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I. INTRODUCTION

With recent progresses in experimental physics, it is

nowadays possible to investigate quantum effects such as

interference and entanglement in larger and larger systems.

Experimentalists bring mechanical oscillators to the quantum

regime, set interferometers with single giant molecules,

produce superposition states with many atoms, photons,

and high superconducting currents, or reveal entanglement

in many-body systems.
1
Starting with Leggett (1980), many

physicists came up with measures to compare these experi-

ments, that is, to quantify how macroscopic and quantum a

state is. Such measures allow one to characterize sets of states

and to study systematically the requirements to observe the

quantum features of macroscopic states. From a fundamental

point of view, this helps to gain insight into the quantum-to-

classical transition and to investigate the limits of quantum

theory. From a more applied perspective, this is useful to

reveal general mechanisms for quantum enhancement in

applications such as quantum computing and metrology.

It should be emphasized though that identifying key

features of macroscopic quantumness is highly controversial.

Intuitively, any approach should distinguish a genuine macro-

scopic quantum effect from accumulated microscopic effects.

However, already the precise meaning of these and similar

words is unclear and disputed and also because they are

heavily loaded with emotions and prejudice. The example

from Schrödinger (1935) of a cat in superposition of being

dead and alive is a paradigmatic starting point for many

considerations and experiments with different physical sys-

tems. But we face many open questions. The first issue

involves the role of the physical system (atoms, electrons,

photons, etc.) and the different degrees of freedom. In all

cases, a reduction of complexity, often to a single degree of

freedom, is considered in order to keep essential properties

while making it theoretically tractable and bringing it closer to

experimental reality. While on an abstract level states might be

isomorphic, there is no consensus whether a superposition

state with different spin values or different positions of the

wave packet can equally well be called a macroscopic

superposition. The latter for instance is affected by gravita-

tional collapse and allows one to test proposed modifications

of quantum mechanics, while the former is not. Another issue

is how particle number, distance, and mass enter in the

assessment. How can we compare the spatial superposition

of a single atom being 1 m apart from a Bose-Einstein

condensate with one million atoms where the center of mass

is separated by 1 μm? To address these issues, one needs to

1
See Sec. V for references and further details.
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formalize the observation that “dead and alive” are more than

two orthogonal states in a Hilbert space but are somehow

“macroscopically distinct.” Furthermore, it is unclear how

to take into account loss of coherence (i.e., purity). Is there a

way to deal with reduced visibility when scaling up the system

size? Finally, the quest does not end with macroscopic

superpositions of two states. Generalizations to arbitrary

quantum states including mixed states are important to further

abstract the problem and to apply the theoretical concepts

directly to experiments.

In this review we summarize and discuss proposals to

measure quantum states (or entire experiments) concerning

some aspect of macroscopic quantumness. We do not aim to

give only a technical summary of the measures, but also to

facilitate a discussion of the motivation and intuition behind

them, as well as relations between the different proposals.

We then discuss fundamental difficulties and limitations to

prepare, maintain, and certify macroscopic quantum states

and briefly mention potential applications in foundations of

quantum mechanics as well as quantum metrology and

quantum computation. Finally, we evaluate the current status

of experimental progress by reviewing experiments with

different systems and applying different measures and pro-

posals to assess their level of macroscopic quantumness. In the

remainder of the Introduction, we specify more precisely the

scope of the review, clarify the motivation and the terminol-

ogy, and mention the structure of this paper.

A. Defining macroscopic quantumness: Not an easy task

It is often claimed that quantum mechanics is one of the

most successful theories in physics. The basis of this assertion

is its passing of all experimental tests so far. This is certainly

true in the microscopic realm. Here we are interested in large

systems, that is, experiments involving many atoms, photons,

or electrons. There the experimental evidence and its inter-

pretation are less clear. As mentioned by several physicists

such as Leggett (1980), many well-established large-scale

experiments can be seen as a macroscopic accumulation of

microscopic quantum effects. As an example, the genuine

quantum effect of Cooper pair formation in the BCS theory of

superconductivity is a two-electron problem and many-body

correlations are not necessary to observe superconductivity

on human scales (Leggett, 1980). Hence, as opposed to the

microscopic quantum effect, one could define a macroscopic

quantum effect as a situation in which the experimental

evidence excludes a model based on an accumulated micro-

scopic quantum effect (regarding terminology, see Sec. I.C).

However, this definition does not seem to be restrictive

enough, as it can be fulfilled in drastically different situations,

some of which defy our intuition. Let us illustrate this point

with the following two examples.

Consider a large atomic ensemble that was prepared in the

ground state and coherently absorbed a single photon. The

resulting atomic state is in a so-called Dicke state or W state

(Dicke, 1954; Dür, Vidal, and Cirac, 2000), that is, a coherent

superposition of all states where exactly one atom has

absorbed the photon. This state is genuinely multipartite

entangled, that is, nonseparable for any bipartition of the

ensemble. According to the previous definition, genuine

multipartite entanglement between all atoms constitutes a

genuine macroscopic quantum effect. In particular, this has

direct observable consequences if we consider the sponta-

neous reemission of the photon. The coherent phase relation

between the atoms leads to a temporally and directionally

well-defined emission of the photon (Dicke, 1954; Duan et al.,

2001; Scully et al., 2006). On the other side, if one divides the

ensemble into several groups without a shared phase relation

(and thus losing the entanglement between the groups), the

spatial emission pattern progressively becomes isotropic. Yet

this quantum effect has a completely different character than

the following example.

In his seminal paper, Schrödinger (1935) sketched the

famous cat paradox, where the total system consists of an

atom with two levels (ground jgi and excited jei) and a cat,

which is coupled to the atom via a mechanism U that kills the

cat whenever the excited atom decays to the ground state. By

applying the linearity of quantum mechanics even to macro-

scopic scales, Schrödinger argued that the coherent super-

position of the atom being excited and already decayed results

in a micro-macro entanglement between atom and cat

UjAlivei ⊗ ðjei þ jgiÞ → ð1Þ

jei ⊗ jAlivei þ jgi ⊗ jDeadi: ð2Þ

This paradox challenges our world view much more than the

example of the absorbed single photon, even though the size

of the atomic ensemble can be truly macroscopic. But what are

the essential features of this example that cause the unease of

Schrödinger and many others? We now list some aspects

frequently appearing in the literature that is discussed in this

review.

(1) The superposition principle is one of the most straight-

forward illustrations of the drastic difference between classical

and quantum physics. For any two possible quantum states

jAi and jDi, the superposition jAi � jDi is also a valid

quantum state. This is a well-accepted fact for microscopic

systems or even for macroscopic systems if jAi and jDi are
“hardly” distinguishable. However, the superposition princi-

ple appears paradoxical when jAi and jDi represent states that
are drastically different or irreconcilable in classical physics,

such as an object being here and there or a cat being dead

and alive. This is a key feature in Schrödinger’s example, as

the two superposed states jAlivei and jDeadi are not only

orthogonal but also macroscopically distinct, using a term

coined by Leggett (1980).

(2) The number of biological cells in the cat is on the order of

trillions, and the number of atoms on the order of 1026. But it is

not only the bare number of constituents. In the biological cat

many degrees of freedom (or modes) are “active,” that is, are

accessible via interactions between them. This leads to an

enormous complexity within an unthinkably large Hilbert

space. Some physicists see the presence of this large number

of degrees of freedom (and not only a large number of particles)

as a necessary perquisite for quantum systems to be called

macroscopically quantum (Shimizu and Miyadera, 2002).

Others tend to drop this aspect when going to realistic systems
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such as Bose-Einstein condensates or superconducting devices

(see Sec. V), where only one or a few modes effectively exist.

(3) Finally, an aspect that is often emphasized is the micro-

macro entanglement between the atom and the cat. It is

a priori not clear what happens if, in a bipartite scenario, the

system size of one party is increased. Several experiments in

quantum optics and optomechanics aim to realize this aspect

of Schrödinger’s cat (see discussion later). Also some of the

proposals presented in this review reflect this idea.

In this review, we will focus on recent contributions that

aim for a more systematic approach to the topic of macro-

scopic quantum mechanics. In many papers, the Schrödinger-

cat paradox serves as a starting point to formalize concepts

such as macroscopic quantum effects or macroscopic quantum

states. There is broad agreement in the literature that coher-

ence between macroscopically distinct states (1) has to be

necessarily present in experiments that aim to mimic

Schrödinger’s cat example. In contrast, high complexity in

terms of many accessible degrees of freedom (2) is, for many

but not for all, neither necessary nor sufficient. Likewise, the

micro-macro entanglement (3) plays only a minor role in the

papers discussed here.

B. Motivation

The theoretical and experimental study of macroscopic

quantum systems is motivated by a wide range of interests.

Many open questions on the foundations of quantum mechan-

ics touch on quantumness on large scales, the quantum-to-

classical transition, and the measurement problem. This

includes comparisons of standard quantum mechanics against

potential modifications relevant on large scales but also a

better understanding of quantum mechanics itself. The latter

is expected to have a cross fertilization with applications of

quantum mechanics that are particularly interesting when

performed with large quantum systems (e.g., for quantum

computation and metrology). Let us discuss some of these

points in more depth.

Historically, Schrödinger’s motivation for his paradox was

to demonstrate the interpretational problems of what he calls

the “blurriness” of the wave function (Schrödinger, 1935). He

argued that at a scale of a radioactive nucleus one might be

able to accept that the state of a quantum system cannot be

described by a well-defined collection of properties such as

position, momentum, excitation level, etc. The speculative

reason is that we anyway cannot directly access these small

scales and everyday intuition breaks down. However, assum-

ing full validity of quantum mechanics also at large scales, one

can easily construct examples where the initial microscopic

blurriness is translated to human scales. In Schrödinger’s

example, it is the coherent superposition of a cat that is dead

and alive correlated with a radioactive substance being

decayed and excited. We can easily determine the basic vital

function of a cat, which prevents us from accepting a “blurred

model” as an accurate picture of reality.

Very generally, there is a natural motivation to formalize

this intuition and essential aspects of Schrödinger’s example

into a mathematically solid and abstract tool. This would

allow us to benchmark experimental progress, tell us at

which scales we did verify quantum laws, and maybe get closer

to the original question: Are quantum laws, such as the

superposition principle, valid or at least observable at all

scales? In fact, one might hear different answers to this

question, which all provide motivation to study macroscopic

quantumness.

The common intuition is that, while nature might allow

for quantum effects on a macroscopic scale, it makes them

practically impossible to observe. This is due to technical

limitations that forbid one to perfectly isolate a system from

its environment and to perform measurements with unlimited

precision. This leads to an effective quantum-to-classical

transition, which can be ideally derived from the quantum

laws themselves (Joos, 2003; Zurek, 2003b).

One might also take a more radical attitude on this question,

saying that nature prohibits even the existence of Schrödinger

cat states, such that quantum laws have to be supplemented

with an explicit collapse mechanism. This is commonly done

by introducing a stochastic extension of the Schrödinger

equation. This extension basically does not affect any micro-

scopic quantum system composed of a few atoms. Large

masses and distances, however, lead to an efficient collapse

whenever the wave function is widely spread over a character-

istic amount of time [see Bassi et al. (2013) and Arndt and

Hornberger (2014) and references therein]. Collapse models

are a way to stay within an extended quantum theory and at the

same time avoiding paradoxes à la Schrödinger. Hence, the

experimental verification of superposing two macroscopically

distinct states (in position space) is a typical way to falsify

such modifications (however, see the discussion in Sec. II.C.2

about “more suited” states to test collapse models under

realistic conditions).

Along the same lines an additional motivation to study

macroscopically distinct states stems from the measurement

problem, that is, the appearance of a single measurement

outcome irreversibly chosen among all possible outcomes

(Schlosshauer, 2005). In particular, in standard quantum

mechanics (Copenhagen interpretation) the problem is explicitly

solved by introducing the measurement postulate—the ability

of the measurement apparatus to collapse the wave function.

However, this postulate also has provoked controversial dis-

cussions, as it is not a priori clear what qualifies as a

measurement apparatus. It is supposed to be a macroscopic

device obeying the laws of classical physics, but down the line

any such device is made of atoms—quantum systems with

reversible unitary dynamics. Where should this boundary

between microscopic and macroscopic (quantum and

classical), postulated by Copenhagen, be found? On the

opposite side, the many-world interpretation deprives the

measurement process from such a special role (Everett, 1957;

Wheeler, 1957). In this theory, a measurement is just a

particular case of unitary dynamics in which the measurement

apparatus entangles with the system. Hence, all possible

outcomes, in fact, occur as the state of the system and the

apparatus after the coupling is a superposition of all possible

outcomes. Nevertheless, we, conscious beings, have the

impression to live in a world where only a single outcome

occurs. This discrepancy also provoked many discussions,

summarized in the famous Wigner’s friend paradox (Wigner,

1961). Schrödinger’s thought experiment is of course at the

heart of this debate (Leggett, 2002; Schlosshauer, 2005).
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Besides the interest in the transition from quantum mechan-

ics to our classical world, effective or not, it is important to

understand the structure of quantum mechanics itself when

applied to large systems. In entanglement theory, the structure

of multipartite entanglement becomes richer and more com-

plex as the number of parties increases. A similar behavior is

expected for other aspects of quantum mechanics when

brought to large scales. Although we review here papers that

are often in the vicinity of Schrödinger’s cat example, this can

be seen as just one out of many interesting aspects of

macroscopic quantumness. In general, the systematic study

leads to new insight on quantum effects, new proposals for

experiments, and constraints on the experimental require-

ments to prepare, maintain, and observe macroscopic

quantumness.

Such a broad account might give general insight also useful

for applications of quantum mechanics. In quantum compu-

tation and quantum metrology, for example, the performance

of algorithms and protocols is often measured as a function

of the system size. A quantum advantage is particularly

striking for large system sizes. Connections made between

foundations and applications can lead to a new point of view

and additional understanding of the mechanisms (see, e.g.,

Sec. IV.C.2).

C. Terminology

A primary obstacle when discussing the present topic is the

terminology used. First, as already mentioned, the topic is

strongly filled with emotion and preconceptions. Second,

different authors use words such as macroscopic or large

in different ways. Hence, on the one hand, we prefer to

avoid loaded terminology such as Schrödinger-cat states, but

on the other hand we cannot completely ignore the common

terminology. Let us clarify how we use some frequently

used words.

In this review, macroscopic
2
is a synonym for large. All

physical systems considered here necessarily consist of a large

number of microscopic constituents (e.g., atoms, electrons, or

photons). This is referred to as the system size or number of

constituents. However, the system size is not necessarily on

the order of 1023 or even close to it. While it could be

misleading to use the word macroscopic even for “meso-

scopic” system sizes, it frequently appears in many of the

discussed papers. Note that macroscopic can refer to a scaling

or to a single number, depending on the context and the

intention of the reviewed papers. On an abstract level, one

might prefer to discuss the properties of a state family and the

behavior as a function of the system size. Given a specific

situation such as real data from an experiment, one is probably

more interested in extracting the bare numbers than the

hypothetical scaling.

As stated before, we are interested in macroscopic quan-

tumness, which is more than a quantum state of a macroscopic

system. Determining the precise meaning of macroscopic

quantumness is the goal of most of the contributions discussed

in this review. This cannot be captured by a single character-

istic trait but the problem is expected to be multidimensional.

Thus, a peaceful coexistence of different ideas is likely to be

possible. Very generally, different concepts could be referred

to as macroscopic quantumness. In this review, however,

macroscopic quantumness means quantum coherence

between macroscopically distinct states inspired by point

(1) in Sec. I.A. We emphasize that the two aspects, macro-

scopicity and quantumness, are sometimes separately studied,

but sometimes they are combined into a single concept. Being

one aspect of macroscopic quantumness, quantum coherence

between far-distant parts in the spectrum of a given observable

is called macroscopic coherence.

In many papers, the authors are interested in finding a

function f that assigns a non-negative number fðρÞ ≥ 0 to a

quantum state ρ. This number should ideally reflect the degree

of macroscopic quantumness of ρ. In this review, we call f a

measure (of macroscopic quantumness) and fðρÞ is called an

effective size (or simply the size) of ρ. For a unified notation,

we name the measures by the authors who first proposed them,

which is also used to title the subsections in Sec. II.A. We

generally keep the mathematical symbols for the measures as

introduced in the original papers (see Table I).

D. Physical systems

Macroscopic quantumness is not restricted to a single

physical realization but can be studied for many different

degrees of freedom [see Leggett (2002), Chou, Hu, and Subaşi
(2011), and Caldeira (2014) for an introduction to the physics

of macroscopic quantum phenomena]. In this review, we

treat a few “canonical” systems for which we introduce the

terminology and the notation in this section. The only “global”

conventions we state here are that ℏ ¼ 1 and ðΔAÞ2 ¼ hA2i −
hAi2 for the variance of an operator A. Furthermore, the

components jAi and jDi of a superposition jAi þ jDi are

referred to as branches or components. Sometimes, a pure

state as an argument of a function f is abbreviated

fðjψihψ jÞ≡ fðψÞ.

1. Spin ensemble

When we consider many microscopic constituents each

carrying an identical, discrete, and finite degree of freedom we

talk of a spin ensemble. Whether this degree of freedom is a

physical spin or a pseudospin is of little relevance here.

Alternatively, some call this system an atomic ensemble. The

constituents are called particles in the following. If not stated

otherwise, each particle is considered to be a two-level system

(spin 1=2 particles); hence the Hilbert space is H ¼ C2⊗N . In

this case, one might call the system a qubit ensemble. The

system size is the number of constituents N.

An important class of operators is local operators

A ¼
XN

l¼1

a
ðlÞ
l ; ð3Þ

where a
ðlÞ
l ≡ 1⊗l−1 ⊗ al ⊗ 1⊗N−l is a single-particle operator

al acting the lth spin. For convenience and without loss of

2
There are even papers on the term macroscopic in the foundations

of quantum mechanics (Jaeger, 2014).
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generality, we set kaðlÞl k ¼ 1 and Tra
ðlÞ
l ¼ 0. For two-level

systems, al can be uniquely decomposed into Pauli operators

σx, σy, and σz. Local operators are sometimes called linear

operators. Nonlinear operators describe interactions between

the particles and are typically written as polynomials of local

operators. As an extension of local operators, we also consider

quasilocal operators. These observables are sums of operators

where each addend a
ðlÞ
l has a nontrivial support on group l

consisting of Oð1Þ particles. Here we limit the a
ðlÞ
l to act on

nonoverlapping groups only and again we set kaðlÞl k ¼ 1. In

this way, one can see quasilocal operators as local operators of

quasiparticles (“molecules composed of atoms”) each living in

a high-dimensional space.

Local operators for which all single-particle terms are

identical (i.e., a
ðlÞ
l ≡ aðlÞ) are called collective operators

or extensive observables. For spin-1=2 particles, every col-

lective operator is hence a weighted sum of Sx ¼
P

lσ
ðlÞ
x ,

Sy ¼
P

lσ
ðlÞ
y , and Sz ¼

P
lσ

ðlÞ
z , which fulfill the SUð2Þ com-

mutation relation ½Sx; Sy� ¼ 2iSz (and permutations). The

unusual factor of 2 comes from the choice of normalization.

The ladder operators are defined as S� ¼ ð1=2ÞðSx � iSyÞ.
An important class of operations is local operations and

classical communication (LOCC). This implies access to

single particles, arbitrary operations on them, and processing

possible measurement results for future operations.

Note that here we are not much concerned for whether the

particles are distinguishable (by an additional degree of

freedom such as position) or whether they are in a bosonic

mode and hence symmetrized. The difference is that we deal

only with collective operators in the latter case.

There are several important state families for spin-1=2
particles. The computational basis is denoted by fj0i; j1ig,
that is, the eigenbasis of σz. We denote j�i as the eigenstates
of σx.

Among the symmetric states, the spin-coherent states jϕi⊗N

are typically seen as the pure states with the “most classical”

properties.
3
The single-qubit state is conveniently parame-

trized by the Bloch angles jϕi ¼ cos ϑ=2j0i þ eiφ sin ϑ=2j1i.
A quantum state that is often discussed in the present

context is the multipartite Greenberger-Horne-Zeilinger

(GHZ) state (Greenberger, Horne, and Zeilinger, 1989)

jGHZ�
Ni ¼

1ffiffiffi
2

p ðj0i⊗N � j1i⊗NÞ; ð4Þ

which is considered to be macroscopically quantum by many

physicists. This state is a limiting case of the “generalized

GHZ state”

jΦϵi ∝ j0i⊗N þ jϵi⊗N ; ð5Þ

where jϵi ¼ cos ϵj0i þ sin ϵj1i.

We are also interested in the symmetric superposition states

jN; ki ∝
X

π∶perm

πj0i⊗N−k ⊗ j1i⊗k; ð6Þ

where π’s are particle permutations. These quantum states are

often called Dicke states (Dicke, 1954). For k ¼ 0, N, the

states are product states, while all other Dicke states are

genuinely multipartite entangled. An important instance is

jN; 1i, which was called a W state in Sec. I.A (Dür, Vidal,

and Cirac, 2000). It is typically cited as a counterexample

to a macroscopic quantum state, despite its widespread

entanglement.

Another important state class is spin-squeezed states as

defined by Kitagawa and Ueda (1993). There are various ways

to generate spin squeezing. A well-known method is the one-

axis twisting,

jSμi ¼ e−iνSxe−iμS
2
z jþi⊗N ; ð7Þ

where the rotation generated by Sx is just to align the squeezed

axis to z [thus, ν ¼ νðN; μÞ]. The optimal squeezing is

achieved for μ ¼ 241=6ðN=2Þ−2=3 (Kitagawa and Ueda,

1993). A common way to characterize squeezed states without

reference to its generation is the squeezing parameter

ξ2 ≡
NðΔSn1Þ2

hSn2i2 þ hSn3i2
; ð8Þ

which is strictly smaller than 1, ξ < 1, for squeezed states

(Sørensen et al., 2001). Here ðn1; n2; n3Þ are three orthogonal
orientations of collective spin operators. This means that the

state has to exhibit a large polarization in the n2 − n3 plane

and simultaneously a small (i.e., squeezed) variance in n1.
The last class of spin states introduced here is the cluster

states (Briegel and Raussendorf, 2001). Cluster states are

special instances of graph states (Hein et al., 2006), which

are constructed by applying controlled phase gates U
ði;jÞ
C ¼

j0ih0jðiÞ þ j1ih1jðiÞσðjÞz on a set of spin pairs ði; jÞ. If the UC

are applied to nearest neighbors in a certain geometry, the

graph state is called a cluster state jCli ¼ UCjþi⊗N ; for

example, a one-dimensional arrangement gives

UC ¼
YN−1

i¼1

U
ði;iþ1Þ
C : ð9Þ

2. Photonic systems

We consider well-defined temporal, spatial, frequency, and

polarization modes. For every mode, we define the usual

quadrature operators X and P with the canonical commutation

relation ½X;P� ¼ i and the decomposition into dimensionless

creation and annihilation operators X ¼ 1=
ffiffiffi
2

p
ða† þ aÞ and

P ¼ i=
ffiffiffi
2

p
ða† − aÞ. The notion of a linear operator refers to

operators that are linear in a and a†. The system size is the

mean photon number ha†ai.
Sometimes we discuss multimode scenarios, which have

some parallels with spin ensembles in the case of many modes

3
Spin-coherent states have a vanishing relative uncertainty

ΔS=kSk ≤ OðN−1=2Þ for all collective operators S. In addition, the

Heisenberg uncertainty relation ΔSxΔSy ≥ jhSzij is tight in case

jϕi⊗N is polarized somewhere in the x − z or in the y–z plane.
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(except that there are infinitely many levels per mode). The

equivalence of a local operator is a sum of single-mode

operators linear in XðlÞ and PðlÞ. The system size is the total

mean photon number.

Several quantum states are repeatedly discussed in the

remainder of this paper. A useful countable basis in a

single mode consists of Fock states (or photon number

states) a†ajni ¼ njni for integer numbers including the

vacuum j0i.
The pure state that behaves most classically

4
is the coherent

state jαi defined via ajαi ¼ αjαi for all α ∈ C. It can equally

be seen as a displacement of the vacuum jαi ¼ DðαÞj0i≡
expðαa† − α�aÞj0i. The mean number of photons is jαj2 with
a spread of jαj in the photon number spectrum. The variance of

the quadratures is independent of α.

Among other representations, the Wigner function is a well-

established way of representing quantum states in phase

space. The Wigner function is a quasiprobability distribution,

whose marginals give the statistics of the quadrature operators

(Wigner, 1932; Scully and Zubairy, 1997).

Well-studied states in the present context are superpositions

of coherent states (SCS).
5
A typical instance is

jSCSi ∝ jαi þ j − αi; ð10Þ

whenever α is large. The overlap between the two coherent

states hαj − αi ¼ expð−2jαj2Þ vanishes for α ≫ 1. The equiv-

alent state in photon number space is j0i þ jNi, with N ≫ 1.

However, since jNi is considered to be highly nonclassical,

jSCSi and the superposition of Fock states have different

characteristics.

Another important state class is squeezed states. The most

important instance of squeezing is the one of squeezed

coherent states

jζ; αi ¼ S
ð1Þ
ζ jαi; ð11Þ

where the squeezing operator S
ð1Þ
ζ ¼ exp½−1=2ðζa†2 − ζ�a2Þ�

reduces the variance of the quadrature ð1=
ffiffiffi
2

p
Þðei argðζÞa† þ

e−i argðζÞaÞ by a factor e−2jζj and increases the variance of

ði=
ffiffiffi
2

p
Þðei argðζÞa† − e−i argðζÞaÞ by e2jζj.

All these examples have extensions to multimode systems.

For SCS, this includes states such as jα; βi þ j − α;−βi.
A famous two-mode superposition of Fock states is the

NOON state jN; 0i þ j0; Ni. Finally, two-mode squeezing

of vacuum with the operator

S
ð2Þ
ζ ¼ expð−ζa†b† þ ζ�abÞ ð12Þ

plays an important role in spontaneous parametric

downconversion.

3. Massive systems

Massive systems are clearly of high importance for the topic

of macroscopic quantumness. Mathematically, they are sim-

ilarly treated as a photonic mode, except that X and P now

become position and momentum. In particular, for a massive

particle in a harmonic trap, the creation and annihilation

operators play the same role as for photons. In this case, state

classes such as coherent states, SCS, and squeezed states are

also important here. Unlike photons, however, the role of

parameters, in particular, the mass m, plays a crucial role in

massive systems and is typically considered to be the system

size. In addition, also in the case of “free” particles, the role of

the distance in a spatial superposition is not obvious.

4. Superconducting systems

There are many different degrees of freedom that potentially

show macroscopic quantum behavior. Notably, superconduct-

ing circuits such as superconducting quantum interference

devices (SQUIDs) play an important role in the present

context. Often, one works with collective degrees of freedom

such as the total flux of the system Φ. Mathematically, this is

equivalent to a massive particle moving in a one-dimensional

potential. The system size in this case might be defined as the

total number of electrons that are involved in the experiment.

E. Structure of the review and reading guide

The purpose of the review is twofold. On the one hand, we

provide an introduction to different aspects of macroscopic

quantum states for interested nonexpert readers. On the other

hand, we also give a comprehensive overview and detailed

discussion of various approaches to quantum macroscopicity.

This involves detailed discussions and comparison between

approaches, some of which might only be relevant to experts

in the field as technicalities, subtilities, and particular aspects

are discussed. In order to make this review accessible for both

experts and nonexperts, we here provide a readers guide.

Section I provides the basis of this review: the precise scope

and motivation of the review, the most important terminology,

the mathematical notation, and the discussed physical sys-

tems. In Sec. II we give an overview of different measures and

provide detailed discussions on their relations and differences.

Some of these discussions are rather technical and might be

hard to understand for a nonexpert reader. Such a reader has to

keep this in mind and do not get stuck or intimidated by the

technicalities. To facilitate this, we provide, for each of the

measures reviewed in Sec. II, a displayed paragraph that

conveys the general idea behind each measure in nontechnical

terms. We suggest to read only the displayed text first and

continue with Secs. II.C and II.D. At that point, the reader is

now equipped with the necessary background information to

proceed reading the rest of the article following his or her

interest.

Instructive examples and an indepth discussion of the

measures are provided in Secs. II.B–II.I. Section III contains

a detailed discussion on limitations to prepare, maintain, and

measure macroscopic quantum states and might be of par-

ticular relevance for readers interested in fundamental ques-

tions regarding macroscopic quantum states. In turn, Sec. IV

4
Regarding classicality, a similar comment as footnote 3 applies,

where collective operators are replaced by quadrature operators.
5
In the literature, SCS often stands for a Schrödinger-cat state, a

frequent name for state equation (10).
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deals with potentials of macroscopic quantum states and

contains a brief discussion of possible applications in the

context of probing the limits of quantum theory, quantum

metrology, and quantum computation. Section V provides an

overview of implementations and previous attempts to gen-

erate macroscopic quantum states using different setups. We

summarize and conclude in Sec. VI.

II. MEASURES FOR MACROSCOPIC SUPERPOSITIONS

AND QUANTUM STATES

After motivating and specifying macroscopic quantumness

in Sec. I.A, we now have a closer look at theoretical proposals

that aim at formalizing intuitive ideas in a mathematical

framework. The terminology and notation used in this section

is defined in Secs. I.C and I.D. We start with a detailed

summary of several measures in Sec. II.A focusing on the

motivation, the mathematical formulation, and some basic

properties. In Sec. II.A, we stay close to the original language

and notation of the reviewed papers. In addition every entry is

opened with displayed text, where we try to convey the idea

behind each measure as simply as possible. This is meant to

help readers that are novice to the topic, but comes at the price

of giving our own interpretation which might not exactly

match the authors’ original motivation. A reader familiar with

the literature might skip this part. In Sec. II.B, we apply the

measures to several examples: standard situations discussed in

many papers as well as specialized examples to see similarities

and differences between the proposals. The discussion is

continued in Secs. II.C–II.H, in which we elaborate on several

details and comparisons (see Table I for an overview). We

summarize in Sec. II.I. This section is meant to complement

and extend previous contributions.
6

A. Summary of measures

Although the goal of this section is to give a summary of the

relevant literature as neutral and objective as possible, we

draw the reader’s attention to some basic observations. While

it is true that different authors partially use different concepts

to define macroscopic quantumness, it is obvious that a

common goal is to distinguish “interesting” from “uninterest-

ing” states and to find an ordering between states. However,

since all pure quantum states are connected via unitary

operations, one has to find a way to break this unitary

equivalence. This is similar to entanglement theory, where

the partition of a large Hilbert space into subspaces is the

structure necessary to define separable states (i.e., uninterest-

ing states) (Horodecki et al., 2009). For the present topic, this

prestructuring is far less obvious. We invite the reader to

observe which mechanisms for breaking the unitary equiv-

alence has been chosen in the following summary (and refer to

Table I and Secs. II.C and II.D for further discussion). Some

partition the system into subsystems such as in entanglement

theory. Others choose an observable to specify a basis and a

spectrum (i.e., a set of eigenvalues), which is close to attempts

in coherence theory. Alternatively, one can focus on a

specific state representation such as the Wigner function in

phase space.

To give another example for a difference in the structure of

the proposals, the measures vary in their range of applicability.

Some discuss specific examples, others work with pure states

decomposed into a structure of “dead and alive, ” jAi þ jDi,
while some proposals are defined for general mixed states.

Let us finally summarize the typical way a measure is

constructed. It starts with an intuition or example, which is

then formalized. This normally consists of the basic frame-

work and a sort of fine-tuning, for example, by choosing the

right observable or fixing a parameter. When discussing the

measures in detail, it is worth keeping the implications of each

step (intuition, basic framework, and fine-tuning) in mind.

1. Leggett (1980, 2002)

For a superposition state jAi þ jDi of a system

composed of a large number of particles, the

extensive difference Λ is the difference between

the expectation values of some extensive observable

of the states jAi and jDi. The disconnectivity D

measures the quantumness (nonseparability and

purity) of the total superposition state. A macro-

scopic quantum state is required to have both D and

Λ large.

Motivated by the question “What experimental evidence do

we have that quantum mechanics is valid at the macroscopic

level,” Leggett (1980) was the first to point out a qualitative

difference between quantum effects on microscopic scales

amplified to large scales and genuine large-scale quantum

signatures. As Leggett argues, the common feature of macro-

scopic quantum states is their long-range coherence. This

cannot be revealed with single local measurements. Only

simultaneous measurements of a large number of particles

allow one to distinguish this from an incoherent mixture.

In order to quantify this insight, Leggett (1980, 2002)

introduced two concepts for a large system consisting of N

particles. First, consider a superposition of jAi þ jDi and

calculate the difference in the expectation value for a

particular extensive variable (e.g., total charge, total magnetic

moment, or total momentum). This number divided by a

characteristic microscopic unit (e.g., the Bohr magneton for

the magnetic moment) is called the extensive difference Λ.

Second, to characterize the quantumness of the state (here the

entanglement between the particles), Leggett defines the

disconnectivity D as follows. For simplicity, we consider

symmetric states ρ of spin ensembles. The von Neumann

entropy SM ¼ −TrρM log ρM of the reduced density matrix

ρM ¼ TrMþ1;…;Nρ is a measure of the correlation between two

parts with M and N −M particles, respectively. The quantity

δM ¼ SM
minnðSn þ SM−nÞ

ð13Þ

compares SM with the minimal correlations from smaller

partitions to the rest of the system. If the numerator and

6
For example, Fröwis and Dür (2012b), Farrow and Vedral (2015),

Fröwis, Sangouard, and Gisin (2015), and Jeong, Kang, and Kwon

(2015).
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denominator are zero, δM is set to 1 and δ1 ≔ 0. Leggett now

definesD as the largest integerM for which δM is smaller than

some predetermined small fraction. In other words, a large

disconnectivity is found for states that are rather pure when

considering a large part of the system [i.e., SM ≪ 1 for

M ¼ OðNÞ] but all smaller parts of size n still exhibit a large

entropy indicating entanglement to the rest of the system.
7

How to combine the two measures D and Λ is ultimately an

open question. In the examples discussed by Leggett, both

should be somehow large in order to call a state macroscop-

ically quantum.

2. Dür, Simon, and Cirac (2002)

Two ways to quantify the macroscopic quantumness

of a many-body state jΦϵi of the type of Eq. (5) are
introduced, both via a comparison with GHZ states.

First, the effective size of jΦϵi is identified with the

size of GHZ that has the same decoherence rate under

local noise. Second, it is identified with the largest

GHZ state that can be obtained from jΨϵi with local

operations and classical communication. Both lead to

the same result.

Motivated by several proposals and experiments, Dür,

Simon, and Cirac (2002) studied the generalized GHZ state

jΦϵi, Eq. (5), with ϵ ≪ 1, that is, jh0jϵij2 ≈ 1 − ϵ2. While the

two branches are orthogonal even for ϵ close to zero [as long

as Nϵ2 ¼ Oð1Þ], Dür et al. argued that Eq. (5) effectively

corresponds to the ideal state jGHZni, Eq. (4), with n ≪ N. To

show this, one generally chooses a key property (or a set

of key properties) for which jΦϵi and jGHZni coincide. As

argued by Dür, Simon, and Cirac (2002), properties connected

to the nonclassicality of the states are clearly of importance.

They choose two methods: (i) the rate with which the

coherence decays are compared, and (ii) the average size n

one can achieve by going from jΦϵi to jGHZni with LOCC.

For both methods, they found that n ≈ Nϵ2 in the limitsN ≫ 1

and ϵ ≪ 1. This example, which was not directly expanded to

a general measure, was later used as a test bed for proposals to

measure arbitrary macroscopic quantum states.

3. Shimizu and Miyadera (2002) and follow-ups

The macroscopic quantumness of pure states: the

index p is identified via the maximal variance of the

state with respect to all extensive observables A.

The extension to a mixed state is formally introduced

via an additional maximization to uncover wide-

spread coherence.

Shimizu and Miyadera (2002) studied the stability of finite

macroscopic quantum states under weak noise and local

measurements. The systems they considered can be decom-

posed into subsystems such as the spin ensembles introduced

in Sec. I.D.1. They found a difference for the decay rate Γ of

the purity depending on whether or not a quantum state has the

so-called cluster property, whose absence implies long-range

correlations in a many-body system and widespread entangle-

ment for pure states. The noise and decoherence are supposed

to be generated by some operator A. From a physical view-

point, it is clear that A has to be a local operator. While the

detailed results regarding fragility are discussed in

Sec. III.A.3.a, we emphasize here that they are able to connect

Γ with the variance ðΔAÞ2.
A series of papers was devoted to formalize this basic

insight (Ukena and Shimizu, 2004; Morimae, Sugita, and

Shimizu, 2005; Shimizu and Morimae, 2005). Shimizu and

Morimae (2005) remarked that two pure states of N sub-

systems can be reasonably called macroscopically distinct if

there exists some local operator A such that the difference

of its expectation value between the two states is OðNÞ (with
the normalization of Sec. I.D.1). A general state ρ is more

macroscopically quantum the more coherence between mac-

roscopically distinct states it contains. Defining the eigenstates

Ajak; νi ¼ akjak; νi (ν accounts for possible degeneracy)

of a given local observable A, the amount of macroscopic

coherence is quantified by the total weight of all terms

jhak; νjρjal; ν0ij with jak − alj ¼ OðNÞ. They proposed to

measure this coherence in the following way.

For a pure state ρ ¼ jψihψ j, the spread of coherence is

quantified by the index p (with 1 ≤ p ≤ 2) of the state (Ukena

and Shimizu, 2004), defined as the best scaling of the variance

of the state with respect to all normalized local observables

max
A∶local

ðΔAÞ2ψ ¼ OðNpÞ: ð14Þ

Expressing A that maximizes Eq. (14) with single-spin

operators a
ðlÞ
l , one finds that the variance reads

ðΔAÞ2 ¼
XN

l¼1

ðΔaðlÞl Þ2 þ
XN

l≠l0¼1

haðlÞl a
ðl0Þ
l0 i − haðlÞl ihaðl

0Þ
l0 i: ð15Þ

The scaling p ¼ 1 hence implies that the quantum correlations

expressed in the second term in Eq. (15) do not play a

significant role. For every spin l, there exist only Oð1Þ
“neighbors” with which the spin shares correlations.

Shimizu and Miyadera (2002) called this the cluster property.

In contrast, p > 1 and in particular p ¼ 2 means that as a

growing number of pairs share nonvanishing quantum

correlations.
8

However, for mixed states this is not sufficient since the

variance of a state with respect to A depends only on the

diagonal terms jhak; νjρjak; ν0ij. To overcome this problem,

Shimizu and Morimae (2005) introduced the so-called index q

defined as [in the formulation of Morimae (2010)]

7
Note, however, that Leggett himself does not attach much

importance to the precise mathematical formulation of this idea,

which “could almost certainly be substantially improved” (Leggett,

2002).

8
Even though the name “index p” was first introduced by Ukena

and Shimizu (2004), we refer to Shimizu and Miyadera (2002) for

measure (14).
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max fN; max
A∶local

k½A; ½A; ρ��k1g ¼ OðNqÞ: ð16Þ

While the “outer” maximization is just to guarantee

1 ≤ q ≤ 2, a large trace norm k½A; ½A; ρ��k1 ¼ OðN2Þ for

local operators A is possible only with significant contribu-

tions from elements ðak − alÞ2hak; νjρjal; ν0i ¼ OðN2Þ,
which reflects the initial motivation as discussed in the

beginning of this section. For pure states, it is shown that

q ¼ 1 ⇒ p ¼ 1, p ¼ 1 ⇒ q ≤ 1.5, and q ¼ 2 ⇔ p ¼ 2

[which are the corrected statements from Shimizu and

Morimae (2016) and Tatsuta and Shimizu (2017)].

4. Björk and Mana (2004)

The macroscopic quantumnessM of a superposition

state is identified with the advantage it offers for

interferometry as compared to the individual com-

ponents jAi and jDi. The interferometric usefulness

is defined by how fast the state becomes orthogonal

to itself when subject to a unitary evolution eiθA for

some fixed observable A.

Björk and Mana (2004) motivated their contribution by the

need for an operational meaning of a measure rather than

focusing on particle and mode numbers. In their opinion, a

genuinely macroscopic quantum state should give some

advantage over states that lack this feature in some practical

application. Björk and Mana considered the interferometry as

such a task. This general idea is formalized for a state of the

form jAi þ jDi in the following way. (i) The starting point is

to identify a preferred observable A which results from the

experimental context as the most useful one for a particular

interferometric application. (ii) One identifies some semi-

classical states jcai that are pure and have a smooth but rather

narrow distribution cðA − aÞ in the eigenvalues of A centered

at a. (iii) One imagines the superposition state to undergo

an evolution eiθA generated by the observable A. In such an

interferometric scenario, large oscillation frequencies between

the initial state and the finial state indicate a large separation

between coherent components of a superposition state, which

do not occur for mixtures. This last observation is formalized

as follows. Consider a superposition state

jψi ∝ jca1i þ jca2i; ð17Þ

where the two components have a negligible overlap. The

overlap of the evolved state with the original one is given by

jhψ jeiθAjψij ¼ 2

���� cos
θða1 − a2Þ

2

Z
eiθAcðAÞdA

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
c̃ðθÞ

����; ð18Þ

with two contributions to the oscillation of this overlap. The

first one comes from the shape of underlying classical states

c̃ðθÞ, while the second and more rapid effect is due to the

superposition cos ½θða1 − a2Þ=2�. Hence, one compares the

minimal θ for which the superposition evolves to an orthogo-

nal state θsup ≈ π=ða1 − a2Þ to the corresponding θ for a single

classical state θc ≈ π=ðΔAÞc [with ðΔAÞc the width of the

distribution cðAÞ]. Hence the dimensionless ratio between the

two “orthogonalization times”

M ¼ θc

θsup
ð19Þ

quantifies the “interferometric macroscopicity” of the super-

position state.

5. Cavalcanti and Reid (2006, 2008)

For a given observable A, the macroscopic quan-

tumness of a state is identified with the maximum

spectral range S on which the state exhibits quantum

coherence. That is, the density matrix contains some

coherence terms between eigenstates of A with

eigenvalues different by at least S.

Cavalcanti and Reid (2006) are interested in witnessing

coherent superpositions on the macroscopic scale. Following

their argument, macroscopic coherence contradicts a general

notion of macroscopic reality, in which an object is necessarily

in one out of several states. To be more specific, let us consider

a preselected observable X on the real line which is divided

into three intervals called left I−, central I0, and right Iþ (see

Fig. 1). The interval I0 has length S. A general pure state jψi
can be written as a superposition of states located in the

respective intervals

jψi ¼ c−jψ−i þ c0jψ0i þ cþjψþi: ð20Þ

The goal now is to guarantee that a state prepared in an

experiment exhibits coherence between the left and the right

interval. Working with general mixed states ρ, this means that

states of the form Eq. (20) with contributions from the left

and the right interval are present in every pure-state decom-

position of ρ.

To derive a witness, Cavalcanti and Reid pointed out that a

state with nonvanishing c− and cþ must have a minimal spread

in the spectrum of X. From the Heisenberg uncertainty relation

FIG. 1. Division of the spectrum of the observable X into three

intervals. The curve is a schematic example of the probability

distribution of the considered state ρ. Cavalcanti and Reid (2006)

aimed to verify coherence between the left (−1) and the right

interval (þ1). From Cavalcanti and Reid, 2006.
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it follows that states with lower variance in X necessarily have

a larger variance in a conjugate observable P. This argument

can be extended to mixed states. They derived such general

bounds for the canonical commutation relation
9 ½X;P� ¼ 2i. If

ρ does not contain a state such as Eq. (20), it can only be

written in the form

ρ ¼ PLρL þ PRρR; ð21Þ

where ρL completely lies in the intervals I− and I0 and ρR in

the intervals I0 and Iþ. Let us define the normalized

distributions p�ðxÞ ¼ pðxjx ∈ I�Þ and the weights π� ¼R
I�
p�ðxÞdx and π0 ¼ 1 − πþ − π−. From this, we define

the mean μ� and the variance ðΔXÞ2� of p�ðxÞ, ðΔXÞ2ave ¼
πþðΔXÞ2þ þ π−ðΔXÞ2− and δ ¼ ðμþ þ S=2Þ2 þ ðΔXÞ2þþ
ðμ− − S=2Þ2 þ ðΔXÞ2− þ S=2. Then, Cavalcanti and Reid

(2006) showed that for all states (21) it holds that

½ðΔXÞ2ave þ π0δ�ðΔPÞ2 ≥ 1: ð22Þ

Violating Eq. (22) proves coherence in X between Iþ and I−.
This inequality can be generalized or modified in several

ways (Cavalcanti and Reid, 2008). First, one can use other

uncertainty relations (e.g., involving sums of variances rather

than products); one can derive them for bipartite scenarios,

and one can drop the predetermined binning into three

intervals and only verify coherence with a minimal distance

S. The latter gives a simpler expression: The violation of the

bound

ðΔPÞ2 ≥ 2

S
ð23Þ

implies that the corresponding states exhibit coherence with a

spread of at least S.

6. Korsbakken et al. (2007)

The macroscopic quantumness Cδ of a many-body

superposition jAi þ jDi is related to the minimum

number of subsystems that have to be measured in

order to learn the “which-path” information (i.e.,

jAi or jDi).

Let us consider a system that can be divided into N

subsystems, called particles. The quantum state is supposed

to be of the form jAi þ jDi. The basic intuition of

Korsbakken, Wilhelm, and Whaley (2010) is that the (macro-

scopic) distinctness of the components jAi and jDi can be

quantified by asking how many particles have to be measured

in order to distinguish the two states, or equivalently to

collapse the superposition jAi þ jDi to just one branch. This

is formalized in the following way. Given the desired guessing

probability Pg ¼ 1 − δ, Korsbakken et al. considered the

minimal number nmin of particles one has to measure on

average in order to distinguish jAi from jDi with probability

Pg (subsystems are drawn at random). Then, the size of the

superposition jΨi ∝ jAi þ jDi is defined by

CδðΨÞ≡
N

nmin

: ð24Þ

The optimal guessing probability between two states ρ and

σ is given by

P½ρ; σ� ¼ 1
2
þ 1

4
trjρ − σj: ð25Þ

Hence, one can compute the average guessing probability

with n subsystems given all the ðN
n
Þ reduced density matrices

ρ
ðnÞ
A

¼ TrN−njAihAj and ρ
ðnÞ
D

¼ TrN−njDihDj. The complex-

ity of the minimization is significantly reduced if the initial

state is permutationally invariant.

They discuss several aspects of their measures, including

the dependency on the choice of splitting into jAi and jDi,
cases for which the two branches do not have equal ampli-

tudes and slight variations of the definition of CδðΨÞ. In

particular, they emphasized that Pg should be chosen to be

close to 1 for a reasonable notion of macroscopic distinctness.

Volkoff andWhaley (2014b) discussed a potential formulation

for photonic systems (see also Sec. II.E.2).

7. Marquardt, Abel, and von Delft (2008)

The macroscopic quantumness D̄ of a superposition

jAi þ jDi is defined by the number of elementary

operations that have to be applied in order to map

jAi to jDi.

If the system admits a partition intoN subsystems or consists

of N particles, one can also define a set of all elementary

operations. For example, such a set can include all operations

that affect only one subsystem, or only modify the state of one

particle. Marquardt, Abel, and von Delft (2008) focused on the

example of N fermions, where an elementary operation is

naturally given by the exchange of one fermion c†jck. Their idea

is to quantify the distinctness of the states jAi and jDi by

counting how many elementary operations one has to apply to

go from one state to the other. More precisely, they introduced a

hierarchy of Hilbert spaces Hd for d ≥ 0, where H0 ¼
spanfjAig and each new subspace Hdþ1 is constructed from

the previous spaces in the following way. One takes the span

H̃dþ1 of all states that can be obtained by applying a single

elementary operation to all states in Hd. Then, H̃dþ1 is made

orthogonal to all subspaces H0;…;Hd by subtracting them,

which is calledHdþ1. In this way all subspaces of the hierarchy

are orthogonal (hence the direct sum notation is justified) and,

for a properly chosen set of elementary operations, one finds

H¼⨁
∞

d¼0

Hd. Consequently, the state jDi admits a unique

decomposition

9
In this section, we adapt to the convention of Cavalcanti and

Reid. X and P, as introduced in Sec. I.D.2, give ½X;P� ¼ i. This only

changes some constants in Eqs. (22) and (23) and later in example 7.
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jDi ¼
X∞

d¼0

λdjνdi; ð26Þ

where each jvdi ∈ Hd is the projection of the state on the

corresponding subspace. The distinctness between the states

jAi and jDi is then defined as

D̄ ¼
X∞

d¼0

jλdj2d ð27Þ

quantifying the average number of elementary operations that

are needed to go from jAi to jDi. They noted that the measure

is in general not symmetric under exchange of jAi and jDi.
Volkoff and Whaley (2014b) proposed an extension of this

measure to multimode photonic systems by discussing a

specific example.

8. Lee and Jeong (2011) and Park et al. (2016)

The macroscopic quantumness I of the state is

defined by quantifying the nonclassical features of

its phase-space representation (i.e., the frequency

and amplitude of Wigner function oscillations).

Several measures discussed so far have been defined with

respect to an observable A, which gives rise to a preferred

basis. Alternatively, one can also consider representations of

quantum states that are not just expansions in a given basis. In

particular, the Wigner function representation is commonly

used in phase space to visualize quantum states. Lee and

Jeong (2011) observed that the Wigner function of states that

are intuitively considered to be macroscopically quantum

(e.g., jαi þ j − αi) exhibit two or more distinct peaks with

some oscillating pattern between the peaks. In contrast,

classical states are known to have a positive and smooth

Wigner function. Following this intuition Lee and Jeong

proposed to quantify the size of a state by the “frequency”

of oscillations of its Wigner function. Formally, the size of a

quantum state ρ for M bosonic modes is defined as

IðρÞ ¼ πM

2

Z
dα2WðαÞ

XM

m¼1

�
−

∂2

∂αm∂α
�
m

− 1

�
WðαÞ; ð28Þ

which takes a simpler form when expressed in terms of the

characteristic function χðξÞ ¼ trρ expðPmξmam þ ξ�ma
†
mÞ. As

they showed, the quantity IðρÞ can equally be expressed as

the susceptibility of the state to lose purity when all the modes

are subject to photon loss, that is,

IðρÞ ¼ −
1

2

dPðρtÞ
dt

����
t¼0

; ð29Þ

with the purity of a state PðρÞ≡ trρ2. The decoherence

process is specified by

_ρt ¼
X

m

�
amρta

†
m −

1

2
fρt; a†mamg

�
: ð30Þ

Lee and Jeong emphasized that IðρÞ simultaneously

quantifies the quantumness and the macroscopicity of a state.

In particular, there is no need to assume that the state is pure.

One simply expects that the oscillations of the Wigner

function are smoothed with noise, as it happens for the

examples discussed in this review. For later comparison,

we note that IðΨÞ ¼ ð1=2Þ½ðΔXÞ2 þ ðΔPÞ2 − 1� for pure

states. Gong (2011) remarked that IðρÞ can become negative,

which can simply be fixed by adding 1=2 to the definition of

IðρÞ (Jeong, Kang, and Lee, 2011).

This measure for the Wigner function was later generalized

to spin ensembles with N particles with each spin S (Park

et al., 2016). A similar reasoning as before leads one to

measure the frequency components of the so-called

Stratonovich-Weyl distribution, which is the spin equivalent

of the Wigner function (Agarwal, 1998; Klimov and

Chumakov, 2009). In contrast to the phase-space treatment,

Park et al. chose to maximize the frequency measure over all

quantization axes (using collective spin operators A). In

addition, they added the purity in the denominator and defined

ISðρÞ ¼
1

NSTrρ2
max

A∶collective
Tr½A2ρ2 − ρAρA�: ð31Þ

The measure is particularly compared to the quantum Fisher

information (see Sec. II.A.9). In addition, its role in quantum

phase transitions is discussed (see Sec. IV.C.3).

9. Fröwis and Dür (2012b) and follow-ups

The macroscopic quantumness Neff of a many-body

state is related to its maximal quantum Fisher

information (QFI) with respect to all extensive

observables A. The QFI can be read as a signature

of interferometric improvement offered by the state

over product states or as an extension of the variance

to mixed states.

We consider a spin ensemble with N particles. Fröwis and

Dür (2012b) argued that a genuinely macroscopic quantum

state of the joint system should exhibit some quantum effect

that does not reduce to an accumulation of microscopic

quantum effects displayed by its individual constituents. In

this sense the effective size of a state can be intuitively thought

of as the minimal irreducible number of constituents. To

formalize this guideline, Fröwis and Dür used the quantum

Fisher information (Helstrom, 1976; Braunstein and Caves,

1994; Holevo, 2011)

F ðρ; AÞ ¼ 2
X

k;l

ðπk − πlÞ2
πk þ πl

jhψkjAjψ lij2; ð32Þ

with the spectral decomposition of the state ρ ¼P
kπkjψkihψkj. The quantum Fisher information is a measure

of the susceptibility of ρ to small influences generated by A
(see Sec. II.H.2).
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The effective size of the state is defined as

NeffðρÞ ¼
1

4N
max
A∶local

F ðρ; AÞ: ð33Þ

Note that the quantum Fisher information reduces to 4 times

the variance for pure states. Furthermore, it is the convex

roof of the variance [see Yu (2013) and Sec. II.D.2]. The

normalization factor 1=ð4NÞ is chosen such that all pure

separable states have size 1, while the maximal possible size

is N (attained by the GHZ state). This measure has an

operational aspect as, on the one hand, a large quantum

Fisher information can be witnessed via fast unitary time

evolution generated by A (Fröwis, 2012). On the other hand,

it has an applied aspect as NeffðρÞ tells us how much better ρ

can be in a potential parameter estimation scenario com-

pared to the best separable states (see Sec. IV.B). The

definition Eq. (33) might be extended to quasilocal observ-

ables A (i.e., sums of few-particle operators; see also

example 4 in Sec. II.B.1).

In order to explicitly deal with a “dead and alive” structure,

they defined the so-called relative Fisher information for

jΨi ∝ jAi þ jDi,

Nrel
effðΨÞ ¼

NeffðΨÞ
ð1=2ÞNeffðAÞ þ ð1=2ÞNeffðDÞ : ð34Þ

Later, the proposal Eq. (33) was extended to photonic

systems. As argued by Fröwis, Sangouard, and Gisin (2015)

and Oudot et al. (2015), the equivalent of local operators in

spin ensembles is quadrature operators in phase space. The

factor 1=ð4NÞ is generally replaced by the quantum Fisher

information of the most-classical state NeffðΨclassicalÞ [see also
Fröwis (2017)]. For spin ensemble, this is chosen to be

product states. In phase space, coherent states are selected as

the most-classical pure states. To handle multimode situations,

one considers sums of quadrature operators Xθ ¼
P

M
m¼1 X

ðmÞ
θm

with X
ðmÞ
θ ¼ cosðθÞXðmÞ þ sinðθÞPðmÞ and maximizes over the

angles θ ¼ ðθ1;…; θMÞ, that is,

NeffðρÞ ¼
1

2M
max
θ

F ðρ; XθÞ: ð35Þ

10. Nimmrichter and Hornberger (2013)

The macroscopic quantumness μ of an experimental

setup is defined via the range of unconventional

mass-induced decoherence models (as potential

modifications of standard quantum mechnics) of

some type that are ruled out by the experiment.

The proposal presented here differs from most other ideas,

as Nimmrichter and Hornberger (2013) do not consider the

macroscopic quantumness of an isolated state (including the

structure of additional operators or partitions). They attribute a

size to a whole experiment, from the preparation step to

the time evolution and to the observation of measurement

results. This is motivated by their goal to evaluate how well

experiments exclude the slightest variations of standard quan-

tum mechanics. In particular, Nimmrichter and Hornberger

focus on dynamical modifications also known as collapse

models for spatial superpositions of massive systems (Bassi

et al., 2013).

More precisely, they considered a model in which the

master equation of the system composed of N particles

_ρ ¼ ½H; ρ�=ðiℏÞ þ LNðρÞ is modified by the addition of a

dissipative term

LNðρÞ ¼
1

τe

Z
dðs;qÞ

�
WNðs;qÞρW†

Nðs; qÞ

−
1

2
fW†

Nðs;qÞWNðs;qÞ; ρg
�

ð36Þ

with

WNðs; qÞ ¼
XN

n¼1

mn

me

exp

	
i

ℏ

�
me

mn

s · Pn − q ·Xn

�

; ð37Þ

where Xn, Pn, and mn are the position operator, momentum

operator, and mass of the nth particle, respectively, while

dðs;qÞ ¼ geðs;qÞd3sd3q is a measure with an isotropic

phase-space distribution geðs;qÞ. The particular form of the

modification term is motivated by several physical require-

ments imposed on the model, such as the invariance under

Galilean transformation, symmetry under particle exchange,

and others (Nimmrichter and Hornberger, 2013). At this stage,

it is fully specified by the coherence time parameter τe and the

distribution geðs;qÞ. (The reference mass parameterme can be

absorbed in the previous two.) They further assumed the

distribution to be a product of Gaussians for s and q, with

the corresponding width σs and σq. Hence, the dynamical

modification of quantum mechanics is just described by three

parameters τe, σs, and σq. From this, the macroscopicity

measure μ of an experiment is defined as a recalibration

μ≡ log10

�
τe

1 s

�
ð38Þ

of the greatest time parameter τe excluded by the experi-

ment. For this, one optimizes over the other two parameters

with σs ≤ 10 pm and ℏ=σq ≥ 10 fm, which are argued to be

the limiting value for which a nonrelativistic treatment is

still valid. Concretely, the modified master equation (36)

predicts an evolution where branches that correspond to

different phase-space configurations of massive particles

progressively decohere. This effect constrains the results of

any measurement that registers the interference between

different branches (e.g., interference visibility in a matter-

wave interferometer). Reciprocally any experimental data

obtained from such a measurement put a limit on the

modification term. The stringency of this limit is quantified

by the measure μ.
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11. Sekatski, Sangouard, and Gisin (2014)

and Sekatski, Yadin et al. (2017)

The macroscopic quantumness, the Size for jAiþ
jDi superpositions and MIC for multicomponent

superposition states, is identified by how much one

can learn about the state with a classical detector

that lacks microscopic resolution.

Sekatski, Sangouard, and Gisin (2014) defined macro-

scopic distinctness for the two components of a pure state

jAi þ jDi by asking how well the two states can be distin-

guished with a coarse-grained measurement of some observ-

able A. Similarly as in other proposals, the observable is

chosen depending on the experimental context. This meas-

urement is said to be performed with classical detectors. If the

distributions of the states jAi and jDi with respect to the

eigenbasis of the observable A are given by p0
A
ðaÞ and p0

D
ðaÞ,

respectively, the distributions observed with a coarse-grained

measurement are given by their convolution

pσ
A
ðλÞ ¼

X

a

nσðajλÞp0
A
ðaÞ; ð39Þ

with the coarse graining nσðajλÞ ¼ nσða − λÞ typically chosen
as a Gaussian distribution of width σ and mean a (and similar

for jDi). Hence, the probability to correctly distinguish the

two states with such a measurement is given by

Pσ ½jAi; jDi� ¼ 1

2
þ 1

4

Z
jpσ

A
ðλÞ − pσ

D
ðλÞjdλ: ð40Þ

A measure of macroscopicity is constructed from this

probability provided a choice of a target guessing probability

Pg and a calibration set of states. This set is a range of

superposition states jΨNi with a naturally defined size N.

To do so, one first computes the maximal allowed coarse

graining σmax ¼ supfσjPσ½jAi; jDi� ≥ Pgg that still allows

one to distinguish jAi and jDi with a probability of at least

Pg. Then, one identifies the size of the superposition jΨi ¼
jAi þ jDi with the smallest state from the calibration set

that attains the same guessing probability Pg under the same

amount of coarse graining σmax:

SizeðΨÞ ¼ inffNjPσmax ½jΨNi� ≥ Pgg: ð41Þ

A natural choice of the calibration states jΨNi is the super-

positions of two eigenstates of A separated by N. With such a

choice one has Pσmax ½jΨNi� ¼ ð1þ ErfðN=ð2
ffiffiffi
2

p
σmaxÞÞÞ and

the size can be directly expressed as a function of σmax and Pg.

The idea of using classical detectors with limited resolution

to define macroscopic distinctness (Sekatski, Sangouard,

and Gisin, 2014) was extended to general states without a

predetermined jAi þ jDi structure. Oudot et al. (2015)

adapted the work of Sekatski, Sangouard, and Gisin (2014)

to argue that two-mode squeezed states can be considered as

macroscopically quantum (see Sec. II.B, example 7).

Later, Sekatski, Yadin et al. (2017) rephrased the question

of how well jAi and jDi can be distinguished by asking how

much information can be learned from a state by measuring it

with a classical device. Similar to before, consider a pure state

jΨi with the probability distribution p0
Ψ
ðaÞ and the convolu-

tion pσ
Ψ
ðλÞ. The information the classical detector can learn

about jΨi can be quantified by the mutual information

Iσ ¼ H(p0
Ψ
ðaÞ) −

Z
pσ
Ψ
ðλÞH(nσðajλÞ); ð42Þ

whereH(pðxÞ) ¼ −
P

xpðxÞ logpðxÞ is the Shannon entropy.
Sekatski, Yadin et al. (2017) defined the size of jΨi as the

largest σ for which Iσ gives at least b bits of information

MICbðΨÞ ¼ max fσjIσ ≥ bg: ð43Þ

To be more precise, Eq. (43) defines a family of measures

parametrized by b. A natural way of extending Eq. (43) to

mixed states dMICbðρÞ is done via the convex-roof construc-

tion (see Sec. II.D.2.b).

This idea can be rephrased by using von Neumann’s pointer

model in which the system is coupled to an auxiliary system E

in state jξΔi with initial spread Δ via U ¼ expð−iA ⊗ pÞ.
The disturbance of the postmeasured state ρ0 ¼ TrEUρ ⊗

jξΔihξΔjU† is measured via

CΔðρÞ ¼ Sðρ0Þ − SðρÞ; ð44Þ

where S is the von Neumann entropy. Sekatski, Yadin et al.

(2017) showed that this is a sensitive measure for macroscopic

coherence similar to Eq. (42). As before, the inversion of

Eq. (44) leads to a measure that scales (at most) with the

spectral radius and that is applicable to general quantum

states, but without the need of a convex-roof construction.

12. Laghaout, Neergaard-Nielsen, and Andersen (2015)

The measure consists of two parts. The objective

part N quantifies the quantum fluctuations of the

state in phase space. The subjective part D quan-

tifies the average distinguishability of each compo-

nent in the superposition from all the others. The

product N ×D is proposed as a measure for

macroscopic quantumness.

Laghaout, Neergaard-Nielsen, and Andersen (2015) are

interested in characterizing systems that are large, quantum,

and are composed of macroscopically distinct branches in at

least some of its subsystems. They exclusively treated pure

states and divided their attempt into two parts, which they call

“objective” and “subjective” macroscopicity.

For the objective macroscopicity, they noted that the spread

of phase-space distribution accounts for the quantum fluctua-

tions (i.e., coherence). They hence define

N ¼ 1
2
½ðΔXÞ2 þ ðΔPÞ2 − 1� ð45Þ
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as the quantum fluctuations that go beyond the spread of a

coherent state [cf. Lee and Jeong (2011) in Sec. II.A.8].

The subjective part of the measure builds on previous work

on characterizing the macroscopic distinctness using classical

detectors with limited resolution [in particular, Sekatski,

Sangouard, and Gisin (2014)]. The attribute subjective comes

from the choice that has to be done for the measurement. This

reduces the problem to a distinction of probability distribu-

tions PðλÞ with measurement outcomes λ. Unlike previous

works, Laghaout, Neergaard-Nielsen, and Andersen (2015)

developed a formalism that allows one to define macroscopic

distinctness for more than two states and for different weights.

Suppose that a pure state jψi is written as a superposition of

preselected states jbki with probability amplitudes ck. Then,

one calculates the distance between any jbki and the mixture

of all other fjbligl≠k:

ρ̃k ¼
P

l≠kjclj2jblihbljP
l≠kjclj2

: ð46Þ

The specific formulation depends on the chosen distance

measure. They discussed one based on the Bhattacharyya

coefficient (Bhattacharyya, 1946)

DBC ¼ 1 −
X

k

jckj2
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PðλjbkÞPðλjρ̃kÞ
p

dλ ð47Þ

and another one based on the Kolmogorov distance (Fuchs

and Van De Graaf, 1999)

DKD ¼ 1

2

X

k

jckj2
Z

jPðλjbkÞ − Pðλjρ̃kÞjdλ: ð48Þ

The subjectivity of D becomes clear by noting that, for

orthogonal jbki and optimizing over all measurements, the

distinguishability can always be maximal, that is, D ¼ 1.

The combined proposal is a product of both measures of

macroscopicity

M ¼ N ×D: ð49Þ

13. Yadin and Vedral (2015)

The macroscopic quantumness N� of a many-body

state jψi is defined as the maximal average size of

the GHZ state that can be prepared from jψi with
local operation and classical communication.

The work of Yadin and Vedral (2015) is devoted to view

macroscopic quantumness as a statement about long-range

quantum correlations. In the doctrine of multipartite entangle-

ment, LOCC cannot create nonclassicality. Using LOCC

protocols one can reveal entanglement properties that only

have been present before. From this point of view, it is natural

not only to consider, for example, the GHZ state as macro-

scopically quantum but also all other quantum states that can

be brought to a GHZ state by means of LOCC.

To formalize this insight, Yadin and Vedral proposed to

consider generalized local measurements Ma that map jψi
to jGHZna

i, na ≤ N, with a probability pa [cf. Dür, Simon,

and Cirac (2002), the remaining N − na qubits are no

longer of interest]. Then, the effective size of jψi, N�ðψÞ,
is defined as

N�ðψÞ ¼ max
Ma

X

a

pana: ð50Þ

There exist quantum states detected as macroscopically

quantum by Yadin and Vedral (2015) that are not identified by

any other proposal (see example 4 in Sec. II.B.1). The reason

is that the LOCC paradigm, which forms the basis of this

proposal, stems from entanglement theory and is not consid-

ered in other proposals.

14. Kwon et al. (2017)

The macroscopic quantumness Mσ of a state is

quantified by the sensitivity of the state to dephas-

ing noise generated by an observable A. A large

sensitivity is argued to reveal the presence of

coherence between spectrally distant eigenstates

of A in the state, i.e., eigenstates with very different

eigenvalues.

The approach of Kwon et al. (2017) is motivated by finding

an operational meaning of quantum macroscopicity in terms

of coherence [in the sense of Yadin and Vedral (2016), see

Sec. II.G]. After fixing a spectrum and a basis by choosing an

observable A ¼ P
kakjkihkj, they defined a dephasing chan-

nel with Kraus operators Qσ
x ¼

P
k

ffiffiffiffiffiffiffiffiffiffiffi
qσkðxÞ

p
jkihkj, where

qσkðxÞ is a Gaussian function with mean value ak and spread

σ. The physical realization of this dephasing channel can

come from environmentally induced decoherence or from a

low-resolution measurement for which σ is the resolved

scale. Then, a state of interest ρ is compared with the same

state after dephasing ΦσðρÞ ¼
P

xQ
σ
xρQ

σ†
x . The measure is

defined as

MσðρÞ ¼ D(ρ;ΦσðρÞ); ð51Þ

whereD is a distancelike function. They mentioned the Bures

distance and the quantum relative entropy but characterized

the general properties of D such that Eq. (51) fulfilled the

criteria of Yadin and Vedral (2016) (see Sec. II.G) for

all σ > 0.

As noted by Kwon et al. (2017), MσðρÞ may lead to

surprising results for small σ. For example, the spin-

coherent state gives higher values than the GHZ state

contradicting all other proposed measures and our intuition.

To fix this issue, they argued that σ has to be sufficiently

large in order to faithfully represent macroscopic distinct-

ness. In particular, with the interpretation as the scale of

measurement resolution, σ should be in the “classical”

regime. Several heuristic arguments showed that a meas-

urement with resolution σ ≳Oð
ffiffiffiffi
N

p
Þ for collective spin

operators and σ ≳Oð1Þ for quadrature operators in phase
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space can be reasonably called classical. This is further

supported by the inequality

MσðρÞ ≤ 2ð1 − e−IWðρ;AÞ=4σ2Þ; ð52Þ

where IWðρ; AÞ ¼ −ð1=2ÞTr½ ffiffiffi
ρ

p
; A�2 is the Wigner-Yanase-

Dyson skew information, which reduces to IWðΨ; AÞ ¼
ðΔAÞ2=2 in the case of pure state jΨi. Hence, a large

variance as a measure for macroscopic quantumness pro-

posed by Shimizu and Miyadera (2002), Lee and Jeong

(2011), and Fröwis and Dür (2012b) is necessary for large

values of MσðΨÞ in the case of σ ¼ Oð
ffiffiffiffi
N

p
Þ. For mixed

states, the relation to the quantum Fisher information

4IWðρ; AÞ ≤ F ðρ; AÞ ≤ 8IWðρ; AÞ (Kwon et al., 2017)

makes further connections to the measure of Fröwis and

Dür (2012b).

B. Examples

We now present a selection of quantum states for spin

ensembles and photonic systems to which we apply the

measures presented in the previous section. The states and

operators appearing in the examples are defined in Sec. I.D

and the measures are defined in Sec. II.A. Note that massive

systems and superconducting states are discussed in Sec. V.D

as they are more specific examples of real experiments.

Not all measures are originally conceived to be applicable

to both spins and photons. Measures not mentioned in an

example imply that it is not clear how to apply it to this

specific case. The reason might be the measure is not

applicable to the physical system (spins or photons) or that

it is difficult to apply it to the specific instance. In the

following, approximate expressions are valid in the large N

regime. We refer to further examples discussed by Volkoff

and Whaley (2014a, 2014b) and by the papers reviewed in

Sec. II.A.

1. Spin ensemble

While connections and differences between the measures

are discussed later in Secs. II.C–II.E, we point out similarities

between some measures when applied to pure spin states jΨi.
Shimizu and Miyadera (2002), Fröwis and Dür (2012b), and

Park et al. (2016) optimized the variance of the state over all

local operators.
10

This means that Fröwis and Dür (2012b)

and Park et al. (2016) will result in the same values

IðΨÞ ¼ NeffðΨÞ. Shimizu and Miyadera (2002) are merely

interested in the scaling of the variance in N, that is,

I ¼ OðNp−1Þ. Note that there is an efficient method to

calculate the maximal variance (Ukena and Shimizu, 2004;

Gühne et al., 2007). For the measure of Björk and Mana

(2004) there is some room for variations, but following some

of their spin examples, one way of defining their measureM is

to look at the maximal standard deviation over all collective

operators divided by the maximal spread of a spin-coherent

state (i.e.,
ffiffiffiffi
N

p
). It follows that this exactly corresponds to the

square root of the variance-based measures (Fröwis and Dür,

2012b; Park et al., 2016). In summary, for pure spin-ensemble

states jΨi we found that
11

MðΨÞ2 ¼ IðΨÞ ¼ NeffðΨÞ ¼ OðNp−1Þ: ð53Þ

In addition, note that the measure of Kwon et al. (2017) is

connected to Neff via MσðρÞ≲ ðN=2σ2ÞNeffðρÞ in the limit

σ ≫
ffiffiffiffi
N

p
[see the text around Eq. (52)]. Similarly, the measure

of Sekatski, Yadin et al. (2017) has a relation to Neff in the

limit of (Sekatski, Yadin et al., 2017) small b via

dMICbðρÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NeffðρÞN
2b log 2

s
.

Example 1 (Generalized GHZ state): This state, Eq. (5),

is discussed in two different regimes. For ϵ ¼ π=2, one

recovers the GHZ state, Eq. (4), which is considered to be

macroscopically quantum by all measures applicable to spin

ensembles. In the other regime ϵ ≪ 1 Dür, Simon, and Cirac

(2002) showed that the state behaves as a GHZ state with

reduced system size Nϵ2 (see Sec. II.A.2 and Fig. 2). This

example was used by many subsequent proposals to test and

scale the measures (see Table II). In particular, as shown in the

respective papers, many measures
12

have the same effective

size in this parameter regime. The framework of Shimizu and

Miyadera (2002) leads to p ¼ 2whenever ϵ ¼ Oð1Þ > 0. The

measure of Björk andMana (2004) givesM ≈
ffiffiffiffi
N

p
ϵ. Measures

for which one optimizes over local operators are maximal for

Aopt ¼ cos ϵSx þ sin ϵSz.

The behavior of the disconnectivity from Leggett (1980) is

rather different for this example. For instance in the case

1 ≪ Nϵ2 ≪ N, δM drops to zero only for Mmax ≳ N − c=ϵ2

with some characteristic constant c. Hence, the disconnectiv-

ity can be much larger than Nϵ2. The difference becomes clear

when noting that δM is large when the bipartite splitting

M∶ðN −MÞ is entangled (by roughly 1 ebit), which is the case

FIG. 2. The probability distribution of the generalized GHZ

state, example 1, in the basis of Aopt, which is the local operator

maximizing the difference between the expectation values. In

many papers, one considers lowest-order approximations of ϵ.

10
Strictly speaking, Park et al. (2016) optimized over collective

operators. Since in all examples the states are symmetric, this leads to

the same results.

11
See Table I for an overview of the mathematical symbols used

for the measures.
12
Korsbakken et al. (2007), Marquardt, Abel, and von Delft

(2008), Fröwis and Dür (2012b), Yadin and Vedral (2015), and

Park et al. (2016); the measure of Korsbakken et al. (2007) assigns

the value Cδ ≈ Nϵ2= logð1=δÞ for ϵ; δ ≪ 1.
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up toMmax. This suggests to see Leggett’s extensive difference

as a measure for macroscopic distinctness (here Λ ¼ N sin ϵ)

and interpret the disconnectivity as a measure of quantumness

(see also the discussion about a separate consideration of

macroscopic distinctness and quantumness in Sec. II.D.1).

In order to calculate the measure of Sekatski, Sangouard, and

Gisin (2014), one chooses the optimal measurement basis Aopt.

In the regime in which Nϵ ≫
ffiffiffiffi
N

p
, the actual width of the two

components does not play a significant role. The effective size of

the generalized GHZ state simply scales as the distance between

the two peaks, that is, Size∝ 2Nϵ. The same result in scaling

is found by applying the framework of Sekatski, Yadin et al.

(2017) in the regime b < 1, which is the relevant regime when

discussing the macroscopic distinctness between two peaks.

Even though the interpeak distance and the standard

deviation of the total state are basically the same (up to a

factor of 2), the measures of Björk and Mana (2004), Sekatski,

Sangouard, and Gisin (2014), and Sekatski, Yadin et al.

(2017) differ in scaling of
ffiffiffiffi
N

p
. The reason is that Björk and

Mana (2004) introduced a normalization with “classical

states” exhibiting a width
ffiffiffiffi
N

p
. A similar renormalization

is, implicitly or explicitly, done by all measures that find an

effective size of Nϵ2.

The issue of renormalization also appears when applying

the measure of Kwon et al. (2017) to the generalized GHZ

state. Any measure should provide an answer to, for example,

how much N has to be increased when ϵ decreases in order to

keep the macroscopic quantumness constant. For this exam-

ple, we found that, in the “classical regime” of the measure-

ment resolution σ (i.e., σ ≳
ffiffiffiffi
N

p
), the measure Mσ gives the

same values for ðN; ϵÞ if 2N sin ϵ ¼ const [see Fig. 3(a)] and is

hence comparable with Sekatski, Sangouard, and Gisin (2014)

and Sekatski, Yadin et al. (2017). If we want to compare Mσ

with measures that find an effective size of ≈Nϵ2, one has to

rescale the measurement resolution to σ=
ffiffiffiffi
N

p
[see Fig. 3(b)].

Finally, we discuss the simplest example of a mixed state.

We consider a damping of the coherence terms of the GHZ

state (i.e., ϵ ¼ π=2),

j0ih1j⊗N
→ pj0ih1j⊗N ð54Þ

and similar for the conjugate term. The quantum state is hence

a mixture of jGHZ�
Ni with weights μ� ¼ ð1=2Þð1� pÞ. In the

following, all measures are evaluated for A ¼ Sz, which is

optimal for p≳ 1=N. We give the effective sizes relative to

the pure state p ¼ 1. Regarding the index q of Shimizu and

Morimae (2005), we calculateQðpÞ ¼ k½Sz; ½Sz; ρ��k1. Simple

calculations lead to

QðpÞ=Qð1Þ ¼ p;

ISðpÞ=ISð1Þ ¼
2p2

1þ p2
;

NeffðpÞ=Neffð1Þ ¼ p2;

CΔðpÞ=CΔð1Þ → 1þ μþ log μþ þ μ− log μ−;

MσðpÞ=Mσð1Þ → 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − p2

q
; ð55Þ

(a) (b)

FIG. 3. The measure of Kwon et al. (2017) applied to the

generalized GHZ state, example 1, for different N and ϵ ∈

f0.01; 0.02;…; 0.1g (from top to bottom). (a) N is chosen such

that 2N sin ϵ ¼ 20. For large σ,Mσ is the same for all pairs ðN; ϵÞ,
implying that these states have the same macroscopic quantum-

ness according to Kwon et al. (2017). (b) N is chosen such that

N sin2 ϵþ cos2 ϵ ¼ 20 (which is the exact value of the variance

divided by N). In order to find similar values of Mσ , one has to

rescale σ to σ=
ffiffiffiffi
N

p
.

FIG. 4. Relative effective size for the noisy GHZ state,

Eq. (54), for measures listed in Eq. (55) [from top to bottom

on the order of Eq. (55)]. All measures except the index q scale

with p2 for small p. For p close to 1 (i.e., close to purity), the

first derivative lies between 1 and infinity. The only nonconvex

function is ISðpÞ=ISð1Þ.

TABLE II. Evaluation of the generalizedGHZ state, example 1,with
several measures. Disregarding prefactors, we found four different
scaling classes for the effective size, which can be connected to the
width of the state maximized over all collective observables A.

Scaling
Connection
to width Measures

Nϵ2 ðΔAÞ2=N Dür, Simon, and Cirac (2002), Korsbakken
et al. (2007), Marquardt, Abel, and von
Delft (2008), Fröwis and Dür (2012b),
Park et al. (2016), Yadin and Vedral
(2015), Kwon et al. (2017)

a

Nϵ ΔA Leggett (1980) Λ, Kwon et al. (2017),
b

Sekatski, Yadin et al. (2017)ffiffiffiffi
N

p
ϵ ðΔAÞ=

ffiffiffiffi
N

p
Björk and Mana (2004)

N Independent Leggett (2002) (D),
c
Shimizu

and Miyadera (2002)
d

a
In the case of fixed σ=

ffiffiffiffi
N

p
.

b
In the case of fixed σ.

c
For a large range of ϵ, see text.
d
For all ϵ ¼ Oð1Þ.
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for the measures of Shimizu and Morimae (2005), Fröwis and

Dür (2012b), Park et al. (2016), Sekatski, Yadin et al. (2017)

and Kwon et al. (2017), respectively (see Fig. 4). The last two

expressions are valid in the limits Δ=N → 0 and σ=N → 0.

Note that p can be N dependent in common dephasing models

(e.g., p ¼ e−λN or p ¼ e−λN
2

); in this case, QðpÞ ≠ OðN2Þ in
general.

Example 2 (Dicke states): Dicke states jN; ki, Eq. (6),
do not offer an obvious splitting jAi þ jDi and are hence

primarily addressed by measures that do not impose such

a structure (however, see discussion later in this example).

Since jN; ki have the same properties as jN;N − ki we

restrict the following discussion to 0 ≤ k ≤ N=2. Morimae,

Sugita, and Shimizu (2005) evaluated in index p for this

state class in detail. They found that p ¼ 2 for the Dicke

state with k ¼ OðNÞ. If k ¼ Oð1Þ, one has p ¼ 1 and

hence these states are not considered to be macroscopically

quantum despite being genuinely multipartite entangled. More

quantitatively, Fröwis and Dür (2012b) and Park et al. (2016)

found that Neff ¼ I ≈ 2kðN − kÞ þ 1 which confirms the

findings of Morimae, Sugita, and Shimizu (2005). The

optimal observable is any collective operator on the equator.

We work with Sx in the following without loss of generality;

see Fig. 5.

Kwon et al. (2017) agreed with the previous measures

qualitatively. Similar conclusions can also be drawn by

applying the measure of Sekatski, Yadin et al. (2017).

The disconnectivity of Leggett (1980) again shows a

different behavior. Except for k ¼ 0 (which are product

states), all Dicke states exhibit large δmax ¼ OðNÞ. The reason
is that one can divide the ensemble in ≈kþ 1 groups such that

each group is entangled with the rest of the spins with about

1 ebit. This means that δM is far from being zero up to

M ≈ Nk=ðkþ 1Þ. The extensive difference Λ is not rigorously

enough defined by Leggett (2002) to be directly applicable to

Dicke states. If it is understood to be the spread of the

probability distribution, then only for k ¼ OðNÞ the spread is

broad enough to have a large Λ.

The example of jN;N=2i is interesting because it also

highlights the impact of the choice of the splitting in cases

where jAi and jDi are not two well-separated wave functions

but jAi and jDi themselves are widely spread over the

spectrum.
13

We now discuss two possible splittings. First,

the appearance of high-k Dicke states in so-called optimal

covariant cloning (Bruß et al., 2000; D’Ariano and

Macchiavello, 2003) might be used to split the state into

jAi þ jDi. Indeed, one could ask whether an optimal cloning

device could amplify the components of j0i ∝ jþi þ j−i to

create a superposition of two macroscopically distinct

states. Considering 1 → N cloning, one finds jþi → jAi ∝
jN; ðN − 1Þ=2i þ jN; ðN þ 1Þ=2i and j−i → jDi ∝
jN; ðN − 1Þ=2i − jN; ðN þ 1Þ=2i for odd N and similarly

for even N (Bruß et al., 2000; D’Ariano and Macchiavello,

2003). While the total state jAiþjDi∝ jΨi¼ jN;ðN−1Þ=2i
is macroscopically quantum for all previously mentioned

measures, the measures of Björk and Mana (2004),

Korsbakken et al. (2007), and Marquardt, Abel, and von

Delft (2008) were shown to not classify jAi þ jDi as a

superposition of macroscopically distinct states (Fröwis and

Dür, 2012a).
14

A similar analysis using the measure of Sekatski, Sangouard,

and Gisin (2014) gave comparable results (see Fig. 6). One

finds that sizeðΨÞ¼OðNÞ, whenever Pg<PðΔ¼1Þ≈0.8183;

however, sizeðΨÞ≲ 1 for larger Pg. This example illustrates the

influence of the success probability Pg that also plays a role in

the approach of Korsbakken et al. (2007). They argue that Pg

should be “very close” to 1 and hence the total state is not

considered to be a superposition of macroscopically distinct

states (Fröwis and Dür, 2012a). This is in contrast to Sekatski,

Sangouard, and Gisin (2014) who considered success proba-

bilities on the order of 2=3.

FIG. 5. Three examples of probability distributions for Sx and

Dicke states jN; kiwithN ¼ 100 and k ∈ f0; 1; N=2g. The spread
is roughly

ffiffiffiffi
N

p
,

ffiffiffiffiffiffiffi
3N

p
, and N=

ffiffiffi
2

p
, respectively.

FIG. 6. Success probability Pσ as a function of the coarse

graining σ for jN; ðN − 1Þ=2i with N ∈ f101; 401; 701; 1001g
(from left to right). Inverting this function leads to effective size in

the proposal of Sekatski, Sangouard, and Gisin (2014). The

success probability depends on the splitting jN; ðN − 1Þ=2i ∝
jAi þ jDi. The “natural” splitting based on the cloner scenario

(solid lines, see text) leads to a reduced Pσ and hence the effective

size is OðNÞ only if Pσ ≲ 0.8183. The splitting based on a cut

of the spectrum into two parts (dashed lines, see text) allows for

high distinguishability also for Δ ≫ 1. As a consequence,

SizeðΨÞ ¼ OðNÞ even for Pg close to 1.

13
The following analysis can be repeated for the example

discussed by Korsbakken et al. (2007), Sec. III.A, or the SQUID

example by Marquardt, Abel, and von Delft (2008).
14
For the measure of Björk and Mana (2004), Fröwis and Dür

(2012a) chose the reference state to be jAi, which differs from the

“classical reference” mentioned in the beginning of the section.
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Second, we look for a splitting that increases the

effective size for the measure at hand. An obvious choice

for jN; ðN − 1Þ=2i is to define jAi as the superposition of all

eigenstates of Sx with positive eigenvalues [with weights

coming from jN; ðN − 1Þ=2i] and likewise jDi for the

negative part of the spectrum. Then, the distinguishability

in the approach of Sekatski, Sangouard, and Gisin (2014) is

close to 1 also for Δ ≫ 1 (see Fig. 6). Even for Pg ¼ 0.99, we

numerically find a linear scaling of the size. The same splitting

leads to similar results for Korsbakken et al. (2007), while the

framework of Marquardt, Abel, and von Delft (2008) is more

difficult to apply for this splitting.

Example 3 (Spin squeezing): The discussion for spin-

squeezed states is similar to that for Dicke states, as it is a

general quantum state with a broad distribution in some

collective observable without obvious splitting into

jAi þ jDi. Hence we mention only some specific points.

Spin squeezing means that the spread of the state in one

quantization axis, say S1, is reduced while keeping the

polarization in axis S2 large. From the Heisenberg uncertainty

relation, it follows that the state is widely spread over the

axis S3.
One-axis twisted spin-squeezed states, Eq. (7), exhibit a

scaling of ðΔS3Þ2 ¼ OðN5=3Þ for the optimal squeezing

(Kitagawa and Ueda, 1993); hence IðΨÞ¼Neff ¼OðN2=3Þ.
This means that large effective sizes can be achieved, even if

the scaling is less than for some Dicke states or the GHZ

state. Thus, one has p ¼ 5=3 and the state is not macro-

scopically quantum according to Shimizu and Miyadera

(2002). The two-axis twisting leads to a maximal variance in

S3 (Kitagawa and Ueda, 1993) and hence IðΨÞ ¼ Neff ¼
OðNÞ and p ¼ 2.

Example 4 (Cluster states): Despite being multipartite

entangled states, cluster states are seldom considered by most

of the discussed papers. An exception is Yadin and Vedral

(2015), who proposed cluster states as macroscopically

quantum because one can distill GHZ states jGHZni with n ¼
OðNÞ out of cluster states. However, all other presented

measures do not assess this state as macroscopically quantum

(essentially because it does not have a large spread in any local

observable, see also Sec. IV.C.1).

However, a superposition of cluster states is an interesting

case study to understand the difference between some

measures. Consider the operator UC, Eq. (9), that maps a

product state jþi⊗N to a one-dimensional cluster state.

Then, the state jCl-GHZi ∝ UCðjþi⊗N þ j−i⊗NÞ is a

state that has a similar structure to a GHZ state. The

measures of Korsbakken et al. (2007) and Marquardt,

Abel, and von Delft (2008) indeed assign an effective size

of N=3 (Fröwis and Dür, 2012b). On the other side, every

measure that is built upon local operators will still qualify

this state as not being macroscopically quantum because

it does not exhibit a large spread in any local operator.

For this reason, Fröwis and Dür (2012b) extended their

measure to quasilocal operators. The state jCl-GHZi has a

large variance for the operator UCSxU
†
C, which is a sum of

three-body interactions σ
ði−1Þ
z σ

ðiÞ
z σ

ðiþ1Þ
z for i ¼ 2;…; N − 1

plus two-body boundary terms. In the spectrum of this

operator, jCl-GHZi is maximally spread and every

observable-based measure using this operator will find a

large effective size.

2. Photonic systems

Similar to spin examples, we first note a number of

mathematical connections between some measures.

Laghaout, Neergaard-Nielsen, and Andersen (2015) had

two elements that they combined to a single measure. For

pure, single-mode states, the element N ¼ ð1=2Þ½ðΔXÞ2 þ
ðΔPÞ2 − 1� ¼ ha†aiΨ − jhaiΨj2 is identical to the measure of

Lee and Jeong (2011) I if applied to pure states. In the

photonic extension of Fröwis and Dür (2012b), one optimizes

the quantum Fisher information over all quadrature operators,

which reduces to 4 times the variance for pure states (Oudot

et al., 2015). In summary, one finds for all single-mode pure

states jΨi that

N ðΨÞ ¼ IðΨÞ
1
4
NeffðΨÞ < IðΨÞ þ 1

2
≤ 1

2
NeffðΨÞ: ð56Þ

Björk and Mana (2004) used either quadrature or number

operators to calculate M in their example. They calculated the

standard deviation and rescaled it with the standard deviation

of a coherent state. When using quadrature operators, this

implies that MðΨÞ2 ¼ NeffðΨÞ. Sekatski, Sangouard, and

Gisin (2014) generally worked with photon number measure-

ments to calculate SizeðΨÞ.
Example 5 (Superposition of coherent states): An

archetypal instance of a photonic state with macroscopic

quantumness is the superposition of coherent states jSCSi [see
Eq. (10) and Fig. 7(a) for a plot of the Wigner function for a

specific α]. Without loss of generality, we assume α ∈ R in the

following. One easily finds
15

N ðSCSÞ ¼ IðSCSÞ ¼ ha†aiSCS ¼ α2 tanh α2;

NeffðSCSÞ ≈ 4α2 þ 1;

MðSCSÞ ≈ 2α;

sizeðSCSÞ ≈ 4α2. ð57Þ

The latter two expressions are valid for large α. Note that Size

(SCS) is evaluated for j0i þ j2αi. The second element of

Laghaout, Neergaard-Nielsen, and Andersen (2015), the

distinguishability between jαi and j − αi, quickly goes to 1

for α≳ 1 using homodyne detection.

The SCS also has macroscopic coherence in the spirit of

Cavalcanti and Reid (2006, 2008), on the order of S ¼ 4α.

However, the witness Eq. (22) is more suited for squeezed

states (see example 7) and less to detect large coherence in

SCS. Consequently, the achievable lower bound is only

Smax ≈ 2.5 for α ¼ 0.5. This value is just above S ¼ 2 which

is found for coherent states (Cavalcanti and Reid, 2008).

15
Björk and Mana (2004), Lee and Jeong (2011), Fröwis and Dür

(2012b), Sekatski, Sangouard, and Gisin (2014), and Laghaout,

Neergaard-Nielsen, and Andersen (2015).
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Consider the case in which the visibility is nonunit, that is,

jαih−αj→ Γjαih−αj [see Fig. 7(b)]. The measures of Lee and

Jeong (2011) and Fröwis and Dür (2012b) can be straight-

forwardly applied to these mixed states. In particular, one

finds IðΓÞ ≈ Γ
2IðSCSÞ and NeffðΓÞ ≈ 4α2Γ2 þ 1. One has to

go to more complex examples to see a difference between I

and Neff (Yadin and Vedral, 2016).

There exist two interestingmultimode extensions of jSCSi:M
identical copies jSCSM1 i ¼ jSCSi⊗M or the entangled version

jSCSM2 i ∝ jαi⊗M þ j − αi⊗M [see also Volkoff and Whaley

(2014b), who studied the second example in depth for several

measures and Volkoff (2015) for so-called hierarchical photonic

superposition states]. The additivity of the measure of Lee and

Jeong (2011) results in a similar effective size for both states

IðSCSM1 Þ ¼ Mα2 tanhðα2Þ and IðSCSM2 Þ ¼ Mα2 tanhðMα2Þ,
while the approach of Fröwis and Dür (2012b) yields

NeffðSCSM1 Þ ¼ NeffðSCSÞ but NeffðSCSM2 Þ ≈ 4Mα2 þ 1.

Example 6 (Fock states): Photon number states defined

via a†ajni ¼ njni, also called Fock states, are not often

discussed in the context of macroscopic quantumness. One

reason might be the lack of a natural decomposition into

jAi þ jDi. Note, however, that jni can be written as a

superposition of coherent states with large [i.e., Oð ffiffiffi
n

p Þ)]
difference between the amplitudes α. For the measures of Lee

and Jeong (2011) and Fröwis and Dür (2012b), the Fock state

has an effective size of NeffðnÞ ¼ 2nþ 1 and IðnÞ ¼ n,

respectively. Hence, Fock states become macroscopically

quantum with increasing n.

Example 7 (Squeezed states): Similar to Fock states,

squeezed states, Eq. (11), do not exhibit a clear jAi þ jDi
structure. Measures not focusing on a binary division typically

recognize these states as macroscopically quantum for large

squeezing despite having a positive Wigner function. This is

traced back to the large spread in phase space in the

“antisqueezed” direction. In the following, we consider ζ ∈

R without loss of generality. This implies squeezing of the X

quadrature and antisqueezing of P. It directly follows that

IðζÞ ¼ sinh2ðζÞ (Lee and Jeong, 2011) and NeffðζÞ ¼ e2ζ

(Fröwis and Dür, 2012b), which scales linearly with the mean

photon number ha†ai ¼ sinh2ðζÞ.
Squeezed states are the ideal states to verify macroscopic

coherence in the framework of Cavalcanti and Reid (2006,

2008). By measuring ΔX and by using Eq. (22), one can show

coherence up toS ¼ ð1=2ÞΔP. However, under experimentally

realistic conditions, a finite S can be verified only if ΔXΔP≲

1.6 (Cavalcanti andReid, 2006). Thewitness Eq. (23), inwhich

the binning of I−, I0, and Iþ is dropped (Cavalcanti and Reid,

2008), is muchmore robust. More specifically, coherence up to

S ¼ 2ΔP independent of the valueΔXΔP can be shown. Note

the similarity between Eq. (23) and using the Heisenberg

uncertainty relation, Eq. (63), to witness large quantum Fisher

information to lower bound Neff (Fröwis and Dür, 2012b); see

Sec. II.H for details.

Similar considerations can be done for two-mode squeezed

states, Eq. (12). Cavalcanti and Reid (2006, 2008), Lee and

Jeong (2011), and Fröwis and Dür (2012b) gave basically the

same results as for single-mode squeezed states. In addition, the

framework of Sekatski, Sangouard, and Gisin (2014) can be

modified to be applicable to two-mode states (Oudot et al.,

2015). The idea is to rephrase the original formulation by having

a bipartite, entangled system, where one party “Alice” prepares

the state of the other party “Bob” bymeans of localmeasurement

(i.e., a kind of steering scenario). Then, Bob has to guess which

state Alice measured using only measurements with finite

resolution. The quantum state used for this protocol is said to

be a superposition of macroscopically distinct states if Bob is

able todistinguishdifferent preparationwithvery low resolution.

Using coarse-grained quadrature operators, this results in

Size ¼ Oð
ffiffiffiffi
N

p
Þ, where N is the mean photon number of the

states. Note that this is the optimal scaling in this scenario.

C. Classifications of measures

In the previous sections we reviewed several proposals to

quantify macroscopic quantumness and discussed relevant

examples. In this and the following sections, we discuss and

compare different contributions (see Table I).

However, the measures do not all share the same motivation

or goals, neither do they have the same range of applicability.

Hence, one observes a family resemblance situation, where

objects in a set are not connected by a unique common feature,

but rather they are connected by a series of features, each

shared by some but not all of the objects. The goal of the

following sections is therefore to discuss several recurring

aspects of the measures and to identify common features and

differences within subsets of measures. Some original pro-

posals leave room for interpretation or small modifications

that influence the final measure. Hence we understand this

comparison not as an ultimate judgment but as a starting point

for further discussions.

1. Mechanisms to break unitary equivalence

In the introduction of Sec. II.A, we drew the reader’s

attention to the structure that breaks the unitary equivalence

between quantum states. This is necessary in order to define a

measure of macroscopic quantumness and to introduce a

hierarchy of macroscopic quantumness. On a formal level this

requires one to identify some additional structure over the

Hilbert space H associated with the physical system. After

reviewing the literature, we are now in the position to

comment more on the mechanisms to break the unitary

FIG. 7. The Wigner function of jαi þ j − αi plotted (a) for α ¼
2.3 and (b) for α ¼ 4.96 with reduced visibility Γ ≈ 0.464 (see

text). The two states exhibit the same effective size I ≈ 5.29 and

Neff ≈ 22.2 for the measures of Lee and Jeong (2011) and Fröwis

and Dür (2012b), respectively. From Jeong, Noh et al., 2014.

Florian Fröwis et al.: Macroscopic quantum states: Measures, …

Rev. Mod. Phys., Vol. 90, No. 2, April–June 2018 025004-21



equivalence between all pure states. We identify at least three

basic approaches.

(i) One can choose a preferred Hermitian operator

A ¼ P
kakjkihkj (or

R
dk) as a starting point.

16
This

operator can be an observable that is measured or a

generator of unitary transformations. In any case,

this choice defines a preferred basis jki and a

notion of spectral distance ak − ak0 between any

two eigenstates jki and jk0i. Thus, a measure based

on a preferred observable is a function of the spectral

distribution and the coherence properties of the

considered state.

(ii) In some cases they start by identifying a specific

partition of the system into subsystems,
17
for exam-

ple, H ¼ H1 ⊗ H2 � � �. Often, as for spin systems,

the subsystems correspond to physical particles,
18

but can also be identified with a locality argument

(Shimizu and Miyadera, 2002) for systems with a

spatial extent.

Though the starting point here is different from (i),

in some cases the final measure can be equally well

understood from the perspective of a preferred oper-

ator (Shimizu and Miyadera, 2002; Fröwis and Dür,

2012b; Park et al., 2016). This is because themeasures

are computedvia optimizing someproperty of the state

over a set of local operators. This corresponds to the

identification of a preferred observable A.
(iii) The third approach is to look at a preferred repre-

sentation of the considered state; here it is the phase

space for position and momentum of a particle or

conjugated quadratures of a bosonic mode. This is

the starting point of Lee and Jeong (2011) and

Laghaout, Neergaard-Nielsen, and Andersen (2015),

who focused on the Wigner function of a given state.

The quantification of high-frequency components

leads to an equivalent formulation of their measure

based on a decoherence model. Despite the different

motivation, Nimmrichter et al. (2011) is directly

related to Lee and Jeong (2011) (Yadin and Vedral,

2016).
19

This is because the modification of quan-

tum mechanics considered by Nimmrichter et al.

(2011) also corresponds to a continuous spontane-

ous localization in phase space of the particles.

Alternatively, one can say that the starting point

here is the choice of a preferred Lindbladian super-

operation LðϱÞ ¼
P

j½LjϱL
†
j − ð1=2ÞfL†

jLj; ϱg�,
which is used to model dissipative evolution in

terms of a master equation. Interestingly, the ob-

servables that appear as Lindblad operators in the

master equation of the decoherence are linear in

the quadrature operators and frequently appear in the

proposals of group (i).

2. Goals of the measures

All proposals aim for measuring a kind of macroscopic

quantumness, but one can identify different variations in

formulating the precise goal.

(i) Macroscopic coherence: For a fixed operator

A ¼
P

kakjkihkj, the macroscopic quantumness of

a state is related to its coherence spread,
20
that is, the

amount of coherence between basis state jki; jk0i
that are far apart in the spectrum jak − a0kj ≫ 1. The

superposition of far-distant parts of the spectrum

is seen as a macroscopic quantum effect if the

system size is large. In the case of a pure state

jΨi ¼
P

ψkjki, one often considers the variance of

the state ðΔAÞ2jΨi, or the total amount of coherence

with distance ≥ S, that is,
P

jak−a0kj>Sjψkψk0 j.
(ii) Effective particle number: Some measures

21
explic-

itly aim to quantify how many particles effectively

participate in a macroscopic superposition. As an

example (Korsbakken, Wilhelm, andWhaley, 2009),

consider a system of n electrons in a pure quantum

state building up the magnetic flux in a super-

conducting device (see Sec. V.D). Suppose that

the induced magnetic moment from a superposition

of right jAi and left jDi circulating currents has a

spread Δμ ¼ nμB, where μB denotes the Bohr

magneton. For Korsbakken, Wilhelm, and Whaley

(2009), it matters whether a single electron makes

the difference between the jAi and jDi or whether
all electrons behave differently in the two branches.

In contrast, representatives from (i) might care less

because a single particle in a superposition of

macroscopically different momenta could be seen

as one with a very large effective mass. From this

example, the concept of effective particle number

seems to be more restrictive than (i) as the large

spread for some extensive quantity necessarily

16
Leggett (2002), Björk and Mana (2004), Cavalcanti and Reid

(2006, 2008), Sekatski, Sangouard, and Gisin (2014), Laghaout,

Neergaard-Nielsen, and Andersen (2015), Kwon et al. (2017), and

Sekatski, Yadin et al. (2017); the “extensive difference” part of

Leggett (2002) and the “subjective” part of Laghaout, Neergaard-

Nielsen, and Andersen (2015).
17
Leggett (1980), Dür, Simon, and Cirac (2002), Shimizu and

Miyadera (2002), Korsbakken et al. (2007), Marquardt, Abel, and

von Delft (2008), Fröwis and Dür (2012b), Yadin and Vedral (2015),

and Park et al. (2016).
18
Leggett (1980), Dür, Simon, and Cirac (2002), Korsbakken et al.

(2007), Fröwis and Dür (2012b), and Yadin and Vedral (2015).
19
The connection is valid if only the ideal quantum state plus the

canonically introduced modification is considered.

20
Leggett (2002), Björk and Mana (2004), Shimizu and Morimae

(2005), Cavalcanti and Reid (2006, 2008), Lee and Jeong (2011),

Fröwis and Dür (2012b), Laghaout, Neergaard-Nielsen, and Ander-

sen (2015), Park et al. (2016), and Kwon et al. (2017); the “extensive

difference” of Leggett (2002)), the “objective” part of Laghaout,

Neergaard-Nielsen, and Andersen (2015), and the large-σ regime of

Kwon et al. (2017).
21
Leggett (1980), Dür, Simon, and Cirac (2002), Korsbakken et al.

(2007), Marquardt, Abel, and von Delft (2008), and Yadin and Vedral

(2015).

Florian Fröwis et al.: Macroscopic quantum states: Measures, …

Rev. Mod. Phys., Vol. 90, No. 2, April–June 2018 025004-22



appears whenever the effective particle number is

large (see Sec. II.D).

(iii) Ease to distinguish: Macroscopic quantumness is

identified with the easy to distinguish between the

superposed components in the state (Korsbakken

et al., 2007; Sekatski, Sangouard, and Gisin, 2014;

Laghaout, Neergaard-Nielsen, and Andersen, 2015;

Sekatski, Yadin et al., 2017). The ease can be

quantified by measuring how invasive a measure-

ment apparatus should be in order to extract the

desired information about the superposition state,

e.g., distinguish jAi and jDi with the desired

probability. Such a noninvasive measurement appa-

ratus can be modeled as a weak measurement of a

fixed operator A (Sekatski, Sangouard, and Gisin,

2014; Sekatski, Yadin et al., 2017), or as a general

measurement that acts only on a limited number of

subsystems (Korsbakken et al., 2007). In the case of

a weak measurement of a fixed observable, easily

distinguishable states exhibit a large macroscopic

coherence (i), as the superposed states have to be far

enough in the spectrum of A.
(iv) Relative improvement: Björk and Mana (2004) and

Fröwis and Dür (2012b) motivated their proposals

with situations where the superposition of (quasi)

classical states overcomes the performance of its

single branches. Although not explicitly mentioned,

it seems that “macroscopic quantum effects” such as

the single excitation mentioned in Sec. I.A should

be excluded. Instead, they focused on the speed of

unitary evolution or on quantum enhanced sensing.

While the motivation might differ from (i), the

choice of the figure of merit leads to measures

based on the variance for pure states (Fröwis and

Dür, 2012b) or at least is closely connected to it in

relevant situations (Björk and Mana, 2004).

(v) Falsification of collapse models: The proposal by

Nimmrichter and Hornberger (2013) is explicitly

motivated by evaluating quantum states (more pre-

cisely, entire experiments) that potentially show

small deviations from standard quantum mechanics.

Surely there are connections to (i), since typical

collapse models predict larger collapse rates for

larger spatial spread of the massive particle. Like-

wise, heavier objects generally trigger the hypo-

thetical collapse much faster. However, if one is

tempted to analyze the entire experiment including

“unavoidable” imperfections and ask how much it is

capable of showing modifications of quantum me-

chanics, larger quantum systems (e.g., larger masses)

are not necessarily more useful (i.e., give a larger

number) for such tests as environmentally induced

decoherence is more disturbing (Nimmrichter,

Hornberger, and Hammerer, 2014).

(vi) Amount of nonclassicality: Lee and Jeong (2011)

identified the total amplitude of wiggles in the

Wigner function for the state of one or several

optical modes. As coherent states correspond to

classical fields and their Wigner function is smooth,

such wiggles are considered as a trace of non-

classicality of the state. Similarly, Dür, Simon,

and Cirac (2002), Laghaout, Neergaard-Nielsen,

and Andersen (2015), and Park et al. (2016) are

concerned with the nonclassical aspects of macro-

scopic quantum states.

D. Structure of applied states

The presented literature is rather diverse regarding the

application to quantum states. While Dür, Simon, and Cirac

(2002) basically discussed a class of examples, others
22

derived a measure assuming an explicit decomposition of

the state into jAi þ jDi. In the following, we call states that

are macroscopically distinct for a fixed partition jAi þ jDi
macroscopic superpositions. The index p from Shimizu and

Miyadera (2002) is applicable to pure states without determin-

ing any substructure. Finally, there exist several proposals
23

that are defined for arbitrary mixed states. Large-size states

beyond the jAi þ jDi structure are here called macroscopic

quantum states. Let us further elaborate on these differences.

1. Macroscopic superpositions

a. Separate treatment of macroscopic distinctness and quantumness

In most of the cases, measures designed for a jAi þ jDi
structure aim for quantifying the macroscopic distinctness

between the two components, but they do not measure the

coherence between the components. A mixed state jAihAj þ
jDihDj has equally distinct components, but it has no

coherence and hence cannot be called a macroscopic quantum

state. Therefore, the distinctness of a macroscopic super-

position and its quantumness appear as two independent

values. Consequently, showing that a state contains distant

components reveals only its macroscopic distinctness. This is

not sufficient if the state cannot be assumed to be pure. In

practice, an additional measurement is required to certify the

quantumness of the superposition state, for example, through

the purity of the state, some entanglement to an auxiliary

system, or some interferometric visibility between jAi and

jDi. This contrasts measures that aim to give a single number

quantifying macroscopic quantumness.

22
Björk and Mana (2004), Korsbakken et al. (2007), Marquardt,

Abel, and von Delft (2008), Sekatski, Sangouard, and Gisin (2014),

and Laghaout, Neergaard-Nielsen, and Andersen (2015); Björk and

Mana (2004) phrased their idea for general states, but the math-

ematical formulation for Eq. (19) is derived for the jAi þ jDi
structure. Laghaout, Neergaard-Nielsen, and Andersen (2015) ex-

tended the jAi þ jDi structure to more than two states, but still need

to provide the substructure.
23
Leggett (1980), Shimizu and Morimae (2005), Cavalcanti and

Reid (2006, 2008), Fröwis and Dür (2012b), Yadin and Vedral

(2015), Kwon et al. (2017), and Sekatski, Yadin et al. (2017); the

basic idea of Cavalcanti and Reid (2006, 2008) is for general states,

but the derived bounds for the detection basically work only for

squeezed, not necessarily pure, states.
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b. Freedom for choosing the branching

Measures for macroscopic superpositions often provide an

intuitive account for characterizing macroscopic distinctness.

Having the Schrödinger-cat example in mind, it is easy to

connect the concept of macroscopic distinctness with the

thought experiment. Macroscopic distinctness can mean, for

instance, that measuring only one biological cell is enough to

determine the vitality of the cat (Korsbakken et al., 2007); that

it is necessary to modify the state all N cells from “alive” to

“dead” (Marquardt, Abel, and von Delft, 2008); or that a quick

(i.e., coarse grained) look suffices to decide whether the cat is

dead or alive (Sekatski, Sangouard, and Gisin, 2014). On the

other side, given just a pure state jΨi, there are infinitely many

ways to split it in two branches jΨi ¼ jAi þ jDi. As in

example 2 in Sec. II.B, the decomposition can become

problematic when the state does not show two well-isolated

distributions in the spectrum of a local observable that is

particularly suited to distinguish jAi and jDi. In other words,

the most obvious decomposition does not have to lead to the

maximal size in these cases. This ambiguity is particularly

relevant when real experiments are discussed [see, e.g.,

Marquardt, Abel, and von Delft (2008) discussing the experi-

ment of van der Wal et al. (2000)].

The ambiguity is lifted (although not fully) when the state is

given in the micro-macro entangled form

jΨi ¼ j↑ijAi þ j↓ijDi; ð58Þ

where the macroscopic system is entangled with an “atom”

such as in Schrödinger’s thought experiment. The entangle-

ment in Eq. (58) reduces the complexity of the problem

and it suffices to find the optimal distinguishability in a two-

dimensional subspace spanned by spanfjAi; jDig. This is a

feasible task in many examples.

2. Macroscopic quantum states

Measures for macroscopic quantum states quantify the

macroscopic quantumness of a general state ρ, which does

not need to be pure or have a required structure. The

macroscopic distinctness and the coherence are hence mea-

sured with a single number. For clarity, it is useful to first

consider the application of the measures to pure states, for

which the interpretation is more direct. After that, we discuss

how they are lifted to mixed states.

a. Variance as recurring measure for pure macroscopic quantum

states

In most of the cases, the formalization of measures for

macroscopic quantum states amounts to a study of coherences

of the state in the basis of a given operator A. For pure states,

once A is fixed, the variance of the state with respect to A is a

natural choice that allows one to quantify the coherent spread

of the state. Indeed, despite the diversity, several proposals
24

directly have the variance of the state (for given A) at the core

of their measures when applied to a pure state. Leggett (2002)

defined the extensive difference as the spectral distance of jAi
and jDi for a well-chosen extensive observable, which is a

special case of the variance. Moreover, while Björk and Mana

(2004) do not explicitly use the variance in their approach, the

connection between the variance and improved sensitivity is

well established for pure states (see Secs. II.H and IV.B).

In addition, there are measures that do not reduce to the

variance but still are closely related. Cavalcanti and Reid

(2006, 2008) were interested in the coherence between distant

parts of the spectrum jhkjρjjij > 0, with jak − ajj ≥ S,

exhibited by the state. For pure states it is easy to see that

any state with variance ðΔAÞ2 ≥ V necessarily exhibits

coherence between spectral parts with a distance of at least

S ¼ 4
ffiffiffiffi
V

p
.
25

Hence, a large variance is sufficient for the

presence of large coherence S in the state. However, it is

not necessary, as a state with arbitrarily large S might have an

arbitrarily small V.
In addition, the measure of Sekatski, Yadin et al. (2017)

gives a lower bound to an expression proportional to the

variance (and in general to the quantum Fisher information).

For general b, this bound can be arbitrarily loose but it

becomes tight in the limit of low information gain b.
Finally, the variance is fully sufficient to capture the spread

of a probability distribution in the limit of many copies of the

system (Yadin and Vedral, 2016). All this shows an important

role for the variance as a quantifier of a specific aspect of

macroscopic quantumness.

b. Extensions of the variance for mixed states

Since the presence or absence of coherence in the basis of A

does not influence the variance ðΔAÞ2, it can be used only as a
measure of macroscopic quantumness if the state is pure. The

generalization of the variance for mixed states is not unique

and the proposals of Shimizu and Morimae (2005), Lee and

Jeong (2011), Fröwis and Dür (2012b), and Park et al. (2016)

all go in different directions.

In principle, any measure f for pure states can be extended

to a measure f̂ for mixed states via the convex-roof

construction (see Sec. II.A.11). To this end, consider all

possible pure-state decompositions (PSDs) of the state ρ ¼P
kπkjψkihψkj and minimize the average size

f̂ðρÞ ¼ min
PSD

X

k

πkfðψkÞ: ð59Þ

By definition, the convex roof is the “worst-case” average f

among all possible pure-state decompositions of ρ. At the

same time, f̂ is the largest convex function that reduces to f

when ρ is pure (Tóth and Petz, 2013). The quantum Fisher

information, which appears in the measure of Fröwis and

Dür (2012b), is (4 times) the convex roof of the variance

(Yu, 2013).

The index q was introduced as a generalization of the index

p for mixed states (see Sec. II.A.3). Shimizu and Morimae

24
Shimizu and Miyadera (2002), Lee and Jeong (2011), Fröwis

and Dür (2012b), and Park et al. (2016).

25
The same argument holds for mixed states if the variance is

replaced by the quantum Fisher information, since the latter is the

convex roof of the variance (Yu, 2013).
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(2005) were mainly interested in identifying “fully macro-

scopic” quantum states, for which the two measures match

p ¼ q ¼ 2. But this is no longer true for “less macroscopic”

states. Specifically, there exist examples for pure states with

p ¼ 1 [i.e., the variance is OðNÞ], but q ¼ 1.5 (Shimizu and

Morimae, 2016). This suggests that the intuition for the index

q does not entirely correspond to a coherent spread of pure

states as measured by the variance. In particular, there is no

general relation between the quantum Fisher information and

the index q.
The measure I of Lee and Jeong (2011) is similar to the

quantum Fisher information for low-rank instances (see

example 5). However, they differ in general (Yadin and

Vedral, 2016). Furthermore, Yadin and Vedral (2016) pointed

out a problematic relation of I with the two-norm (see

Sec. II.G).

3. Connections between some measures

In this section, we review connections between some

measures. In particular, one finds for some partition-based

measures that macroscopic quantum states include the concept

of macroscopic superposition (Fröwis and Dür, 2012b); see

Fig. 8. Let us consider quantum states jAi þ jDi for spin

ensembles. Fröwis and Dür (2012b) showed that Cδ ¼ OðNÞ
[see Eq. (24)] if and only if D̄ ¼ OðNÞ [see Eq. (27)], which
suggests a connection between the measures of Korsbakken

et al. (2007) and Marquardt, Abel, and von Delft (2008). Next,

if Cδ ¼ OðNÞ then there exists a quasilocal operator A (see

Sec. I.D.1) for which the variance scales quadratically

ðΔAÞ2 ¼ OðN2Þ. Given that one accepts the step from local

to quasilocal operators in the formulation of measures for

macroscopic quantum states, this implies a large effective size

for all measures based on the variance (see example 4).

Further connections can be found between general mea-

sures
26

(see Secs. II.B and II.E.2).

Independent of these connections, the measure of Sekatski,

Yadin et al. (2017) applies ideas for macroscopic super-

positions [such as Korsbakken et al. (2007) and Sekatski,

Sangouard, and Gisin (2014)] to general quantum states. This

can be seen as a way to bridge measures for macroscopic

superpositions and macroscopic quantum states.

Note that one can also spot significant differences between

the measures, in particular, when the effective size is not

OðNÞ. An interesting example is the SQUID experiments

as discussed in Sec. V.D, for which diametrical results are

obtained.

E. Application to various physical setups

The proposed measures sometimes attempt to be applicable

to all physical systems (such as spin ensembles, photons,

superconducting devices, and massive systems). Nevertheless,

they are typically motivated with a specific setup in mind

and one has to analyze the implications when applied to

other systems. In the following, we focus on some general

issues regarding the application of measures for macroscopic

quantum states to various physical systems. This analysis is

done for the variance. However, it can be partially repeated for

other, more specific measures.

1. Implications of large variance

Let us start with spin ensembles, for which the operator at

hand is typically chosen to be a local operator A ¼
P

N
l¼1 a

ðlÞ
l .

Since jjaðlÞl jj ¼ Oð1Þ, the spectral radius of the total operator is
proportional to the number of spins N. A state is said to be

macroscopically quantum if the standard deviation (i.e., the

square root of the variance) is large compared to the spectral

radius. A large number of spins is necessary for a large

variance. Thus, this automatically leads to a connection

between the large-scale character (i.e., the spread in the

spectrum) with quantumness (through the coherence between

the eigenstates). The connection to multipartite entanglement

(in particular, for the quantum Fisher information, see

Sec. II.F) further supports the use of the variance to measure

macroscopic quantumness of pure spin-ensemble states.

For photons, one encounters a very similar situation. For

simplicity, we discuss single-mode states in the following. By

taking quadrature operators

A ¼ Xθ ¼
1ffiffiffi
2

p ðeiθaþ e−iθa†Þ

as the canonical choice for the variance, a large variance

necessarily comes from many-photon states since ha†ai ≥
ð1=2Þ½ðΔXÞ2 þ ðΔPÞ2 − 1�. A large variance also implies

more nonclassicality of the photonic state in the sense that

k-partite mode entanglement can be created by splitting the

photonic mode into many spatial modes in a beam-splitter

network. The same effect is achieved by letting the photons

be absorbed by a sufficiently large atomic ensemble (see

Sec. II.E.2). Alternatively one can choose the photon number

operator A ¼ a†a for measuring the macroscopic spread. A

large variance in photon number implies that large Fock states

are involved in the superposition. However, it does not

generally imply a large mean photon number as examples

with a fixed average photon number and arbitrarily large

variance show.
27
In addition, note that coherent states jαi have

a variance that increases linearly with the mean number of

FIG. 8. Hierarchy between states that are macroscopically

quantum according to some partition-based measures. Macro-

scopic superpositions according to Korsbakken et al. (2007)

and Marquardt, Abel, and von Delft (2008) are also macroscopic

quantum states according to variance-based measures if quasi-

local operators are considered. From Fröwis and Dür, 2012b.

26
Cavalcanti and Reid (2006), Fröwis and Dür (2012b), Kwon

et al. (2017), and Sekatski, Yadin et al. (2017).
27
For instance, jψi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=k

p
j0i þ 1=

ffiffiffi
k

p
jki for k ≫ 1.
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photons jαj2 for the photon number, but remains constant for

any quadrature.

The simultaneous presence of quantumness and large

system size for large-variance states in spin and photonic

systems may encourage us to use it in other systems, such as

superconducting devices or massive systems. After all, pho-

tonic states, superconducting circuits, and motional degrees of

freedom of massive systems are mathematically connected by

using the same algebraic structure with the canonical com-

mutation relation ½a†; a� ¼ 1. However, the interpretation

of the variance for photons is not trivially transferable to

other systems. For example, the SQUID experiments from

Friedman et al. (2000), van der Wal et al. (2000), and Hime

et al. (2006) lead to a controversial discussion of whether a

macroscopic superposition of clockwise and anticlockwise

currents has been generated. While this is reviewed in more

detail in Sec. V.D, we summarize here the analysis of Björk

and Mana (2004). Effectively, they calculate the variance of

the ideal target state and find it to be roughly 1000 times larger

than the variance of the ground state, which is assumed to be

the most classical state.
28

However, a clear interpretation of

this number, for example, as an effective size of the electronic

state is missing so far.

For massive systems, the situation is even more puzzling.

For a fixed mass, it seems that the spread of the wave function

in the spatial degree of freedom is a natural choice to measure

the macroscopic quantumness of the system. However, the

connection between large variance in position and large

system size is lost. Moreover for partition-based measures

(Leggett, 2002; Korsbakken, Wilhelm, and Whaley, 2009) one

does not change the macroscopic quantum character of, for

example, a nucleus by increasing the distance of a super-

position of being “here and there” from 1 cm to 1 m, as the

states of individual protons and neutrons in the two branches

are equally orthogonal in both cases. Similarly, it is an open

question how the partition in subsystems should be made, for

example, it can be done equally well on the level of atoms or

protons and neutrons. For the same reason the role of the mass

of the individual constituents, and how it interacts with the

spread in position, is open.

Note that if we go away from macroscopic distinctness and

ask about quantum experiments that exclude small deviations

from quantum mechanics, we indeed care about the distance

between the two possible positions of the neutron. This is

because typical collapse models are more effective for larger

distances and have a precise mass dependence. From this point

of view, the mathematical connection between Nimmrichter

and Hornberger (2013) and Lee and Jeong (2011) (as

mentioned in Sec. II.C.2) seems to be loose since the

interpretation and meaning of the respective measures are

different.

2. Linking measures for photons and spins

Recently, Fröwis, Sangouard, and Gisin (2015) compared

measures that are primarily defined for spin ensembles and

photonic systems. They considered an ideal light-matter

interaction between a spin ensemble in the ground state

and an incoming photonic field. Under the assumption that

the number of spins is much larger than the number of

photons, a photon is linearly mapped to an atomic excitation.

In technical words, the first-order approximation of the

Holstein-Primakoff transformation (Holstein and Primakoff,

1940) allows one to identify S−=
ffiffiffiffi
N

p
↔ a. This enables one to

compare quantum states from the two physical systems and

eventually entire measures defined for spins or photons. For

example, it turns out that the measure of Korsbakken et al.

(2007) could be formulated for a single photonic mode by

asking how well jAi and jDi can be distinguished with

highly inefficient detectors (i.e., ideal detectors with preceding

photon loss). This resembles the ideas of Sekatski, Sangouard,

and Gisin (2014), who considered coarse graining instead of

loss. Even though the different realization of the detector’s

imperfection changes the measure qualitatively, a strong

conceptual connection of two or more measures leads to

confidence in the principal idea. As another example, the

connections between several works
29

are further reinforced.

Not only are the measures based on the variance (or related to

it), the canonical choices of the operators (local operators for

spin ensembles and quadratures in the photonic case) are

intimately connected via this ideal light-matter interaction.

F. Connection to multipartite entanglement

Many do not consider multipartite entanglement per se

when constructing a measure of macroscopic quantumness.

An exception is the measure of Yadin and Vedral (2015), who

identified the macroscopic quantumness for the size of the

maximally distillable GHZ state with LOCC. This yields a

direct connection to entanglement theory, in which LOCC is

the set of free operations. For other partition-based measures,

LOCC is not free in general and might change the macro-

scopic quantum character of a state (e.g., the variance can

increase under LOCC). Nevertheless, it is natural to look for a

relation between entanglement properties and macroscopic

quantumness of a state, given that both have the partition of

the system in subsystems as a starting point.

The measure of Fröwis and Dür (2012b) based on the

quantum Fisher information is related to multipartite entan-

glement in the following sense. An effective size of Neff ≳ k

implies genuine entanglement within groups of at least k

spins [this statement can be made fully rigorous including

Oð1Þ correction terms (Hyllus et al., 2012; Tóth, 2012)].

Furthermore, large Neff is not only a witness for k-partite

entanglement in the sense of Sørensen and Mølmer (2001),

but Neff ≳ k also means that the two-body correlations within

these entangled groups have a certain minimal strength (Tóth,

2012). Note also that since a high value for the measures of

Korsbakken et al. (2007) and Marquardt, Abel, and von Delft

(2008) implies a large quantum Fisher information, these

measures are also sufficient for a large entanglement depth.

Furthermore, Morimae (2010) proved that a state with q ¼ 2,

28
Note that Björk and Mana (2004) worked with the standard

deviation rather than the variance.

29
Shimizu and Miyadera (2002), Shimizu and Morimae (2005),

Cavalcanti and Reid (2006, 2008), Lee and Jeong (2011), and Fröwis

and Dür (2012b).
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Eq. (16), contains multipartite entanglement measured with

the distance to the set of separable states.

On the other hand, there is no measure for which a large

entanglement depth on its own is sufficient for macroscopic

quantumness, as follows from the example of the state

jWi ¼ jN; 1i discussed in Sec. I.A. This state is fully

nonseparable (exhibits N-partite entanglement), but is not

recognized as a macroscopic quantum state by any of the

measures listed.

G. Connection to resource theory of coherence

In recent years, there has been a trend to formalize certain

aspects of quantum mechanics such as entanglement

(Horodecki et al., 2009), athermality (Gour et al., 2015;

Goold et al., 2016), asymmetry (Gour and Spekkens, 2008),

and coherence (Baumgratz, Cramer, and Plenio, 2014;

Marvian and Spekkens, 2016; Yadin et al., 2016) in the

framework of resource theories. The basic idea is to assume

certain constraints on the generation and manipulation of

quantum states. For this, one defines free states and free

operations. Quantum states that are not producible from free

states and free operations constitute a resource for a task with

typically some quantum advantage. The most well-known

resource theory is entanglement in multipartite settings in

which free operations are LOCC. Free states are states that can

be generated starting with product states and using LOCC.

1. Resource theory for macroscopic coherence

The concept of macroscopic distinctness is naturally con-

nected to superposing states from different parts of a given

spectrum. This suggests to work with a resource theory of

coherence where not only a basis is chosen but a spectrum is

associated with it. This is the framework of asymmetry or

“unspeakable coherence” (Marvian and Spekkens, 2016).

There quantum states that are not invariant under translations

in the spectrum are a resource to detect the presence of

processes that are generated by these translations. Yadin and

Vedral (2016) realized the similarity between asymmetry and

the attempts to define macroscopic quantum states. As in

asymmetry, they defined free operations as completely pos-

itive maps that cannot increase coherence between parts of a

spectrum with a certain distance. This is in contrast to many

variants of “speakable coherence” (Marvian and Spekkens,

2016), in which coherence between neighboring basis states

can be freely transferred to coherence between distant states.

The motivation for this choice of free operations is obvious as

it makes the creation of coherence a “difficult” task. Note,

however, that with this choice of free operations it is not

more difficult to create far-distant coherence than coherence

between nearby states. This is achieved by additionally

requiring that any measure of quantum macroscopicity, in

addition to being nonincreasing under free operations, should

assign larger values to superpositions of two basis states with

increasing spectral distance.

It turns out that the variance is a valid measure for this

resource theory of quantum macroscopicity for pure states. As

such the present resource theory agrees with all measures of

general macroscopic quantum states that use the variance for

pure states.
30
The quantum Fisher information, which is used

by Fröwis and Dür (2012b) as an extension for mixed states, is

the convex roof of variance (Yu, 2013) and hence a valid

measure in the framework of Yadin and Vedral (2016). In

contrast, the measure of Lee and Jeong (2011) generally

increased under the present free operations because of a

problematic connection to the Hilbert-Schmidt norm, which is

known to be not contractive under trace-preserving operations

(Ozawa, 2000; Piani, 2012; Yadin and Vedral, 2016). Whether

the index q (Shimizu and Morimae, 2005) fulfills the require-

ments is open (see Sec. II.D.3).

In this context, the work of Kwon et al. (2017) gave further

insight. Consider a distance function Dðρ; τÞ that is (D1)

positive semidefinite, (D2) invariant under joint unitary

rotations of ρ and τ, (D3) contractive under physical maps,

and (D4) jointly convex. Using the dephasing map ΦσðρÞ
defined in Sec. II.A.14, they showed thatD(ρ;ΦðρÞ) is a valid
measure in the sense of Yadin and Vedral (2016). However, as

pointed out by Kwon et al., the measure behaves in a

surprising way if σ is small (i.e., the distance between the

original state and a strongly dephased state is measured, see

Sec. II.A.14). If the dephasing is strong (i.e., σ is small), the

coherence between even nearby basis states is lost. In the case

σ ¼ Oð
ffiffiffiffi
N

p
Þ, the measure coincides with the intuition for

basic examples.

2. Free operations in proposed measures

The arguments of Kwon et al. (2017) suggested that while

the axioms of Yadin and Vedral (2016) might be a good starting

point for a resource theory of macroscopic quantumness, they

seem to not be sufficient to unambiguously identify relevant

measures for macroscopic quantum states. A further note-

worthy point is that fully incoherent states in one basis

generally exhibit large coherence in another basis. Since in

many examples for photonic systems or spin ensembles it is not

possible to determine a single preferred observable but we have

a set of observables to choose from, further improvements for

the choice of free operations could lead to a resource theory that

captures our intuition of macroscopic distinctness even better.

Finally, the right choice of free operations is nontrivial in

general (Marvian and Spekkens, 2016). For example, LOCC in

entanglement theory is not the most general class of operations

that does not increase entanglement in the system. Yet it is the

preferred set from a physical point of view.

We emphasized that many measures discussed in Sec. II.A

implicitly or explicitly choose a set of free operations. We

briefly comment on this choice for measures designed for

spin systems. First, even a collective local rotation U⊗N can

formally affect the macroscopic quantumness of the state for a

measure that is defined for a fixed operator (e.g., a collective

operator such as A ¼ Sz). In practice,
31
however, one typically

chooses an optimal direction of the collective observable

A0 ¼ n⃗ · S⃗. This leads to the choice A0 ¼ U†⊗NSzU
⊗N and

30
Shimizu and Miyadera (2002), Lee and Jeong (2011), Fröwis

and Dür (2012b), and Park et al. (2016).
31
For example, Björk and Mana (2004), Park et al. (2016), Kwon

et al. (2017), and Sekatski, Yadin et al. (2017).
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hence collective rotations U⊗N are implicitly considered to be

free. The next level is to consider all local unitary (LU)

transformations (i.e., U1 ⊗ � � � ⊗ UN) as free. This was

implicitly done by Shimizu and Morimae (2005) and

Fröwis and Dür (2012b) as one chooses the optimal local

operator that maximizes the variance of the state. Next, one

could consider a single round of local operations (i.e.,

measurements) followed by local unitaries (LOþ LU). In

fact, the state jGHZN=2i, with variance ðN=2Þ2, can be

prepared from a one-dimensional cluster state composed of

N qubits with variance N þOð1Þ, by measuring every second

qubit in the σx with subsequent local rotations on the

remaining qubits depending on the measurement results

(Fröwis and Dür, 2012b; Yadin and Vedral, 2015). Hence,

under the assumption that LOþ LU are free, cluster states

become macroscopically quantum. Finally, Yadin and Vedral

(2015) considered all LOCC as being free operations.

H. How to determine the effective size in experiments

An important point is the applicability of the measures to

real experiments. In addition to being convincing on a

theoretical level, the effective size of a measure should ideally

be extractable from experimental data. In this section, we

examined some proposed protocols where this is possible

without a full state tomography.

1. Macroscopic distinctness

Macroscopic distinctness as defined by Korsbakken et al.

(2007) and Sekatski, Sangouard, and Gisin (2014) can

theoretically be measured in the lab. For the effective number

of particles (Korsbakken et al., 2007), one needs to have

access to single particles or at least small groups of them.

The distinguishability is given by the optimal measurement. If

this is not available in the lab, any measurement will give a

lower bound on the effective size. In the case of classical

detectors (Sekatski, Sangouard, and Gisin, 2014), it is

necessary to have a detector that can be modeled in the

way presented in Sec. II.A.11, ideally with a tunable reso-

lution. For both approaches, one has to generate either jAi or
jDi and measure the probability distribution as a function of

the number of measured particles or detector resolution. From

this distribution, one can calculate the effective size. Similarly,

the subjective part of Laghaout, Neergaard-Nielsen, and

Andersen (2015) can be measured by preparing the single

components jbki, but special access to subsystems or tunable

detectors is not necessary. The quantumness, as discussed in

Sec. II.D.1, is measured independently.

2. Macroscopic coherence

Already Leggett (1980) noted that quantum states with

large-scale quantum correlations are distinguishable from

mixtures only if OðNÞ particle correlations are measured.
32

He argued that a way out is the unitary time evolution even

for local or two-body Hamiltonians as the expansion of

expð−iHtÞ contains OðNÞ correlation operators. Implicitly,

this idea is present in the following findings.

The way Björk and Mana (2004) formalized the idea of

interference utility is precisely in the spirit of Leggett (1980).

A broad distribution in the spectrum of the Hamiltonian H is

directly connected to the maximal “speed” of evolution via the

inequality (Mandelstam and Tamm, 1945; Fleming, 1973)

jhψ je−iHtjψij2 ≥ cos2ðΔHtÞ ð60Þ

for all ΔHjtj ≤ π=2. This inequality tells us that witnessing a

fast change of the state implies widespread coherence spread

in the spectrum of H. Equation (60) can be directly gener-

alized to mixed states (Fröwis, Grübl, and Penz, 2008), but the

inequality generally becomes loose for low purity.

Luckily, the intimate connection between a sensitive nota-

tion of statistical distance measured by the Fubini-Study

metric and the variance of the generator has a well-behaving

extension to mixed states (Wootters, 1981; Uhlmann, 1991;

Braunstein and Caves, 1994). There the equivalent metric is

the Bures metric dsB and the variance is replaced by the

quantum Fisher information. One then finds that

dsB ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðρ; HÞ

p
dt; ð61Þ

where dsB measures the infinitesimal distance between ρðtÞ
and ρðtþ dtÞ generated by H. Equation (61) has far-reaching

consequences for the foundations and applications of quantum

mechanics. Here we are interested in measuring lower bounds

on the quantum Fisher information using Eq. (61). This can be

done in several ways. First, one can directly tighten Eq. (60).

One replaces the left-hand side by the fidelity Fðρ; σÞ ¼
½Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pp
�2 between the initial and final states and, in

addition, the standard deviation on the right-hand side byffiffiffiffi
F

p
=2 (Fröwis, 2012). After choosing a fixed measurement

with outcomes fxg, the probability distribution before pðxÞ
and after qðxÞ, the evolution of duration t can be used to

bound the quantum Fisher information (Fröwis, Sekatski, and

Dür, 2016)

F ðρ; AÞ ≥ 4

t2
arccos2

X

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxÞqðxÞ

p
: ð62Þ

Second, one can derive a tighter version of the Heisenberg

uncertainty relation
33

F ðρ; AÞ ≥ hi½A; B�i2
ðΔBÞ2 : ð63Þ

By measuring the variance of B and the expectation value of

i½A; B� one is able to find lower bounds on F ðρ; AÞ.
Note the similarity between Eq. (63) and Eq. (23), whose

conceptual closeness becomes even more evident when

studying the proofs of the bounds. This highlights the

32
An extreme example is the GHZ state, Eq. (4), for which

omitting a single particle is enough to hide all essential quantum

features.

33
Kholevo (1974), Hotta and Ozawa (2004), Pezzé and Smerzi

(2009), and Fröwis, Schmied, and Gisin (2015).
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connection between the ideas of Cavalcanti and Reid (2006,

2008) and Fröwis and Dür (2012b).

3. Measuring loss of coherence

The measure of Nimmrichter and Hornberger (2013) is

specifically designed to be experimentally accessible. Every

experiment that excludes a certain parameter regime of a

collapse model has a value in the framework of Sec. II.A.10,

which is directly measured by the amount of time over which

quantum coherence is maintained.

The contribution of Lee and Jeong (2011) is also strongly

connected to the susceptibility under decoherence.The larger the

loss of purity by applying a canonical noise channel, the more

macroscopically quantum the state is according to the measure

I . Jeong, Noh et al. (2014) showed that I can be experimentally

estimated without the need of a full state tomography. The

basic idea is to extract the purity from an overlap measurement

of two identically prepared states (see Fig. 9). This is done by

comparing the purity of the state before and after a short

application by the decoherence channel described by

Eq. (30). An overlap measurement realizing Trρ2 can be

implemented with a SWAP operation between the two systems,

followed by a suitablemeasurement of bothmodes. For a single-

mode photonic state, this can be realized using a beam splitter

and a photon number resolving detector after one of the modes.

Similarly, one can combine the two copies of the state with

auxiliary systems and use controlled SWAP operations (Jeong,

Noh et al., 2014). Furthermore, the scheme is adaptable to the

measure of Park et al. (2016) for spin ensembles.

4. Correlations for index q

The index q from Shimizu and Morimae (2005), Eq. (16),

is in principle measurable without full state tomography. We

considered a scenario in which one has access to single-particle

measurements. Then the goal is to measure two-body corre-

lations in the spirit of Eq. (15), but in several conjugate bases.

This is a way to generalize the concept of Bell inequalities or

entanglement witnesses to multipartite settings. By verifying

OðN2Þ pairs with Oð1Þ correlations, one can conclude that the

present state exhibits q ¼ 2 (Shimizu and Morimae, 2005).

I. Summary and conclusion

Many different aspects of macroscopic quantumness are

covered by a growing number of proposals. In view of our

initial starting point, to formalize the idea of macroscopic

distinctness in Schrödinger’s cat example, a possible con-

clusion is the following.

Measures based on an explicit jAi þ jDi structure clearly

work well whenever jAi and jDi themselves are localized

in a given spectrum in which the two states are maximally

distinguishable (i.e., jAi and jDi behave classically, see

example 1). In this regime, a macroscopic superposition is

a special case of a macroscopic quantum state as characterized

by more general measures. However, it is open whether the

original intention of an effective particle number is maintained

for general states, in particular, if jAi and jDi themselves are

nonclassical (see example 2).

To measure macroscopic distinctness, it seems appropriate

to find functions that evaluate the spread of probability

distribution in the spectrum of a certain operator (or a set

of possible operators). If the underlying quantum state is pure,

the coherence between far-distant parts is then a signature of

macroscopic quantumness. The variance is proposed by many

and is a good choice to classify the global structure of the

probability distribution. More sophisticated measures (e.g.,

entropies and distant functions in combination with additional

parameters) are able to resolve finer aspects.

It is important to have a proper scaling of the function that

measures macroscopic distinctness for a given observable.

For example, the variance of a product state in spin ensembles

increases linearly for collective operators. However, this

should not be seen as a macroscopic quantum effect but as

an accumulation of coherence on the single-particle level. In

this example, a pure product state is then considered as a state

carrying “one unit of quantumness” and hence a measure has

to be appropriately rescaled.

The presented measures are applied to various physical

systems. While the (rescaled) variance arguably makes sense

for spins and photons, its applicability when dealing with

spatial or superconducting degrees of freedom is open. On the

other hand, for massive systems and superconducting devices,

measuring the (potential) falsification of collapse models has a

clear operational meaning.

The extension to mixed states should satisfy basic require-

ments from information theory. The convex-roof construction

for measures defined for pure states generally fulfills these

conditions, but it is not the only option. In the case of the

variance, the convex-roof extension leads to the quantum

Fisher information with the additional benefit of having tight

and accessible lower bounds.

Currently, the quest for a well-motivated set of free

operations for macroscopic quantumness will further help

to classify and understand macroscopic quantumness. On the

more practical side, there is a trend to make the presented

measures applicable to experimental data.

III. LIMITS FOR OBSERVING QUANTUM PROPERTIES

IN MACROSCOPIC STATES

The measures that were presented in Sec. II provide various

ways to characterize sets of macroscopic states and hence to

study the sensitivity of these states to different noise in a

systematic way. This reveals certain limits and inherent

difficulties to prepare, maintain, and observe macroscopic

FIG. 9. Basic scheme of Jeong, Noh et al. (2014) to exper-

imentally access the measures of Lee and Jeong (2011) and

Park et al. (2016). Two identical copies of a state ρ are

generated. Then either both copies are subject to decoherence,

Eq. (30), or not. In both cases, the purity of ρ is measured via an

overlap measurement to determine Trρ2 (which is not the

fidelity between the two states). Comparing the purity in the

presence and absence of decoherence allows one to estimate

IðρÞ. From Jeong, Noh et al., 2014.
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states. In the following we investigate these limitations and

summarize a number of results that were obtained in this

context. In a certain sense, they suggest that the very same

features that make a state macroscopic also make it susceptible

to noise, difficult to prepare and maintain, and almost

impossible to measure.

We start by discussing how quantum states are affected by

noise and decoherence in Sec. III.A. To this aim we first

consider some general results on decoherence that are appli-

cable to all quantum states and then state more specifically

how macroscopic quantum superposition states and general

macroscopic quantum states are affected. In Sec. III.B, we

then turn to the measurement of such states and show how

limited detector efficiency and resolution hinders the detection

of macroscopic quantumness. We also discuss the closely

related but slightly less demanding task of certifying quantum

states (prior to the action of noise), which however requires

exponentially growing resources for macroscopic superposi-

tions. We briefly touch on the issue of preparing states in

Sec. III.C. Finally, in Sec. III.D, we present a number of

methods and approaches to circumvent some of the mentioned

problems. Most of these methods are, however, only appli-

cable in a limited sense, in particular, for certain, specific

kinds of noise. The only exception is the quantum error

correction, where we argue that encoded quantum super-

position states can indeed be prepared, maintained, and

measured. Theses states are, however, not necessarily mac-

roscopically quantum in a sense as discussed in Sec. II, but

only on a coarse-grained level. We summarize in Sec. III.E.

A. Maintaining macroscopic quantum states

Let us start by discussing the limitations arising from the

impossibility to maintain the state of the system by shielding it

perfectly from the environment.

1. Decoherence

The decoherence program (Zurek, 2003a, 2003b) can be

viewed as a general explanation why quantum features do not

prevail at a macroscopic scale. Every quantum system

interacts with its environment and becomes entangled. As

the environment cannot be controlled, it has to be traced out

and the system-environment entanglement manifests itself in

decoherence of the system, i.e., a certain mixedness due to the

lack of knowledge on the environment leading to a reduction

of quantum coherences.

As we show a very simple instance of the generic effective

quantum-to-classical transition for states of bosonic fields

follows from the seminal works of Husimi (1940), Glauber

(1963), Sudarshan (1963), and others. Any state of a bosonic

field ρ can be faithfully represented by quasiprobability

distributions P, W, and Q (Vogel and Welsch, 2006). In

particular, the Glauber-Sudarshan P representation is an

expansion of the state in the overcomplete basis of coherent

states

ρ ¼
Z

PðαÞjαihαjd2α: ð64Þ

If PðαÞ ≥ 0 is positive the state ρ is a mere mixture of coherent

states and is said to be classical. This terminology arises from

the fact that the coherent states can be thought of as the most-

classical subset of the set of all possible states of a mode of a

quantum field: they saturate the uncertainty relations for all

pairs of quadratures and also phases and numbers of photons.

Furthermore, they are eigenstates of the forward part of the

field operator, and they remain within the set of coherent states

under passive operations. For instance coherence states are the

only pure states of the field that do not generate entanglement

when sent on a beam splitter. Negative values of the P function

indicate intrinsic quantum features. The P function is related

to the Husimi Q function via a convolution with a Gaussian,

QðαÞ ¼
Z

PðβÞe−jβ−αj2d2β: ð65Þ

However, QðαÞ ¼ ð1=πÞtrρjαihαj is a probability distribu-

tion and hence is always positive. A direct consequence of

these two observations is that, regardless of the initial state ρ, a

decoherence process E that acts on the P representation of a

state as a convolution renders the state classical—the P func-

tion of the state after the decoherence ρ0 ¼ EðρÞ is positive.
It is easy to see that such a decoherence process is given by

thermal noise, i.e., the diffusion of the state in phase space

generated by

EðρÞ ¼
Z

e−iλ1Xþλ2PÞρeiðλ1Xþλ2PÞgσðλÞd2λ; ð66Þ

with a Gaussian

gσðλÞ ¼
1

2πσ2
e−jλj

2=ð2σ2Þ;

the random variable λ ¼ ðλ1
λ2
Þ with σ ¼ 1 and two conjugate

quadratures X and P. A similar observation holds for spins.

In this case quasiprobability distributions PðnÞ, the expansion
in spin-coherent states, and QðnÞ are defined on the sphere

(Arecchi et al., 1972; Agarwal, 1998), and P is mapped to Q
by spherical smoothing (Agarwal, 1998; Schmied, 2017). The

noise that maps P to Q in this case corresponds to a random

rotation of the state generated by eiλ·S with the total spin

operator S and a “spherical Gaussian” random variable λ.

Decoherence is a generic mechanism that concerns quan-

tum features in general, and it is not specific to macroscopic

quantum states or macroscopic quantum superpositions, dis-

cussed in this review. Nevertheless, it is commonly believed

that macroscopic quantum superpositions are particularly

affected by decoherence (Zurek, 2003b) and therefore are

particularly fragile and hard to observe. Such beliefs are

supported by a growing manifold of examples, but also

generic statements, which we will discuss in this section.

Let us mention a few early results. Caldeira and Leggett

(1985) discussed the instability of superpositions of Gaussian

wave packets in a harmonic potential weakly coupled to a

bath. Yurke and Stoler (1986) emphasized the same effect for

the superposition of coherent states under loss. Milburn and

Holmes (1986) demonstrated that quantum signatures of an

initial coherent state evolving in an anharmonic potential and
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coupled to a bath disappear faster when the energy of the

initial state is larger. This list can be easily extended. For

instance, consider the effect of the thermal noise of Eq. (64) on

a superposition of coherent states jαi þ j − αi. From the

expansion of the coherent state in the X-quadrature basis

h�αjxi ¼ π−1=4eðx∓
ffiffi
2

p
αÞ2=2 (for real α) it directly follows that

for large α the coherence Eðjαih−αjÞ is damped by a factor

∝ e−α
2σ2 . Another prominent example is the GHZ state, for

which it is easy to see that by interaction with independent

local environments the coherences ðj0ih1jÞ⊗N also decay

exponentially fast ∝ e−γNt, as single-qubit coherences j0ih1j
decay as ∝ e−γt. See Simon and Kempe (2002), Cavalcanti et

al. (2009), and Aolita et al. (2010) for detailed studies of the

effect of noise on the entanglement in GHZ and other graph

states.

Interestingly, one of the first attempts to provide an effective

size of a macroscopic superposition (Dür, Simon, and Cirac,

2002) took the fragility of the coherences, i.e., the intrinsic

quantum features of a superposition, as a starting point.

Hence, any state that is macroscopic in this sense is by

definition also fragile to noise. Later attempts to provide

measures for macroscopic quantumness do not contain a direct

reference to the behavior of the state under noise and

decoherence. Nevertheless, one can still relate the features

responsible for macroscopic quantumness to the behavior of

the states under certain noise processes as we now discuss.

2. Fragility of macroscopic quantum superpositions

We first consider macroscopic quantum superpositions. In

order to confirm that this is indeed a macroscopic quantum

superposition, one needs to show that jAi and jDi are

macroscopically distinct, and that the state is indeed quantum,

i.e., a coherent superposition and not an incoherent classical

mixture. Since these two aspects are independent we can

formulate our question as follows: How is the decay of the

quantumness under noise affected by the macroscopic dis-

tinctness of the state? Let us consider the original situation

imagined by Schrödinger where the macroscopic system

M is entangled with a microscopic atom A as

j↑iAjAiM þ j↓iAjDiM, the quantumness of the state is then

identified with the entanglement between the systems M

and A.
34

We are interested in the decay of entanglement in

the state after the action of some noise channel on the

macroscopic system, which can always be represented by a

unitary interaction of the system with the environment.

The example of the N-particle GHZ state, with jAi ¼
j0i⊗N and jDi ¼ j1i⊗N mentioned earlier is a good starting

point. It is enough for the environment to measure a single

particle in order to extract the which-branch information and

collapse the superposition to a mixture losing all entangle-

ment. Importantly, the probability that no particle is measured

by the environment decreases exponentially with N. This

makes the GHZ state fragile. The crucial property is the ease

to distinguish the two branches, which increases with N. As

one could expect, such a link between fragility and macro-

scopic distinctness can be generally made for any measure

based on the ease to distinguish between the two branches

[cf. Sec. II.C.2 and Sekatski, Gisin, and Sangouard (2014)].

The proposal of Korsbakken et al. (2007) (Sec. II.A.6)

implies that a macroscopic superposition is fragile with

respect to projectively measuring small parts of the system

or simply losing these particles to the environment. This

follows from the observation that if the two branches can be

distinguished by measuring only a small number of subsys-

tems, then even a small amount of loss leaks enough particle to

the environment to allow it to fully collapse the state to one of

the two branches.

Similarly, a superposition state that is macroscopic regard-

ing classical measurements of an operator A (see Sec. II.A.11),

i.e., measurements that have in general some finite resolution

and disturb the system only weakly, is fragile with respect

to a dephasing noise generated by the same operator. This

follows from the observation that such a noise channel can be

represented as a weak measurement of the observable A by the

environment. Again for a superposition of macroscopically

distinct states even a small amount of noise allows the

environment to obtain full which-branch information and

destroy the quantumness of the state.

This implies that a coherent superposition of two macro-

scopically distinct quantum states very quickly becomes a

mixture under the effect of decoherence. Therefore the same

feature that defines macroscopic distinctness makes the

maintenance of the quantumness of the superposition state

extremely challenging.

We remark that a similar result was shown (Sekatski, Yadin

et al., 2017) for states with a more general structureP
n

ffiffiffiffiffiffi
pn

p jniAjAniM, where the entanglement of formation

is also increasingly fragile with respect to the measure of

Sec. II.A.11.

3. Sensitivity of macroscopic quantum states

A separation between macroscopicity and quantumness for

a given state is typically not made for general macroscopic

quantum states. Therefore, the argument from the previous

section cannot be easily extended to arbitrary states. Here we

present several ways to tackle the question about the fragility

of macroscopic quantum states: (a) First, one can quantify the

effect of noise on a state by measuring how fast the state

becomes mixed under the effect of noise. (b) Second, the

effect of noise on a state can be quantified by asking how

much the state itself is susceptible or stable with respect to

noise, i.e., how far does the state get from itself after the action

of the noise. (c) Finally, one can directly analyze how the

macroscopic quantumness of the state is affected by the noise.

In other words one can bound the maximal size of the state

that is the output of some noise process or derive requirements

on the noise that have to be satisfied in order to prepare states

of a desired size.

a. Susceptibility regarding purity.

The purity of a state Trρ2 measures how close a quantum

state ρ is to a pure state. Given a pure initial state jΨihΨj,

34
The presence of the atom is instructive but by no means

necessary. In its absence the quantumness can be identified as the

distance of the state from the mixture or as the amplitude of the

coherence term jAihDj in the density matrix.
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Shimizu and Miyadera (2002) considered the effect of weak

local noise on the purity of the state by analyzing its decay rate

Γ ¼ −
1

2

d

dt
ln Tr½ρðtÞ2�jτc≪t≪1=Γ; ð67Þ

where τc is a correlation time of the noise process. The local

noise process is modeled as a local classical noise described

by the Hamiltonian H ¼ λ
P

xfðxÞâðxÞ with a random vari-

able fðxÞ and a local operator âðxÞ acting on the system at

position x, or as local environmental induced decoherence

described by H ¼ λ
P

x f̂ðxÞâðxÞ where f̂ðxÞ is a local

operator at position x of the environment. Shimizu and

Miyadera found that, quite generically for both kinds of weak

disturbances,

Γ ≈ λ2
X

k

gðkÞhΨjδA†

kδAkjΨi; ð68Þ

where λ is the small interaction strength, gðkÞ ¼ Oð1Þ is the
spectral intensity, and δAk ¼

P
xe

−ikx½âðxÞ − hΨjâðxÞjΨi� is a
collective operator. Hence, the relative decoherence rate Γ=N

is always constant if the initial state has anOðNÞ variance with
respect to all local operators Ak. On the other hand, Γ=N is

system size dependent if there exists an Ak ≡ A for which

ðΔAÞ2 ¼ OðN1þϵÞ with ϵ > 0 [cf. the effective size

maxA∶localðΔAÞ2=N, Sec. II.A.9].

Similar results were found for the phase space when the

decoherence is generated by quadrature operators. Lee and

Jeong (2011) showed that their measure can be equivalently

defined as the susceptibility of the state to the noise process

given by loss of photons IðΨÞ ≈ Γ (see Sec. II.A.8).

b. Susceptibility regarding change of state.

Shimizu and Miyadera (2002) defined the stability of the

state under local measurements through the correlations

observed between two local observables aðxÞ and bðyÞ at

two different locations. More precisely they say that a state ρ

is stable under local measurements if for any ε > 0 the

correlation between the observable is low enough jPðbjaÞ −
PðaÞj ≤ ε for sufficiently large distance jx − yj. Shimizu and

Miyadera (2002) showed that for this definition a quantum

state is insensitive to local measurements if and only if it

has the cluster property [i.e., states with p ¼ 1 in Eq. (14)].

Otherwise, the measurement of a single spin l might signifi-

cantly change the probability distribution for another spin l0.
This becomes evident when inspecting Eq. (15): A large

variance implies the presence of some two-body correlations

between different spins, hence the measurement results of aðlÞ

and aðl
0Þ are correlated.

The disturbance-based measure MσðρÞ proposed by Kwon

et al. (2017) (see Sec. II.A.14) by definition quantifies how far

the state gets from itself after the action of the map Φσ , which

corresponds to the coarse-grained measurement of an operator

A. Since the map Φσ can be equivalently seen as a dephasing

noise generated by the same operator A, it follows that

macroscopic quantum states are particularly sensitive to such

noise.

c. Fragility of macroscopic quantum states under noise

Let us start with the measure by Fröwis and Dür (2012b)

based on the quantum Fisher information (see Sec. II.A.9). In

quantum metrology, the question about the maximally attain-

able quantum Fisher information in the presence of noise is

central, as the quantum Fisher information is related to the

precision of the estimation protocol. Hence, as summarized in

Sec. IV.B, many tools were developed to upper bound the

quantum Fisher information of a protocol given a Hamiltonian

and a noise process.
35
Using these tools it can be shown

36
that

the quantum Fisher information of any state after the action of

generic local noise processes for any operator A can scale only

as OðNÞ.37 This limitation is rather severe. For instance, for

the depolarizing noise
38

with only 1% error probability per

particle, one is limited to F=ð4NÞ ≤ 10. For the measure of

Fröwis and Dür (2012b) this means that the effective size

cannot exceed 10. In other words the same quantum Fisher

information can be attained by a state where spins are

entangled only within groups of size 10.

Similarly, Park and Jeong (2016) showed that thermal-

ization suffices to destroy macroscopic quantum states. To this

end, they argued that after thermalization the variance of all

local operators behaves extensively, ðΔAÞ2 ∼OðNÞ (as it is

assumed in thermodynamics).

Carlisle et al. (2015) used the measure of Lee and Jeong

(2011) (see Sec. II.A.8) to assess the achievable size of

macroscopic quantum superpositions in optomechanical set-

ups. They showed that it is in general very hard to obtain

macroscopic superpositions and in fact requires a large single-

photon optomechanical coupling strength and postselection.

B. Measuring and detecting macroscopic quantum states

We now discuss limitations to observe macroscopic quan-

tum states with imperfect or size-limited measurement

devices.

1. Coarse graining and control of measurements

Another reason which is sometimes invoked to explain the

apparent absence of quantum effects on macroscopic scale is

the limited resolution of measurements apparatus. The intu-

ition here is that the detection of quantum effects such as

quantum superpositions or entanglement on a macroscopic

scale requires high measurement precision. There is a long list

of examples confirming this intuition.

Early works by Mermin (1980) and Peres (2002) analyzed

the task of witnessing the entanglement of a singlet state (total

35
Fujiwara and Imai (2008), Escher, de Matos Filho, and

Davidovich (2011), Demkowicz-Dobrzanski, Kolodynski, and Guta

(2012), and Sekatski, Skotiniotis et al. (2017).
36
A. Lopez Incera et al., in preparation.

37
In the case of qubits the only exception is the Pauli noise given

by EðρÞ ¼ pρþ ð1 − pÞσnρσn, under which the quantum Fisher

information can still scale quadratically. As an example, recall that a

Dicke state is an eigenstate of such noise process for σn ¼ σZ.
38
Local depolarizing noise is described by a completely positive

trace-preserving map acting on qubit a, EðaÞðpÞρ¼pρþ½ð1−pÞ=4�P
3
j¼0σ

ðaÞ
j ρσ

ðaÞ
j , where 1 − p is called the error probability.
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spin zero) of two large spins by measuring the spin operators

Sn on the two spins. Mermin showed that when the size of the

spins increases one requires better control on the angle of the

measurements, the direction of the measured spin n, in order

to demonstrate entanglement. Peres showed that the resolution

of the measurement 1=σ required to demonstrate entanglement

also becomes more stringent with the size of a spin. A lack of

resolution of the measurement of an operator A ¼ P
kakjkihkj

refers to coarse graining of the measurement outcomes.

Formally, to account for a finite coarse-graining σ, the positive

operator valued measure elements of an ideal measurement

Ek ¼ jkihkj are modified as

Ek ¼ jkihkj → Eσ
k ¼

X

k0
nσðak − ak0Þjk0ihkj; ð69Þ

with some distribution nσðxÞ of width σ (often taken to be a

Gaussian distribution or a square function). Similar results for

coarse-grained measurements of Stokes operators
39
have been

obtained by Simon and Bouwmeester (2003) for multiphoton

singlet states, and by Raeisi, Sekatski, and Simon (2011) for

states where micro-macro entanglement is generated via

parametric amplification of one photon from an entangled

pair (Sekatski et al., 2009; De Martini and Sciarrino, 2012;

Fröwis and Dür, 2012a).

In the case of bosonic fields, coarse-grained measurements

of quadratures Xθ are mathematically equivalent to

decoherence as discussed in Sec. III.A.1. Gaussian coarse

graining of quadrature measurements

δðXθ − xÞ → 1ffiffiffiffiffi
2π

p
σ
e−ðXθ−xÞ2=2σ2 ð70Þ

can be modeled by inserting a noise channel, Eq. (64), that

acts on the state just before the measurement. This is exactly

the noise channel that diffuses the state in phase space. Hence

coarse graining of quadratures is sufficient to make all

observable measurement statistics reproducible by classical

states (those having a positive P function).

In the case of spins it is a lack of control on the

measurement angle n which is in direct correspondence to

decoherence. Indeed the lack of control over the angle can be

modeled by applying a random rotation on the state prior to

the measurement. Again this is exactly the noise process that

maps the P function of the spin to its Q function, demon-

strating that a lack of control on the angle is sufficient to wash

out nonclassicality from the observed statistics.
40
In addition,

the strength of the angular noise (i.e., the width of the

“spherical Gaussian” that is convoluted with the P function)

decreases with the size of the spin (Schmied, 2017).
41
Kofler

and Brukner (2008) showed that a coarse graining of the spin

measurement approximately corresponds to a lack of control

on the angle, hence if the amount of coarse graining σ is larger

than the square root of the total spin size
ffiffiffiffi
N

p
the observed

measurement statistics can be explained by classical states.

This, however, does not imply that no quantum features can

ever be observed with measurement devices with limited

stability or/and precision, as the system can be manipulated

prior to the measurement or in-between subsequent measure-

ments. We come back to this in Sec. III.D.3.

2. Reference frames and the size of measurement apparatus

Precision and stability of measurement devices is a tech-

nical problem that can be in principle overcome by techno-

logical efforts. On the other hand, there are limitations that

cannot be overcome, for example, the size of the measurement

device, that are intrinsically limited (by the size of the

Universe in the most optimistic case). It turns out that such

limitations become relevant when one considers macroscopic

quantum effects.

Using Heisenberg uncertainty relations and relativistic

causality Kofler and Brukner (2010) demonstrated that a

measurement device of mass M and size R can lead only

to a spin measurement that has an angular resolution of

δθ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=cRM

p
. Hence, any measurement suffers from some

intrinsic amount of coarse graining due to its finite size.

Along the same lines it was recently shown by Skotiniotis,

Dür, and Sekatski (2017) that the limited size of measurement

devices forbids the observation of superposition states

jAi þ jDi that are macroscopically distinct in the center-of-

mass position, total spin, or energy. They adopted a formalism

in which the total system consisting of the superposition state

and the measurement device (reference frame) is closed and

has to abide by the fundamental symmetries of nature given

by the Galilean group. To explicitly account for the lack of any

additional reference frame, a twirling map is applied on the

total system. Under the assumption that the state of the

reference frame is classical, it is then shown that in order

to distinguish the superposition from the mixture the size of

the measurement device has to be quadratically bigger than the

size of the superposition. On the other hand, it is also shown

that superpositions in relative degrees of freedom do not suffer

from such limitations.

While these fundamental limitations are not a problem for

microscopic or even mesoscopic experiments, it becomes

highly relevant when considering true macroscopic super-

positions. For example, Skotiniotis, Dür, and Sekatski (2017)

showed within a simple model that in order to observe a

superposition state of the size of a cat one requires a reference

frame of the size of the Earth.
39
The cases of photonic states discussed here is very similar

to the case of large spins, as the Stokes operators for two bosonic

modes Jz ¼ ð1=2Þða†a − b†bÞ, Jx ¼ ð1=2Þða†bþ ab†Þ, and Jy ¼
ð−i=2Þða† − ab†Þ form the Schwinger representation of the spin

operators.
40
Note this does not mean that one cannot distinguish classical and

nonclassical states with such measurement. If the noise in the

measurement is well characterized, it can in principle be deconvo-

luted from the observed statistics (cf. Sec. III.D.1).

41
This can be intuitively understood from the observation that the

overlap between two spin-coherent states at different angles de-

creases with the size of the spin jhnj⊗N jn0i⊗N j ¼ jn · n0jN . Therefore
nonclassical features of the state (regions with a negative P function)

get more and more narrow with increasing N.
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C. Preparation of macroscopic quantum states

Let us now focus on the difficulties to prepare macroscopic

quantum states. Several works considered the question

whether macroscopic superposition states or macroscopic

quantum states can be ground states of “physical”

Hamiltonians. If this is the case, one could generate these

states simply by means of cooling. However, this is not the

case for all states. For example, it was shown that the GHZ

state, Eq. (4), cannot be the unique ground states of a

quasilocal Hamiltonian, but requires at least one global

interaction term in the Hamiltonian that affects all particles

(Van den Nest et al., 2008). A similar result was found by

Dakić and Radonjić (2017) for general macroscopic super-

position states. In particular, it was shown that local

Hamiltonians that have macroscopic superposition states as

unique ground states have a vanishing energy gap, which in

turn requires the presence of a long-ranged interaction term in

the Hamiltonian.

On the other hand, there exist unique ground states of two-

body Hamiltonians that have a variance of OðN2Þ, i.e., these
states are macroscopically quantum according to several

measures. One such example is an N-qubit Dicke state with

N=2 excitations (see example 2). This state is the unique

ground state of two-body Hamiltonians
42

and might be

efficiently prepared by means of cooling or even occur

naturally. Notice, however, that for Dicke states the corre-

sponding Hamiltonian is not local in the sense of arranging

qubits on a lattice, but contains long-range two-body inter-

action terms.

D. Further limitations and counterstrategies

Even though there are severe limitations and restrictions to

prepare, maintain, and measure macroscopic quantum states,

there exist some counterstrategies and bypasses that allow one

to circumvent these limitations to a certain extend.

1. Certifiability of large-scale quantum states

One of the main goals of Sec. III.A.1 was to understand

how much of macroscopic quantumness can survive in a state

after the action of some noise process. We saw that quite

generically macroscopic quantum states are fragile and thus

very hard to observe in practice. Nevertheless, one can be less

demanding and ask whether the macroscopic character of the

state prior to the noise can be certified by measuring the final

state and assuming that the noise process is perfectly known.

If the noise process E is not too strong [more precisely, if its

action on the vector space of operators BðHÞ has a trivial

kernel], then the state of the system prior to the noise can

always be reconstructed to any desired precision by collecting

enough measurement statistics on the final state. But the

crucial question then is how many times one has to repeat the

measurements in order to collect enough statistics.

Fröwis, van den Nest, and Dür (2013) showed that any

superposition state jAi þ jDi that is macroscopic distinct

by the criterion of Korsbakken, Wilhelm, and Whaley (2010)

(see Sec. II.A.6) is incertifiable whenever a small amount of

local depolarization noise acts on the state. By incertifiability

they mean that the number of repetitions that allows

one to distinguish the initial macroscopic superposition state

jAi þ jDi from the orthogonal state jAi − jDi (and hence

also from the mixture jAihAj þ jDihDj) increases exponen-
tially with its size. The reason for this is that the coherence

between macroscopically distinct states EðjAihDjÞ is expo-

nentially damped by local depolarizing noise, such that one

needs exponentially many copies in order to distinguish

between the macroscopic superposition and the corresponding

mixture with a constant probability. This observation is

directly related to the fragility of the macroscopic super-

position states discussed in Sec. III.A.2. In particular, the

connection between macroscopic distinctness of jAi and jDi
with respect to coarse-grained measurements of an operator A

in Sec. II.A.11 and the incertifiability of their superposition

under dephasing noise generated by A was discussed by

Sekatski, Gisin, and Sangouard (2014).

Conceptually, the incertifiability of macroscopic quantum

superposition is quite a strong statement. It shows that, in

addition to be hard to maintain, even detecting traces of the

superposition in the final state is extremely hard in practice, as

it requires one to increase the total duration of the experiment

exponentially in the size of the superposition state.

On the other hand, Fröwis, van den Nest, and Dür (2013)

also showed that a quantum state is certifiable in the presence

of depolarizing noise if it is a unique ground state of a gapped

quasilocal Hamiltonian. Certifiable here means that one

can distinguish the initial state from all orthogonal states

with only polynomially many repetitions. While any state after

the action of local depolarizing noise has linear quantum

Fisher information (see Sec. III.A.3.c), one can show that for

the DickeN=2 state, for instance, quadratic Fisher information

of the initial state can be certified with any desired statistical

confidence (P value) with only OðN4Þ repetitions of the

measurement. This makes the Dicke state a promising

candidate for the experimental detection of a macroscopic

quantum state; however, performing OðN4Þ repetitions can

still be quite challenging for large N.

2. Counterstrategies against noise

For particular noise channels, passive or active strategies

might be available to maintain macroscopic quantum states or

macroscopic quantum superpositions. Such strategies were

particularly discussed in the context of quantum metrology,

where states with a large quantum Fisher information are

required to maintain a quantum scaling advantage. Landini

et al. (2014) discussed the usage of particular states in a

decoherence free subspace to protect the system against

collective dephasing. Active quantum error correction was

used by Arrad et al. (2014), Dür et al. (2014), and Kessler

et al. (2014) to protect the system against a specific noise

process, namely, rank-one noise that is orthogonal to the

sensing field. Fast quantum control was used by Sekatski,

Skotiniotis et al. (2017) to maintain the usability in quantum

42
As a simple exercise one can construct this Hamiltonian using

the total spin operators S2, S2z , and Sz (Fröwis, van den Nest, and Dür,

2013).
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metrology for any rank-one noise. The methods are similarly

applicable to actively maintain a large quantum Fisher

information under certain noise processes.

However, we emphasize that only some very specific noise

processes can be dealt with in this way. The ultimate bounds

for generic noise processes reported in Sec. III.A.3.c still

apply, making a quadratic quantum Fisher information generi-

cally inaccessible.

3. Counterstrategies against coarse graining

The results discussed in Sec. III.B.1 always considered a

restricted set of operators that can be measured with coarse-

grained detectors: the spin in some direction Sn for spin

systems and the quadratures Xθ for photons. Without any

restriction, the impact of coarse graining is weak in general.

To see this, imagine an observable with the same eigenbasis as

before, but with a clever rearrangement of the eigenvalues. In

this way, one can easily get rid of the difficulty to distinguish

neighboring eigenstates of the original operator. While such a

rearrangement of eigenvalues might seem rather abstract at

first glance, something similar can be physically done by

applying a unitary U on the system just before it is measured

(Kofler and Brukner, 2008). Later Jeong, Paternostro, and

Ralph (2009) showed that a simple Kerr-nonlinear interaction

Hamiltonian H is sufficient to generate unitaries U ¼ e−itH

that allow one to observe quantum features (violation of

macrorealism, see Sec. IV.A.1 for more details) with

extremely coarse-grained detectors.

However, this strategy might add additional constraints.

Wang et al. (2013) analyzed the superposition of two coherent

states jαi þ j − αi in the setting of coarse-grained quadrature

measurements and the possibility to perform a Kerr non-

linearity. They showed that by using such a Kerr interaction it

is possible to distinguish the superposition from a mixture

even with a low resolution, and the requirement on the control

precision of the interaction (the exact value of the interaction

time t) also increases with the size of the superposition jαj2.
It is open whether these findings can be extended to general

macroscopic quantum states.

A similar setting was analyzed for the task of observing

macroscopic quantum states. Fröwis, Sekatski, and Dür

(2016) presented a method to detect large quantum Fisher

information using detectors with limited resolution. The main

idea is to reuse the same operation as to prepare the state (e.g.,

a squeezing operation) in order to realize a modified meas-

urement process. While the initial measurement device is

coarse grained, the squeezing operation allows one to increase

the relevant resolution and to detect a quantum Fisher

information that, for existing setups, could be 2 orders of

magnitude larger. A similar approach was used by Davis,

Bentsen, and Schleier-Smith (2016). In both cases, the

requirements on the stability of the squeezing operation were

analyzed.

4. Encoded macroscopic quantum states

The results discussed in previous sections show that generic

noise processes, in particular, independent coupling of system

particles to the environment, destroy macroscopic superposi-

tions and macroscopic quantum states, even if each of the

local noise processes is arbitrarily small. On the other hand,

quantum error correction or fault-tolerant quantum computa-

tion (Nielsen and Chuang, 2000) can be used to actively

protect quantum information. Hence, this gives us the tools

to prepare, maintain, and certify encoded macroscopic quan-

tum states. For this, one has to accept a slight shift of the

definition of macroscopic quantum states, which we discuss in

this section.

In quantum error correction, quantum information is

actively protected against the influence of noise and

decoherence by encoding a logical two-level system into

several physical two-level systems, i.e., into a larger space.

Each qubit of a quantum state jψi is thereby replaced by a

logical qubit that consists of several physical qubits. For

example, the state jϕi ¼ αj0i þ βj1i is replaced by

jϕLi ¼ αj0Li þ βj1Li, where now the quantum information,

i.e., the parameters α and β are protected. Codes can be

designed to protect quantum information against different

kinds of noise, most notable noise that is local in some sense,

i.e., acting jointly in a correlated way only on a bounded,

localized number of qubits.

Note that operations for encoding and error correction

might themselves be noisy. The theory of fault-tolerant

quantum computation (Nielsen and Chuang, 2000) tells us,

however, that if noise in elementary single- and two-qubit

operations is below a certain threshold value, then one can

perform error correction in a fault-tolerant way. In fact, any

quantum computation can be realized fault tolerantly. In

particular, an encoded macroscopic quantum superposition

state jL-GHZNi ¼ ðj0Li⊗N þ j1Li⊗NÞ=
ffiffiffi
2

p
(Fröwis and Dür,

2011) can be created, maintained, and measured using noisy

elementary operations and under the influence of (quasi)local

decoherence. The same can be done for any other macroscopic

quantum state via the mapping jii → jiLi, i ¼ 0, 1. Note that

these encoded states are still susceptible against noise at the

logical level, which is however exponentially suppressed by

error correction if it results from noise on individual qubits.

We emphasis that mapping a macroscopic quantum state to

its encoded version might drastically change its effective size

according to some measures presented in Sec. II. For instance,

measures that maximize over all local operators and do not

consider an extension to quasilocal operators generally do not

assign a large effective size to encoded states. The logical

GHZ state jL-GHZNi, for example, does not have a large

variance with respect to any local operator (which is necessary

to ensure robustness), but it exhibits maximal variance for the

sum of logical Pauli operators σz;L ¼ j0Lih0Lj − j1Lih1Lj.
Therefore, it depends on the precise definition of the measure

(and hence on us) whether we call this state macroscopically

quantum or not. Note that other measures [e.g., the measures

of Korsbakken et al. (2007) and Marquardt, Abel, and von

Delft (2008)] do not decrease under the encoding (cf. exam-

ple 4 in Sec. II.B.1). Considering jL-GHZNi as a toy example

of a Schrödinger cat in a quantum superposition state between

two macroscopically distinct states, one could say that the

distinguishability between different constituents of the cat is

here not at the level of the individual atoms, but at the level of

molecules. In this sense, one may still call this a macroscopic

quantum superposition.
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E. Summary

In this section, we reviewed many different findings that

show that macroscopic quantum states are generally difficult

to observe. First, such states are difficult to maintain because

even weak perturbations leak enough information to the

environment in order to lose the coherence between macro-

scopically distinct states. Second, a lack of resolution of the

detectors or simply the finite size of the measurement devices

also seems to make the observations of quantum features on

the macroscopic scale difficult. Third, we argued that the

preparation of macroscopic quantum states might be difficult

in the first place.

For some problems such as measurement precision or

collective noise, counterstrategies have been conceived which

promise significant improvement. However, they typically

work only under certain constraints on the experimental

control, and, at least for some examples, these constraints

become hard to fulfill for macroscopic quantum states. Finally,

we have seen that when considering encoded macroscopic

quantum states, which are only macroscopically quantum on

the logical level, it is possible to overcome many no-go results.

IV. POTENTIALS OF MACROSCOPIC QUANTUM STATES

In this section we reviewed some selected applications and

potentials of macroscopic quantum states. We concentrated on

applications in quantum information processing and quantum

metrology, but also touched upon fundamental issues such as

probing the limits of quantum theory. We based our consid-

erations on the characterization of macroscopic quantum

states discussed in Sec. II.

While the previous discussion was mainly concerned with

the issue of how to classify macroscopic quantum states and

how to determine their effective size, here we are concerned

with more practical issues. With emergent quantum technol-

ogies the focus has shifted from fundamental considerations,

e.g., on entanglement or nonlocality, to practical applications

of quantum theory in different tasks, ranging from quantum

communication and quantum computation to high-precision

measurements in quantum metrology. Entanglement is often

said to play a key role in these applications. While this is

certainly true, we do not aim to provide a review on quantum

entanglement and its classification and quantification

(Horodecki et al., 2009). We are rather concerned with large

(macroscopic) quantum systems and their potential applica-

tions. Naturally, this is interlinked with certain issues of

entanglement. We start however by considering the role of

macroscopic quantum states in a more fundamental issue,

namely, for probing the limits of quantum theory.

A. Probing the limits of quantum theory

Quantum mechanics provides an accurate description of the

microscopic world and is in fact the most accurate description

of nature we have come up with so far. However, at macro-

scopic scales, quantum effects typically cannot be observed.

So the question remains if quantum mechanics is indeed valid

on all scales. Here we discuss two approaches that are related

to this issue.

1. Macrorealism and Leggett-Garg–like inequalities

In quantum mechanics, the superposition principle makes it

impossible to assign definite properties to a system. As long as

this principle holds only on microscopic scales (where it

has been thoroughly confirmed), it does not contradict our

classical perception of the macroscopic world. Leggett and

Garg (1985) formalized consequences from the basic

assumption that a macroscopic object has well-defined proper-

ties independent of any observer. To do so, they introduced a

second premise, namely, that there exist in principle mea-

surements that do not disturb the measured system. With these

two assumptions, they derived a bound, called a Leggett-Garg

inequality (LGI), on correlations between measurements

performed at different times. Any experimental violation of

an LGI implies the absence of one of the assumptions in

nature. The so-called clumsiness loophole (i.e., the violation

of the noninvasiveness of the measurement through lack of

experimental control), can be in principle avoided with ideal

negative measurements and/or carefully designed control

measurements (Wilde and Mizel, 2012). Lately, an LGI could

be experimentally violated using cesium atoms (Robens et al.,

2015) and superconducting devices (Knee et al., 2016); see

Emary, Lambert, and Nori (2014) for a comprehensive review.

Recently, alternative formulations of the same intuition

were proposed (Devi et al., 2013; Kofler and Brukner, 2013;

Saha et al., 2015). In the following, we are particularly

interested in the “no signaling in time” (NSIT) condition

by Kofler and Brukner (2013), which simply states that the

probability distribution for a measurement performed at time

t ¼ t3 should not depend on whether or not a measurement

at an earlier time t2 was done (see Fig. 10).
43
This condition

can be even further relaxed. The operation at time t2 does

not have to be a measurement, but can be any sort of

FIG. 10. Basic scheme of violating an LGI or the NSIT

condition. At time t1, the system is initialized in state jgi and

evolves under S1 until time t2. The free evolution is ideally

designed to increase the spread of coherence in the measurement

basis. Then, for half of the runs, a measurement is done (O, upper

line); nothing is done for the other half (lower line). A subsequent

free evolution S2 is followed by a final measurement at time t3.
The protocol can be further relaxed by lettingO be any operation.

Adapted from Knee et al., 2016.

43
The precise differences between the LGI and the NSIT are

subject to ongoing investigations [see, e.g., Halliwell (2017) and

Kumari and Pan (2017)]. Here we are more interested in the global

concept rather than in differences between them.
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(small) disturbance (Fröwis, Sekatski, and Dür, 2016; Knee

et al., 2016).

Kofler and Brukner (2007) showed that any pure quantum

state potentially violates an LGI and the NSIT condition for

the right choice of measurements. This is not surprising as

projective measurements are highly invasive. On the other

hand, limited measurement resolution prevents the violation of

LGIs, given that the free time evolution between the mea-

surements is linear (Kofler and Brukner, 2007). The reason for

an LGI violation is coherence of the quantum state in the

measurement basis. The effect of the limited resolution is to

disregard coherence between basis states with a spectral

distance less than the scale of resolution. Therefore, violating

an LGI with low measurement resolution implies coherence

between far-distant parts.

This directly links macroscopic quantumness to such tests of

macrorealism, which becomes particularly evident by inspect-

ing the measures of Cavalcanti and Reid (2006), Fröwis and

Dür (2012b), and Kwon et al. (2017). First, Kwon et al. (2017)

directly defined macroscopic quantumness as being highly

susceptible to small influences. A low-resolution measurement

O in the basis of A is precisely covered by the mapΦσ , Eq. (51),

when σ is large [i.e, σ ≳OðNÞ]. Therefore, macroscopic

quantum states in the sense of Kwon et al. (2017) are exactly

those states that gives the largest LGI violations. Second,

measuring a large quantum Fisher information F ðρ; AÞ based
on Eq. (62) is directly connected to the NSIT protocol as in

Fig. 10, where O is an application of expð−iθAÞ with θ small

enough
44
to disturb only states with large F (Fröwis, Sekatski,

and Dür, 2016). Last, macroscopic quantum coherence in the

spirit of Cavalcanti and Reid (2006) seems to be the kind of

coherence necessary to violate an LGI with coarse-grained

measurements as discussed by Lambert et al. (2016).

Note that tests of macrorealism can also be done in bipartite

scenarios in which measurements are spacelike separated

rather than timelike separated for a single system (Reid,

2016). As a result, a Bell-like inequality can be derived. The

locality assumption replaces the second premise of non-

invasiveness for the derivation of an LGI, which can be seen

as a conceptual advantage. However, it is still necessary to

require low-resolution measurements (“macroscopic degree of

fuzziness”) in order to guarantee that a potential violation

comes from entanglement (i.e., correlated coherence) between

macroscopically distinct states (Reid, 2016).

2. Validity of quantum mechanics at large scales:

Collapse models

One of the main motivations to study macroscopic quantum

states, and, in particular, to try to generate them in the lab,

is to show the validity of quantum mechanics at large scales—

or the need for some alternative theory. While many, if

not most, researchers believe that quantum mechanics is

indeed valid on all scales, modifications of quantum theory

have been suggested that lead to the absence of quantum

effects such as superpositions of states on a macroscopic scale.

Most prominently, collapse models (Bassi et al., 2013)

including gravitationally induced collapse (Diósi, 1989;

Penrose, 1996) or continuous spontaneous localization

(Ghirardi, Rimini, and Weber, 1986; Gisin, 1989; Ghirardi,

Pearle, and Rimini, 1990) have been suggested. In these

models, the time evolution is no longer given by the

Schrödinger equation, but replaced by a master equation

including a diffusion term that prevents massive systems to

be in spatial superposition states. As discussed in Sec. II.A.10,

these models are at the core of the measure proposed by

Nimmrichter and Hornberger (2013).

Collapse models have been extensively discussed by Bassi

et al. (2013), and a thorough review on the limits of quantum

superpositions has been provided by Arndt and Hornberger

(2014). Hence we only briefly comment on these aspects in

the following. In Bose, Jacobs, and Knight (1999), Romero-

Isart (2011), Nimmrichter et al. (2011), and Diósi (2015), for

example, the requirements to test different collapse models

using superpositions of massive objects are investigated using

quantum optomechanical systems, levitating nanospheres,

matter-wave interferometry, and classical mechanical oscil-

lators, respectively. The observation of quantum interference

effects or spontaneous thermalization on a large scale allows

one to put bounds on parameters in different collapse models

(e.g., the strength and rate of the collapse), thereby allowing

one to confirm or rule out these models in these parameter

regimes. Note that Sekatski, Aspelmeyer, and Sangouard

(2014) discussed a proposal to test collapse models by

mapping the macro component of a photonic micro-macro

state to an optomechanical system. This opens a way to

connect measures for macroscopicity for photonic systems to

measures for massive objects.

B. Quantum metrology

We now turn to quantum metrology (Giovannetti, Lloyd, and

Maccone, 2011; Tóth and Apellaniz, 2014; Pezzè et al., 2016)

as a potential application of large-scale quantum systems. In

quantum metrology, the goal is to determine an unknown

parameter, e.g., the strength of a magnetic field, a frequency, a

phase or a force, as accurately as possible with the given

resources. To this aim, a quantum state of a certain numberN of

systems is prepared. The state then undergoes an evolution that

is governed by a Hamiltonian that depends on the unknown

parameter ϑ (or possibly several parameters) and is then

subsequently measured. The experiment is repeated ν times,

and from the gathered measurement data an estimate for the

unknown parameter ϑ is determined. One can distinguish

between phase estimation and frequency estimation, where

in the latter one has control over the evolution time where in the

former this is not the case. There is a distinction between local

metrology scenarios, where the value of the parameter is almost

known and should be determined with increased accuracy, and

Bayesian scenarios where the initial knowledge is expressed as

a probability distribution which is updated. The local scenario

deals with many repetitions, while the Bayesian scenario is a

single-shot one. Depending on the concrete problem and

scenario, the number of systems N, the evolution time t, and
the number of repetitions of the experiment ν are counted as

resources. Bounds on the achievable accuracy can be found,

44
A small disturbance is often necessary in case one wants to

exclude the clumsiness loophole with control measurements dem-

onstrating almost no impact on “semiclassical” states.
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and in many relevant cases optimal strategies (i.e., initial states,

evolution time, and measurements) can be determined

(Giovannetti, Lloyd, and Maccone, 2011; Tóth and

Apellaniz, 2014; Pezzè et al., 2016).

A central quantity in this context is the quantum Fisher

information, which was already introduced in Sec. II.A.9. The

quantum Fisher information bounds the achievable accuracy

in the local metrology scenario via the Cramér-Rao bound

(Cramér, 1945; Rao, 1945), where the precision scales

inversely proportional to the quantum Fisher information.

Certain quantum states have a quantum Fisher information

that scales as OðN2Þ, while classical states are limited

to a quantum Fisher information of OðNÞ. This establishes

a quadratic advantage of quantum strategies over classical

ones. Sometimes the ratio of the quantum Fisher information

of a state jψi over the optimal classical state is called the

metrological gain, which can be up to N (Pezzè et al., 2016).

The quantum Fisher information is the basis of the measure

by Fröwis and Dür (2012b) (see Sec. II.A.9), which is hence

directly linked to the usefulness in metrological tasks. For a

pure state, the quantum Fisher information simplifies to 4

times the variance. Hence, many more measures are implicitly

connected to pure-state quantum metrology (see Sec. II.D.2).

The reason is the intimate connection between the coherent

spread of state in the spectrum of an observable A and the

state’s sensitivity to small changes induced by expð−iϑAÞ
[cf. Eq. (61)].

C. Quantum computing

Quantum computation is perhaps the holy grail of quantum

information processing and provides a long-term perspective

with its applications in solving certain problems with a

(possibly exponential) quantum speedup. Here we concentrate

on one particular model for quantum computation, the so-

called measurement-based quantum computation (MBQC)

(Briegel et al., 2009), with the one-way model as the most

prominent representative (Raussendorf and Briegel, 2001).

1. MBQC, entanglement, and macroscopicity

In MBQC an entangled state serves as a resource and is

manipulated by single-qubit measurements only. For a uni-

versal resource such as the 2D cluster state (Briegel and

Raussendorf, 2001), by definition any target state can be

generated. An efficient generation (with polynomial overhead

in auxiliary particles) is possible for all states that can be

prepared using a quantum circuit with polynomially many

single- and two-qubit gates. It follows that a universal resource

for MBQC must contain all types of entanglement to an

arbitrary amount (Van den Nest et al., 2007). In order to create

a target state, local measurements transform and concentrate

the entanglement of the (large) N-qubit cluster state into a

(smaller) M-qubit target system.

Therefore, one might be tempted to argue that such

universal resource states should also be macroscopically

quantum. However, according to most of the definitions for

macroscopic quantumness discussed in Sec. II, 2D cluster

states (and other universal resources) are not macroscopically

quantum (see example 4). The reason is the lack of two-body

correlations necessary for a large variance of some local

operator. There are, however, higher-order correlations in the

system (more precisely, five-body correlations) which can be

converted into two-body correlations via LOCC.

As mentioned in example 4, a 2D cluster state of size N
can be transformed into a GHZ state of OðNÞ particles using
only local measurements (Briegel and Raussendorf, 2001).

Hence, a variance-based measure can increase under LOCC.

Entanglement and macroscopicity, although seemingly related

concepts, are therefore intrinsically different, as noted in

Fröwis and Dür (2012b) and Yadin and Vedral (2015).

Hence a resource theory for macroscopic quantumness should

take this into account and cannot allow LOCC as free

operations if the variance should be a proper measure (see

Sec. II.G for further discussion). On the other side, quantum

entanglement and quantum macroscopicity are not completely

independent; see Sec. II.F.

Cluster states are also highly robust against noise (Hein

et al., 2006), which is again in contrast to macroscopic

quantum states. In particular, if one assumes that each of

the qubits of the 2D cluster state interacts with an independent

environment, one can show that the entanglement and other

key features of the 2D cluster states are maintained up to a

certain noise level, independent of the system size. Local

depolarizing noise (see footnote 38) with error probabilities

of up to 10% or more per particle can be tolerated such that

the state remains distillable entangled, i.e., maximally

entangled states between any pair of qubits can be generated

from many copies. To generate entangled pairs between

neighboring qubits, this can be achieved by measuring the

surrounding qubits in the Z basis, thereby decoupling them

from the rest of the system and making it obvious that there is

no dependence on the total size of the cluster. We remark that

3D cluster states have been show to be universal for fault-

tolerant (encoded) quantum computation using a 2D surface

code, with an error threshold for single-qubit depolarizing

noise of about 0.75% (Raussendorf, Harrington, and Goyal,

2007; Briegel et al., 2009).

This is in contrast to macroscopic superposition states such

as the GHZ state, which are much more susceptible to noise

(see Sec. III.A.1). It is interesting to note that a GHZ state

obtained from a noisy 2D cluster state is as decohered as a

GHZ state to which the same amount of noise has been

directly applied. This can be easily seen as follows: A GHZ

state of N qubits can be generated by measurements on a

subset of qubits of a noisy 2D cluster state of size OðNÞ. Even
if we assume that all measured qubits have not been affected

by noise, and measurements are perfect, single-qubit noise

still acts on the remaining qubits that now form a GHZ state.

Since measurements and noise operators act on different

systems and hence commute, the effect of noise before the

LOCC protocol is the same as after.

This discussion shows that usefulness for certain applica-

tions (such as quantum computation) or entanglement are

different concepts than macroscopic quantumness. Even states

that are rendered microscopic according to many measures

can be valuable resources and allow one to perform highly

interesting tasks, such as fault-tolerant quantum computation.

Note that the choice of free operations is crucial in this respect,

as measurements play a central role in MBQC but are usually
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not considered to be free in the context of measures for

quantum macroscopicity.

2. States occurring in quantum computation and metrology

In spin systems, a large variance of local operators implies

strong two-body correlations (i.e., entanglement for pure

states). Ukena and Shimizu (2005) and Shimizu,

Matsuzaki, and Ukena (2013) conjectured that this kind of

entanglement should be present in circuits for quantum

algorithms that outperform classical computers. The first

nontrivial step is to precisely formulate the statement.

Every query of a quantum algorithm leads to different

quantum states during the computation and not every instance

is exponentially more difficult for a classical device. They

worked with a generalized version of the index p (see

Sec. II.A.3) to deal with entire sets of different instances of

an algorithm.

Ukena and Shimizu (2005) and Shimizu, Matsuzaki, and

Ukena (2013) found that p ¼ 2 states generically appear in

Shor’s factorization algorithm (Shor, 1999) and in Grover’s

search algorithm (Grover, 1997). Since p ¼ 2 states are

particularly sensitive to noise generated by local operators

(see Sec. III), the findings emphasize the necessity for a well-

designed error correction scheme. Furthermore, these results

complement other findings about entanglement and non-

classicality in quantum enhanced algorithms. For example,

Orús and Latorre (2004) and Kendon and Munro (2006)

found a connection between computational speedup and

large entropy of entanglement. Note that there exist states

with p ¼ 2 and small entropy of entanglement (e.g., the GHZ

state) and states with p ¼ 1 and large entropy of entangle-

ment (e.g., eigenstates of chaotic systems) (Sugita and

Shimizu, 2005).

As discussed before, a large variance is an important

property for pure states to be useful in a parameter estima-

tion. Hence, there is a connection between quantum

enhanced computation and sensing. However, this does

not imply that particular instances of large-variance states

are useful for computation and sensing at the same time.

This connection was further investigated by Demkowicz-

Dobrzański and Markiewicz (2015). They rephrased

Grover’s algorithm in a time-continuous fashion and

expressed it as a kind of estimation problem. Then they

used results from quantum metrology to bound the perfor-

mance of the algorithm under some generic decoherence

and loss channels. As in quantum metrology, Demkowicz-

Dobrzański and Markiewicz found a loss of the quadratic

improvement in such situations. However, unlike in quantum

metrology, where the Hamiltonian for parameter estimation

is typically given by the problem and cannot be changed, a

quantum algorithm is theoretically under full experimental

control and, therefore, techniques such as quantum error

correction can be applied (Arrad et al., 2014; Dür et al.,

2014; Kessler et al., 2014).

3. Quantum phase transitions

Recent studies further highlight the importance of macro-

scopic quantum states in other quantum algorithms and

paradigms (Yuge, 2017). But macroscopic quantum states

are also expected to play a role in ground states of strongly

coupled systems, systems with topological order, or topologi-

cally protected phases of matter. There already exist some

works that relate macroscopic quantum states and quantum

phase transitions. One example is Hauke et al. (2016), where it

is shown that the quantum Fisher information can be obtained

by means of the dynamic susceptibility and can be used to

detect entanglement during phase transitions. Shitara and

Ueda (2016) showed how to obtain the quantum Fisher

information from linear response functions.

D. Summary

Macroscopic quantum states are no longer only an inter-

esting virtual possibility that illustrate puzzling features of

quantum mechanics as in the day of Schrödinger. Nowadays

such states are thought of as valuable resources. The useful-

ness of states for certain tasks, their entanglement features,

and their classification of being macroscopically quantum

with respect to certain measures are however different con-

cepts. Although there are certain relations, the goal and merit

of these concepts vary.

We highlighted in this section possible applications of

macroscopic quantum states for testing the limits and validity

of quantum mechanics at large scale—a question that is

primarily of fundamental interest. We also discussed more

practical applications, in particular, in the context of quantum

metrology, where the usefulness for metrology coincides with

some concepts of quantum macroscopicity, in particular,

measures based on the variance or quantum Fisher informa-

tion. The link is less obvious for applications for measure-

ment-based quantum computation and for different aspects of

entanglement. On the one hand, the underlying free, allowed

operations differ in these approaches. On the other hand,

macroscopic quantum states seem to appear in crucial steps of

quantum algorithms.

V. IMPLEMENTATIONS

We now review experiments reporting on the creation

and detection of macroscopic quantum states. In particular,

in Sec. V.A we focus on photonic experiments, separating

optical and microwave setups. In Sec. V.B we review experi-

ments with spin systems, distinguishing setups where the

spins are addressed individually and collectively. Section V.C

is devoted to massive systems including atom interferometry

and recent experiments with optomechanical systems.

Superconducting experiments are mentioned in Sec. V.D.

Finally, in Sec. V.E, we provide comparisons of the size of

states based on experimental data. We summarize in Sec. V.F.

A. Photonic experiments

Photonic setups can naturally be divided into two groups:

The optical setups which mostly rely on sources based on

parametric conversions and the microwave setups where

strong light-matter interactions are used to shape SCS. We

provide a quick presentation of experiments illustrating the

research activities of several groups and invite the reader to
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look at more exhaustive review papers on optical
45

and

microwave
46

setups, respectively.

1. Optical photons

The central tool of optical experiments is spontaneous

parametric downconversion, that is, a bulk crystal or a

waveguide, for example, with a second order nonlinearity

that is used to convert photons of a pump laser into photon

pairs. These pairs have combined energies and momenta

equal to the ones of the laser photons and are correlated in

polarization. We can distinguish type I and type II down-

converters depending on the pair polarization.

Type I downconverters produce pairs with identical polari-

zation and result in a single-mode squeezed vacuum [see

Eq. (11)] containing only even photon numbers. The experi-

ment reported by Eberle, Händchen, and Schnabel (2013) has

combined two of these squeezed vacuum modes on a beam

splitter before performing phase P and amplitude X quad-

rature measurements at each output (A and B) of the beam

splitter; see Fig. 11. The results exhibit a ≈10 dB reduction

of noise variances ½ΔðXA þ XBÞ�2 and ½ΔðPA − PBÞ�2 with

respect to the sum and difference of the corresponding

quadratures for a vacuum state. These correlations in ampli-

tude and anticorrelations in phase have been used to certify

entanglement and can be used to quantify the size of the

produced state; see Sec. V.E. Note that record squeezing,

down to ≈15 dB, has recently been reported using type I

downconverters in Vahlbruch et al. (2016).

Iskhakov et al. (2011) used two colinear type I down-

converters but in a Mach-Zehnder interferometer such that

they can be excited coherently with orthogonally polarized

pumps [see also Eisenberg et al. (2004) for a similar work].

This led to polarization entanglement, that is, a Hamiltonian of

the form
P

iða
ðiÞ†
H b

ðiÞ†
H þ a

ðiÞ†
V b

ðiÞ†
V þ H:c:Þ where the bosonic

operators a
ðiÞ
H and b

ðiÞ
H correspond to two spatial modes with

horizontal polarization and similarly for a
ðiÞ
V and b

ðiÞ
V . The sum

means that the emission is multimode, that is, photons are

created in different angular modes. By collecting tens of

thousands of modes, hundreds of thousands of entangled

photons have been successfully detected (Iskhakov et al.,

2011, 2012). Note that, as a result of the multimode emission,

the state of these photons corresponds essentially to indepen-

dent two-qubit maximally entangled states ðaðiÞ†H b
ðiÞ†
H þ

a
ðiÞ†
V b

ðiÞ†
V Þj0i where j0i is the vacuum for all modes. For this

reason, all measures discussed in Sec. II.A consider this state

not as macroscopically quantum even under otherwise ideal

circumstances.

Intensive effort has been dedicated to the generation of

photon pairs in single modes. Yao et al. (2012) used type II

converters pumped by short pulses together with narrow filters

of the output photons to erase their frequency correlations.

They combined the outputs of four of these downconverters

using linear optical elements and postselect events using

photon counting devices; see Fig. 12. Using intense pumps,

eight photons GHZ states have been postselected with 70%

fidelity (Yao et al., 2012) and recently similar techniques led

to the creation of up to ten photons GHZ states with 57%

fidelity (X.-L. Wang et al., 2016).

Aside from these experiments aiming to create macroscopic

photonic states directly from spontaneous parametric down-

conversion, various techniques have been proposed to amplify

the photon number in few-photon quantum states while

FIG. 11. Schematic representation of the experiment reported in

which two single-mode squeezed vacuum states are combined on

a beam splitter before characterizing their correlations in phase

space. From Eberle, Händchen, and Schnabel, 2013.

FIG. 12. Schematic representation of the experiment using four

type II downconversion processes to create eight photons GHZ

states. Laser pulses with a short duration and a high repetition rate

successively pass through four nonlinear crystals to produce four

photon pairs, which are further combined using a half- and a

quarter-wave plate (HWP, QWP) and a polarization beam splitter

(PBS). The photons in modes 1 and 4 are then combined on

PBS1, photons 5 and 8 on PBS2, and finally photons 40 and 80 on
PBS3. The photons are detected by 16 single-photon detectors

and a complete set of 256 eightfold coincidence events are

postselected and registered to perform a tomography of the

postselected state. From Yao et al., 2012.

45
De Martini and Sciarrino (2012), Pan et al. (2012), Chekhova,

Leuchs, and Żukowski (2015), and Jeong, Kang, and Kwon (2015).
46
Makhlin, Schön, and Shnirman (2001), Raimond, Brune, and

Haroche (2001), Schoelkopf and Girvin (2008), Devoret and

Schoelkopf (2013), and Haroche (2013).
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preserving their quantum nature. The first experiment along

this line was reported by De Martini, Sciarrino, and Vitelli

(2008); see Fig. 13. Polarization entangled photon pairs were

first created from a type II converter and a photon from each

pair was subsequently injected into a second type II converter,

the latter playing the role of a phase covariant cloner (Sekatski

et al., 2009). This ideally creates a photonic state of the form

1ffiffiffi
2

p ðj1ϕ⊥iAjΦϕiB þ j1ϕiAjΦϕ⊥iBÞ ð71Þ

after amplification. jΦϕiB and jΦϕ⊥iB are two orthogonal

states that are defined by

jΦϕiB ¼
X∞

i;j¼0

γij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2iÞ!ð2j!Þ

p

i!j!
jð2iþ 1Þϕ; 2jϕ⊥iB;

jΦϕ⊥iB ¼
X∞

i;j¼0

γij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2iÞ!ð2j!Þ

p

i!j!
j2jϕ; ð2iþ 1Þϕ⊥iB;

with

γij ¼ ð−1Þi coshðgÞ−2
�
tanhðgÞ

2

�
iþj

;

with g being the gain of the amplification. jnϕiA (jnϕ⊥iA)
corresponds to a n photon Fock state with polarization

ð1=
ffiffiffi
2

p
ÞðH þ eiϕVÞ [ð1=

ffiffiffi
2

p
ÞðH − eiϕVÞ], where H and V

stand for horizontal and vertical polarizations, respectively.

Interestingly, jΦϕiB contains 3 sinh2 gþ 1 photons on average

with polarization ð1=
ffiffiffi
2

p
ÞðH þ eiϕVÞ and sinh2 g photons

with the orthogonal polarization whereas jΦϕ⊥iB contains

sinh2 g photons with polarization ð1=
ffiffiffi
2

p
ÞðH þ eiϕVÞ and

3sinh2 gþ 1 photons with the orthogonal polarization. The

state (71) can thus been considered as a micro-macro

entangled state in which a polarization mode contains about

3 times more photons than the orthogonal polarization mode

(De Martini, Sciarrino, and Vitelli, 2008). In the experiment,

g ¼ 4.4 was used resulting in thousands of created photons.

The analysis of the ideal state regarding its macroscopic

quantumness reveals differences between the proposed mea-

sures (cf. example 2 in Sec. II.B). For example, Sekatski,

Sangouard, and Gisin (2014) assigned only a large effective

size when measuring the photon number in one polarization

mode if a relatively low success probability Pg ≲ 0.74 is

accepted (higher Pg could be accepted by taking the second

mode into account and/or by changing the branching into jAi
and jDi). In this case, an effective size of ≈1000 can be found
for Pg ¼ 2=3 and g ¼ 4.4. All measures based on the variance

of quadrature operators found a large effective size on the

order of the photon number. Note, however, that an exper-

imental test showing this large macroscopic quantumness has

not been done so far. In particular, the coherence of the state

(71) is difficult to prove. In this context, Raeisi, Sekatski, and

Simon (2011) showed that coarse-grained measurements

cannot reveal the quantum nature of these states, a property

that is shared by many macroscopic quantum states; see the

discussion in Sec. III.B.1. De Martini and Sciarrino (2015)

argued that the quantumness of this state is experimentally

shown in the low-g regime with a mean photon number of up

to 12.

States with similar properties can be obtained with simpler

amplification techniques. Sekatski et al. (2012), for example,

proposed to start with a path-entangled state, that is, a micro-

micro state of the form ð1=
ffiffiffi
2

p
Þðj0iAj1iB − j1iAj0iBÞ, where

j0iA and j1iA are the vacuum and single-photon Fock state for

the spatial mode A and similarly for B. The idea then consists

of amplifying the photon number in one mode through a

displacement in phase space DðαÞ, where the amplitude α is

considered to be real without loss of generality. This leads to

1ffiffiffi
2

p ðj0iADðαÞj1iB − j1iAjαiBÞ; ð72Þ

where jαiB ¼ DðαÞj0iB is a coherent state for mode B. When

the initial micro-micro state is seen in the rotated basis

fjþi¼2−1=2ðj0iþj1iÞ; j−i¼2−1=2ðj0i− j1iÞg, the entangled

state after the amplification involves two components

DðαÞj�iB whose mean photon numbers are separated by

2α. This proposal has triggered two experiments (Bruno et al.,

2013; Lvovsky et al., 2013), both using spontaneous down-

conversion based sources to create photon pairs, the detection

of a photon from each pair serving to herald the creation of its

twin photon. The heralded photons were then sent into a

balanced beam splitter to create path entanglement before

undergoing a displacement operation. The latter was imple-

mented with an unbalanced beam splitter and coherent states.

To facilitate the detection needed to reveal entanglement, the

displacement operation was undone and the coherence and

photon number probability distribution in each arm were

obtained by photon counting techniques. In Bruno et al.

(2013), entanglement was recorded as the photon number is

amplified and they succeeded in revealing entanglement for up

to α2 ¼ 500. The size of the target state (72) was discussed by

FIG. 13. Schematic representation of the setup aiming to

produce micro-macro entanglement via the amplification of

micro-micro entanglement. A first type II process converts

photons from a pump laser into photon pairs with polarization

entanglement. A photon from each pair is used to seed a second

type II converter pumped by the same laser. The resulting

entanglement is characterized by recording the coincidences

between photon counting devices that are preceded by a set of

wave plates (λ=2, λ=4) and a polarization beam splitter (PBS).

DM: dichroic mirror, SM: single-mode fiber, PS: phase shifter.

From De Martini, Sciarrino, and Vitelli, 2008.
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Sekatski, Sangouard, and Gisin (2014); see Sec. II.A.11

for the corresponding measure. For a guessing probability

Pg ¼ 2=3, for example, it was shown that its effective size for

α2 ¼ 500 is the same as the one of ð1=
ffiffiffi
2

p
Þðj0iAjniB −

j1iAj0iBÞ with n ¼ 38.

Let us finally mention conditional techniques that can also

be used, for example, to create SCS [Eq. (10)] as proposed by

Dakna et al. (1997). Ourjoumtsev et al. (2006), for example,

reported on the creation of such a state by subtracting one

photon from a squeezed vacuum state. The latter was created

by means of a frequency-degenerate optical parametric

amplifier. Photons are then subtracted from the output in a

probabilistic way, using a partially reflecting beam splitter and

a photon detector; see Fig. 14. A successful photon sub-

traction projects the transmitted part into a state which is close

to a SCS. A tomography revealed SCS-like states character-

ized by jαj2 ¼ 0.79 and a fidelity of 70% (Ourjoumtsev et al.,

2006). Larger sizes, up to jαj2 ¼ 3.2, have been reported by

Neergaard-Nielsen et al. (2006), Gerrits et al. (2010), Yukawa

et al. (2013), and Sychev et al. (2017) using similar protocols.

Note that the usefulness of the photon subtraction was

discussed by Oudot et al. (2015) where the size of squeezed

vacuum states and SCS are compared with different measures.

More recently, advanced conditional techniques were used to

create entanglement of the form jþiAjαiB þ eiφj−iAj − αiB
(Jeongm, Zavatta et al., 2014; Morin et al., 2014). Note also

that iterative conditional techniques that could be used to

obtained SCS with larger sizes have been implemented

to create superpositions of squeezed coherent states (Etesse

et al., 2015).

2. Microwave photons

Fock states and superpositions of coherent states with

opposite phases have been created by letting Rydberg atoms

interact one by one with the electromagnetic field of a high-

finesse cavity (Deleglise et al., 2008; Sayrin et al., 2011). The

principle relies on a dispersive light-atom interaction that is

used to imprint the information about the photon number in

the cavity into the phase of a superposition between two

internal atomic states, the latter being measured through a

Ramsey interferometer; see Fig. 15. Fock states have been

prepared by first launching a coherent field in the cavity and

by then letting it interact with atoms, achieving a quantum

nondemolition measurement of the photon number that

progressively projects the field onto a Fock state jni.
Reconstruction of a Fock state with up to n ¼ 4 photons

has been reported by Deleglise et al. (2008) and up to n ¼ 7

photons in Zhou et al. (2012) using an additional quantum

feedback procedure.

To generate SCS, a coherent field is first injected into the

cavity before interacting with an atom prepared in a super-

position of two internal states. This results in an atom-light

entangled state in which the internal atomic states are

correlated with a coherent state with different phases. The

projection of the atom into the appropriate state ideally leaves

the field in the desired superposition. Deleglise et al. (2008)

reported on SCS states with α2 ¼ 3.5 and a fidelity of 72%.

Similar techniques were used more recently with super-

conducting devices. Vlastakis et al. (2013) and C. Wang et al.

(2016) reported on a set of multiphoton operations using a

superconducting charge qubit called a transmon, coupled to

waveguide cavity resonators. They succeeded in obtaining

ideal strong-dispersive coupling, where the strengths of the

off-resonant qubit-cavity interactions were several orders of

magnitude larger than both the cavity and transmon decay

rates. This allowed them to create and detect SCS with

unprecedented sizes, that is, α2 ≈ 7.8 and a visibility of

FIG. 14. Schematic representation of the setup aiming to produce

superposition of coherent states with opposite phases. A squeezed

vacuum beam is first produced in a frequency-degenerate optical

parametric amplifier (DOPA) by downconversion of frequency-

doubled [second-harmonic generation (SHG)] laser pulses. A

beam splitter reflects less than 10% of the squeezed beam toward

a photon detector (APD) through a filtering system, whereas

the transmitted beam is analyzed by a homodyne detection. A

tomography of the photon subtracted squeezed vacuum state is

performed and the obtained state is then compared with a super-

position of coherent states with opposite phases. APD: avalanche

photodiode. Adapted from Ourjoumtsev et al., 2006.

FIG. 15. Schematic representation of the setup used to produce

various quantum states of light trapped in a high-finesse cavity

(C), including superposition of coherent states with opposite

phases. A stream of atoms is prepared in box B and crosses the

R1-R2 cavities playing the role of a Ramsey interferometer in

which the cavity C is inserted. The source S generates a coherent

microwave pulse that can be used to inject into C coherent states

with controlled amplitude and phase. Another pulsed source S0

feeds the interferometer cavities R1 and R2. Information is

extracted from the field by state-selective atomic counting in

D. Adapted from Deleglise et al., 2008.
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≈0.57 (Vlastakis et al., 2013). A similar setup was also used to

implement two-mode SCS of the form jα; βi þ j−α;−βi
with jαj2 ¼ 9.0, jβj2 ¼ 7.0 with a visibility of 0.58

(C. Wang et al., 2016).

B. Spin experiments

Regarding experiments with spin systems, we can distin-

guish between setups in which the spins can be addressed

individually or collectively. As before, we quickly present

techniques illustrating experiments along these two lines.

Leibfried et al. (2003), Blatt and Wineland (2008), and

Ritsch et al. (2013) contain more exhaustive reviews related

to trapped ions and cold atoms.

1. Spins with individual addressing

One of the most advanced systems where (pseudo)spins can

be addressed individually is trapped ion systems. The spin

states are often encoded in a ground state and a metastable

electronic state of each ion. Laser coupling between these

internal states and the vibrational mode produces a collective

spin flip that can be used as an entangling gate (Sørensen and

Mølmer, 1999). From high fidelity quantum gates (Benhelm

et al., 2008), GHZ states [see Eq. (4)] with up to 14 ions

(Monz et al., 2011) have been created. The diagonal elements

of the corresponding density matrix have been measured

directly by fluorescence measurements while the off-diagonal

elements have been accessed via the amplitude of parity

oscillations. The measurements were allowed to infer the

fidelity of GHZ states for different ion numbers. Fidelities

larger than 95% and 80% have been observed for up to four

and eight ions GHZ states, respectively, while 14-ion

GHZ states have been measured with a fidelity above 50%,

which is in principle sufficient to violate a Bell inequality

(Lanyon et al., 2014).

2. Spins with collective addressing

An example of spin systems where the spins cannot be

addressed individually is given by Bose-Einstein condensates

where the internal states of the atoms constituting these

condensates can be initialized with optical pumping tech-

niques, coherently coupled through controlled elastic colli-

sions and readout using absorption imaging; see Fig. 16.

This allowed one to create spin-squeezed states with 1250

atoms (Riedel et al., 2010) with a squeezing parameter

ξ2 ≈ −2.5 dB; see Eq. (8) for the definition. Note that the

detection of spin squeezing is connected to quantum corre-

lations between the spins (Kitagawa and Ueda, 1993).

Recently, the techniques reported by Riedel et al. (2010)

were used to prove that the internal correlations between 480

atoms in a spin-squeezed state are strong enough to violate a

Bell inequality (Schmied et al., 2016). Note also that spin-

squeezed states have been created with larger squeezing

parameters. Gross et al. (2010) reported on spin squeezing

with 2300 atoms and ξ2 ≈ −8.2 dB in a Bose-Einstein

condensate, through Feshbach control of interactions in an

optical trap. Note finally that similar states have also

been obtained with trapped ions (Bohnet et al., 2016), with

room-temperature (Vasilakis et al., 2015) and cold (Hosten

et al., 2016) atoms trapped in cavities. The latter succeeded in

reporting spin squeezing with 5 × 105 atoms with squeezing

parameter ξ2 ≈ −20.1 dB.

C. Experiments with massive systems

Experiments aiming to bring a massive system in a

quantum superposition of well-distinct positions include

matter interferometry and quantum optomechanics. While

intensive efforts have been devoted to the former for more

than 30 years, the latter is nowadays attracting a lot of

attention and impressive results have been obtained in the

last decade. Matter interferometry was reviewed by Cronin,

Schmiedmayer, and Pritchard (2009) and Arndt and

Hornberger (2014) and the most recent progress in optome-

chanics can be found in Meystre (2013), Yin, Geraci, and Li

(2013), and Aspelmeyer, Kippenberg, and Marquardt (2014).

1. Matter interferometry

Interferometry with widely delocalized and more and more

massive objects has been an active research domain since the

mid 1980s (Gould, Ruff, and Pritchard, 1986; Keith et al.,

1988). Impressive results have been obtained along this line

by the trapped ion community (Wineland, 2013). The starting

point of these experiments is the use of laser cooling

techniques to bring an ion down to its motional ground state

j0i. Using a displacement whose direction depends on the spin

state of the ion’s outermost electron, an ion prepared in a

superposition of spin states ðj↑i þ j↓iÞ ends up in a super-

position of two positions (Monroe et al., 1996). More

precisely, the spin-dependent force promotes an initial state

ðj↑i þ j↓iÞj0i into j↑ijαi þ j↓ij − αi where the coherent

states j � αi represent the amplitude and phase of the ion

motion in its local harmonic trapping potential. The two

positions can then be recombined to form the analog of an

interferometer which allows one to access the coherence of the

entangled state j↑ijαi þ j↓ij − αi through the coherence of

FIG. 16. Spherical projections of the Wigner function on the

Bloch sphere for 100 spins which help in understanding how the

techniques used in Riedel et al. (2010) and Schmied et al. (2016)

lead to spin squeezing. (a) An initial coherent spin state is

prepared along the x direction. (b) Controlled elastic collisions in

state dependent potentials lead to an effective interaction of S2z .
The corresponding unitary is nothing else than a rotation around z
whose angle depends on the projection of the z axis. This results
in a spin-squeezed state whose squeezing and antisqueezing

directions can be measured by projective measurements are along

the vertical (þz) spin axis preceded by the appropriate rotation.

Adapted from Schmied et al., 2016.
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the spin state superposition. Kienzler et al. (2016) reported

such a superposition with α ≈ 5.9, which effectively corre-

sponds to a spatial separation between the superposed

locations dozens of times larger than the extent of local

position fluctuations.

To date, the widest delocalization has been obtained by

launching a Bose-Einstein condensate made with about 105

rubidium atoms in a 10 m high atomic fountain; see Fig. 17.

Once launched, a sequence of pulses is applied to control the

atom momenta so that the wave packet of each atom is split

and recombined coherently to form the analog of a Mach-

Zehnder interferometer. In the experiment presented by

Kovachy et al. (2015) the wave packets get separated during

a drift time ≈1 s after which they reach their maximum

separation of up to ≈54 cm. The wave packet of each atom is

then recombined to spatially overlap after another drift

interval ≈1 s. The contrast of the interference is determined

by measuring the variation of the normalized number of atoms

in one of the two outputs of the interferometer. Interestingly,

the contrast of ≈28% reported by Kovachy et al. (2015) is

incompatible with an explicit collapse model based on

quantum gravity (Minář et al., 2016) in the parameter regime

that was initially proposed by the founders of this collapse

model (Ellis, Mohanty, and Nanopoulos, 1989). Note how-

ever, that Kovachy et al. (2016) and Stamper-Kurn, Marti, and

Müller (2016) clarified that the experiment reported by

Kovachy et al. (2015) did not have a stable phase reference

for the interferometer, which is required to constrain models

that would introduce overall phase noise. In subsequent work

(Asenbaum et al., 2017), the same group introduced a second,

spatially displaced interferometer as a stable phase reference.

This experiment demonstrated phase stability of interferom-

eters with 16 cm arm separation and it remains to be clarified

if the observed interference is compatible with the collapse

model presented by Ellis, Mohanty, and Nanopoulos (1989).

Despite using a Bose-Einstein condensate, the interference

reported by Kovachy et al. (2015) depends only on the

wavelength of a single atom. The experiment is essentially

single-atom interferometry with ≈105 interferences performed

at each experimental run. The relevant mass is thus limited to

that of a single atom, that is, 87 amu for 87Rb. However, larger

masses are required to test a broad class of collapse models.

This provides motivation to perform interferences with macro-

molecules and clusters. One of the first results along this line

was obtained with a Talbot-Lau–type interferometry using

fullerenes (Arndt et al., 1999), a carbon molecule with

720 amu. The basic principle of such an experiment is shown

in Fig. 18. First molecules from a thermal source are

evaporated into a vacuum chamber and a velocity selection

is done using narrow slits. The selected molecules are then

sent into a Talbot-Lau interferometer which is made with three

gratings. The first grating preselects a molecular transverse

coherence. Diffraction at the second grating then produces a

molecular density pattern at the location of the third grating

through the Talbot effect. If the molecular pattern and the third

grating mask are aligned, the transmission is high. When the

third grating is shifted by half a grating period, the total

transmitted signal is minimal. The signature of molecular

interference is thus obtained by counting the molecule number

as a function of the position of the third grating. An advanced

version of the Talbot-Lau interferometer currently holds the

mass record in matter-wave interference, with molecules

combining several hundreds of atoms with a molecular weight

of thousands (Gerlich et al., 2011) and even tens of thousands

amu (Eibenberger et al., 2013).

FIG. 17. Schematic representation of the setup used to coher-

ently split the wave packet of single atoms up to ≈54 cm. An

ultracold atom cloud is launched vertically in a magnetic shield

using an optical lattice. At time t ¼ 0, the first sequence of laser

pulses split the cloud into a superposition of states with different

momenta. A time T later, the wave packet is spatially separated,

and a laser sequence reverses the momenta of each superposed

component. At time 2T, the clouds spatially overlap, and laser

pulses make them interfere. Adapted from Kovachy et al., 2015.

FIG. 18. Schematic representation of the setup used to make

interferometry with massive molecules combining 810 atoms

with a molecular weight exceeding 104 amu. Three narrow slits

D1-D3 select a particular particle velocity following a specific

parabola in the gravitational field. G1-G2 are gratings. G2 is a

standing wave used to change the phase of the interferometer

through an optical dipole force. The transmitted molecules are

detected via an ionization technique (QMS: quadrupole mass

spectrometer) after G3 which can be shifted to sample the

interference fringes. From Eibenberger et al., 2013.
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To conclude this section, we mention that matter-interfer-

ometry experiments are nowadays envisioned with nano-

sphere exceeding 107 amu. Romero-Isart et al. (2011), for

example, proposed to trap a dielectric sphere in the standing

wave of an optical cavity; see also Barker and Shneider (2010)

and Chang et al. (2010) for related proposals. The mechanical

motion of the sphere’s center of mass is predicted to be a high-

quality mechanical oscillator due to the absence of thermal

contact and dissipation arising from clamping. This is

expected to facilitate laser cooling. The cooled levitating

object can then be released by switching off the trap to let

the wave function expand. A quadratic measurement of the

mechanical position finally creates a scenario similar to

matter-wave interferometry experiments; see Fig. 19. While

significant experimental progress has been realized to trap and

cool such a nanosphere,
47

we are not aware of experiments

reporting on quantum interference with such a system.

2. Quantum optomechanics

While many aspects of quantum cavity optomechanics

started to be explored theoretically in the early 1990s

(Fabre et al., 1994; Mancini and Tombesi, 1994), proposals

(Bose, Jacobs, and Knight, 1997, 1999) have been done in the

late 1990s to create a superposition of mechanical states with a

distance of the order of the mechanical zero-point fluctuation

where the effects of unconventional decoherence might be

observed (Marshall et al., 2003; Kleckner et al., 2008). The

basic idea is to use a Michelson interferometer with a high-

finesse cavity in each arm; see Fig. 20. One of the two cavities

is made with a movable mirror, that is, a high-quality oscillator

with a mechanical frequency larger than the cavity decay rate

such that it can initially be prepared in its motional ground

state by sideband cooling. A single photon is then launched in

the Michelson interferometer and its energy is stored coher-

ently in both cavities. The radiation pressure force shifts the

mirror position and a maximal displacement is achieved after

half a mechanical period. After a full mechanical period, the

mirror comes back at its original position and in the absence

of decoherence, full interference is expected. The mirror

decoherence, however, alters the interference of the photon.

In other words, by observing the photon interference, we can

infer the mirror decoherence rate. For an optomechanical

coupling rate larger than the mechanical frequency, the

maximum displacement is expected to be larger than its

zero-point motion at half the mechanical period. If, in

addition, the device operates in the strong coupling regime

so that the photon can be stored long enough, this device could

be used as a test bench for unconventional decoherence

models. While massive oscillators with eigenfrequencies in

the kilohertz regime were initially envisioned, first experi-

ments now succeeded in entering the field of optomechanics

in the quantum regime using lighter and more rigid mega or

gigahertz oscillators. This includes ground state cooling of

the mechanical motion,
48

electromechanical entanglement

(Palomaki et al., 2013) or squeezing of a micromechanical

state (Wollman et al., 2015). As far as we can tell, however, no

experimental realization so far entered a regime relevant for

ruling out unconventional decoherence models.

FIG. 19. Schematic representation of the setup envisioned for

matter interferometry with a nanosphere. A cooled sphere is first

optically trappedbefore being released to let itswavepacket expand.

The sphere then enters a second cavity where a pulsed interaction is

performed using a quadratic optomechanical coupling. A homo-

dyne measurement of the output field phase performs a quadratic

measurement of the sphere position and prepares it in a quantum

superposition of two positions whose spread depends on the

measurement outcome. Then the sphere is again released before

its center-of-mass position is measured and interference fringes are

observed. From Arndt and Hornberger, 2014.

FIG. 20. Schematic representation of the interferometer envi-

sioned for studying the creation and decoherence of a mirror in a

spatial superposition. A cavity is placed on each arm of a

Michelson interferometer. One of the two cavities is made with

a high-quality mechanical resonator whose motion is affected by

a single photon through its radiation pressure. A photon entering

in the interferometer leads, after half a mechanical period, to an

entangled state in which the photon is stored in cavity B and the

mechanical oscillator is in its motional ground state and the

photon is stored in A and the mechanical motion is excited. After

a full mechanical period, the photon mode and the mirror position

disentangled, resulting in a maximum photon interference in the

absence of oscillator decoherence. Recording the photon inter-

ference for multiple mechanical periods allows one to infer the

mechanical decoherence. From Marshall et al., 2003.

47
Gieseler et al. (2012), Kiesel et al. (2013), Arita et al. (2015),

Millen et al. (2015), and Ranjit et al. (2015).

48
O’Connell et al. (2010), Chan et al. (2011), Teufel et al. (2011),

and Meenehan et al. (2015).
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D. Superconducting quantum interference devices

The question of whether or not macroscopic quantumness

can be realized in superconducting devices (Friedman et al.,

2000; van der Wal et al., 2000; Hime et al., 2006) was

intensively discussed.
49

While superconductivity itself was

argued to be a classic example of a microscopic quantum

effect (Leggett, 1980), there have been attempts to create

macroscopic superpositions of clockwise and anticlockwise

circulating currents in SQUIDs. In its simplest version, a

SQUID is a superconducting ring with conductance L inter-

rupted by a single Josephson junction with capacitance C and

critical current Ic, which allows electrons to pass through by

tunneling [see Leggett (1987) and references therein for a

detailed description of different variants of SQUIDs]. In

Friedman et al. (2000), the single junction is replaced by

two parallel junctions [see Fig. 21(c)]. Even though many

electrons (up to 1010) are involved, the only relevant degree of

freedom is the total flux in the ring. This gives rise to a simple

phenomenological model that is mathematically equivalent to a

particle with effective massC in a one-dimensional double-well

structure potential. The energy eigenfunctions that are localized

in one well correspond to currents circulating either clockwise

or anticlockwise. By controlling the height of the potential

barrier as well as the difference between the left and right local

minima [see Fig. 21(a)], experimenters prepared the device in a

localized ground state [state jii in Fig. 21(a)] and drove it to

localized excited states (either j0i or j1i). By tuning the local

minimum (ϵ), they observed an avoided crossing in the energy

spectrum which is an indication of the coherence between

clockwise and anticlockwise circulating currents [see Fig. 21(b)

for the theoretical prediction]. Note that other experiments, for

example, van derWal et al. (2000) and Hime et al. (2006) differ

in the details, but also work with a double-well potential and

prove the coherence via an avoided crossing.

E. Comparing the sizes of states describing photonic, spins,

and massive systems

In this section, we summarize estimates of the effective

size of states detected experimentally. Ideally, this is done as

much as possible directly from the experimental data with a

minimum of additional modeling. In this sense, Sec. V.E.1

misses this ideal as all discussions so far mainly focus on the

theoretical model and less on the experimental results. Even

more importantly, it shows the difficulties to find an agree-

ment when evaluating the size of a given experiment or state

with different measures. In Sec. V.E.2, we present results

for several experiments by applying the frameworks of

Nimmrichter et al. (2011) and Fröwis and Dür (2012b).

1. Discussions on the size of flux states in SQUID systems

Here we summarize different contributions that aim for

assigning an effective size to various SQUID experiments.

While there are clearly differences that arise from conceptual

disagreement,
50

we note that measures are partially defined

for different scales.
51

This further complicates a comparison

between the measures.

Leggett (2002) claimed about the SQUID experiments that

“any reasonable” measure for macroscopic quantum states

would assign an effective size that is on the order of the

number of involved electrons. For the experiments Friedman

et al. (2000) and van der Wal et al. (2000), this is 1010 (in units

of Bohr magneton in the case of Leggett’s extensive differ-

ence). Knee et al. (2016) found an extensive difference of

FIG. 21. Illustration of the physical principle behind the experi-

ment aiming to create coherent superpositions between clockwise

and anticlockwise circulating currents using a SQUID. (a) Illus-

tration of eigenenergies of the device as a function of the current

flux. By controlling the parameters of the potential, the SQUID

can be prepared in the eigenstate jii corresponding to a current

flux with a well-defined circulation. Driving the transitions from

jii to excited states j0i and j1i and controlling the parameters ϵ,

ΔU0 of the double well, the state ideally ends up in a super-

position of clockwise and anticlockwise circulating currents.

(b) The coherence of this superposition state is revealed through

an avoided crossing between the systems eigenenergies when ϵ is

tuned. (c) Schematics of the experiment with the SQUID inside

the dashed box, the external control, and an additional SQUID

that operates as a magnetometer to probe the energy of the

neighboring SQUID. From Friedman et al., 2000.

49
In particular, in Leggett (1980, 2002), Dür, Simon, and Cirac

(2002), Björk and Mana (2004), Korsbakken et al. (2007), Marquardt,

Abel, and von Delft (2008), Korsbakken, Wilhelm, andWhaley (2009,

2010), and Nimmrichter et al. (2011).

50
For example, the disagreement between Leggett (2002),

Marquardt, Abel, and von Delft (2008), and Korsbakken, Wilhelm,

and Whaley (2009).
51
In particular, Björk and Mana (2004) [which was the square

root of Korsbakken et al. (2007) in spin examples, Sec. II.B.1] or

Nimmrichter et al. (2011).

Florian Fröwis et al.: Macroscopic quantum states: Measures, …

Rev. Mod. Phys., Vol. 90, No. 2, April–June 2018 025004-46



roughly 1.3 × 105 in units of Bohr magneton for their

experiment.

This number is strongly contrasted by Marquardt, Abel, and

von Delft (2008) using their framework. Analyzing only van

der Wal et al. (2000), they found an effective size between 1

and 2, that is, it suffices to apply at most two basic steps to

map, say, the clockwise circulating state to the anticlockwise

one. Similarly low is the number found by Nimmrichter et al.

(2011), who assigned an effective size of μ ≈ 5 to the

experiment of Friedman et al. (2000). Again different results

are obtained by Björk and Mana (2004), who applied their

proposal to Friedman et al. (2000). They took the width of the

coherent superposition of the wave function living in both

wells and divided this by the width of the ground state

localized in only one well. They found that the spread of the

apparent macroscopic quantum state is only about 33 times

larger than that of the classical ground state.

To apply the approach of Korsbakken et al. (2007), a

microscopic model of the experiment is necessary to answer

the question of how many electrons are effectively different in

the two branches of the superposition. A detailed analysis was

provided by Korsbakken, Wilhelm, and Whaley (2009, 2010),

which leads to effective sizes of roughly 3800–5750 for

Friedman et al. (2000), 42 for van der Wal et al. (2000), and

124 for Hime et al. (2006). They explained the difference to

Leggett’s result by taking into account the fermionic nature of

the electrons, which reduces the number of effectively differ-

ent electrons.

It is not astonishing that these different results provoked

many discussions. The quantitative results of Leggett (2002)

are critically seen by Björk and Mana (2004), Korsbakken

et al. (2007), Marquardt, Abel, and von Delft (2008), and

Korsbakken, Wilhelm, and Whaley (2009). Leggett (2016)

remarked that the results of Korsbakken, Wilhelm, and

Whaley (2009) strongly depend on the choice of some

characteristic quantities such as the Fermi velocity. To

illustrate his claims, he discussed the hypothetical example

of a dust particle in the superposition of two macroscopically

different momenta. By introducing “reasonable” characteristic

scales, he showed that the approach of Korsbakken et al.

(2007) led to a trivially low effective size.
52

To continue a critical dialogue, we add that the proposals of

Korsbakken et al. (2007) and Marquardt, Abel, and von Delft

(2008) depend on the splitting of the total wave function into

dead and alive, which can lead to ambiguous situations (see

example 2 in Sec. II.B). Furthermore, the choice of the “basic

step” in the framework of Marquardt, Abel, and von Delft

(2008) seems to be intuitive, but needs further justification.

The approach of Björk and Mana (2004) has a clear opera-

tional meaning, but the connection to the idea of an effective

size as followed by the other works is unclear. A similar

argument holds for the collapse model used by Nimmrichter

et al. (2011). The unresolved answers regarding the inter-

pretation of the experimental evidence should be seen as

motivation to further improve the theory of macroscopic

quantumness.

2. Comparing the size of observed states

Some measures presented in Sec. II.A are applicable to real

experimental situations. In particular, the measure of Fröwis

and Dür (2012b) has been used by Fröwis (2017) to compare

the effective size Neff of various experimental photonic

and spin states. In Nimmrichter and Hornberger (2013), the

effective size μ of states obtained in various experiments with

massive and SQUID systems has been evaluated using the

measure presented in the same manuscript. We quickly

summarize the main results of these two studies separately.

Note that the two measures are defined for different scales and

hence a direct comparison between Neff and μ is meaningless.

The measure of Fröwis and Dür (2012b) is based on the

quantum Fisher information. This is a promising mixed-state

extension of the variance because of tight and accessible lower

bounds (see Sec. II.H.2). For spin-squeezed states, the left-

hand side of the tighter Heisenberg uncertainty relation,

Eq. (63), becomes identical to ξ−2, Eq. (8). For experiments

targeting superpositions of two classical states (e.g., GHZ

state or SCS), Eq. (62) can be used to bound the quantum

Fisher information by witnessing large susceptibility to small

external influences. Measuring the coherence terms C ¼
2jh0j⊗Nρj1i⊗N j for the GHZ and C ¼ 2jhαjρj − αij for the

monomode SCS allows one to derive (approximate) lower

bounds NeffðGHZÞ ≥ C2N and NeffðSCSÞ ≳ 4C2jαj2 þ 1,

respectively. Since these quantities are frequently measured,

the first estimate can often be directly done with the data given

in the publication. For example, the published data for the

eight photon GHZ state (X.-L. Wang et al., 2016) allows the

rough estimate Neff ≈ 2.3.

A complete analysis of several experiments was done by

Fröwis (2017); see Fig. 22. For example, the spin-squeezing

experiment of Hosten et al. (2016) results in an effective size

of ≈71, which is comparable with an ideal GHZ state made

out of 71 particles. Note the work of Kienzler et al. (2016)

realized a spatial superposition of a single atom, which is in

FIG. 22. Summary of effective sizes for several experiments

with (pseudo)spins and photons. In various experimental setups,

the macroscopic quantumness measured with the quantum Fisher

information (Fröwis and Dür, 2012b) could be significantly

increased over recent years. From Fröwis, 2017.
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Similar arguments hold for the analysis of Nimmrichter et al.

(2011).
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apparent contradiction to our initial premise that only large

systems can have a large effective size. However, in this case,

the system size is taken as the mean number of phononic

excitations in a harmonic trap, which is similar to the treat-

ment of single-mode photonic systems.

The measure of Nimmrichter and Hornberger (2013) was

based on the capability of a state to test modifications of

quantum theory. In the case of interference experiments with

objects of total massM whose expansion is much smaller than

the path separation of the interferometer, the modification of

the master equation shown in Eq. (36) leads to a decay of the

coherence which scales as ðme=MÞ2, where me is a reference

mass taken as the mass of an electron. By comparing this

decay with the actual period t (in second) during which the

coherence is maintained and taking the contrast f of the

observed interference pattern into account, a simple approxi-

mate expression is obtained for evaluating the effective size

μ ¼ log10

	
1

j ln fj

�
M

me

�
2

t



: ð73Þ

For example, for the experiment reported in Kovachy et al.

(2015) where the wave packet of 87Rb atoms (86.91 amu) gets

separated over 54 cm during a drift time of t ¼ 2.08 s and led

to an interference pattern with a contrast of 28%, Eq. (73)

gives μ ¼ 10.6. Note that higher values have been obtained in

the same experiment with smaller spatial separations. In

particular, μ ¼ 12.3 has been obtained for a separation of

∼1 cm where the observed contrast is of 97.5%. This value is

comparable to interferometry experiments with cluster and

molecules (Arndt et al., 1999; Gerlich et al., 2011). By

describing the superposition of currents with displaced Fermi

spheres of Cooper pairs, Nimmrichter and Hornberger found

μ ¼ 5.2 for the SQUID experiment reported in Friedman et al.

(2000); see Nimmrichter and Hornberger (2013) for details.

These results are shown graphically in Fig. 23.

F. Summary

Many attempts have been realized to create and detect

macroscopic quantum states. Photonic experiments have been

implemented both in the optical domain using parametric

processes and in the microwave domain in the framework of

cavity quantum electrodynamics. While the size of optical

SCS has been improved by a factor of ≈4 in the last decade

now achieving α2 ≈ 3.2, unprecedented sizes α2 ≈ 7.8 have

been achieved in the microwave domain. However, an optical

squeezed state holds the largest effective size for photonic

states, according to a measure based on the quantum Fisher

information (Fröwis and Dür, 2012b). The same measure

witnesses unprecedented sizes in spin systems, in particular, in

Bose-Einstein condensates where spin-squeezed states have

been obtained with very high squeezing parameters. Matter-

wave interferometry and quantum optomechanics with more

and more massive systems are also at the core of intensive

experimental efforts.

According to a measure based on the capability of a state

to test modifications of quantum theory (Nimmrichter and

Hornberger, 2013), very large effective sizes were obtained

almost 20 years ago, with molecule interferometry.

Interestingly, such a measure also witnessed a large effective

size for single-atom interferometry where atomic wave pack-

ets get coherently separated for seconds. As noted by Arndt

and Hornberger (2014), there is plenty of room for improve-

ment and unprecedented sizes could be obtained in the near

future using levitating nanospheres.

VI. DISCUSSION AND OUTLOOK

In this review we have summarized different approaches to

qualify and quantify the notion of macroscopic quantum

superpositions and macroscopic quantum states. While we

have seen that there are a multitude of proposals that differ

strongly in their intuition and its formalization, many of the

measures agree on some core features. In particular, it seems

that the variance with respect to linear observables plays a key

role in this respect. It is probably too early to say that we have

obtained an agreement on a specific measure, or even all

relevant or desirable features of such measures, but there has

been significant progress in the last couple of years. As we have

discussed in detail, there are many facets of the problem, and

perhaps there is no single measure that takes all these aspects

into account. Establishing a resource theory for quantum

macroscopicity might seem to be an attractive avenue, but a

good choice of free operations remains a challenge.

Nevertheless, we are now much closer to be capable of judging

experiments or providing guidelines in which direction to go.

The latter is of particular importance given the multitude of

fundamental limitations to prepare, maintain, and measure

macroscopic quantum states that have been identified (see

Sec. III). While certain macroscopic quantum states, in

particular, certain kinds of macroscopic superposition states,

seem to be notoriously difficult to maintain and certify even

within the framework of standard quantum mechanics, other

states were identified where such limitations do not apply.

It is still very challenging to perform experiments with such

macroscopic quantum states, however there seem to be no

FIG. 23. Effective sizes of various states associated with

massive systems evaluated with the measure in Nimmrichter

and Hornberger (2013). The numbers are taken from Nimm-

richter and Hornberger (2013) except for the experiment reported

in Kovachy et al. (2015), where the calculation is shown in the

main text.
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principle obstacles to prevent us from observing quantum

effects on much larger scales than today. In some cases only a

relatively small change is required: working with relative

degrees of freedom rather than absolute degrees of freedom

suffices, or preparing two copies of a state enables one of them

to act as a kind of self-reference. Also encoded macroscopic

states pose an interesting perspective. While the notion of

macroscopic quantumness might slightly change, they possess

the desired features on a coarse-grained level. If these insights

can be harnessed for applications such a quantum metrology

or quantum computation remains to be seen.

At the level of experiments, recent years have seen

tremendous progress with different physical setups, bringing

us ever closer to a true macroscopic regime. Which system is

most suited to demonstrate truly macroscopic quantum effects

depends on the goal one has in mind. However, we are now

not only able to test the fundamental principles of quantum

mechanics or its validity at larger and larger scales, but also

harness some of its features for practical applications. It is

perhaps the mixture of fundamental interest and the possibility

of practical applications that makes the study of macroscopic

quantum states so appealing. The road ahead still promises

many challenges, but also new insights and surprises. While it

seems that it is impossible to ever realize the thought

experiment of Schrödinger, performing experiments where

the spirit of his proposal is maintained might at least be

plausible.
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