′

−∞
dt′′gθ(t− t′)φ+(t

′ − t′′)b̂ζ(t
′′) (4.17)

with

gθ(t, t
′) = gθ(t− t′) = 〈x̂θ(t)ẑ(t′)〉 (4.18)

and

Var[x̂θ(t)|b̂ζ(t′) : 0 < t′ < t]

= 〈x̂2θ(t)〉 −
∫ t

−∞
dt′g2θ(t− t′) . (4.19)

In the Fourier domain, we can write

g̃θ(Ω) =

[
Sxb(Ω)

φ−(Ω)

]

+

(4.20)

where [...]+ indicates taking the causal part of a rational function of Ω, which either: (i)
inverse transform into time domain, multiply by the Heaviside step function Θ(t), then
transform back to the frequency domain, or (ii) express formula as a sum of fractions
α/(Ω− β), and eliminate ones that have poles in the upper-half complex plane. [See
App. D.3 for details.] This allows us to represent the conditional covariance matrix in
terms of cross spectra:

V cond
xθ1

xθ2

= Re

∫ +∞

0

dΩ

2π

[

Sxθ1
xθ2

−
[
Sxθ1

b

φ−b

]

+

[
Sxθ2

b

φ−b

]∗

+

]

. (4.21)

Finally, let us show that, V cond
xp must always be positive. For this, we note that

because we are at steady state,

〈x̂(t)p̂(t) + p̂(t)x̂(t)〉 = 0 , (4.22)

and therefore

V cond
xp

=

〈[

x̂(t)−
∫ t

−∞
gx(t− t′)ẑ(t′)dt′

]

·
[

p(t)−
∫ t

−∞
gp(t− t′)z(t′)dt′

]〉

sym

= −
∫ t

−∞
gx(t− t′)gp(t− t′)dt′ (4.23)

However, for any t′ < t, we can show that

gp(t− t′) =
d

dt
gx(t− t′) = − d

dt′
gx(t− t′) (4.24)

which gives

V cond
xp =

1

2
g2x(0) ≥ 0 . (4.25)

This means the conditional correlation between position and momentum is always
non-negative; its magnitude is related to the rate at which the last bit of data carries
information about x. This fact will become useful when we discuss optimal feedback
control.
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Figure 6. A space-time diagram that illustrates a three-stage, preparation-
evolution-verification experiment. Light is incident from the left, the mechanical
object (mirror) stays along a nearly vertical world line (with position uncertainty
illustrated by an orange-colored region), while out-going light is shown to
propagate to the right (although in reality it may be reflected). Initial state
of the mirror quickly goes away, with information contained in the green region;
the pink region represents state preparation, in which measurement on the out-
going light induces state collapse of the mirror (see Sec. 5.2); the yellow region
represents evolution, during which no measurement is made (“turning light off”
is an idealization; we may measure the back action force imposed onto the mirror
during this stage and remove this from post-processing of data, see Sec. 5.4 for
details); finally, the blue region represents verification during which we carry out
a tomography of the mirror’s quantum state (see Sec. 5.4 as well). As shown in
the figure, duration of the evolution and verification stage is limited by thermal
decoherence timescale.

5. Quantum State Preparation and Verification in linear systems

After having reviewed various theoretical techniques that are developed to treat
continuous quantum measurement processes, in this section, we will discuss basic
building blocks of macroscopic quantum mechanics experiments. We will first discuss
how an optomechanical system can be used to prepare the moving mirror into a
nearly pure quantum state — this is arguably the first step if one would like to study
macroscopic quantum mechanics. We will then discuss how the quantum state of the
mirror can be reconstructed, in such a way that crucial features of the quantum theory
might be illustrated and perhaps tested.

We shall start from optomechanical cooling, which describes the process of
achieving an unconditional quantum state that is nearly pure — by coupling the
mechanical object with an optical field which we do not read out. We will then
go on to discuss conditional state preparation, which uses measurement-induced state
reduction to transfer the quantum-ness of light into the quantum-ness of the test mass.
In such a process, the quantum state of the test mass, conditioned on the measurement
result, undergoes a random walk — such a time-dependent state-preparation strategy
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could be experimentally more challenging than a steady state one. After discussing
conditional state preparation, we will return to a type of cooling that relies on
measurement and feedback +.

We will finally discuss verification, a set of processes, each will be repeated many
times, so that the data collected in these executions will be combined together to
yield a tomography of the quantum state of the mechanical object. From this we will
obtain the final state of the macroscopic mechanical object. We will also discuss the
possibility of leaving a time gap between preparation and verification, during which
the mechanical object is freely evolving. We shall refer to this as evolution. We
illustrate a three-stage preparation-evolution-verification experiment in Fig. 6, using
a space-time diagram.

In this paper, we will focus on optomechanical systems pumped by continous
beams of light. A very different set of strategies has been formulated by Vanner
et al. [107], in which pulsed beams are used to prepare and verify quantum states
of mechanical oscillators [108, 109]. These schemes were inspired by stroboscopic
quantum measurements [85] [Cf. Sec. 2.4.2].

5.1. Cooling Without Measurement

It is not only conceptually easier, but also practically advantageous, if one can achieve
unconditional state preparation, in which the mechanical object is prepared into an
acceptable quantum state regardless of measurement outcome. However, we should
already keep in mind here that techniques that allow cooling may not always allow us
to extract the quantum state of the mirror. In fact, as we shall see, an auxiliary optical
system’s ability to cool the system to a pure state relies on the system’s inefficiency
to extract information from the mirror.

5.1.1. Radiation-Damping Cooling. As we have discussed in Sec. 2.6, optical (or
lower-frequency electromagnetic) field coupled to mechanical resonators can cause
optical rigidity, which can provide additional restoring force and damping force. This
has been observed experimentally in gravitational-wave experiments (see Sec. 2.6.3).
If the optical field introduces damping to the mechanical oscillator, the fluctuation
it brings is likely to have an effective temperature much lower than the environment,
which will lead to an effective cooling of the oscillator. This idea has been applied to
laser cooling of atoms [110]; in 1977, Zeldovich proposed using such radiation damping
to cool mechanical oscillators, and this idea was analyzed by Vyatchanin [111].

Historically, cold load (e.g., a resistor submerged in liquid helium) has been
inserted into linear electromechanical circuits to lower the effective temperature of
the entire circuit, as discussed, e.g., by Hirakawa et al. [112]. It was also shown that
by feedback using amplifiers with low effective noise temperature, such cold load can
be created electronically [113, 114]. This cooling mechanism was referred to as “cold
damping” by the gravitational-wave community in the late 1970s. Although cold
damping did not improve the signal-to-noise ratio of resonant bar detectors, they were
able to increase their response time [115].

For modern optomechanical systems, radiation-damping cooling was proposed
more specifically by Marquardt et al. and Wilson-Rae et al. [116, 117]. This has

+ This structure allows us to provide the best possible treatment for feedback cooling, because, as
we shall show, an optimal feedback strategy is crucial for feedback cooling, and more easily obtained
after we build an understanding about the conditional state of the mechanical object.
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become a widely used way to prepare mechanical oscillators into nearly pure quantum
states; see Refs. [118, 119, 120, 121, 122, 123] for initial experimental implementations.
Up till now, several experimental groups has successfully cooled mechanical oscillators
close to the ground state using this approach [124, 125, 126, 127, 128, 129]; here “close
to the ground state” means effective thermal occupation number n̄ <∼ 1, and this marks
a convenient starting point of macroscopic quantum mechanics.

One way to view this process is that the mechanical oscillator is now not only
coupled to its original heat bath with original width γm and temperature T0, but also
coupled to an optical bath which creates an additional damping rate γopt which is
usually much greater than γm, but with a temperature Topt much lower than T0.

In general, for an oscillator that is damped by multiple baths, we can write down
its equation of motion as

M



ẍ+ 2
∑

j

γj ẋ− ω2
mx



 =
∑

j

Fj , (5.1)

where γj is the damping rate toward the j-th bath, and Fj is the fluctuating force from
the j-th bath. If the j-th bath has a temperature Tj , then the Fluctuation-Dissipation
Theorem [130] states that

SFj
= 4Mγj~ωm coth

(
~ωm

2kBTj

)

= 8Mγj~ωm

(

n̄j +
1

2

)

(5.2)

where n̄j is the mean occupation number of an oscillator with frequency ωm if the
temperature is Tj , or

n̄j =
1

e
~ωm
kBTj − 1

(5.3)

Assuming the oscillator to remain weakly damped (i.e., high-Q), and that the
oscillator’s frequency not to be significantly shifted by optical rigidity, the combined
effect of all baths on the oscillator is an occupation number of

n̄ =

∑

j γj n̄j
∑

j γj
(5.4)

For optomechanical cooling, as suggested by Marquardt et al. [116] and Wilson-
Rae et al. [117], one often choses the cavity detuning ∆ to be equal to the mechanical
resonant frequency ωm, and γ ≪ ∆. The motivation underlying these choices is that:
incoming photons, after scattering off the mirror, create photons with frequencies
ω0 ± ωm, and one would like the cavity to be resonant with ω0 + ωm (i.e., ∆ = ωm),
so that these higher-frequency photons are more preferably emitted, and therefore
extracts energy from the motion of the mirror. In this regime, if we only consider up
to the leading order effect of the optical power then, around Ω ∼ ∆ = ωm [Cf. (2.73),
(2.16)],

K(Ω ≈ ωm) ≈ − i
G2

γ

(

1− γ2

4∆2

)

− G2

2∆
, (5.5)

and [Cf. (2.18), (2.19), and Eq. (2.17)]

SFopt
(Ω ≈ ωm) =

2G2

γ

(

1 +
γ2

4∆2

)

(5.6)
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Because the ∆ > γ and the oscillator starts off (before applying radiation-pressure
damping) as a high-Q oscillator, as we increase G from 0 towards higher values, the
increase in the damping of the oscillator is much more significant than the shift in the
real part of its oscillation frequency, and we have

γopt =
G2

2mγωm

(

1− γ2

4∆2

)

(5.7)

The oscillator’s mean occupation number associated with the optical bath can be
converted from the spectrum of Frad [Eq. (5.6)] and the fluctuation-dissipation
theorem (5.2), and reads:

n̄opt =
γ2

4∆2
. (5.8)

In this way, n̄opt is the limit of radiation-pressure damping. This only approaches
zero in the resolved side-band limit, i.e., when the cavity linewidth γ is much narrower
than detuning ∆. Another way to understand such a requirement is that when γ is
comparable to ωm, information about the mirror leaks out into the outside continuum.
Even when we do not have any thermal fluctuations, the out-going light is entangled
with the mechanical object, which means the mechanical object, when viewed alone,
must be in a mixed state. As a consequence, one way to recover a more pure state is
to measure the out-going light and feedback, as described by Miao et al. [131], which
we shall discuss in more details in Secs. 5.2 and 5.3.

A purely coherent way to circumvent the resolved sideband limit is to use the
so-called dissipative coupling scheme, in which the damping rate, instead of the
resonant frequency, of the optical mode depends parametrically on the position of
the mirror [132, 133].

An extension of resolved side-band cooling into the more quantum regime is to
prepare the oscillator to a squeezed state by injecting squeezed vacuum centered at
the cavity resonant frequency, as proposed by Jähne et al. [134]. In this scheme, the
quantum radiation-pressure force felt by the mirror is non-stationary, which leads
to a squeezed state that is also non-stationary, which features “breathing”, with
position and momentum uncertainty both oscillating at twice the oscillator’s resonant
frequency.

If we ignore quantum fluctuations of light, and assuming that finally radiation-
pressure damping dominates, then we can write:

n̄tot ≈
kBTm
~ωm

γm
γopt

>∼
kBTm
~ωm

γm
ωm

=
kBTm
~ωmQm

. (5.9)

Note that the inequality sign comes from γopt <∼ ωm, namely the damping rate cannot
be greater than oscillation frequency. We can then esimate that an oscillator can be
cooled to near the ground state if it satisfies:

~ωmQm

kBT
>∼ 1 . (5.10)

At room temperature, we recover the bound of

Qm · fm ∼ 6× 1012
(

Tm
300K

)

(5.11)

which is widely quoted as a benchmark for ground-state cooling.
It is worth mentioning that the mechanism of radiation-damping cooling also

applies when mechanical motion is coupled to other baths that have low effective
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K0

(Restoring)

K1

(anti-damping)

Spring A

Spring B

Figure 7. A stable optical spring can be formed by two individual springs, each
associated with a detuned beam. In this figure, we consider optical springs formed
by beams with Ω ≪

√

∆2 + γ2, and the spring constant is well-approximated
by Eq. (2.76). In this case each individual spring constant can be expressed as
K(Ω) = K0+ iΩK1, with K0 describing rigidity and K1 describing anti-damping.
As shown in the figure, spring A is responsible for restoring, and Spring B is
responsible for damping; the composite spring is stable while each individual one
is not.

temperature. For example, phonon-exciton coupling in semiconductors has been
shown to be an effective cooling mechanism [135, 136]; ground-state cooling using
cooper-pair box has also been proposed [137].

5.1.2. Trapping and Cooling In addition to providing a bath with very low effective
temperature, another way the optical field can help preparing a nearly pure quantum
state is that optical rigidity can be used to increase the mechanical resonant frequency,
so that the same thermal energy would correspond to lower occupation number. This
was proposed by Braginsky and Khalili in the late 1990s [138], and later independently
elaborated by other authors [91, 139, 140, 141, 142]. This is somewhat analogous to
the effect of “dilution”, which refers to the fact that a suspended pendulum has a very
high Q value compared with the Q of the material of the suspension wire, because
most of the restoring force of that pendulum comes from gravity (which is lossless),
instead of elastic deformations of the wire [53].

If we consider the thermal noise of the mechanical oscillator, we find that

Mẍ+ 2M (γm + γopt) ẋ+M
(
ω2
m + ω2

opt

)
x

= Fth + Fopt . (5.12)

In the limit of γopt ≫ γm and ωopt ≫ ωm, and assuming that the spectrum of Fth is
constant with

SF = 8MγmkBTm , kBTm ≫ ~

√

ω2
m + ω2

opt . (5.13)

Ignoring radiation-pressure noise from the light, the thermal occupation number now
becomes

n̄ =
kBTm
~ωm

γm
γopt

ωm

ωopt

>∼
kBTM
~ωmQm

(
ωm

ωopt

)2

, (5.14)
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this is reduced from cooling-only schemes by the dilution factor of (ωopt/ωm)
2
,

which can be quite very substantial — it is also in principle unlimited if higher
optomechanical coupling (e.g., higher optical power) is always available∗. [The second
inequality in Eq. (5.14) becomes equality if γopt ∼ ωopt.] This provides an additional
way to get closer to a pure state, and the requirement (5.11) becomes

Qm · fm ∼ 6× 1012
(

Tm
300K

)(
ωm

ωopt

)2

(5.15)

Such an “optical dilution” has been demonstrated by various experiments in
the gravitational-wave community; for example, Corbitt et al. [143] demonstrated a
dilution from ωm = 2π× 12.7Hz to ωopt =1kHz for a 1 g suspended mirror, a dilution
factor of nearly 80, which relaxes requirement on the Q · f product by 6× 103.

The ultimate trapping strategy is to levitate dielectric objects [144, 145, 146, 147,
148, 149, 150, 151]. Such strategies will completely get rid of mechanical dissipations
due to the existence of a suspension system, and replace that with dissipations due
absorption, scattering etc., which would likely bring much lower levels of noise.

As we consider the trapping situation in more details, we will have to be careful
about: (i) possible dynamical stability of the system, and (ii) the quantum noise
brought by the optical fields that generates rigidity. As for (i), because a restoring
force is usually associated with an anti-damping, a single optical field brings an optical
spring that, although is capable to increasing the mechanical resonant frequency,
brings instability. As can be shown [140, 152], this instability can be eliminated by
using two optical springs at the same time, one mainly provides restoring force, while
the other mainly provides the damping — as explained in Fig. 7. As for point (ii), most
straightforward applications of a double optical spring on a free mass does not provide
a very pure unconditional state; radiation-pressure noise from the springs, especially
the one providing the damping, contributes to an effective occupation number above 1
but below 10 — this is due to the information about the test-mass being carried away
by the out-going light. One can detect the out-going light and perform a conditional
state preparation (see Sec. 5.2 below), or perhaps use a third light beam [93].

5.2. Conditional State Preparation

In this and the next section, we shall use formalisms introduced earlier in this paper
to treat the issue of conditional state preparation and optimal feedback control —
which allows incorporation of colored noise and complex optical systems. However,
for pedagogical reasons, we shall mostly focus on white noise, and our results will be
largely equivalent to those of Clerk et al. [153].

Unconditional state preparation must not allow information of the mechanical
object to leak out in order to optimize the efficiency of cooling, and this seriously
limits the efficiency. In this section, we consider the measurement process as a state-
preparation process, via measurement-induced quantum-state collapse. This often
has a higher efficiency “on paper”, although it would be technically more difficult to
implement. In addition, the state prepared must be verified using a non-steady-state
measurement, because the conditional state often evolves in time in a random manner
(if it doesn’t then the unconditional state is as good as the conditional state).

∗ Here we have assumed that the additional trapping force is directly related to x, yet in many cases,
the force senses an additional displacement, e.g., due to thermal fluctuations of the coating applied
onto the mechanical oscillator. This will limit the dilution factor, as we shall discuss in Sec. 5.2.4.
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Figure 8. Illustration of conditional state preparation in the phase space. The
conditional expectations of position and momentum undergo random walk in the
two-dimensional phase space, driven by quantum state reduction; experimentally,
they can be obtained by applying Wiener/Kalman filter to the measurement
outcome. The conditional covariance matrix, after an initial transient, approaches
a steady state — it is represented as a noise ellipse in the figure. In absence of
classical noise, this covariance matrix is Heisenberg Limited (has determinant of
~
2/4), and the conditional state is a pure Gaussian state; in presence of classical

noise, the covariance matrix has a determinant greater than ~
2/4 — but very

close to this value if classical noise of the experiment, around the frequency of
measurement, is below the SQL. See Sec. 5.2 for details, and see Fig. 9 for further
illustration.

5.2.1. Conditional state preparation in presence of noise In this section, in addition
to the idealized system considered in Sec. 2.5, we shall add simplified models of sensing
and force noise, but we shall consider the example of a free mass, or the case when
the measurement frequency Ωq is much higher than the eigenfrequency ωm of the
mechanical oscillator (this assumption will be relaxed in Sec. 5.2.3, when we broadly
discuss the efficiency of conditional-state preparation):

−MΩ2x̂ = αâ1 + n̂F , b̂2 = â2 + α(x̂+ n̂x) . (5.16)

Here n̂F is a white force noise, and n̂x a white sensing noise; we shall write

SnF
= 2~MΩ2

F , Snx
=

2~M

Ω2
x

. (5.17)

Note that α2 = MΩ2
q, as in Eq. (3.31). We have chosen this way to represent the

noise spectra so that when we refer to displacement x, the effect of SnF
is a Ω−4 curve

that crosses the displacement SQL at frequency ΩF , while the effect of Snx
is a white

displacement noise that crosses the SQL at frequency Ωx, and the total classical noise
is

Scl
x = 2~M

[
1

Ω2
x

+
Ω2

F

Ω4

]

(5.18)

and we have

min
Ω

[
Scl(Ω)

SSQL(Ω)

]

=
2ΩF

Ωx
(5.19)

this means if Ωx > 2ΩF , then the total classical noise leaves a window below the SQL
(see the left panel of Fig. 9 for a sketch). In gravitational-wave detectors, the source of
force noise in the detection band is dominated by suspension thermal noise (center of
mass motion of the test mass driven by thermal fluctuations in the suspension system),
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while sensing noise arises from optical losses and internal thermal noise (fluctuations
in the distance between the mirror’s center of mass and the effective surface the light
reflects from) [154].

The basics of conditional state preparation is discussed in Sec. 3.1, where we have
obtained the SSE and SME for a continuous position measurement (see Fig. 8). Let us
only consider the simplest system mentioned above, and after the initial transients have
died down, and we have reached a steady state — at which the conditional expectation
values of x and p still undergo a random walk, but the statistical characteristic
of the random walk, as well as the conditional covariance matrix of x and p, has
reached constant values. In this simplest case, using our formalism of Wiener filtering
(Sec. 4.3), we obtain

V cond
xx =

~√
2MΩq

(1 + 2ξ2x)
3/4(1 + 2ξ2F )

1/4 (5.20)

V cond
xp =

~

2
(1 + 2ξ2x)

1/2(1 + 2ξ2F )
1/2 (5.21)

V cond
pp =

~MΩq√
2

(1 + 2ξ2x)
1/4(1 + 2ξ2F )

3/4 (5.22)

where we have defined

ξF =
ΩF

Ωq
, ξx ≡ Ωq

Ωx
, (5.23)

and we prefer both ξF and ξx to be small, because that means: (i) during the
measurement time scale, the classical force noise does not have time to create
disturbance of the mirror comparable to its quantum uncertainty, and (ii) the
measurement time is long enough so that classical sensing noise is below quantum
uncertainty. Together this means we should choose

ΩF < Ωq < Ωx (5.24)

in order to prepare a state that is nearly pure. In the case classical noise is negligible,
the Wiener (Kalman) filters for x and p read:

Gx =
√
2Ωqe

−Ωqt/
√
2 cos

Ωqt√
2
, (5.25)

Gp =
√
2mΩ2

qe
−Ωqt/

√
2 cos

(
Ωqt√
2
+
π

4

)

(5.26)

This means the conditional expectation for position and momentum at any time
depends mostly on data taken in the past within a time scale of 1/Ωq. This literally
confirms Ωq as the measurement frequency scale.

5.2.2. Figure of merit for conditional state preparation One figure of merit for the
quality of the conditional state is

U =
2

~

√

VxxVpp − V 2
xp (5.27)

to measure how pure the state is: in general U ≥ 1, and the state is more pure when
U is more close to 1. It is related to the “linear entropy” via

Slin = 1− trρ̂2 = 1− 1

U
(5.28)
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Figure 9. Illustration of conditional state preparation. Left panel: noise budget
of a device that measures the position of a free mass. The free-mass SQL is
shown in solid black curve, sensing noise in blue curve (and crosses the SQL at
Ωx), position-referred force noise in red curve (and crosses the SQL at ΩF ), and
possible quantum noise budget of different measurement schemes are shown in
black dashed curves (they each touch the SQL at Ωq). Upper right panel: U as
a function of Ωq ; the “sweet spot” is at Ωq =

√
ΩFΩx. Lower right panel: noise

ellipse for different Ωq , blue for no classical noise, and red for classical noise as
shown in the left. Because we start with an idealized free mass, the scale of the
quantum state is determined by Ωq : larger Ωq tends to produce more position
squeezed state, while smaller Ωq tends to produce more momentum squeezed
state; states are pure when Ωq is around the window opened by ΩF and Ωx.

A related figure of merit would be the effective occupation number, Neff :

Neff ≡ U/2− 1/2 (5.29)

and the von Neumann entropy is given by

SvN = −tr [ρ̂ log ρ̂] = (Neff + 1) log (Neff + 1)−Neff logNeff . (5.30)

This means a conditional state with Neff has the same von Neumann entropy as a
thermal state with thermal occupation number n̄ = Neff . Note that by using U and
Neff we are not giving additional weight to whether the state is “squeezed”.

5.2.3. Connection between purity of conditional state and device sensitivity.
Returning to our case, Eqs. (5.20)–(5.22) give, for ωm ≪ Ωq,

Neff =

√

(1 + 2ξ2x)(1 + 2ξ2F )− 1

2
. (5.31)

The optimal choice to minize Neff is to choose Ωq =
√
ΩxΩF , so that ξx = ξF =

√

ΩF /Ωx, and

Nmin
eff =

ΩF

Ωx
=

1

2
min
Ω

[
Scl(Ω)

SSQL(Ω)

]

(5.32)

This means, for a device that has classical noise right at the SQL, we should expect
to be able to prepare a conditional state that has a von Neumann entropy equivalent
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to a thermal state with mean occupation number of 1/2. In this way, efforts in
the gravitational-wave community to built detectors and prototype experiments that
beat the free-mass Standard Quantum Limit [14, 15, 16, 17] will also be suitable for
preparing nearly pure test-mass quantum states.

As discussed in Ref. [155], for mechanical oscillators, even for a general ωm, as
long as the total sensing noise Z and the force noise F have white spectra, and have
real-valued correlation SZF , we will always have a simple but powerful relation:

U =
2

~

√

VxxVpp − V 2
xp =

√

SZZSFF − S2
ZF

~
. (5.33)

This means the “purity of the measurement noise spectra” (right-hand side) is equal
to the purity of the conditional sate (left-hand side), and in particular Minimum
Heisenberg Uncertainty measurement noise spectra (indicating absence of classical
noise) leads to minimum Heisenberg conditional states (i.e., pure states).

Equation (5.33) implies that, if we use an optomechanical device with broad
measurement bandwidth and detect the out-going optical quadrature that contains
displacement signal, assuming white sensing and force noise, then the optimal purity
is achieved when SZF = 0, and in this case, Eq. (5.31) holds regardless of the value of
ωm, namely:

Nmin
eff =

ΩF

Ωx
, Ωq =

√

ΩFΩx . (5.34)

In other words, assuming that measurement strength is not an issue, the optimal purity
of the conditional state is only related to the size of the frequency window (ΩF ,Ωx) in
which both the classical sensing noise and classical force noise are below the free-mass
SQL.

The Wiener filtering formalism is capable to treating general colored noise spectra
without much additional effort — one simply has to approximate all spectra in rational
functions of Ω, although the answer will not be so simple, see Ref. [156, 155] for more
detailed discussions of results. A more fundamental issue would be that finiteness of
cavity bandwidth means correlations between the mirror and the cavity mode, and
therefore the mirror alone will not be in a pure state even in absence of classical noise.
This is discussed in Sec. V of Ref. [155], where they obtained algebraically rather
complicated analytical results. Here we merely quote the result when the cavity is
relatively broadband Ωq

<∼ γ, and we can still keep using

Ωcav
q =

√

~αcav/M (5.35)

and

αcav ≈ 2G

√
γ

γ2 +∆2
(5.36)

with G related to cavity length and power via Eqs. (2.5), (2.6) and (2.2). Expressed
in these quantities, in absence of classical noise, we have a leading-order approximate
effective occupation number of

Neff ≈ Ωcav
q

4
√
2γ

, Ωq
<∼ γ . (5.37)

due to finite cavity bandwidth.
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5.2.4. Relation between Q · f criterion and the Ωx/ΩF crieteron. In Sec. 5.1, as we
discussed cooling, we have used Q · f as the figure of merit to estimate a system’s
possibility of being cooled to an effective thermal occupation number below unity, see
Eqs. (5.11) and (5.15). Taking cooling without dilution as a special case of dilution
factor equal to unity, the approximate condition for reaching a nearly pure state
(occupation number approximately unity) there is

Qm~ωm

kBTm
>∼

(
ωm

ωopt

)2

. (5.38)

or

n̄eff ≈ kBTm
Qm~ωm

(
ωm

ωopt

)2

. (5.39)

In conditional state preparation, because we have measurement as an additional
element, we have two numbers, ΩF and Ωx to represent a white force noise and a
white sensing noise, and we require

ΩF
<∼ Ωq

<∼ Ωx (5.40)

to reach a nearly pure quantum state. Assuming that the force noise originates from
dissipative heat bath with temperature Tm and damping rate of γm, we have

Neff ≈ kBT

Qm~ωm

(
ωm

Ωq

)2

(5.41)

Equation (5.41) is compatible with Eq. (5.39) if Ωq ∼ ωopt. As we have discussed
in Sec. 2.6, for our straw-man optomechanical system, if the mirror starts off as free
mass, if optical parameters γ, ∆ and the characteristic frequency Θ are all of the same
order of magnitude, then ωopt will indeed be the same order as Ωq. This means, in
terms of dissipative thermal noise and optomechanical coupling strength, requirements
for cooling-trapping and conditioning to bring the mirror into a nearly quantum state
are comparable.

If we summarize our conclusion so far using the frequency scales ωm, ΩF ,
Ωq ∼ ωopt and Ωx: if we only consider thermal force noise arising from velocity
damping, then both cooling-trapping and conditioning have a similar figure of merit
of:

n̄eff ≈ Neff ≈
(

ΩF

ωopt

)2

≈
(
ΩF

Ωq

)2

. (5.42)

The scale of ωm does not affect the effective occupation number we can reach, except
that when ωm

>∼ ΩF then no optical dilution is needed to reach an occupation number
of unity. [Note that this corresponds to the first Q · f requirement (5.11), when we
discussed radiation-damping cooling without dilution.]

Accounting for classical sensing noise in conditional state preparation — the
second part of the inequality (5.41) — this imposes a limit beyond which further
increase of Ωq will no longer improve purity of the conditional state. Assuming both
classical force noise and classical sensing noise to be white, this limit is given by

Ωq ≤
√

ΩxΩF (5.43)

and therefore

Neff ≈ ΩF

Ωx
(5.44)



Yanbei Chen 45

cavity

movable

mirror

detector

classical

processorclassical data

actuator

classical data

quantum

light

classical

force

conditional vs. steady state

x

p

Figure 10. Left panel: the setup of a feedback cooling experiment, which can
also be viewed as a quantum system under feedback control. After detecting (and
therefore measurement) the out-going light, the measurement result (classical
data) is processed, and then fed back onto the mirror as a classical force. Right
panel: red ellipse represents the conditional variance of the measurement, and the
blue ellipse represents one possible noise ellipse realizable by a control system,
which: (i) has principal axes aligned with x and p directions, and (ii) is always
outside the conditional noise ellipse. .

Because no measurement is required for the trapping-cooling method for state
preparation, the second inequality in Eq. (5.40) involving sensing noise does not
directly appear, and has been ignored in our discussions in the previous sections.
Nevertheless, a similar noise comes into play when one attempts to optically trapping
mechanical objects with significant internal thermal noise, namely thermal fluctuations
in the distance between the object’s center of mass and its reflective surface, e.g.,
due to dielectric coatings applied onto the mechanical object. In this case, although
the internal thermal noise directly imposes phase fluctuations onto reflected light,
but those phase fluctuations get converted into amplitude flucuations, and then get
imposed onto the center-of-mass motion. At the end, one has to impose the same limit
on optical dilution (for ωopt) as Eq. (5.43). As a consequence, we have

n̄eff ≈ Neff ≈ ΩF

Ωx
. (5.45)

This shows that, with the same level of classical noise, conditional state preparation
and trapping-cooling could achieve the same level of effective occupation number —
although for finally achieving a pure state, in the cooling-trapping case, one has to
prevent quantum information of the mirror from leaking out.

5.3. Quantum Feedback Control

Historically, classical feed back loops have been used to create cold loads, used in cold-
damping experiments [112, 113, 114] (see discussions at the beginning of Sec. 5.1.1).
However, those works were in the classical regime, and there was no role for quantum
measurement.

In this section, we enter the quantum regime, and consider explicitly feedback
processes that are enabled by a quantum measurement, as shown in left panel of
Fig. 10. In particular, we will focus on feedback schemes that will allow cooling of
the mechanical oscillator. For historical reasons, feedback cooling is sometimes also
referred to as “cold damping” — but that offers no distinction from radiation damping.
Therefore we shall only use the term “feedback cooling” in this paper, having in mind
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that “feedback” requires an input which would have to be obtained through quantum
measurement.

Feedback cooling was described and analyzed for optomechanical systems by many
authors [157, 158, 159]. Experimentally, it has been implemented by Corbitt et al. [143]
and Mow-Lowry et al. [160] in experiments involving gram-scale test masses, and by
Abbott et al. [154] kg-scale test masses; by Arcizet et al. [161] in smaller scales.

Feedback cooling is interesting not only because it is an important way to prepare
quantum states, but also because it is an important example of feedback control
of a quantum system, when the measurement process is quantum-limited [162, 32].
Although a program involving conditional-state preparation and verification is more
difficult to realize experimentally, the theory of conditional-state preparation is still
indispensible if one would like to design an optimal unconditional state-preparation
scheme using measurement and feedback. The optimality of the control kernel is
crucial for the purity of the close-loop quantum state — and optimization of this
control kernel is best achieved when we know the conditional state of the test mass
during the measurement. This is why we have postponed discussion of feedback cooling
until now.

5.3.1. Optimal Control Theory For Linear Mechanical Oscillators It is clear that:
(i) the steady state achievable by feedback cannot in any way be better than the
conditional state, and (ii) there should be no steady-state correlation between position
and momentum:

V ctrl
xp = 0 . (5.46)

One such state is depicted on the right panel of Fig. 10, with the feature that the
controlled state has a noise ellipse that has x and p as its principal axes, and it is
tangential to the conditional-state noise ellipse at two points. The question would be,
for any steady Gaussian state satisfying (i) and (ii), does there exist a controller that
allow us to achieve it? The answer is yes, and this is rather straightforward to prove,
based on Ref. [163] (see also Ref. [164]), in any stationary (i.e., optical power and
detected optical quadrature does not depend on time) linear measurement processes,
even for non-Markovian ones.

Suppose we have a causally whitened measurement outcome z(t) (See Sec. 4.3).
If we start from t = 0, and keep track of what we had already fed back before —
which propagates through the system deterministically, we should be able to obtain
the unperturbed z(t) for any t > 0 — by systematically subtracting the part of the
output signal that is due to our previous feedback force — even though we had acted
during the period of 0 < t′ < t. For this reason, we should be able to create a scheme
for which, after reaching steady state, has

x(1)(t) = x(0)(t)−
∫ t

−∞
dt′f(t− t′)z(0)(t′) (5.47)

p(1)(t) = ẋ(1)(t) (5.48)

where we have used superscript “(0)” for uncontrolled state and “(1)” for controlled
state, and have denoted

f(t) =

∫ t

0

dt′χ(t− t′)G(t′) . (5.49)

Here χ is the response function of x; χ(0) = 0 and χ′(0) 6= 0, because the mass does not
respond instantaneously to a force, but must go through intergration. The quantity
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Figure 11. Critical behavior of optimally controlled steady state of a mechanical
oscillator under a “conventional” continuous measurement (i.e., with phase-
quadrature of out-going field measured and fed back). Assuming only thermal
noise from dissipation to a heat bath with temperature Tm (and no classical
sensing noise or optical loss), we plot the effective occupation number Neff as a
function of measurement strength and the ratio Tm/Tc. For Tm/Tc < 1, there
exists an optimal measurement strength at which the cooling is most efficient
(black solid trajectory on the surface), while for Tm/Tc > 1, the optimal cooling
is always Ωq → +∞, reaching an occupation number of 1/

√
2. The optimal Neff

as a function of Tm/Tc has been projected onto the Tm/Tc-Neff surface as a blue
trajectory. See Sec. 5.3.2 for details.

G is the transfer function from data to feedback force, which can have a δ-function
part (which represents instantaneous response) and a Heaviside step function part:

G(t) = g0δ(t) + g(t)Θ(t) . (5.50)

Here g0 is the coefficient for direct response, and Θ is the Heaviside step function.
This means, although χ(0) = 0 dictates that f(0) = 0, the derivative f ′(0) does not
need to vanish, and f can be any function that vanishes at t = 0.

In the steady-state limit of t→ +∞, Eq. (5.47) readily becomes

V ctrl
xx = V cond

xx +

∫ +∞

0

h2(t)dt , h(t) = f(t)− gx(t) , (5.51)

which shows that the steady state V ctrl
xx cannot be less than the conditional variance.

Because f(0) = 0, h is a function that satisfies h(0) = −gx(0). For momentum, we
have [noting Eq. (4.24)]

V ctrl
pp = V cond

pp +

∫ +∞

0

[h′(t)]2dt . (5.52)

Recalling that V ctrl
xp = 0, we have already obtained all the necessary steady-state

covariances. For any xθ, we can show that the steady state has

V ctrl
θθ − V cond

θθ
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=

∫ +∞

0

[
h2 cos2 θ + (h′)2 sin2 θ

]
dt− 2V cond

xp sin θ cos θ

≥
[∫ ∞

0

(−2hh′)dt− 2V cond
xp

]

sin θ cos θ = 0 . (5.53)

Here we have recalled from Eq. (4.25) that

V cond
xp =

1

2
g2x(0) ≥ 0 . (5.54)

Equation (5.53) means for any xθ, the steady state always has a larger covariance than
the conditional state, as illustrated in the right panel of Fig. 10. In addition, if we
choose

h(t) = −gx(0)e−λt , λ > 0 , (5.55)

then we have

V ctrl
θθ = V cond

θθ +
(cos θ − λ sin θ)2

λ
V cond
xp (5.56)

then the noise ellipses of the conditional state and the steady state will be tangential
to each other at precisely two antipodal points, with tan θ = 1/λ ♯.

In this way, we have proved the statement at the beginning of this section, namely
any steady state that has a noise ellipse that looks like the blue ellipse in the right
panel of Fig. 10 can be achieved by an optimal controller. The detailed “kinematical”
reason why the controlled steady state’s quality is limited by V cond

xp or g2x(0)/2 is the
following: because our feedback system cannot change x instantaneously, but must
go through p, we will not be able to make corrections to x according to the last-
minute information about x — therefore our steady state will never be as good as the
conditional state.

Equation (5.56) is also equivalent to

V ctrl
xx = V ctrl

xx +
V cond
xp

λ
(5.57)

V ctrl
pp = V ctrl

pp + λV cond
xp (5.58)

The effective occupation number Neff [Sec. 5.2.2] is minimized with λ =

−
√

V cond
pp /V cond

xx , with a minimum value of

N ctrl
eff =

2

~

[√

V cond
xx V cond

pp + V cond
xp

]

(5.59)

5.3.2. Figures of merit and comparisons with trapping-cooling and conditioning
Because V cond

xp 6= 0, the controlled steady state of the mechanical oscillator is always
imperfect. As an example, if one starts from a free test mass, and measure the phase
quadrature of the out-going light (a “conventional measurement strategy”), the best
one can do will be 1/

√
2. This is because for a free mass, the frequency scale of

the controlled oscillator is always set by the measurement process, and measurement
decoherence can never be completely overcome.

As shown by Danilishin et al. [163], for an oscillator starting with frequency
ωm, quality factor Qm and temperature Tm, as we use phase-quadrature readout to

♯ Here θ is the inclination angle of the common tangent of the two ellipses.
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Figure 12. Effective occupation number Neff achievable as a function of
Ωx/(2ΩF ) (which is also the ratio by which the device’s classical noise beats the
free-mass SQL, see Sec. 5.2 for details) by: (i) conditional state preparation (black
dashed), (ii) steady state obtained by optimally feeding back the out-going phase
quadrature (red solid), (iii) steady state obtained by optimally feeding back an
optimal, frequency independent output quadrature (red dashed) and (iv) steady
state by feeding back phase quadrature, but with 10 dB of frequency-independent
input squeezing at an optimal quadrature (red dotted). [Combination of detection
quadrature optimization and squeezing injection did not turn out to improve much
upon case (iv).]

measure the mirror’s position (as in Sec. 5.2) and use optimal filter function for the
controller to prepare its quantum state, there is a critical temperature

Tc =
~ωmQm

2
√
2kB

(5.60)

if Tm is above this temperature, the optimal scheme is to use as much power as possible
to measure this object, and use feedback to create an oscillator whose frequency is
determined by the measurement and feedback process. In this case, we are preparing
an oscillator under strong measurement, and the best occupation number achievable
is 1/

√
2. By contrast, below that critical temperature, the measurement scheme

should be chosen at an optimal strength, and the achievable occupation number is
proportional to

Neff ≈ 2−3/4(Tm/Tc)
1/2 , Tm ≪ Tc . (5.61)

This illustrated in the left panel of Fig. 12. Regardless of whether Tm > Tc or Tm < Tc,
feedback cooling either has a limited final occupation number, or has an optimal
measurement strength — This is the price we pay for having to make a measurement
but not taking full advantage of the data. By contrast, trapping-cooling schemes
mentioned in Sec. 5.1.2 does not have such an issue, because there is in principle no
limit for the optical dilution factor. However, as we have mentioned in Sec. 5.1.2, to
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Figure 13. Recovering steady-state purity via quantum feedback control (in
absence of classical noise). [This figure is reproduced from Ref. [131]; its
convention for ∆ is opposite to ours. Here ∆/ωm < 0 corresponds to light being
red tuned.] Left panel: effective occupation number achievable by radiation-
pressure damping alone, as a function of detuning ∆/ωm and cavity bandwidth
γ/ωm. Here we require the resolved side-band limit, namely γ ≪ ∆ to obtain
efficient cooling. (The case ∆/ωm = −1 is extensively discussed in Sec. 5.1.1.)
Right panel: as an appropriate out-going quadrature field is detected and
optimally fed back onto the oscillator, effective occupation number is shown to
decrease significantly, and resolved side-band limit is not necessary.

obtain large dilution factor often comes with instabilities as well as excess radiation-
pressure noise, and often requires more than one optical mode to be coupled to the
mechanical oscillator.

For conditional-state preparation, we can avoid the above limitations posed by
the requirement of a steady state. In Fig. 12, for a free mass, we plot, as a function of
the SQL-beating factor Ωx/(2ΩF ) of the device’s classical noise budget (see Sec. 5.2 for
definition), the Neff achievable by a conditional state preparation measuring the out-
going phase quadrature (without injecting squeezing), compared with steady-states
prepared by feedback of out-going phase quadrature, a general out-going quadrature,
and out-going phase quadrature assuming frequency-independent squeezing of 10 dB.
In addition to the classical sensing noise and force noise, characterized by Ωx and
ΩF , respectively, we have also added an optical loss of 2%. A substantial gap exists
between the quality of the steady state and the conditional state — despite the use of
squeezing and the optimization of readout quadrature.

5.3.3. Further developments If cooling-trapping is already possible in the resolved
side-band limit, it should be more powerful than feedback cooling. However, if
a device uses radiation-pressure damping, but cannot achieve resolved side-band
cooling, feedback cooling can be applied as a remedy. Using the relation between
the conditional and the optimally controlled state developed in Sec. 5.3.1, it is
straightforward to re-evaluate radiation-pressure cooling experiments that are not
at the resolved side-band limit. Ideally, the additional quantum uncertainty of the
oscillator could be due to: (i) entanglement between oscillator and cavity optical mode,
and (ii) information that leave from the out-going light. In Ref. [131], Miao et al. has
carried out this study, and in Fig. 13, we compare the effective occupation number
achieved by a generic radiation-pressure cooling (left panel) and the one one achievable
by measuring and optimally feeding back an output quadrature (right panel). As in
Sec. 5.1.1, here we have limited ourselves in the regime with power low enough not
to shift the real part of the oscillator’s eigenfrequency, but high enough such that the
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damping it creates dominates over the oscillator’s original damping. In this regime,
the additional occupation number Neff caused by light does not depend on optical
power. As we can see from Fig. 13, feedback is able to strongly suppress Neff . This
indicates that, not only is the cavity mode not much entangled with the motion of
the oscillator, the information that comes with the out-going light in such a way that
V cond
xp ≪ ~ [See Sec. 5.3.1]. Recalling discussions at the end of Sec. 4.3, this suggests

that information for x̂(t) does not appear in the out-going light right at the “last
moment before t”, but instead had to be accumulated over a timescale much longer
than 1/ωm.

As a more advanced strategy of feedback cooling, as shown by Szorkovszky et
al. [165], if the spring constant is modulated at twice the mechanical oscillation
frequency, 2ωm, the parametric amplification effect of this modulation, plus the effect
of measurement and feedback, and allow substantial improvement towards preparing
near pure quantum states. Moreover, because of parametric amplification, the states
they prepare can be substantially squeezed, and has its ∆x and ∆p each oscillate at
a frequency of ωm. Such a “breathing” arises from the non-stationarity of the setup,
and cannot be achieved by a purely stationary scheme. This strategy is similar to
previous proposals for electromechanical systems [166, 167].

5.3.4. Measurement-based control versus coherent quantum control More broadly
speaking, control theory deals with the dynamics of a composite system made up from
a “plant” and a “controller”. The controller collects information about the plant (via
observation), performs a calculation, and acts back onto the plant (via actuation). In
classical physics, both the plant and controller satisfy classical equations of motion, the
“observation” can in principle be perfect, but is usually noisy in practical situations.
The dynamics of any one such composite system can be analyzed simply by solving the
differential equations they satisfy. However, control theory provides us with a language
to describe the behaviors of such composite systems, and then a set of tools to: (i)
estimate the behaviors of the composite systems for large classes of controllers without
having to solve individually the joint equations of motion, and (ii) qualitatively design
the controllers in order to achieve a certain set of behaviors.

We have so far discussed feedback control scenarios in which the plant is quantum,
but the controller is classical — for this reason, the observation process has to
convert quantum information into classical information via quantum measurement,
thereby causing decoherence. This is an important class of control systems to study,
because one might imagine classical computers with complex algorithms being used
for controlling more complex quantum systems.

However, one can also imagine using a quantum system for the controller — and
in this way the observer will not have to convert quantum information into classical.
Such control systems are referred to “coherent quantum control systems” [168, 169].
One can already consider optical cavities as quantum controllers, and one can
consider trapping-cooling as coherent quantum control, while feedback cooling as
quantum control. Hamerly et al. [170, 171] recently made an explicit comparison
between measurement-based feedback control and coherent quantum control for
cooling mechanical oscillators, and demonstrated the advantage of the latter. Coherent
feedback of a mechanical oscillator has been experimentally demonstrated by Kerckhoff
et al. [172]. Recently, Jacobs and Wang discussed the advantage of coherent control
for driving the plant into a specific pure state within minimum time [173].
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5.4. State Tomography

A conditional state preparation cannot be a stand-alone scheme, because the out-
going light only provides information about the expectation value of the position
and momentum, which undergo random walk under measurement — the remaining
uncertainty of position and momentum are the true quantum uncertainty, and these
can only be extracted by a series of additional experiments, each repeated many times.
We shall review the most straightforward process to carry out a verification process,
which reconstructs the Wigner function of the test mass at a given moment [174]. The
scheme we discuss here demonstrates such a possibility of state verification; depending
on one’s aim, the verification procedure can be much simplified [175].

5.4.1. Error of Tomography More specifically, the goal of our state verification
scheme is to obtain a map (or tomography) of the mechanical object’s Wigner
function with an error much less than Heisenberg uncertainty. Experimentally, for
each quadrature xθ, we will measure the distribution of a new observable xmeas

θ ,

xmeas
θ = xθ + nadd

θ (5.62)

which is xθ, the oscillator quadrature we need to measure, superimposed with an
additional error naddθ — noise contained in this error is assumed to be statistically
independent from quantum fluctuations of xθ. The distribution we measure, and
attribute to xθ is actually the distribution of xmeas, which is the distribution of xθ
convolved with the distribution of naddθ :

pxmeas
θ

(y) =

∫

pxθ
(y − z) exp

(

− z2

2V add
θθ

)

dz (5.63)

Here pxθ
is the distribution of xθ, obtainable from its true Wigner function,

V add
θθ ≡ 〈naddθ naddθ 〉 (5.64)

is the variance of the θ-quadrature measurement error nadd
θ . The verification procedure

will obtain the uniqueWigner function that is compatible with pxmeas
θ

, through a Radon
transformation [176]. We shall not assume the state preparation process would yield
a Gaussian state (See Secs. 6.6 below), but we do assume that the verification process
to be linear and Gaussian. We will even find that the additional noise is describable
with a “noise ellipse”:

〈nadd
θ1 nadd

θ2 〉 = (cos θ sin θ)

[
V add
xx V add

xp

V add
xp V add

pp

](
cos θ
sin θ

)

= (cos θ sin θ)Vadd

(
cos θ
sin θ

)

(5.65)

In this case, the Wigner function we construct from the sequences of
measurements is simply the convolution of the true Wigner function with a Gaussian
with noise ellpse specified by Vadd:

W recon(x, p)

=

∫

dudv
e
− 1

2 (u v) (Vadd)
−1

(

u
v

)

2π
√
detVadd

W (x− u, p− v)

(5.66)
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One can first check this Wmeas does give Eq. (5.63), and then use the uniqueness in
the correspondence between Wigner function and the distribution of all quadratures.
In the case the prepared state is Gaussian, we simply return to gaining and additional
piece in the covariance matrix:

Vrecon = V +Vadd (5.67)

We can then define a verification process with sub-Heisenberg error as one with

detVadd <
~
2

4
. (5.68)

Unless this is satisfied, the measured Wigner functionW recon cannot have any negative
regions. In addition, verification of Gaussian entanglement by calculating negativity
of the covariance matrix [177, 178] also requires (5.68). We shall refer to verification
processes that takes equal sign in Eq. (5.68) as Heisenberg-limited tomography.

Note that there is no fundamental limit to the accuracy for state tomography —
by doing a tomography we are not trying to convert x̂ and p̂ into classical numbers
(the extent one can do that is limited by the Heisenberg Uncertainty), but instead
trying to map out the Wigner function, which is related to the distribution we obtain
when trying to convert linear combinations of x̂ and p̂ into classical numbers.

5.4.2. Achieving Tomography and the use of Back-Action Evasion Now suppose we
would like to carry out tomography for the Wigner function of the mechanical object
at t = 0, we must be able to measure the distribution for a large number of quadratures
xθ(t = 0). In order to do so with non-zero signal-to-noise ratio, we must collect data
for a non-zero duration. Note that during the time after t = 0, we have

x̂(t) = x̂(0) cosωmt+
p̂(0)

mωm
sinωmt = x̂ωmt (5.69)

This means, if we can accumulate the out-going light in an appropriate way, we shall
we able to measure

∫ +∞

0

f(t)x̂(t)dt (5.70)

which will yield a particular initial quadrature of the oscillator. The complications
are: (i) there will be measurement back action and classical force noise

x̂(t) = x̂(0) cosωmt+
p̂(0)

mωm
sinωmt

+

∫ t

0

sinωm(t− t′)
mωm

[αâ1(t
′) + n̂F (t

′)] (5.71)

and (ii) sensing noise:

b̂1(t) = â1(t) (5.72)

b̂2(t) = â2(t) + α [n̂x(t) + x̂(t)] (5.73)

As it turns out, even in absence of classical noise n̂F and n̂x, if we always measure the
out-going b̂2 quadrature, and carry out filtering of

∫ +∞

0

g2(t)b̂2(t)dt (5.74)

then by optimizing g2, for particular quadratures xθ, the back-action and sensing-
noise together imposes an exactly Heisenberg-limited tomography [174]. One way to
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get out of this is to inject squeezing, so that for different injected squeezed vacuum,
subject to the limit of Sa1

Sa2
− S2

a1a2
= 1, we will obtain different Heisenberg-

limited tomographies — combining these information will lead to a sub-Heisenberg
tomography.

However, a remarkably elegant scheme that relies on back-action evasion can be
inspired by the variational measurement invented by Vyatchanin et al. [65, 66], who
observed that if signal waveform is known, back-action evasion can be achieved if we
measure a time-dependent optical quadrature. (For us, each mechanical oscillator
quadrature basically corresponds to the signal having a particular phase.) The key is,
in absence of classical noise, if we decide to use the particular filtering of b2 shown in
Eq. (5.74), to evade back-action, we simply need to add the right amount of b1(t), by
detecting the combination of

∫ +∞

0

[g1(t)b1(t) + g2(t)b2(t)] dt (5.75)

in such a way that the a1 content of the two terms cancel with each other. In our
case, the unique way to completely evade back action is to choose:

g1(t) +
α2

mωm

∫ +∞

t

dt′ sinωm(t′ − t)g2(t
′) = 0 (5.76)

5.4.3. Figures of merit and experimental prospects In presence of classical noise, the
filters g1 and g2 will have to be chosen such that the measurement time is short enough
for force noise not to matter, and long enough for sensing noise not to matter. The
result of the optimization for white force and sensing noise, assuming Ωq ≫ ωm, is
analytical and

V add
xx =

√
2~

MΩq
· Λ3/2

x ξ
1/2
F , (5.77)

V add
xp = − ΛxξF~ , (5.78)

V add
pp =

√
2~MΩq · Λ1/2

x ξ
3/2
F (5.79)

with

ξF =
ΩF

Ωq
, ξx =

Ωq

Ωx
, Λx =

√

ξ2x +
e−2q

2
(5.80)

where Ωq, Ωx and ΩF are as defined in Sec. 5.2, and e−2q is the power squeezing factor
(i.e., e−2q = 0.1 for “10 dB squeezing”). From Eqs. (5.77) and (5.80), we obtain

det (Vadd)

~2/4
= Λ2

xξ
2
F =

(
ΩF

Ωx

)2

+
e−2q

2

(
ΩF

Ωq

)2

=
1

4
min
Ω

[
Scl(Ω)

SSQL(Ω)

]

+
e−2q

2

(
ΩF

Ωq

)2

. (5.81)

Here the error decreases monotonically as we increase Ωq — even vanishingly small
in absence of classical noise — thanks to back-action evasion. In presence of classical
noise, the necessary condition for sub-Heisenberg verification is for the classical noise
to beat the SQL. Interestingly, as we increase ωm, the tomographic error ellipse will
change shape, but Eq. (5.81) for area of the error ellipse remains universally valid for
all values of ωm.
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Figure 14. Breathing of ∆x of a squeezed state of a mechanical oscillator.

Up till now, we have seen that although conditional state preparation only
requires classsical noise to be below the SQL — and then the quantum noise will
automatically enforce Heisenberg Uncertainty for the mirror, thereby creating a nearly
pure conditional state, an accurate state tomography requires us to use advanced
detection techniques, including back-action evasion (via time-dependent homodyne
detection) and rather substantial levels of input squeezing. At this moment, squeezing
has been reliably applied to gravitational-wave detectors, improving sensitivity
to a level that had not been achieved before [78], frequency-domain variational
measurements have been demonstrated at high frequencies in the context of frequency-
dependent homodyne detection [79] and in the context of variational coupling with a
nanomechanical oscillator [86]. Time-domain variational measurements have not been
demonstrated. [See Sec. 2.4 for more details.]

5.5. Example of a preparation-evolution-verification experiment

Before we move on to discuss applications of the basic strategies listed in this section,
let us illustrate their use by outlining an experiment that prepares a squeezed state
of the test mass, lets the squeezed state evolve for different durations of time, and
observes the “breathing” of position uncertainty. The requirements on classical noise
levels are challenging, but perhaps realizable within the near future; this time-domain
operation mode may incur transients, which must be studied carefully.

Suppose we have a device with Ωx = 50ΩF . For example, a generation of
gravitational-wave detectors beyond Advanced LIGO will have Ωx ∼ 10Hz, and
ΩF ∼ 500Hz. This corresponds to an SQL-beating factor of 5 in amplitude [See
Eq. (5.19)]. Let us also assume an optical spring can be imposed at will, and we can
achieve 10 dB of squeezing without loosing much of it. Let us describe the timeline of
a first scenario of the experiment, if we would like to obtain a full tompgraphy:

(i) State Preparation. In this process (t′ < 0), we assume a measurement strength
that corresponds to Ωq = 0.23

√
ΩxΩF , and there is no optical spring. We

use Wiener Filters to obtain continuously the conditional expectations 〈x〉 and
〈p〉, which undergo random walks. The conditional variance should gradually
approach a steady state — but that is for the next stages of experiment to verify.

(ii) State Evolution. At t = 0, we attach an optical spring to achieve Ωopt =
1.2

√
ΩxΩF . In order to remove the decoherence due to radiation pressure noise,

we monitor the out-going b1, which is proportional, up to sensing noise, to the
radiation-pressure noise acting on the oscillator.
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(iii) State Verification. At time t = τe, we start the state-tomography process, we
assume turning off the optical spring and starting verification with measurement
strength of Ω′

q = 3.0
√
ΩxΩF , we also assume 10 dB squeezing is injected.

(a) At each run of the experiment for a fixed τe, we can only verify one oscillator
quadrature ζ, obtaining one value. We will have to subtract from this value
the corresponding contributions from 〈x〉 and 〈p〉 obtained in Step (i), as well
as the radiation-pressure force b1 in Step (ii).

(b) We will have to repeat (a) many times for the same ζ, obtaining a distribution
of x̂ζ(τ). Then for many values of ζ, we will have to obtain their distributions.
Assembling all these one-dimensional distributions, and applying a Radon
transformation, we will finally be able to obtain the Wigner function at time
t = τe.

(c) We will have to repeat the above process for different values of τe, to obtain
the “verified Wigner function” of the oscillator as a function of time.

If we were to only verify ∆x(τe), we will be able to see the “breathing effect” due
to mechanical squeezing, because Step (i) of the above process will be preparing a
momentum squeezed state (relative to the ground state of a harmonic oscillator with
Ωopt) at the beginning. Given the noise budget, in Fig. 14, we show that, depending
on τe, the total verified ∆x oscillates as a function of time, following the red curve.
At the beginning we have an anti-squeezed state of the oscillator, with ∆x > ∆xvac,
the zero-point standard deviation. As τe increases, ∆x decreases, and eventually dips
below vacuum fluctuation — this indicates that the mechanical oscillator is truly
squeezed. Although thermal decoherence becomes more important in the longer term,
in this setup, we shall see ∆x go below vacuum level five times. Of course, each τe
in the plot corresponds to many experimental runs, which are required to carry out
tomography at t = τe. The turning on and off of optical spring is only there to ease
the computation so that formulas in this paper can be used directly. It should be
possible to find experimental strategies in which one does not have to only turn on
the optical spring during evolution, but instead can keep it there.

In the second scenario, we choose Ωq = 2.5
√
ΩxΩF , Ωopt = 0.8

√
ΩxΩF and

Ω′
q = 3.0

√
ΩxΩF . In this case, we will be preparing a position-squeezed state at the

beginning, therefore ∆x dips below vacuum level even at τe = 0. We will be able to
see ∆x dip below vacuum for 5 times. �

6. Further Developments for Linear Systems

In this section, building on the basic experimental concepts discussed in Sec. 5, we
discuss several more advanced experimental concepts for quantum optomechanical
systems that aim at exposing features of quantum mechanics in macroscopic objects.

6.1. Ponderomotive Squeezing and Entanglement between out-going optical modes

6.1.1. Ponderomotive Squeezing It was long known that a cavity with a moving
mirror, when pumped with strong carrier field, can convert an input coherent
state into an output squeezed state [179]; similar mechanism also applies to
electromechanical devices [180]. This is also referred to as ponderomotive squeezing,
because ponderomotive force, i.e., low-frequency components of the force exerted
onto the mirror by light, is involved in converting quantum amplitude fluctuations
of light into mirror motion, which in turn gets converted into quantum phase
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fluctuations of the out-going light. The classical coupling mechanism has been
demonstrated [181, 182, 183], while the quantum squeezing has recently been observed
by Brooks et al. using an atomic ensemble as the mechanical oscillator [184].

Another way of generating squeezing using moving mirrors is the Dynamical
Casimir Effect [185, 186], in which a mirror moving with high oscillatory velocity
at 2ω0 converts incoming vacuum into squeeze vacuum, but we shall not go into the
details because the motion of the mirror here is highly classical.

The simplest experimental setup for generating ponderomotive squeezing is
described in Sec. 2.5, where the cavity’s detuning and bandwidth are both much
greater than our frequencies of interest. The input-output relation of the system can
be written as

b1 = a1 , b2 = a2 + αx (6.1)

and

−M(Ω2 − ω2
opt)x = αa1 + nF , (6.2)

Combining the two equations, we realize that using a free mass without optical rigidity
(i.e., ω2

opt ≪ Ω2) will produce frequency-dependent squeezing [37], with a frequency
dependence that may not be most suitable for improving sensitivities of measuring
devices [37, 69, 187, 70, 71, 67].

Nevertheless, as shown by Corbitt et al. [188], if we have a strong optical spring,
then for frequencies below the optomechanical resonance (Ω ≪ ωopt), the output
squeezing is frequency independent (writing α2 =MΩ2

q):

b1 = a1 , b2 = a2 +

(
Ωq

ωopt

)2

a1 +
nF√

Mω2
opt/Ωq

. (6.3)

Remarkably, in absence of additional noise (e.g., due to optical losses), we always
gets at least a mild squeezing from the out-going field, even regardless of the level of
thermal noise. Suppose we measure

bζ = b1 cos ζ + b2 sin ζ (6.4)

with ζ ≪ 1, we have

Sbζ = 1 +
2Ω2

q

ω2
opt

ζ +O(ζ2) (6.5)

this is less than unity if ζ is a negative number with a very small magnitude.
However, in order to obtain a substantial squeezing factor of e−2q, one must tune

the optomechanics so that

ωopt ≈ e−qΩq (6.6)

and require a low enough thermal noise (assuming velocity damping),

ΩF
<∼ e−2qωopt . (6.7)

For a squeezing at level of ∼3 dB, we need

ΩF
<∼ ωopt

<∼ Ωq . (6.8)

This is a similar requirement to having the spectrum of quantum back-action force
comparable to that of thermal noise [189], as has recently been achieved by Purdy et
al. [190].
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Figure 15. Amplitude-fluctuation spectra for transmitted, red-detuned (left)
and blue-detuned (right) light. The level of asymmetry measures how close the
mechanical oscillator is to the ground state. In Sec. 6.2, Khalili et al. [46] offer
two explanations for the asymmetry.

6.1.2. Entanglement between out-going fields Pirandola et al. [191] suggested that
several beams of light simultaneously incident on the same mirror will cause the
returning beams to be entangled. Wipf et al. [192] considered such an entanglement in
the context of stable double optical springs [140], and showed that the optical dilution
effect makes the entanglement between out-going light also robust against thermal
noise.

6.1.3. Optomechanical generation of frequency-dependent squeezing. In sub-SQL
quantum measurements it is often interesting to create frequency-dependent squeezing
(See 2.4). One way to realize this is to use detuned Fabry-Perot Cavities as
filters, yet for applications like LIGO, the long timescale of measurement means the
requirement of narrow linewidth cavities (∼100Hz), which must store light for a long
time, and hence can be either very long or very lossy, or both. It was proposed
that materials with Electromagnetically Induced Transparency (EIT), which makes
light travel slowly, can be used to reduce the length of such filters [193]. Coupling
to mechanical motion can also bring effects similar to EIT — this has been referred
to as Optomechanically-Induced Transparency (OMIT) [194, 195, 196, 197]. This
feature in principle allows us to build a optomechanically tunable frequency-dependent
quadrature-rotation device in the audio frequency band. However, the requirement on
low thermal noise and low optical losses seem rather challenging [198].

6.2. Detecting Zero-Point Fluctuation of a Harmonic Oscillator

In this section, we discuss an alternative way to verify that a mechanical oscillator has
been cooled to ground state — without having to carry out state tomography. The
entire experimental strategy is carried out in steady state, and all measurements only
involve output spectrum. This strategy has been employed by several experimental
groups to interprete their near-ground-state cooling experiments [199, 200, 201]. We
shall present two compatible yet very different ways of understanding this strategy.

Here we consider a cavity with two partially transmissive mirrors, one movable
and another fixed. Suppose the movable mirror is already cooled to a nearly ground
state, and we would like to probe the motion of the movable mirror by pumping the
cavity with light at angular frequency ω0, which is detuned from the cavity (the cavity
resonates at a nearby frequency of ω0+∆), and observe the amplitude fluctuations of
the transmitted light. For simplicity, we shall assume the cavity is either resonant at
ω0 + ωm (light is red detuned), or ω0 − ωm (light is blue detuned), and γ ≪ |∆| (i.e.,
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resolved side-band limit).
In both cases, because cavity is detuned, motion of the mirror would modulate

the transmissivity of the cavity, thereby creating amplitude modulation to the out-
going light. One would therefore expect the amplitude fluctuation of the out-going
light would have a peak near ωm. However, a more detailed consideration indicates a
difference between red- and blue-detuned cases.

6.2.1. Explanation in terms of transition between levels. The first explanation notices
that amplitude fluctuation of out-going light requires photon number fluctuations
inside the cavity, which in turn requires the excitation of the cavity mode (Â, Â†).
Under the rotating wave approximation [118, 200, 201], in the red-detuned case, the
interaction Hamiltonian between the cavity (Â, Â†) and the mirror (B̂, B̂†) can be
written as

VI = Â†B̂ + ÂB̂† . (6.9)

This means, in order for mirror motion to affect photons’ entrance into the cavity, the
mirror has to go to a lower state, so that the photon can enter the cavity. However,
this is not going to happen if the mirror is already at ground state. On other other
hand, for the blue-detuned case, we have

VI = Â†B̂† + ÂB̂ (6.10)

photon entering cavity requires mirror going up one level, which is possible. In this
case, motion of mirror affects photon’s transmittance. A more detailed calculation
along these lines shows that

1

n̄
=
I−
I+

− 1 (6.11)

where I− is the additional area below the power spectrum of the blue-detuned light,
while I+ is the additional area below the power spectrum of the red-detuned light.

6.2.2. Explanation using linear quantum mechanics. Another point of view does not
require concepts of the gound-state being the minimum-energy state, but simply looks
at correlations between linear field operators. It is noticed that, in addition to the
zero-point fluctuation of the mirror inducing an out-going amplitude fluctuation, the
out-going amplitude also fluctuates due to the mirror motion driven by radiation
pressure. The out-going field is

Ô = Ẑ + α2χF̂ + αx̂(0) (6.12)

where α is a coupling constant, and χ is the response of the mirror, Ẑ and F̂ are
our “sensing noise” and “back-action noise”, as defined in Sec. 2.3, while x̂(0) is the
unperturbed position operator for the mirror. As coupling is weak (keeping only
leading effects in α), we have

SO = SZ + α2Sx + α2 [SZFχ
∗ + SFZχ] (6.13)

In our case, the back-action force

F̂Ω = G
[

Â†
Ω + ÂΩ

]

(6.14)

has an important feature. For Ω > 0, in the red detuned case (∆ > 0), we have

Â†
Ω ∼ 0, and

F̂ ∝ Gâω0−Ω , F̂ (Ω)|0〉 ≈ 0 (6.15)
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Figure 16. Entanglement between mechanical object and out-going light. Left
panel shows the setup of our thought experiment: light measuring the position
of a mirror. Right panel is a spacetime diagram that depicts all in-going fields
up to t = 0 as having originated as independent degrees of freedom at t = −∞,
which, after interacting with the mirror during −∞ < t′ < 0, emerges once
more as independent degrees of freedom at t = 0. In Sec. 6.3, we consider the
entanglement between the mirror’s state and the out-going field’s state at t = 0.
[Figure reproduced from Ref. [203]]

We also have [Cf. (2.52)]
[

Ẑ(Ω), F̂ †(Ω′)
]

= −iδ(Ω− Ω′) (6.16)

This, and the definition of SZF (which is symmetrized) leads to

S−
ZF = −i~ (6.17)

In the blue-detuned case, a similar argument leads to

S+
ZF = +i~ (6.18)

In our two cases, this gives

S±
O = SZ + α2Sx ± 2α2

~Imχ (6.19)

Interestingly, for zero-point fluctuation of an oscillator we have

Sx = 2~Imχ (6.20)

This means for the two different detunings, we have

red detuned: S−
O = SZ , (6.21)

blue detuned: S+
O = SZ + 2α2Sx (6.22)

This is the same asymmetry as derived above [202].

6.3. Entanglement between the mechanical oscillator and the out-going light

Entanglement is the hallmark for quantum coherence, and often perceived to
be difficult to achieve when one of the parties is a macroscopic object. As
mechanical oscillators interact with light, entanglement may build up as a consequence.
Paternostro et al. [204] and Vitali et al. [205] showed that in optomechanical systems,
if temperature is low enough, stationary entanglement can build up between the
mirror and the cavity’s optical mode — and that such entanglement can be verified
by characterizing the out-going field. On the other hand, it was also shown that if
coupling is strong enough, entanglement may be present in limited even for highly
“classical objects” [206].
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In terms of out-going light from an optomechanical system, Giovannetti et al. [207]
and Bhattacharya et al. [208] both considered the entanglement between a mirror being
measured and one spatial mode of out-going light (which predominantly couples to
the mirror) — both pointed out experimental regimes in which such entanglement can
exist.

6.3.1. Universal entanglement. Here we discuss a more general treatment given by
Miao et al. [203]: for a mechanical oscillator at temperature with thermal noise
characterized by ΩF , being measured at time scale Ωq, if we consider, at time t = 0,
the joint quantum state of the continuum of out-going light [i.e., {b1(t′), b2(t′)|t′ < 0}]
and the mirror [i.e., (x(0), p(0))], we find that they are always entangled, no matter how
high ΩF is. For a high-Q oscillator, the logarithmic negativity of this joint quantum
state [177, 178] is given by

E =
1

2
log

[

1 +
25Ω2

q

8Ω2
F

]

(6.23)

which is small yet still non-zero when ΩF ≫ Ωq, i.e., when the measurement is highly
classical (i.e., highly dominated by thermal noise). A subsequent analysis revealed
that in the classical case, the spatial optical mode of the out-going field that is “most
entangled” with the mirror leaves the mirror within a time scale of ∼ ΩF .

6.3.2. Quantum Steering. If we would like to take advantage of this “universal
entanglement”, we will have to return to the more stringent experimental conditions
considered in Ref. [204, 205]. One way would be to look at the effect of “steering”,
proposed first by Wiseman, Jones, and Doherty [209, 210]. The entanglement has to
be strong enough in order for different choices of which quantity of the the output
light to measure to result in mutually incompatible conditional quantum states.

In the case of a mechanical oscillator measured by light, steering can be
demonstrated if there exist two quadratures xφ1 and xφ2 , corresponding to two
measurement strategies which measure time-dependent θ1(t

′) and θ2(t
′) quadratures

of the out-field, respectively, during −∞ < t′ < 0, and the conditional variances satisfy

∆x
|θ1
φ1

·∆x|θ2φ2
< | sin(φ1 − φ2)|. (6.24)

In other words, choice made on the out-going field is able to modify the state of the
mirror to an extent such that combination of information from both measurements
would result in a state that is below Heisenberg Uncertainty — which means that the
quantum state must indeed be different depending on which measurement scheme is
chosen.

A closer examination reveals an intimate connection between steering and state
tomography [211]: in both cases, we are allowed to come up with multiple strategies
(i.e., the out-going quadrature θ(t′) to detect) to measure different mechanical
quadratures as precisely as possible — only that steering takes place during −∞ < t′ <
0, while tomography takes place during 0 < t′ < +∞ — so they are time reversal to
each other. As a consequence, given an optomechanical device, covariance matrix that
describes the minimum possible conditional variance of each quadrature, regardless of
the choice of quadratures measured during −∞ < t′ < 0, is simply the time-reversed
version of the error covariance matrix for tomography:

V st
xx = V tm

xx , V st
xp = −V tm

xp , V st
pp = V tm

pp . (6.25)
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Figure 17. Left panel: sketch of a possible experimental setup to create
entanglement between macroscopic test masses [taken from Ref. [156]]. This
configuration requires laser noise not to be a significant contribution to the
measurement. More complex interferometer configurations will have to be used
to eliminate laser noise. Right panel: verifiable logarithmic negativity between
two mechanical objects as a function of time elapsed after preparation [taken
from Ref. [174]]. Dashed line assumes ΩF = 2π × 10Hz, while solid line assumes
ΩF = 2π × 20Hz. See Sec. 6.4 for details.

Here we have used the superscript “st” for steering, and “tm” for tomography. The
Vtm here is the Vadd in Sec. 5.4, especially Sec. 5.4.3 and Eqs. (5.77)–(5.79).

As a consequence, in presence of classical noise, condition for steerablity is
the same as condition for achieving sub-Heisenberg state tomography. If we follow
Wiseman et al. [210] and define steerability as

S = − log
[

2
√
detVst/~

]

, (6.26)

with S > 0 indicating the mirror’s state is steerable by measuring out-going light,
then

S = − log
[

2
√
detVtm/~

]

(6.27)

If the above steerability is to be verified, we will have to carry out a tomography,
which adds Vtm, and gives a verifiable steerability of

S = − log
[

4
√

V tm
xx V

tm
pp /~

]

(6.28)

As we can see from Eqs. (5.77)–(5.79), steering can benefit significantly from squeezing.

6.4. Entanglement between mechanical modes

Using radiation pressure to create entanglement between mechanical modes has
been discussed by many authors. For example, Mancini et al. [212] discussed an
effective entanglement between two moving mirrors of a driven cavity — in terms of
entanglement between the Fourier components of their motion. Pirandola et al. [213],
based on work of Mancini et al. [214], discussed how entanglement between two Fourier
sidebands of light can be transferred to the entanglement of two mechanical oscillators.
The main theme of both works would be to prepare common and differential modes of
the two mechanical oscillators to different nearly pure quantum states, and therefore
the two oscillators would then be entangled. Such a strategy was also proposed by
Zhang et al. [215], and have been applied by other authors to propose generating this
type of entanglement [216, 217].
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One approximation commonly employed by the above pioneering work is to use
Fourier components of the mechanical oscillators’ Heisenberg operators, as well as
Fourier components of sideband light, as effective degrees of freedom. While such
an approximation could be valid for scenarios involving oscillators with high quality
factors and optical cavities with detuning matched to the frequencies of the oscillators,
they do not directly apply to experiments with free masses, or oscillators whose
restoring force are created by optical rigidity, and may not have very high quality
factors. The additional subtlety in quoting Fourier components is that since they are
not defined at the same moment of time, entangling them may not allow testing of
the more fundamental aspects of quantum mechanics.

Here we discuss in more details the work of Müller-Ebhardt et al., who
not only treated the quantum states of the mirrors in the time domain, but
also incorporated continuous measurement processes. Having gravitational-wave
detectors and prototype experiments in mind, these authors also connected the
possibility of entanglement with the noise budget of the system were it to be used
as a measuring device [156]. They further considered a three-stage experiment
with preparation, evolution and verification of entangled states, as described in
Ref. [174]. For these authors, the two mechanical objects can be the two mirrors of
a Michelson interferometer, and entanglement is realized as we measure the common
and differential mode of motion using readout from the two ports of the Michelson,
with different measurement strengths, as discussed by [156]. A possible experimental
setup is shown on the left panel of Fig. 17. Two identical movable end mirrors of
a Michelson interferometer have their common and different modes measured with
different strengths — due to the existence of the power recycling mirror. One obstacle
towards implementation of this scheme is that classical laser noise directly affects our
sensitivity for the common mechanical mode.

In case laser noise must be suppressed by interferometry, we could consider a
Michelson interferometer with arm cavities, each with movable input and end mirrors.
If we inject two carrier fields to the bright port of the Michelson interferometer,
one enters the arm cavities and senses the cavity length, while the other does
not enter the cavity and only senses the input mirrors’ locations (e.g., like the
configuration suggested in Ref. [218], but for other purposes), we can create conditional
entanglement if parameters of the two fields are adjusted appropriately.

Using notations of Sec. 5.2, if we assume Ωx/ΩF = 25 ∼ 50 (which correspond to
a SQL-beating factor of ∼3.5 – 5), and 10 dB squeezing, appropriate choice of Ωq for
common and differential modes of two mechanical objects would lead to “verifiable
entanglement” that survives for a time scale comparable to 1/Ωq. An example is shown
in Fig. 17, where frequency scales are chosen to be suitable for GW detectors. Here
the logarithmic negativity EN is calculated taking into account thermal decoherence
during the evolution stage, as well as verification error. In Sec. 8.1.1, we shall discuss
an application of measuring the survival time of entanglement.

More generally, Ludwig et al. [219] analyzed the (unconditional) entanglement
between two coupled oscillators at the same instant, for a general common bath to
which they are both coupled to.

6.5. Quantum Teleportation Mechanical States

Analogous to continuous-variable teleportation of optical states [220], one can teleport
the quantum state of one mechanical oscillator to the other, if two entangled squeezed



Yanbei Chen 64

beams are used to drive them, each of their positions are measured — and with results
fed back to the other one (as shown in Fig. 18).

If we label the two oscillators and their optical fields by A and B, assuming that
we measure the output phase quadrature in each case (i.e., bA2 and bB2 ) and feed it
back as a force to the other object with a gain of ǫ, the equations of motion will be
(setting ~ =M = 1)

bA2 = aA2 +ΩqxA, bB2 = aB2 +ΩqxB . (6.29)

and

ẋA = pA , ṗA = −ω2
optxA +Ωqa

A
1 − ǫbB2 (6.30)

ẋB = pB , ṗB = −ω2
optxB +Ωqa

B
1 − ǫbA2 (6.31)

Here ωopt is the optomechanical resonant frequency of the mechanical oscillators, which
could either be due to elastic or optical rigidity (the subscript we used suggests the
use of an optical spring). This means we shall be adopting the straw-man mode of
Sec. 2.5.

Combining the above, we obtain the following equations of motion for the
oscillators (xA, pA, xB , pB):

ẋA = pA , ṗA = −ω2
optxA − ΩqǫxB + nA (6.32)

ẋB = pB , ṗB = −ω2
optxB − ΩqǫxA + nB (6.33)

In absence of classical noise, nA and nB are given by

nA = Ωqa
A
1 − ǫaB2 , nB = Ωqa

B
1 − ǫaA2 . (6.34)

Equations (6.32) and (6.33) describe two coupled oscillators driven with additional
quantum noise — but the coupling is only due to classical communication and
feedback. If we can make the noise level arbitrarily small, then the two oscillators will
swap their quantum states back and forth — just like two coupled pendulums. The
“sloshing frequency” is determined by the difference in the two new eigenfrequencies
of the coupled system:

Ωslosh = Ω+ − Ω−, Ω± =
√

ω2
opt ± ǫΩq (6.35)

The first exchange of quantum takes place at

τex =
π

Ωslosh
(6.36)

If we inject vacuum states to each oscillator, nA and nB will both be at the vacuum
level — and we will add at least a noise ellipse limited by Heisenberg Uncertainty after
one sloshing period. Fortunately, we note that nA and nB do commute, therefore we
can make them simultaneously small — of course, that only happens when we drive
the two devices with highly entangled beams, each in turn is generated by interfering
two highly squeezed beams — as shown in Fig. 18.

In presence of classical noise, the teleportation process has the following additional
noise at τex,

Vadd =
π

8

ζFΩ
2
q + ζxǫ

2

Ωslosh

[
Ω−2

+ +Ω−2
− 0

0 2

]

(6.37)

where

ζx =
√

e−2q + 2ξ2x, ζF =
√

e−2q + 2ξ2F (6.38)
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Figure 18. Sketch of an experimental scheme that teleports the quantum state
of a mechanical oscillator, as discussed in Sec. 6.5. Two mechanical oscillators are
driven by entangled beams; out-going light from each oscillator is fed back as a
force to act on the other.

and ξx and ξF are same as defined in Sec. 5.2 [Cf. Eq. (5.23)]. This means the
teleportation will be quantum if ξx and ξF — as well as e−2q are sufficiently small.

In presence of classical noise, we first of all must make ξx and ξF small, which
requires Ωq to be within the region ΩF < Ωq < Ωx. For weak feedback or small ǫ,
Ωslosh will be small, which means it takes long for the two oscillators to exchange state,
allowing more thermal decoherence. However, if feedback is too strong, the system
becomes unstable. Given fixed values of (ΩF ,Ωx) and e−2q, an asymptotic optimal
value for det(Vadd) is

det(Vadd) =
~
2

4
π2

(

e−2q +
2ΩF

Ωx

)

(6.39)

which is achieved when Ωq =
√
ΩxΩF and ωopt → +∞. In order for the additional

noise to be sub-Heisenberg, Vadd, which is necessary for preserving any negative
regions of the original state’s Wigner function, we will need a substantial squeezing
factor (recall that e−2q is the squeeze factor in power) as well as classical noise budget
substantially below the free-mass SQL [recall that Ωx/(2ΩF ) is the factor that our
total classical noise beat the SQL in power].

6.6. Non-Gaussianity and Single Photons in Linear Systems

Up till now, we have restrained ourselves to Gaussian states, which have well-
behaved and non-negative Wigner functions. If we also perform only measurements on
observables that are linear in position and momentum of the mechanical oscillators,
and the optical field operators, all our experimental results will be explainable in
terms of classical random processes. Even though we may still use such experiments
to perform certain test quantum mechanics, as discussed in Sec. 8, we will be limited in
the extent to which we are demonstrating quantum mechanics on macroscopic objects,
and in the scope of tests we will be able to perform. In this section, we shall discuss
how to create non-Gaussian mechanical states, taking advantage of the fact that a
single photon, being the Fock state |1〉, is a highly non-Gaussian quantum state.

6.6.1. Strong versus weak coupling. At this stage, it is difficult to emit a significant
number of photons with strong mutual coherence with each other. On the other hand,
the total effect of a large number of uncorrelated photons on a mechanical oscillator
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Figure 19. Illustration of non-Gaussian state-preparation using a linear system
driven by a single photon, as discussed in Sec. 6.6. The left two panels show
possible experimental setups, while the right panel illustrates the process of
conditional preparation of non-Gaussian mechanical states.

will usually be Gaussian. This seems we should send order ∼ 1 photon to interact
with the mechanical oscillator — and the condition for this photon to significantly
influence the mechanical oscillator’s quantum state is

F ~ω0

c
∼

√

~Mωm, (6.40)

namely, the cumulated momentum transfer on the left-hand side (F is finesse of the
cavity) must be comparable to the momentum quantum uncertainty of the mechanical
object on the right-hand side. This is also equivalent to

λ

F ∼
√

~

Mωm
(6.41)

which means the linear dynamical range of the cavity has to be less than the position
uncertainty of the mechanical object. We shall postpone that possibility to Sec. 7.

6.6.2. Coherent amplification due to pumping. In this section, we shall consider an
amplification effect due to the “beating” between a single photon and a strong beam
of light. This idea was first discussed for optomechanical systems by Mancini et
al. [214], who noticed that force on a mirror is the square of the electric field, E2,
then if E contains a large classical component Ec and a quantum component Êq,

then the beating of them, EcÊq appears in the radiation-pressure force acting on
the mirror, thereby may drive the mirror into a highly non-Gaussian state. Mancini
et al. restricted themselves to a scenario in which simplification using the rotation-
wave approximation is possible: the mirror is a high-Q oscillator, and coupled only
to a single sideband of an optical mode — which allowed them to consider a finite-
mode Hamiltonian in which the mirror is linearly coupled to the optical mode, with
a coupling coefficient that is highly amplified by the classical pumping. In this
idealized case, it is often possible to simply consider direct transfers between optical
and mechanical states.

Very similar to Mancini’s proposal, but in a very different regime: coupling
between high-frequency phonons of diamond and single photons, assisted by pulsed
pumping, has recently been implemented experimentally, demonstrating entanglement
of phonon modes of two pieces of diamond [221], as well as implementation of quantum
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memory using one piece of diamond [222]. This was in turn motivated by proposals
involving atomic ensembles [223].

More recently, Vanner et al. building upon the state-transfer mechanism,
and proposed protocols for non-Gaussian quantum-state engineering of mechanical
oscillators [224].

6.6.3. Treatment for a broadband (non-resolved-sideband) device. A more rigorous
treatment of Mancini et al.’s strategy in more general optomechanical systems was
later carried out by Khalili et al. [225]. This does not require a simplified situation
of state transfer between several known modes of oscillation, but instead considers
the interaction between a mechanical mode and an infinite continuum of optical field.
Khalili et al. considered a Michelson interferometer, in which the force acting on the
differential mode of the two mirrors is proportional to ÊcÊd, where Êc is common-
mode amplitude and Êd is differential-mode amplitude. Suppose the common optical
mode is highly pumped, while differential mode only has vacuum fluctuations or single
photon, the force on the differential mode of motion of the mirrors is approximately
〈Ec〉Êd — which would be highly non-Gaussian if a single photon is to be injected
from the dark port. An illustration of the experimental strategy is shown in Fig. 19.

Unlike Mancini et al. [214], the treatment of Khalili et al. [225] did not use the
rotating wave approximation, nor did they idealize the optical field into one single
degree of freedom. Since the technical treatment itself is quite interesting, we will
describer it here briefly. Now, suppose we have a vacuum for the optical field for a
long time, until the system reaches a steady state, and then inject a single photon with
known wavefunction; this corresponds to the following initial state for the optical field

|ini〉 = Γ†|0〉 =
∫
dΩ

2π
Φ̃(Ω)a†ω0+Ω|0〉

=

∫ 0

−∞
Φ(t)[a1(t) + ia2(t)]|0〉 (6.42)

Here Φ(t) is the inverse-Fourier transform of Φ̃(Ω),

Φ(t) =

∫
dΩ

2π
Φ̃(Ω)e−iΩt , (6.43)

it is the profile of the spatial wavefunction of the photon, and we impose the
normalization condition of

[
Γ,Γ†] =

∫ 0

−∞
dt

∣
∣Φ2(t)

∣
∣ =

∫ +∞

−∞

dΩ

2π

∣
∣
∣Φ̃2(Ω)

∣
∣
∣ = 1 . (6.44)

For a preparation that targets a state at t = 0, Φ(t) should only be non-zero for
t < 0. With this initial state, we have, at t = 0,

Jc(µ, ν)

=

∫

D[k(t′)]

〈0|Γ̂eiµx̂(0)+iν
p̂(0)

Mωm
+i

∫ 0
−∞

k(t′)[b̂ζ(t′)−ξ(t′)]Γ̂†|0〉. (6.45)

If we denote

Ô ≡ µx̂(0) + ν
p̂(0)

Mωm
+

∫ 0

−∞
k(t′)

[

b̂ζ(t
′)− ξ(t′)

]

, (6.46)
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Then

Jc(µ, ν) =

(

1−
∣
∣
∣

[

Ô, Γ̂†
]∣
∣
∣

2
)

〈0|eiÔ|0〉 . (6.47)

Note that: (i) the factor 〈0|eiÔ|0〉 is the generating function of the conditional state

when there is only vacuum input, (ii) the commutator
[

Ô, Γ̂†
]

is a complex number,

linear in µ and ν, and causes the conditional state to be non-Gaussian because it
contains µ and ν.

Due to the normalization condition (6.44), non-Gaussianity is only significant if
the photon has a duration that matches the timescale of state preparation, 1/Ωq.

Note that the commutator
[

Ô, Γ̂†
]

only yields µ and ν dependence (which is required

for non-Gaussianity) when x̂(0) and p̂(0) have significant non-zero commutator with
Γ̂†, which only happens when the optical mode associated with Γ̂ “makes up a large
portion of” the Heisenberg operators of x̂(0) and p̂(0) — and therefore this optical
mode should have a duration comparable to 1/Ωq.

7. Examples of Non-Linear Optomechanical Systems

More dramatic effects of quantum mechanics appear for nonlinear systems, or when
nonlinear observables (e.g., those that are not linear combinations of position,
momentum and optical-field operators) are measured. The most famous example
being the Quantum Zeno effect [226]: as an observable with discrete spectrum is being
measured, state reduction tends to keep the system from jumping between eigenstates
of the operator being measured.

However, for optomechanical systems, it is rather difficult to enter a regime in
which motion of the mechanical object nonlinear: while achieving nonlinearity requires
the mechanical object to move as much as possible, a quantum state with a larger
spread in position tends to get destroyed by decoherence much faster. Nevertheless,
nonlinearity has been observed in the effective motion of atomic ensembles [227, 228];
they may become possible in future photonic/phononic crystals [229]

Finally, while linear systems are all like, every nonlinear system is nonlinear in
its own way. The rich variety of nonlinear systems means that it will be very difficult
to provide a comprehensive discussions of nonlinear optomechanics. In this paper, we
will only review two aspects: Quantum Zeno effect (Sec. 7.1) and few-photon-driven
optical cavity with movable mirror (Sec. 7.2). As it will turn out, both tend to require
the strong-coupling condition

λ

F ∼
√

~

Mωm
(7.1)

7.1. Phonon Counting and Signatures of Energy Quantization

If we measure the occupation number of a harmonic oscillator continuously, quantum
state reduction will eventually localize the oscillator into a Fock state with a definite
energy and occupation number. In presence of thermal noise, quantum jumps
across different levels will be suppressed by the effect of the measurement. This
is called the quantum Zeno Effect [226]. Santamore et al. [230] and Martin and
Zurek [231] proposed measuring the Zeno effect in mechanical oscillators, achieved by
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first (effective) coupling the phonon excitation number of the oscillator to the optical
field (mode of a cavity), via

VI ∝ n̂mn̂cav (7.2)

and then readout the optical field. This process and its variants have been theoretically
studied by Gangat et al. [232] and Ludwig et al. [233].

A more concrete experimental strategy was proposed by Thompson et al. [234]
and Jayich et al. [235], who considered a membrane inside a cavity [235, 234], where
an appropriate choice of the location of the membrane and the pumping frequency
will allow the

dωc

dx
= 0 ,

d2ωc

dx2
6= 0 (7.3)

therefore the parametric coupling between the cavity and the mirror becomes
approximately

VI = ~

(
d2ωc

dx2
x2

2

)

Â†Â (7.4)

In certain regimes, such quadratic coupling can be used to manipulate trapping
potentials for an optically levitated test mass [236, 150], or give rise to two-photon
cooling and squeezing of the mechanical oscillator [237]. Quadratic coupling between
position and a qubit has also been shown to be able to prepare mechanical oscillators
into highly non-Gaussian states and their superpositions [238].

Perhaps the most intriguing regime is when we make sure that low-frequency
components of (Â, Â†) have much higher coupling to the membrane than high-
frequency components (e.g., due to cavity bandwidth), we will then be making a
“slow measurement” on x̂2, which averages to be proportion to the phonon number
of the membrane. As it turns out, in the membrane-in-cavity strategy proposed by
Thompson et al. [234], one has to worry about the residual linear coupling [239], which
only allows detection of discrete energy quantization if

λ

F < ∆xq (7.5)

where λ is the wavelength of light, F the cavity finesse (which is limited by optical
loss), and ∆xq the quantum uncertainty in the position of the membrane. This is the
same as the strong-coupling condition discussed before at the beginning of Sec. 6.6.

As a much easier strategy to observe the signature of energy quantization, Clerk
et al. proposed observing a pumped oscillator with a non-zero (rather high) occupation
number [240, 241] — through detecting non-Gaussianity of the out-going current
imparted by the non-Gaussianity in the position of the mirror. This strategy allows
the detection of certain signatures of energy quantization as long as the oscillator is
cool enough:

kBT < ~ωm (7.6)

7.2. Few-photon-driven strongly coupled cavity

In this section, we shall consider the injection of a few photons into a cavity with
a movable mirror — in the parameter regime of “strong coupling”, namely that the
momentum transfer from the photon to the mirror is comparable to the total quantum
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Figure 20. Single photon injected into a Michelson interferometer with one arm
cavity having a movable mirror. The cavities are originally empty, and we assume
the “strong-coupling regime” defined by Eq. (7.1).

uncertainty of the mirror’s momentum. The key to the simplification we shall receive
in this section is that the interaction Hamiltonian

VI ∝ x̂Â†Â = x̂n̂cav (7.7)

does not later the linearity of the mirror’s Hamiltonian, but instead simply shifts the
equilibrium position of the harmonic oscillator — if we keep a fixed number of photons
in the cavity. This has allowed Bose, Jacobs and Knight [242] to calculate quantum
state evolution of the mirror under radiation pressure when the cavity is closed and
prepared into a non-classical initial optical state. They showed that the mirror can
be prepared into highly non-classical quantum states this way.

7.2.1. Cavity driven by weak steady beam. Motivated by progress in optomechanics,
Rabl [243], Nunnenkamp et al. [244] discussed the output photon statistics of such a
strongly coupled cavity when weak light is injected. They found the so-called “photon
blockade” effect, namely the fact that once a photon is already in the cavity, a second
one would not be able to enter very easily because the mirror is oscillating around
a new equilibrium point. For pumping at a low power, Qian et al. further found
that the mirror can be prepared into a highly non-Gaussian steady state [245]. More
recently, Nunnenkamp et al. considered the cooling of the mirror in such a few-photon
regime [246].

7.2.2. Cavity driven by a few photons with known arrival times. Hong et al. [247] and
Liao et al. [248] focused on the case of a single photon, and obtained exact solution of
the interaction between a single injected photon and a cavity with a movable mirror, in
the strong-coupling regime. Moreover, Hong et al. assumed the out-going photon to be
detected by a photodetector, and considered the state of the mirror conditioned on the
arrival time of the photon. Hong et al.’s work was motivated by Marshall et al. [249]’s
proposal of using this strongly coupled experiment to probe gravity decoherence: in
the original proposal, as well subsequent analyses of this experimental setup [250], the
shape of the injected photon has always been ignored — yet as Hong et al. has shown,
that shape does affect the interpretation of the experimental result. Hong et al [247]
also showed that, in fact, by adjusting the wavefunction of the incoming photon, the
quantum state of the mirror can be prepared into a wide range of possible quantum
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states. Liao et al. later extended their calculation to incorporate two correlated
incoming photons [251].

7.2.3. Cavity driven by short pulses. Finally, another interesting regime that triggers
nonlinearities would be a cavity driven by a number of (non-entangled) photons
that arrive together as a pulse with duration much shorter than the oscillation
period of the oscillator. In the non-linear regime of such pulsed optomechanics
(Cf. [107, 108, 109]), as Vanner has shown, non-Gaussian states can be prepared for
the mechanical oscillator [252] due to optical nonlinearity in the Hamiltonian (8.20).
Vanner has also shown that non-Gaussianity is more easily achievable here than when
the Hamiltonian (7.4), which is quadratic in x.

8. Tests of Quantum Mechanics and Fundamental Physics

In this section, we will venture beyond the standard quantum mechanics. First, in
Sec. 8.1, we will discuss how optomechanics may provide new opportunities for testing
gravity’s modification to quantum mechanics. Then in Sec. 8.2, we shall explore the
possibility of a framework that allows us to systematically test for modifications to
quantum mechanics for macroscopic mechanical objects — regardless of motivations
of the modifications.

8.1. Quantum Mechanics and Gravity

8.1.1. Gravity Decoherence Penrose and others have speculated that gravity may
destroy macroscopic quantum superpositions [253, 254, 255]. In particular, if a
macroscopic object is in a superposition state |ψ〉 = |ψ1〉 + |ψ2〉, with |ψ1〉 and |ψ2〉
corresponding to very different mass distributions, then that difference, δρ, would
gradually make the superposition a classical one, at a time scale

τ ∼ ~/EG (8.1)

and

EG = G

∫

d3xd3x′ δρ(x)δρ(x
′)

|x− x′| (8.2)

is the self gravitational field of the difference in mass distributions. Experiments have
been proposed to look for such decoherence [249, 256, 257].

An order-of-magnitude estimate for the time scale of gravity decoherence shows
that it is rather difficult to detect. In fact, for a mechanical object assumed to have a
uniform density ρ0, if we prepare a superposition at a length scale close to the vacuum
state of an oscillator with frequency Ωq, and write the decoherence time scale as τ ,
then

Ωqτ =

(
Ωq√
Gρ0

)2

(8.3)

This is the number of mechanical oscillation cycles it takes for gravity decoherence
to completely destroy the quantum superposition. For a typical material, Si, with
ρ0 = 2.3× 103 kg/m3, we have

√

Gρ0 ∼ 4× 10−4 s−1 , (8.4)
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this requires the measurement time scale to be

1/Ωq ≈ 2.5× 103 s , (8.5)

which is rather difficult to achieve on the ground. If we focus on Eq. (8.3), the
size or mass of the object does not directly enter. However, because experiments with
heavier test masses normally operate at low frequencies, and therefore makes Eq. (8.3)
more achievable. We note an alternative speculation of gravity decoherence is more
approachable, as discussed by Miao et al. [174], where instead of using Eq. (8.2),
the scale of gravity decoherence is given by the difference of gravitational self energy
between two components of the quantum state which are superimposed.

However, if we take literally Eq. (8.2), we will have to consider the high
concentration of matter near lattice points, if we are using a crystal that is cooled
much below its Debye temperature. In this way, we will have to use a much higher
density

ρ = Λρ0 (8.6)

with

Λ = m/(12
√
πρ0∆x

3
zp) . (8.7)

Here m is the mass of the individual atom in the lattice, and ∆xzp is the zero point
position uncertainty of that atom along each direction. This distance can be measured
rather accurately using X-ray diffraction [258]. It has been estimated that Λ ≈ 8.3×103

for Si crystal [259]. We should therefore require

Ωqτ =
1

Λ

(
Ωq√
Gρ0

)2

(8.8)

which leads to

1/Ωq ≈ 28 s (8.9)

which might be achievable on the ground with the help of torsional bars at the quantum
regime [260]. However, due to the lack of a mathematical formulation for gravity
docoherence, it is not easy to work out the exact density to use from first principle.

In Ref. [261], Romero-Isart discussed more types of decoherence models that are
motivated by the interplay between gravity and quantum mechanics, and outlined an
ambitious research program not using nearly Gaussian states, but states that have
wavefunction spread comparable to or bigger than the physical size of the mechanical
objects. These experiments are intended to be performed in space, where decoherence
from a suspension system will no longer be an issue [262].

8.1.2. Semiclassical gravity Theoretical physicists have long argued that gravity
should be quantum, just like the electroweak and strong interactions [263]. Major
theoretical effort are being made to elaborate how gravity can be reconciled with
quantum mechanics. From an experimental point of view, however, it might still be
good to consider ruling out gravity being classical [264].

The most straightforward way to construct a classical theory of spacetime that
supports quantum matter is to write the Einstein’s equation as:

Gµν = 〈8πTµν〉 , (8.10)

where the expectation value is evaluated at the quantum state of the entire universe.
This was proposed by Møller [265] and Rosenfeld [266], and often referred to as
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Figure 21. Evolution of an object’s Wigner function under standard Schrödinger
equation and the Schrödinger-Newton equation. See Sec. 8.1.2 for details.

semiclassical gravity. The most fatal flaw of semiclassical gravity is that it does not
allow state reduction — because that makes the right-hand side not divergence free,
violating the Bianchi Identity on the left-hand side (see Chapter 14 of Ref. [267]).
On the other hand, the most obvious state-reduction-free interpretation of quantum
mechanics, the “Many-World Interpretation” [268] when combined with Eq. (8.10),
gives rather absurd predictions [269]. For this reason, in order for Eq. (8.10)
to work literally, there has to exist an interpretation of quantum mechanics that
does not require state reduction yet still explains the phenomenology of quantum
measurements.

Given Eq. (8.10), one can derive a Schrödinger-Newton (SN) equation for an
n-particle system in the non-relativistic regime, which reads:

i~
∂ϕ(t,X)

∂t
=

∑

k

[

−~
2∇2

k

2mk
+
mkU(t,xk)

2

]

ϕ(t,X)

+ V (X)ϕ(t,X) , (8.11)

here φ(t,X) is the joint wavefuntion of the particles, X = (x1, . . . ,xn), U is the
Schrödinger-Newton potential, given by

∇2U(t,x) = 4π

∫

d3nX
∑

k

mkδ(x− xk)|ϕ(t,X)|2 (8.12)

Because U depends on ϕ, the SN equation is a non-linear equation — although one
can show that this equation still preserves total probability.

The SN equation has often been used in the regime in which the additional U term
is significant — often when attempts were made to connect this equation to gravity
decoherence [270] or to replace state reduction [271]. However, if we restrict ourselves
in the perturbative regime, the SN equation has very simple predictions. First of all,
for an n-particle system that is a solid material, one can derive a Center-of-Mass (CM)
SN equation — during the derivation, one finds that concentration of mass around
equilibrium positions of atoms does increase the effect of the SN term. The CM SN
equation, for a mechanical oscillator with mass M (made up from a piece of crystal
cooled to a temperature much below its Debye temperature) and resonant frequency
ωc, can be written as [259]:

i~
∂Ψ

∂t
=

[
~
2∇2

2M
+
Mω2

cx
2

2
+

1

2
C (x− 〈x̂〉)2

]

Ψ . (8.13)
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Here the constant C arises from the Schrödinger-Newton term, and give by

C = −1

2

∂2

∂z2

[∫
Gρ̃int(y)ρ̃int(y

′)
|z+ y − y′| dydy′

]

z=0

, (8.14)

where ρ̃int(y) is the mass distribution in the center-of-mass frame (the subscript “int”
indicates internal motion). Further calculation assuming Gaussian distribution of mass
near lattice sites gives

C =
GmM

12
√
π∆x3zp

, (8.15)

where M is the object’s total mass, m is the mass of each individual atom, and ∆xzp
is the zero point position uncertainty of each atom along each direction.

It is straightfoward to show that Eq. (8.13) describes a separate motion for the
expectation values 〈x〉, 〈p〉 and their covariance matrix, (Vxx, Vxp, Vpp), which describes
quantum uncertainty. In the phase space, (〈x〉, 〈p〉) rotates with frequency ωc, while
the ellipse that represents quantum uncertainty rotates at a slightly faster frequency

ωq =

√

ω2
c +

C
M

(8.16)

For a mechanical object probed by light, one can then show that the classical thermal
noise peaks at ωc, while quantum radiation-pressure noise should peak at ωq. One can
resolve the two peaks if

Q >∼
C

Mω2
c

=
ω2
SN

ω2
c

(8.17)

For silicon crystal at temperature around 10K, we have

ωSN = 0.036 s−1 (8.18)

and we have the requirement of

Q > 3× 106 ·
(
10Hz

fc

)2

(8.19)

When we have two mechanical objects interacting through gravity — assuming
both of them to only move within a small range — the SN formulation provides an
“interaction Hamiltonian” of

H12 =
C12
2

[

(x1 − 〈x2〉)2 + (x2 − 〈x1〉)2
]

, (8.20)

which generates canonical equations by treating expectation values as numbers. This
correctly recovers the mutual gravitational attraction at the level of expectation value.
However, because the coupling is only through one expectation value multiplying
the other operator, i.e., 〈x1〉x2, quantum uncertainty cannot be communicated from
one object to the other through gravity. This is therefore a mathematical model for
the notion that “classical gravity cannot be used to transfer quantum information”.
Unfortunately, the term C12 does not have any amplification due to mass concentration
— it is at the scale of GM/L3, and therefore quite weak. (M is the mass of the objects,
and L their distance.) Testing the distinction between classical and quantum gravity
through information transfer is therefore much more difficult than through the effect of
self-gravity. Nevertheless, the fact that the CM SN equation can provide a description
of such an distinction between classical- and quantum-information transfer makes it
perhaps more worthwhile to test than its derivation might suggest.
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8.1.3. Existence of a minimum length scale It was speculated that, due to the
existence of a minimum length scale in quantum gravity, the Planck length, Heisenberg
Uncertainty should be modified, so that the minimum-uncertainty state would not
have a position uncertainty less than the Planck Length. It was also suggested that
this modification for a point particle, could be [272, 273, 274]

[x̂, p̂] = i~

[

1 + β0

(
p̂

MP c

)2
]

(8.21)

or a similar form, where MP =
√

~c/G = 2 × 10−8 kg is the Planck mass, with the
general feature that

[x̂, p̂] = i~ [1 + f(p̂)] (8.22)

Recently, Pikovsky et al. [275], motivated by this modification, proposed an
elegant scheme to probe such an uncertainty principle — a sequence of four optical
pulses, separated by one quarter of the oscillator’s period of oscillation, are applied on a
movable mirror to create an evolution operator that explicitly contains the commutator
[x̂, p̂]. An alternative scheme to probe the commutator, using a Sagnac interferometer
with movable mirrors, was proposed by Ran Yang et al. [276] — although they did
not provide much motivation for testing the commutation relation.

As Pikovski et al. [275] has shown, the modification to the commutation relation,
if small, can be perturbatively absorbed into the definition of momentum, in such a way
that the commutation relation returns to a canonical one, but the Hamiltonian gains
a new term for any free mass. This poses a problem for this program of modified
quantum mechanics: classical mechanics (i.e., evolution equations for expectation
values) is also modified by this quantum-gravity-motivated modification to quantum
mechanics. In fact, classical contribution in experimental tests (i.e., from 〈p̂〉2) may
easily be much larger than quantum contribution (i.e., from 〈p̂2〉 − 〈p̂〉2), as is the
case in Pikovski et al.’s experimental proposal [275]. Although classical mechanics
may not have been specifically tested against the specific gravity model in the mass
regime proposed here, the mere fact that classical mechanics is widely accepted casts
doubt on the program of modifying commutators in the fashion of Eq. (8.22). We will
further discuss this issue below in Sec. 8.2.

8.2. Towards a more systematic approach

It is not clear with which chance models mentioned in Sec. 8.1 will turn out to be
true. Nevertheless, they provided motivations for testing quantum mechanics for
macroscopic objects. In this section, I will comment on how this might proceed,
if we aim at testing whether macroscopic objects, when isolated well enough from the
environment, do follow the Schrödinger equation. Here by “macroscopic objects”, we
could also mean composite ones, e.g., the differential mode of motion of end mirrors
of a Michelson interferometer.

In doing so, one might take two different experimental strategies. The first
one would be an extension of the work of Romero-Isart et al. [261]: one can create
wavefunctions of mechanical objects that spread to a coherence distance much larger
than the size of the mechanical object, let them evolve for a finite amount of time, and
directly measure deviations from predictions of Schrödinger equation. This kind of
test will be model independent, and tell us rather directly in which ways Schrödinger
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equation is violated. However, experimental challenges for setting up this kind of
experiments will be high [262].

A second approach would be to keep measuring small-scale motions of macroscopic
mechanical oscillators near their equilibrium positions, using experimental techniques
that are already used for precision measurements [277]. To make this work, one
has to parametrize how the true dynamics of the object deviates from standard
quantum mechanics, and how such deviations may show up in measurements with
mechanical oscillators. The test of semiclassical gravity discussed in Sec. 8.1.2 is a good
illustration of one incidence of such a program: from a particular modification to the
Schrödinger Equation (motivated by semiclassical gravity), we obtained a particular
observational signature mechanical oscillator. The next steps would be to (i) formulate
the semiclassical test in a parametrized way [278], and (ii) systematically collect a
more general set of parametrized modifications to quantum mechanics, obtain their
signatures in mechanical-oscillator experiments, and put experimental upper limits on
all of them. This would be analogous to the precision test of General Relativity (GR),
formulated in the 1970s [279].

Here we note that our semiclassical gravity model can be easily incorporated into
the nonlinear quantum mechanics model of Weinberg [280, 281], which he proposed
as a framework for precision tests of quantum mechanics. It is interesting to note
that none of the experiments that set upper limits on the Weinberg formalism were
able to rule out semiclassical gravity — scenario in Sec. 8.1.2 is much more efficient in
probing semiclassical gravity, because of: (i) high mass concentration near the lattice
sites and (ii) long coherence time. For this reason, macroscopic quantum mechanics
experiments is likely going to push further the test of other types of nonlinearities that
fall within Weinberg’s framework [282].

9. Summary and outlook

9.1. Summary of this paper

In this paper, after reviewing theoretical tools for analyzing optomechanical systems
in Secs. 2, 3, and 4, we have outlined experimental concepts that can allow
quantum optomechanical systems to demonstrate and test the quantum mechanics
of macroscopic objects — a new regime that had not been accessed before.

In Sec. 5, we have organized the basic experimental concepts, namely quantum-
state preparation and quantum-state tomography, into a preparation-evolution-
verification strategy for macroscopic quantum mechanics experiments. It is the human
being’s inability to interact quantum mechanically with experimental apparatus has
predestined us to such a cumbersome paradigm: a large number of repetitive and
identical experiments — each starting from quantum measurement and ending at
quantum measurement — with data that eventually collected and analyzed to be
compared with quantum mechanics. In Sec. 5.5, we have designed a sample timeline
for such a three-stage experiment. If we only need to test certain interesting aspects
of quantum mechanics or constrained by experimental possibilities, these idealized
concepts here can be simplified and/or modified to fit our purposes. In the subsequent
sections 6 and 7, we discussed how these basic experimental concepts can form more
complex experiments that demonstrate different aspects of quantum mechanics on
macroscopic objects.

In Sec. 5, we have also connected the feasibility of these concepts to the device’s
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Techniques Force Measurement Macroscopic Quantum Mechanics

Classical noise
reduction

obtain sensitivity reaching SQL bring detector to quantum regime

Optical Spring
and Damping

[2.6]

resonant signal enhancement TrappingP,E [5.1, 5.5]

Back-Action Evasion
(Variational)
[2.3,5.4.2]

(frequency domain)
avoid radiation pressure noise

time domain, sub-Heisenberg
state tomographyV

[5.4]

Back-Action Evasion
(Stroboscopic)

QND readout for oscillators
Pulsed Optomechanics

Ref. [107]

optical squeezing
[C]

overall improvement,
crucial for LIGO-3/ET

overall improvementP,E,V

important for tomographyV [5.4]

required by teleportationP [6.5]

single photon [6.6] (not yet useful) non-Gaussian stateP [6.6,7.2]

signal processing extract GW signal compute conditional stateP [5.2]

measurement-based
control [5.3]

crucial; but should
not affect noise level

feedback coolingP [5.3]

teleportationP [6.5]

coherent quantum
control [5.3]

possible guidance to new
designs with higher sensitivity

TrappingP,E [5.1, 5.5]

Table 1. Techniques of GW detectors and their application to exploring MQM.
Superscripts of P , E and V stand for preparation, evolution and verification,
respectively. Numbers in square brackets in the first column indicate sections
in which the technique is first introduced in this paper, while those in the third
column indicate the sections in which the technique is applied.

noise levels if they were to be used as device that measure classical forces. In order
to draw more connections between techniques of force measurement (e.g., under
development in the gravitational-wave detection community) and experiments in
macroscopic quantum mechanics, I have listed, in Table 1, several key techniques
and the roles they may play in these two different efforts.

In Sec. 8, we showed how certain modifications to quantum mechanics, due to
considerations on the interplay between gravity and quantum mechanics, can be tested
using optomechanical systems. This serves as a motivation for a program of “precision
test of macroscopic quantum mechanics”.

9.2. Optomechanics as part of quantum technology and many-body optomechanics

In this paper, we have not emphasized on the tremendous technological impact of
optomechanics: a mechanical component can be inserted into previously existing
quantum system to achieve noval capabilities. This often requires the construction
of hybrid systems, in which mechanical degrees of freedom are strongly coupled with
optical or atomic degrees of freedoms; this involves: (i) the transfer of quantum
information between a mechanical mode and an optical/microwave mode [283, 284,
285], between mechanical mode and a single atom [286, 287, 288, 289, 290] or an
atomic ensemble [291, 292, 293, 294, 295], (ii) the use of mechanical motion as
transducers that mediate interactions between optical/atomic or other mechanical
modes [296, 297, 298, 299, 300, 301, 302], (iii) the use of mechanical structure with
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internal dynamics to confine atoms [303, 304]. Quantum information processing
protocols using optomechanics alone have also been proposed [305, 306, 307, 308].
Another exciting direction is to use optomechanics as a tool to study complex quantum
dynamics [309, 310, 311], especially those of many-body systems [312, 313, 314, 315,
316].

The reader is referred to these other review articles for a more complete picture
of optomechanics [317, 318, 319, 320, 321]

9.3. Optomechanics and the nature of quantum state reduction

Finally, concerning the nature of quantum measurement: does optomechanics also
provide a new opportunity for probing further in into the nature of quantum-state
reduction, and the statistical nature of the wavefunction? On the one hand, we will
be continuously measuring a macroscopic object for which quantum mechanics has
never been tested before, while on the other hand, internal consistency of quantum
mechanics allows us to formulate the measurement as being applied onto the out-
going optical field, for which quantum mechanics has been well tested. This means:
(i) testing the deterministic quantum dynamics of a system consisting a macroscopic
mechanical object, as we have discussed in this paper is a crucial foundation for
the correctness of quantum measurement theory involving macroscopic objects, and
that (ii) if quantum mechanics turns out to hold precisely for such systems, then the
omnipresence of quantum measurement processes in many physics phenomenons will
likely indicate that optomechanical systems do not offer unique insight.
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A. Classical Random Processes and Spectral Density

In this section, we review key facts of classical stochastic processes, and establish our
conventions and notations.
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A.1. Gaussian Processes, Correlation Functions and Linear Regression.

We first recall the feature of Gaussian random vectors, that the joint distribution
p of any set of such random variables, x1,...,n, if jointly Gaussian, can already be
determined from the covariance matrix Vij = 〈xixj〉:

px1,...,xn
(y1, . . . , yn) =

1
√

(2π)n|Γ|
exp

(

−yiΓ
ijyj
2

)

, (A.1)

where

Γ = V−1 (A.2)

is sometimes referred to as the information matrix.
A Gaussian random process is a sequence of Gaussian random variables, x(t).

For simplicity, let us consider processes that have zero mean values at all times. All
statistical characters of such a Gaussian random process will be determined by its
two-time correlation function

Cxx(t, t
′) = 〈x(t)x(t′)〉 (A.3)

The system is also stationary if correlation functions only depend on the relative time
difference:

Cxx(t, t
′) = Cxx(t− t′) (A.4)

Given another random process y(t), suppose they are correlated, with cross correlation
function

Cxy(t, t
′) = 〈x(t)y(t′)〉 . (A.5)

If they are jointly stationary, we have

Cxy(t, t
′) = Cxy(t− t′) . (A.6)

A question often asked in statistics is: at time t, suppose we have already known
{x(t′) : 0 < t′ < t}, what is our best estimate for y(t), and what would be the error?
To this end, we first find the conditional expectation of y(t), which can be obtained
through the conditional probability density of y:

E[y(t)|x(t′) : 0 < t′ < t] =

∫

ξpy(t)|x(t′):0<t′<t(ξ)dξ . (A.7)

This is a function of {x(t′) : 0 < t′ < t}, and hence a random variable. But it has a
definite value once {x(t′) : 0 < t′ < t} is known. In the Gaussian case, we can show
that,

E[y(t)|x(t′) : 0 < t′ < t] =

∫ t

0

G(t, t′)x(t′)dt′ , (A.8)

and that this is always a non-biased estimation for x; we can further show that among
all possible linear functions of {x(t′) : 0 < t′ < t}, this one has the least mean-square
error.

In order to prove the above, including obtaining G, let us define

R(t) ≡ y(t)−
∫ t

0

G(t, t′)x(t′)dt′ (A.9)

and set up the equation

E [R(t)x(t′′)] = 0, ∀0 < t′′ < t . (A.10)
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First of all, Eq. (A.10) determines G uniquely. Defining

u(t′) = E[y(t)x(t′)] , (A.11)

we can write

G(t′) =
∫ t

0

C−1
xx (t

′, t′′)u(t′′)dt′′ . (A.12)

where we have defined C−1
xx as the inverse of Cxx or

∫ t

0

C−1
xx (t1, t2)Cxx(t2, t3)dt2 = δ(t1 − t3) . (A.13)

Secondly, because of Eq. (A.10), and because expectation values of R(t) and x(t′′)
themselves vanish, R(t) is independent from all of x(t′′), and

E[R|x(t′) : 0 < t′ < t] = 0 . (A.14)

on the other hand, it is obvious that

E

[∫ t

0

G(t, t′)x(t′)dt′
∣
∣
∣x(t′) : 0 < t′ < t

]

=

∫ t

0

G(t, t′)x(t′)dt′ . (A.15)

we therefore have proven that our G makes Eq. (A.8) satisfied. Finally, minimum
least-square error can be proved noting that since R is independent from all x(t′)
adding any additional term in the predictor for y will yield a error variance that is
greater than the variance of R .

A.2. Spectral Density

In this paper, we use the single-sided cross spectral density, for real-valued classical
stationary random processes (with zero expectation value):

1

2
Sxy(Ω)δ(Ω− Ω′) = 〈x̃(Ω)ỹ∗(Ω′)〉 . (A.16)

This lead to the Wiener-Khintchin relation of

〈x(t)y(t′)〉 =
∫ +∞

0

dΩ

2π
Sxy(Ω)e

−iΩ(t−t′) (A.17)

In particular,

Var[x(t)] =

∫ +∞

0

dΩ

2π
Sxx(Ω) (A.18)

which means the variance of x(t), which measures the fluctuation in x, is made up from
fluctuations at all frequencies, with Sxx(Ω) measuring the noise-power contribution
from a unit frequency band around Ω.

In this paper, we will often discuss spectral density of a quantum operator that
is a function of time, or cross spectral density of two quantum operators. In order to
do so, we must be careful about ordering of operators. For two fields Â(t) and B̂(t),
which Fourier transforms into Â(Ω) and Â(Ω), for a state |ψ〉, we will define spectral
density by symmetrization:

1

2
δ(Ω− Ω′)SAB(Ω) =

1

2
〈ψ|A(Ω)B†(Ω′) +B†(Ω′)A(Ω)|ψ〉 (A.19)

We should be careful that not for all states will the right-hand side evaluate into a
δ(Ω− Ω′) — but only for those can we define the cross spectrum of A and B.
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A.3. Wiener Process and Ito Calculus

If we define a process v with

Sv(Ω) = 2 , (A.20)

it will then be a white noise, because noise power is constant over all frequencies. We
will have, in the time domain,

〈v(t)v(t′)〉 = δ(t− t′) (A.21)

and in particular

Var[v] = 〈v2(t)〉 = +∞ (A.22)

because fluctuations arise from all possible frequencies until infinity. If we define v̄ as
the average of v over a time interval of ∆t, we obtain

〈v̄2〉 = 1

∆t2

∫ t+∆t

t

〈v(t′)v(t′′)〉dt′dt′′ = 1

∆t
, (A.23)

the longer we average, the less the level of fluctuation.
If we further define

W (t) ≡
∫ t

0

v(t′)dt, (A.24)

we will obtain

〈W (t)W (t′)〉 = min(t, t′) (A.25)

The process W is called the Wiener Process. Physically, W (t) describes the
displacement of a particle undergoing a Brownian motion. For a finite increment
of time, ∆t, we can also define

∆W ≡W (t+∆t)−W (t) =

∫ t+∆t

t

v(t′)dt′ (A.26)

which is often called the Wiener Increment if we take ∆t → dt. It would not be
difficult to calculate

〈(∆W )
2n−1〉 = 0 , 〈∆W 2〉 = ∆t , 〈∆W 4〉 = 3∆t2 , . . . (A.27)

which intuitively means that during ∆t, ∆W fluctuates with magnitude of ∼
√
∆t.

This means W (t) will be almost everywhere differentiable. In general, if a quantity
u has a finite spectrum Su(Ω) everywhere, and Su(Ω) ∼ Ω−2 as Ω → +∞, then u
should be everywhere continuous but not differentiable. If Su(Ω) ∼ Ω−2n, n ≥ 1, then
u will have finite derivatives up to the n-th order.

In physics, we often consider processes driven by white noise. The simplest case
would be to consider a Langevin type equation of

ẋ(t) = f(t) + g(t)v(t) (A.28)

which can be rewritten as

dx = fdt+ gdW , (A.29)

whose solution can be written as

x(t) =

∫ t

0

f(t′)dt′ +
∫ t

0

g(t′)dW (t′) (A.30)
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Processes like x here are, driven by an integral of Wiener Increments, are called Ito
processes. The latter integral in Eq. A.30 can be constructed in the same way as a
Riemann-Stieltjes integral, noting that as we subdivide the integral fine enough, the
error introduced within each subinterval by a grid with size ∆t will have a standard
deviation of ∆t3/2 — and all these are statistically independent from each other.

One can show that for any smooth enough function y(x), y(x(t)) is also an Ito
process. However, if y is a nonlinear function, because dW fluctuates with scale

√
∆t,

we will have to expand to second order in dW :

∆y = y′(x)(f∆t+ g∆W ) +
y′′(x)
2

g2∆W 2 + o(∆t) . (A.31)

Equation A.31 only serves as a reminder that the second-order term, which is
proportional to (∆W )2 and has an expectation value and standard deviation at the
order of ∆t, must not be ignored. The obstacle against using Eq. A.31 directly for
further deduction is that ∆W 2 and ∆W are highly correlated to each other (because
the former is the square of the latter). The more informative way to deal with the
problem is to divide ∆t into N +1 sections t = t0 < t1 < . . . < tN+1 = t+∆t, we can
write

∆y = [y′0(f0∆t0 + g0∆W0) + . . .+ y′N (fN∆tN + gN∆WN )]

+
1

2

[
y′′0 g

2
0(∆W0)

2 + . . .+ y′′Ng
2
N (∆WN )2

]
+ o(∆t), (A.32)

with subscript indicating the time at which the functions are evaluated. As N → +∞,
the first term remains proportional to ∆t and ∆W , while the second term approaches
its expectation value with unit probability, and therefore we can write

dy = y′(x)(fdt+ gdW ) +
1

2
y′′(x)g2dt (A.33)

This means, as we apply the chain rule for Ito processes, we need to use the Ito rule:

dW 2 = dt (A.34)

In this discussion, we have adopted dW (t) =W (t+ dt)−W (t). In this way, the
increment we receive at time t is always statistically independent from anything we
have already known up to this time. This is the fundamental feature of Ito calculus.

B. Classical Kalman Filtering for Linear Systems

Suppose we have a linear system (with dynamical variables ~x and evolution matrix
M) driven by white force noise

d~x = M~x+ d ~W1 , (B.1)

while at the same time being observed with white sensing noise

d~y = A~xdt+ d ~W2 (B.2)

Here d~y represents the measurement outcome during dt and A is the transfer matrix.
Let us build a set of evolution equations for our knowledge about the system, i.e., ~x.
At time t, suppose we have prior knowledge about ~x, obtained by measuring ~y(t′ < t),
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in the form of a conditional probability density, p[~x|~y(t′ < t)]. Let us assume we
gather data for additional ∆t, and find out our new conditional density for ~x:

p
[

~x(t+∆t) = ~ξ
∣
∣~y(t′ < t),∆~y = ~η

]

∝
∫

p
[

~x(t+∆t) = ~ξ, ~x(t) = ~ζ, ~y(t′ < t),∆~y = ~η
]

d~ζ

∝
∫

p
[

~x(t+∆t) = ~ξ,∆~y = ~η
∣
∣~x(t) = ~ζ, ~y(t′ < t)

]

× p
[

x(t) = ~ζ
∣
∣~y(t′ < t)

]

d~ζ (B.3)

The normalization factor here can be determined by imposing integral over ξ to go to
unity. Note that this is of the form of updating from an earlier time to a later time.
Denoting

N11dt = d ~W1 d ~W
t
1 , N22dt = d ~W2 d ~W

t
2 , (B.4)

and writing the conditional covariance matrix of ~x as V, the conditional expectation
as ~xc, we obtain

d~xc = M ~xcdt+VAtN−1
22 (dy −A~xcdt) (B.5)

and

V̇ = (VM+MV) +N11 −VAtN−1
22 AV . (B.6)

These are called the linear Kalman Filter equations. Note that the first terms on
the right-hand side of both equations arise from free dynamics, while the additional
terms from measurement. In Eq. (B.5), the additional term is actually a stochastic

term proportional to d ~W2. In Eq. (B.6), the first additional term is due to force
noise, so when N11 grows, the covariance matrix increases; the second additional
term is due to information gained during measurement — as information becomes
more accurate, or N22 → 0, V decreases very fast, while as information becomes less
accurate, N22 → +∞, this term ceases to be important. Note that we always require
N22 to be invertible, which means no measurement channel is noise free.

C. Two-mode quantum optics

C.1. One-mode quantum optics

In constructing a quantum field theory, we often start from annihilation and creation
operators of a free field, which satisfy the canonical commutation relation:

[aω, aω′ ] =
[

a†ω, a
†
ω′

]

= 0 ,
[

aω, a
†
ω′

]

= 2πδ(ω − ω′) (C.1)

This, together with aω|0〉 = 0, leads to:

〈0|aωa†ω′ |0〉 = 2πδ(ω − ω′) , 〈0|a†ωaω′ |0〉 = 0 . (C.2)

This asymmetry in two-point correlation functions is directly related to the fact that
a and a† do not commute. Because a and a† are intimately related to positive- and
negative-frequency Fourier components of the electric field operator in the Heisenberg
picture,

Ê(+)(t, x) =

∫ +∞

0

dω

2π

√

~ω

2
â†ωe

−iωt+iωx , (C.3)

Ê(−)(t, x) =

∫ +∞

0

dω

2π

√

~ω

2
âωe

+iωt−iωx , (C.4)
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with the total field operator the sum of the two:

Ê(t) = Ê(+)(t) + Ê(−)(t) (C.5)

Our normalization is very simple because we relate the intensity of the propagating
wave along this one dimension as

Î(t, x) = cÊ2(t, x) . (C.6)

In this way, since the energy density of the optical field is the energy flux divided by
c, and we have

Ĥ =

∫

Î(t, x)dx =

∫ +∞

0

~ω

[

â†ωâω +
1

2

]

. (C.7)

C.2. Two-mode quantum optics

Let us, we imagine a classical carrier field at ω0 frequency, and consider amplitude and
phase modulations to this carrier. This can either be described as having a coherent
state of

|αω0
〉 = eαa

†
ω0

+α∗aω0 |0〉 (C.8)

or, though a unitary evolution, as having the annihilation and creation operators
shifted by

aω = αδ(ω − ω0) + aω , a†ω = α∗δ(ω − ω0) + a†ω . (C.9)

Let us restrict ourselves to focus on field contents around a fixed frequency ω0 (e.g.,
within a bandwidth of Λ) and we have

Ê(t) = αe−iω0t + α∗eiω0t

+
√

~ω0

∫

|ω−ω0|<Λ

dω

2π

[
âωe

−iωt + â†ωe
iωt

]

= A cos(ω0t+ φ)

+
√

~ω0

[

Ê1(t) cosω0t+ Ê2(t) sinω0t
]

(C.10)

with α = Aeiφ, and Ê1,2(t) slowly varying fields defined as

Êj(t) =

∫ Λ

0

dΩ

2π

[

aj(Ω)e
−iΩt + a†j(Ω)e

iΩt
]

, j = 1, 2, (C.11)

and

a1(Ω) =
aω0+Ω + a†ω0−Ω√

2
, a2(Ω) =

aω0+Ω − a†ω0−Ω√
2i

. (C.12)

The fields Ê1(t) and Ê2(t) are called quadrature fields; their linear combinations, a
general quadrature, is defined as

Êθ(t) = Ê1(t) cos θ + Ê2(t) sin θ . (C.13)

The quadrature Êθ can act as amplitude or phase modulations to the carrier, when
θ takes appropriate values. The formalism here is often referred to as two-photon
quantum optics, because it deals with field fluctuations at ω0 ± Ω at the same time.
This formalism was first developed by Caves and Schumaker. In vacuum state, we
have

Sa1a1
= Sa2a2

= 1 , Sa1a2
= 0 . (C.14)



Yanbei Chen 85

C.3. Two-Mode Squeezing

A two-mode squeezed state normally refers to a Gaussian state of a continuum field
in which ω0 ± Ω sidebands are correlated. Formally, such a state can be represented
by

|ψ〉 = exp

{∫
dΩ

2π

[

χ(Ω)a†ω0+Ωa
†
ω0−Ω − h.c.

]}

|0〉 (C.15)

which contain pairs of correlated photons. An alternative way is to transform the state
back to vacuum, which results in a Bogolubov transformation involving â(ω0±Ω) and
â†(ω0 ± Ω), which is easily represented in the quadrature picture. At each sideband
frequency Ω, we need to relate the quadrature operators a1,2 to two other quadrature
operators n1,2 which are at vacuum state, through

(
a1
a2

)

= RφSr

(
n1

n2

)

(C.16)

with

Rφ =

(
cosφ − sinφ
sinφ cosφ

)

, (C.17)

Sr =

(
er

e−r

)

(C.18)

where empty matrix entries are zeros. It is as if these quadrature operators are rotated
and squeezed/stretched. Here φ is usually referred to the squeeze angle (or phase),
and er is referred to as the amplitude squeeze factor (e2r is the power squeeze factor,
and ofter quoted in dB). In principle, φ and r can be functions of sideband frequency
Ω.

D. Facts about Wigner Functions

In this appendix, we collect a set of facts involving the Wigner function, a quasi-
probability distribution that exists for all quantum states of a mechanical degrees of
freedom.

D.1. Definition

The formal way to obtain the Wigner function from the density matrix is to first define
the generating function

J(µ, ν) = tr
[
eiµx̂+iνp̂ρ̂

]
(D.1)

and then write

W(x, p) =

∫
dµ

2π

dν

2π
e−iµx−iνpJ(µ, ν) (D.2)

We can then combine these two and write

W(x, p) =

∫
dµ

2π

dν

2π
〈e−iµ(x−x̂)−iν(p−p̂)〉 . (D.3)

This is almost like “〈δ(x − x̂)δ(p − p̂)〉”, and therefore a reasonable definition for a
joint probability density of x and p — except that x̂ and p̂ do not commute and we
cannot write an expression this way.
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However, if we first integrate out any linear combination of x and p, obtaining a
marginal distribution for the orthogonal distribution, we will have only one integral
left and the above process works. For example, integrating over p, we have

∫

W(x, p)dp =
1

2π

∫

dµ〈e−iµ(x−x̂)〉 = 〈δ(x− x̂)〉 (D.4)

This means any marginal distribution of W(x, p) along the x direction agrees with the
x distribution of the quantum state.

D.2. Stochastic Differential Equation (SDE) for the Conditional Wigner Function

Let us derive the continuous-measurement SDE for the Wigner function. Starting
from the SME,

dρ̂ = − i
[

Ĥ, ρ̂
]

dt+
α√
2
{x̂− 〈x̂〉, ρ̂} dW

− α2

4
[x̂, [x̂, ρ̂]] dt (D.5)

using the definition of the generating function J [Cf. Eq. (D.1)] and using Ĥ =
p2/(2m) +mω2x2/2 for concreteness, we obtain

dJ =
( µ

m
∂νJ −mω2ν∂µJ

)

dt

+
√
2α (i∂µ − 〈x̂〉) JdW − α2

4
ν2Jdt , (D.6)

where the first term on the right-hand side comes from H, and the rest from the
measurement process. Here we have used the Baker-Campbell-Hausdorf formula,

eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂] (D.7)

and obtained

∂αe
iµx̂+iνp̂ = eiµx̂+iνp̂

(

ix̂− iν

2

)

=

(

ix̂+
iν

2

)

eiµx̂+iνp̂

=
i

2

{
x̂, eiµx̂+iνp̂

}
, (D.8)

∂νe
iµx̂+iνp̂ = eiµx̂+iνp̂

(

ip̂+
iµ

2

)

=

(

ip̂− iµ

2

)

eiµx̂+iνp̂

=
i

2

{
p̂, eiµx̂+iνp̂

}
. (D.9)

As a next step, from Eq. (D.2), we simply perform a Fourier transform of Eq. (D.6),
and obtain

dW +
[ p

m
∂x −mω2x∂p

]

Wdt =
√
2α(x− 〈x̂〉)WdW

+
α2

4
∂2pWdt . (D.10)

Terms on the right-hand side originate from the measurement; the first term is a
random drift driven by dW , while the second term is a diffusion.
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D.3. Path Integral and Causal Wiener Filtering

In Sec. 4.1, we encountered the following path integral:

Jc [µ, ν|ξ(t′)]
∝ 〈ψc|ei[µx̂(t)+νp̂(t)]|ψc〉

=

∫

D[k(t′)]tr
[

eiµx̂(t)+iνp̂(t)+i
∫

t

0
k(t′)[b̂ζ(t′)−ξ(t′)]ρ̂ini

]

(D.11)

Let us show that this is as if all quantities involved are classical random processes.
First of all, let us assume we already have the Wiener filters Gx and Gp, and the
integrand can be changed into

〈

eiµx̂(t)+iνp̂(t)+i
∫

t

0
[k(t′)−µGx(t

′)−νGp(t
′)][b̂ζ(t′)−ξ(t′)]

〉

(D.12)

because we are simply shifting each k(t′) by a constant, which does not change the
value of the path integral. This becomes

Jc [µ, ν|ξ(t′)] ∝
〈

eiÔ
〉

(D.13)

with

Ô = µ

[

x̂(t)−
∫ t

0

Gx(t
′)
[

b̂ζ(t
′)− ξ(t′)

]]

+ ν

[

p̂(t)−
∫ t

0

Gp(t
′)
[

b̂ζ(t
′)− ξ(t′)

]]

. (D.14)

Here we have discarded a factor that does not depend on (µ, ν), and the path integral is
contained within that factor. This has been possible because all of {bζ(t′) : 0 < t′ < t}
commute with µx̂(t) + νp̂(t),

〈

bζ(t
′)

[

x̂(t)−
∫ t

0

Gx(t
′)b̂ζ(t

′)

]〉

= 0 (D.15)

〈

bζ(t
′)

[

p̂(t)−
∫ t

0

Gp(t
′)b̂ζ(t

′)

]〉

= 0 (D.16)

and if [Â, B̂] = 0 and 〈Â〉 = 〈B̂〉 = 〈ÂB̂〉 = 0, we have
〈

eÂ+B̂
〉

= e∆A2/2e∆B2/2 =
〈

eÂ
〉〈

eB̂
〉

(D.17)

Here we have also used the fact that for linear operators on Gaussian states,
〈

eÂ
〉

= e〈Â〉e∆A2/2 (D.18)

where

∆A2 = 〈Â2〉 − 〈Â〉2 (D.19)
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