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Abstract: The enhancement of soil engineering properties with biopolymers has been shown recently
as a viable and environmentally benign alternative to cement and chemical stabilization. Interest in
biopolymer-treated soil is evident from the upsurge of related research activities in the last five years,
most of which have been experimental in nature. However, biopolymers have not yet found their way
into engineering practice. One of the reasons for this may be the absence of computational models
that would allow engineers to incorporate biopolymer-treated soil into their designs. Therefore, the
main goal of this study is to numerically capture a macroscopic stress-strain response and investigate
the effect of biopolymers on the onset of strain localization. Several diagnostic strain-localization
analyses were conducted, thus providing strain and stress levels at the onset of strain localization,
along with the orientations of the deformation band. Several unconfined compression and triaxial
tests on the plain and biopolymer-treated soils were modeled. Results showed that biopolymers
significantly improved the mechanical behavior of the soil and affected the onset of strain localization.
The numerical results were confirmed by the digital image analysis of the unconfined compression
tests. Digital image processing successfully captured high strain concentrations, which tended to
occur close to the peak stress.

Keywords: biopolymers; strain localization; green geotechnics; image processing; Drucker–Prager

1. Introduction

Due to the rapid urbanization of cities and the growth of the human population,
soil-improvement methods are of increasing importance because of the need to construct
on the soft and complicated ground in very adverse and hostile surroundings [1–4]. The
primary method that is conventionally applied to enhance the engineering properties of
the soil is chemical treatment, and one of the most commonly used chemical-stabilization
agents is cement. Even though it is effective and cost-efficient, cement has several adverse
effects on the environment. For instance, it can initiate the formation of heat islands,
contaminate underground water, eradicate vegetation, prevent vegetation growth, etc.
However, the most severe environmental impact is the production of carbon dioxide (CO2)
during the production of cement. The estimations are that the cement-production industry
has contributed to more than six percent of the world’s CO2 emissions in recent years [5].
Therefore, the need to replace environmentally harmful materials, such as cement, is in
high demand.

One of the eco-friendly solutions is microbial-induced carbonate precipitation (MICP).
MICP is a biological approach that requires the presence of a large microbial community in
the coarse-grained soil. The reactions between microorganisms and soil particles create a
cementitious bond that improves soil properties. MICP proved to be effective in increasing
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the strength and load-bearing capacity of soil [3,6–9]. However, this approach comes
with certain drawbacks. It can result in the generation of effluent ammonia, and it can
only be implemented in coarse-grained soil. The reason for the latter is that the pores of
fine-grained soil are very small and hence not suitable for the habitation of microbes [4].

Another eco-friendly approach for soil stabilization is the utilization of biopolymers.
Biopolymers are naturally made polymers extracted from plants, shells, fungi, and yeast.
They have been used in the food industry, the cosmetic industry, medicine, and agricul-
ture [10–13]. Since many of them are known as being harmless and edible, they can be
considered as eco-friendly agents for soil treatment [7]. Their advantage over the MICP
treatment is that they can be used in both fine- and coarse-grained soils, and they do
not generate effluent ammonia [14,15]. Up to now, several research studies have shown
the positive biopolymer effect on soil-strength improvement, permeability reduction, and
soil-collapsibility decrease [14,16–21].

The vast majority of the research on biopolymer-treated soil has been experimental in
nature. One of the reasons why the biopolymer treatment of soil has not found its way into
civil-engineering practice could be the absence of computational models that would allow
engineers to incorporate biopolymer-treated soil into their designs. Some of the research
that conducted numerical modeling is by Ayeldeen et al. [16]. They created a finite-element
model to investigate the behavior of the treated collapsible soil after and before water
immersion. The treated and untreated soils were simulated by Mohr–Coulomb’s criterion
with an associated flow rule. The commercially available finite-element software Plaxis
2D was used. The results of the numerical analysis showed that treating the soil with a
biopolymer would increase the soil-bearing capacity and reduce soil settlement during
and after saturation. The results of the numerical analysis on untreated soils were in close
agreement with the results of the in situ plate-load tests.

Another example of numerical modeling of the biopolymer-treated soil was presented
by Chen et al. [22]. In their experimental and numerical research, the surface strength of
biopolymer-treated mine tailings, made of finely ground rock, was investigated. They
conducted experimental research on the biopolymer effect on the penetration force of
a cylindrical penetrometer. In the numerical part of their study, they used the discrete-
element method to simulate the penetration test on the mine tailings stabilized with
biopolymer solutions. Their numerical analysis, which was conducted in PFC3D v4.0 using
the parallel-bond model, showed coinciding results with their experimental analysis. The
numerical simulations showed an increase in the tensile and shear strengths with higher
biopolymer concentration, indicating that the higher concentration of biopolymer causes
greater inter-particle bonding.

To the best knowledge of the authors, no previous attempts have been made towards
conducting a diagnostic strain-localization analysis in biopolymer-treated soil. Strain
localization is a characteristic of elastic-plastic materials that indicates the onset of narrow
deformation bands. It is characterized by a jump in strain rate and is followed by a
reduction in load-carrying capacity, which often indicates an imminent failure of the
materials and structures. Thus, the main goal of this study was to numerically capture
and experimentally validate a macroscopic stress-strain response and predict the onset
of strain localization in elastic-plastic biopolymer-treated soil. In particular, this study
focused on soil treated with three types of biopolymers that were modeled by the linear
Drucker-Prager model. A combined numerical-analytical algorithm that can capture the
stress-strain response and the inception of strain localization in biopolymer-treated soil
was implemented. Actual-unconfined compression and unconsolidated-undrained tests,
which were performed on plain and biopolymer-treated soil, were modeled. The analyses
presented herein allowed an improved characterization of the biopolymer effect on the
failure initiation by providing the stress and strain levels at the onset of strain localization,
as well as the orientations of the accompanying discontinuities and corresponding strain-
localization modes. Ultimately, the diagnostic strain-localization analyses provided a
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quantitative measure of the biopolymer contribution toward the increased resilience and
toughness of these important and environmentally friendly materials.

Following the introduction in this section, a detailed description of the experimental
program is provided. This is followed by a description of the conditions for the onset of
discontinuous bifurcations and the application of the Drucker–Prager model. Finally, the
calibration of constitutive models, stress-strain responses, and predictions for the onset of
strain localization are presented. A summary of the major findings is provided at the end.

2. Experimental Research
2.1. Soil

Two types of sand were used as a base material in this study: silty sand (All-Purpose
Sand—Quikrete) and pure sand (Premium Play Sand—Quikrete). Both sand types were
classified following the ASTM D6913-17 [23] and ASTM D4318-17 [24] standards. The silty
sand had 39% fine particles with the liquid limit, plastic limit, and the index of plasticity
being 49, 29, and 20, respectively. Therefore, according to the Unified Soil-Classification
System, fine particles were classified as silt with low plasticity, and the overall classification
of this soil was SM (silty sand).

The pure sand was obtained from a site close to Destin, Okaloosa County, Florida,
USA. It was mostly made of quartz and was highly uniform. Fine-particle content was
almost non-existent. The coefficient of uniformity and the coefficient of curvature that
were calculated from the grain-distribution curve were 1.46 and 0.93, respectively. Since
the presence of gravel and fine particles was practically non-existent, USCS classifies
this sand as SP (poorly graded sand). This type of sand was investigated only for the
image-processing segment of this research.

2.2. Biopolymers
2.2.1. Xanthan Gum

Xanthan gum (XG) is a biopolymer created by the fermentation of a carbohydrate-
source medium such as glucose. Xanthan gum was named after the bacterium that induces
the process of fermentation, Xanthomonas campestris. Xanthan gum is easily dissolved in
hot and cold water. Solutions containing Xanthan gum are non-Newtonian with high
pseudoplasticity. At low shearing rates, the xanthan gum chains are in a state of rest and
bound by hydrogen bonds. When increasing the shear rate, the bonds are reduced, which
leads to lower viscosity. Due to its fast interaction with water, rapid agitation and mixing
are needed to efficiently dissolve xanthan gum in water. The chains of xanthan gum remain
stable over wide ranges of pH values. Therefore, it can be successfully implemented in
cleaning products as well as acidic food additives [10]. Otherwise, it can be found in the
cosmetic, agriculture, and oil-drilling industries [10]. Commercially available Bob’s Red
Mill Xanthan Gum (Milwaukie, OR, USA) was used in this study.

2.2.2. Guar Gum

Guar gum (GG) is a biopolymer extracted from Cyamopsis tetragonoloba that is com-
monly known as guar. Unlike the majority of plant-based gums, guar gum does not have
any uronic acid in its molecular structure. Additionally, it has a high molecular weight
when compared with other naturally occurring water-soluble polysaccharides. It is worth
mentioning that guar-gum formations are stable over a broad range of pH. Therefore, it
can be dissolved in water. Even small concentrations of guar can significantly increase the
viscosity of the solution it is mixed in. Some of its applications can be found in the cosmetic,
food, agriculture, and oil-drilling industries [13]. In this study, commercially available
Bob’s Red Mill Guar Gum (Milwaukie, OR, USA) was used, and the study complies with
local and national regulations.
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2.2.3. Beta-Glucan

Beta-glucan (BG) is a biopolymer that consists of glucose molecules. It is extracted
from the cells of yeast, fungi, some types of bacteria, and certain types of cereals. The
molecular structure of beta-glucans depends on the source they were extracted from. Beta-
glucan molecules can vary in the kinds of linkages, branching, molecular weight, solubility,
and polymer charge [25]. The beta-glucan used in this study was beta-glucan 1.3/1.6.
The extraction process of beta-glucan depends on the parent source and the molecular
bonds of the polymer. Therefore, an appropriate solving agent must be selected. Molecular
structures of beta-glucan that are held loosely outside the cells can be extracted with hot
water. Beta-glucan molecules that are held tightly to the cell walls can be released by hot
alkali. Beta-glucan, in its powder form, can be dissolved in hot and cold water, which results
in forming a gelatinous solution [26]. Beta-glucans are heavily investigated in medicine
for health improvement [25,26]. Beta-glucan 1.3/1.6 produced by the Bulk Supplements
company (Henderson, NV, USA) was used in this research study.

2.2.4. Specimen Preparation

All specimens were prepared by the dry mixing of biopolymer and silty sand. The
biopolymer concentrations that were used were 0, 1, 2, and 4% with respect to the mass
of the soil, where 0% represents the plain soil with no additives. After the biopolymer
was uniformly mixed with soil, water was sprayed up to 16.5% of the soil mass. After
the water was homogeneously added to the biopolymer-soil mixture, the biopolymer-
soil was compacted in the molds that were intended for the unconfined compression,
splitting-tensile, and triaxial tests.

The mold for the specimens that were tested for unconfined compression had a
diameter of 3.3 cm and a height of 7.1 cm. Additionally, several cube specimens with
dimensions of 5 × 5 × 5 cm were made in order to monitor the development of the strain
and to detect the inception of strain localization during the unconfined compression test by
means of digital image correlation. The cube specimens were chosen because of the flat
surface of the sides of the cube. Specimens for the triaxial test had a mold with a diameter
of 7 cm and a height of 14 cm. Furthermore, specimens for the splitting-tensile-strength
test were made with the intention of using them for the calibration of the numerical model.
The mold that was used to make the specimens for the splitting-tensile-strength test had
a diameter and height of 3.5 and 1.8 cm, respectively. After preparation, specimens were
extruded from the molds and left to cure for five days (specimens for the unconfined
compression and splitting-tensile test) of time and seven days (specimens for the triaxial
test). The reason for different curing times is the fact that the triaxial specimens were larger
and required more curing time to achieve their full strength.

2.2.5. Mechanical Testing

For determination of strength in the unconfined compression test, the axial load was
applied with a strain rate of 1.5 %/min, as per ASTM D2166 [27]. The compressive strength
of the specimen was computed by dividing the maximum load attained during the test by
the corresponding cross-sectional area of the specimen.

The unconsolidated-undrained test was performed in accordance with ASTM D2850-
15 [28]. The specimens were placed in a plexiglass chamber under the confining pressure of
100 kPa. During the shearing stage of the test, the axial strain was applied under the rate of
0.7 %/min.

Splitting-tensile tests were performed following general procedures described in the
ASTM D3967-16 [29] but with a modified apparatus to accommodate small specimen sizes
and relatively low loads. The load was applied at the constant strain rate of 1.5 %/min.
It must be noted that the splitting-tensile test does not give direct soil-tensile properties.
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Thus, the tensile strength was back-calculated from the maximum compressive load and
the dimension of the specimens using the following formula [30]:

σT =
2P

πLD
(1)

where σT is tensile strength; P is a compressive force at failure; D is the diameter of the
specimen; L is the specimen thickness.

2.2.6. Digital Image Acquisition and Processing

The digital image-processing technique was used to monitor the development of the
strain component and detect the inception of strain localization. The cube specimens were
chosen because of the flat surface of the sides of the cube. The flat surfaces of the cube spec-
imens were appropriate for the image-processing software (GOM Correlate, Braunschweig,
Germany) [31], which can record the strain development in pressure-sensitive materials.

Since the quality and accuracy of the image processing rely on a high-contrast random
pattern, a distinctive speckle pattern was applied to the surface of the specimen with a
colored marker. The digital images of the soil samples were continuously recorded at
a constant position (20 cm from the center of the specimen) for image consistency and
uniformity. The resolution of the camera was 12 MP, and it was able to capture 30 frames
per second.

The image-processing software splits the recording into a series of images. The applied
pattern is recognized by the software and isolated as a surface of observation. That surface
is transformed into a group of pixels. In this study, the surface of interest (45 × 45 mm)
was transformed into approximately 570 × 570 pixels. The position of each pixel and the
distance from the surrounding pixels are tracked through the software. Each picture is
compared to the previous one, therefore the software can detect the change in the pixel
position. Following that technique, the software can detect and quantify displacement
and strains that occur in the initial recording. Furthermore, the unconfined compression
apparatus stores timestamps throughout the test, while the image-processing software takes
the time steps from the video recording. Therefore, a correlation between the experimental
results and the image-processing software could be drawn.

3. Numerical Modeling
3.1. Stress-Strain Relationship

The biopolymer-treated soil was assumed to be an elastic-plastic material experienc-
ing an infinitesimal strain and obeying a general non-associative flow rule. The normal
components of stress and strain tensors are positive in tension herein. The macroscopic
stress-strain relationship for plastic loading is given by [32,33]:

.
σij = De

ijkl(
.
εkl −

.
ε

p
kl) (2)

where subscript notation represents the order of the tensor, superscripts indicate elastic (e),
plastic (p) or elastic-plastic (ep) component, “·” over a symbol represents “rate” (time
derivative). Therefore,

.
σij,

.
εij, and

.
ε

p
ij are the rates of a second-order Cauchy-stress tensor,

infinitesimal-strain tensor, and infinitesimal-plastic-strain tensor, respectively. De
ijkl is the

corresponding elastic-stiffness-moduli tensor of the biopolymer-treated soil, and is given
by [33]:

De
ijkl = µ(δikδjl + δjkδil) + λδijδkl (3)

and δij is the Kronecker delta, and µ,λ are Lamé’s constants of the composite.
The two-invariant yield function (F) was used to describe the plastic behavior of a

pressure-sensitive cementitious biopolymer-treated soil. It is defined as:

F = F(σij, κ) (4)
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where κ is a plastic-hardening variable.
The plastic flow rule and hardening law are respectively given by:

.
ε

p
ij =

.
λ

∂G
∂σij

(5)

and
.
κ = h

( .
ε

p
ij

)
=

.
λh

(
∂G
∂σij

)
(6)

where
.
λ ≥ 0 is a plastic multiplier, h(

.
ε

p
ij) is the first-order homogeneous, generally nonlinear

function, and G is a plastic-potential function. The non-associated flow rule was used to
more realistically model the behavior of the treated pressure-sensitive materials such as
biopolymer soils [34,35].

The plastic multiplier
.
λ is obtained from the consistency condition in plastic loading, as:

.
λ =

fijDe
ijkl

.
εkl

H + fijDe
ijkl

gkl
(7)

where gradients of the yield function and plastic potential are denoted by fij and gij,
respectively. The actual-hardening modulus H is given by:

H = −∂F
∂κ

h(gij) (8)

It is positive, negative, or zero for hardening, softening, or perfect plasticity, respectively.
By combining Equations (2), (5) and (7), a tangent elastic–plastic-stiffness-moduli

tensor Dep
ijkl is obtained as:

Dep
ijkl = De

ijkl −
De

ijmngmn fprDe
prkl

H + fmnDe
mnprgpr

(9)

The yield function, F, and rate of the plastic multiplier satisfy Kuhn–Tucker conditions
as follows: .

λ ≥ 0, F(σ, κ) ≤ 0,
.
λF(σ, κ) = 0 (10)

3.2. Onset of Strain Localization

The diagnostic strain-localization analysis was performed at the constitutive level. The
inception of strain localization may be considered as a bifurcation problem that signifies a
loss of stability of the constitutive relation governing a uniform deformation.

It is assumed that the jump in the displacement rate along the singular surface Γ is
constant, which is expressed as [33]:[ .

ui
]∣∣

Γ =
( .
ui

+ − .
ui
−)∣∣

Γ = constant (11)

where
.
ui

+ denotes the displacement rate on one side of the Γ and
.
ui
− the other side.

Equation (11) generally describes the kinematics of a strong discontinuity. The special
case obtained by equalizing the right-hand side of Equation (11) to zero represents a weak
discontinuity. At this point, no assumptions are made about the homogeneity and variation
of
[ .
ui
]

in terms of the singular surface Γ. Combining Equation (11) with the kinematical
definition of infinitesimal-strain rate gives the following expression for a jump in strain
rate across the singular surface Γ:

[ .
εij
]∣∣

Γ =
1
2
(
zinj + zjni

)
(12)
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where zi is the eigenvector corresponding to the relevant eigenvalue problem, as discussed
below, and ni is the unit vector that is normal to the surface Γ.

Furthermore, the equilibrium along the singular surface imposes the following condi-
tion on the traction rate (

.
t): [ .

ti

]∣∣∣
Γ
=
( .

ti
+ −

.
ti
−
)∣∣∣

Γ
= 0 (13)

Combining Equations (2), (12) and (13) leads to the classical bifurcation criterion
(Rudnicki and Rice 1975) which is, given by:

Qikzk = niD
ep
ijklnlzk = 0 (14)

where Qik is an acoustic tensor, also known as the characteristic-tangent-stiffness tensor.
Equation (14) is based on the assumption that a so-called plastic–plastic bifurcation precedes
an elastic–plastic bifurcation. In the former case, the primary and bifurcated incremental
fields both correspond to plastic loading, while in the latter, only one of the incremental
fields corresponds to plastic loading. It was shown [36] that the plastic–plastic bifurcation
always precedes elastic-plastic bifurcation.

In order to solve for the critical amount of hardening necessary for the onset of strain
localization, the following eigenvalue problem was considered:

Qikz(j)
k = λ(j)Qe

ikz(j)
k , j = 1, 2, 3 (15)

where (j) indicates the direction of principal stresses.
Nontrivial solutions of the eigenvalue problem are possible only when the acoustic

tensor Qik is singular. The first two eigenvalues are elastic and equal to one while the third
eigenvalue is plastic, and it was given by Runesson et al. [36] as:

λ(3) = 1−
biPe

ikak

H + fmnDe
mnprgpr

(16)

where Pe
ik is the inverse of the elastic-acoustic tensor and the vectors ai and bj are defined as

ai = fmnDe
mnijnj, bj = niDe

ijmngmn (17)

The corresponding eigenvector is given by the following expression:

z(3)i = kPe
ijbj (18)

where k is an arbitrary scalar.
By setting λ(3) from Equation (16) equal to zero, the hardening modulus H (ni) was ob-

tained. Finally, the critical amount of hardening necessary for the onset of strain localization
was obtained by solving the following constrained optimization problem:

Hcr = max
ni

H(ni), where nini = 1 (19)

where the right side of the equation above represents the maximization of the function. The
corresponding bifurcation angle θ represents the angle between the minor stress axis and
the normal vector (n1, 0, n3). It can be determined from the expression:

tan2 θ =
n2

1
n2

3
(20)

Analytical solutions for Hcr and corresponding critical-bifurcation angles were given
by [36].
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3.3. Application to Drucker–Prager Model

The analysis in this study was based on the linear Drucker–Prager model and the
parameters of the total stress. The yield and plastic-potential functions were presented
as follows:

F =

(
1
3

tan β

)
I1 +

√
J2 − κ (21)

G =

(
1
3

tan ψ

)
I1 +

√
J2 (22)

The gradients of the linear Drucker–Prager yield and plastic-potential functions are
given by

fij =
1
3

tan β · δij +

√
3

2
√

J2
sij (23)

gij =
1
3

tan ψ · δij +

√
3

2
√

J2
sij (24)

where sij is the stress-deviator tensor; β is the internal-friction angle; ψ is the dilatancy
angle; I1 and J2 are the first and second deviatoric-stress invariants, respectively.

After the critical hardening has been obtained, the onset of strain localization can be
determined. The onset can be determined by comparing the values of the critical-hardening
modulus with the actual-hardening modulus. The actual-hardening modulus (Hact) is
calculated from the response representing the actual stress and plastic strain.

3.4. Numerical Simulation

The actual stress–strain response was obtained by simulating the samples by a single
eight-node element modeled with 3D integration. The unconfined compression tests were
conducted by applying a constant vertical-strain rate and keeping the principal stresses
in the horizontal directions at zero. The unconsolidated-undrained tests were performed
under a constant vertical-strain rate and applying the horizontal pressures following the
experimental tests. The inception of the strain localization occurs at the moment when the
actual-hardening modulus equalizes with the critical-hardening modulus.

3.5. Calibration of Constitutive Model

The Drucker–Prager model was calibrated against the unconfined compression, splitting-
tensile-strength test, and the unconsolidated-undrained tests that were performed on plain
and biopolymer-treated silty sand. The calibration example is presented in Figure 1.
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The experimental data were available for the plain soil and the soil treated with three
biopolymer concentrations (1, 2, and 4%). However, only the data for the soil treated with 0,
1, and 4% were used for the calibration. The data for the soil treated with 2% biopolymers
were used for the validation of the proposed model. The elastic and plastic parameters were
predicted from linear interpolation of the results for the soil with 0, 1, and 4% biopolymers.
To achieve the best values of the input parameters, the least-squares fit was used. The
least-squares fit minimizes the relative error, and it was based on the experimental data.

Young’s modulus was obtained for the plain and treated soil from the unconfined
compression tests. Young’s modulus was calculated as the slope of the elastic portion of the
stress–strain response. The calculated values of Young’s modulus for the plain and treated
soil were in the range of previously reported values [37,38]. Poisson’s ratio (ν) was kept
constant for all of the biopolymer-treated soil and was selected from the recommended
values for different types of materials [39].

For the linear Drucker–Prager criterion used in this study, the internal friction angle (β)
and cohesion (d) were taken from the linear yield surface in the p–q stress plane (Figure 1).
The cohesion for the samples with 2% biopolymer was calculated from the predicted friction
angle and the initial stress level of the predicted hardening. The plasticity models for the
non-associated flow required a value for the dilatation angle (ψ) that was kept constant for
all of the biopolymer-treated soil and was assumed based on suggested values [40]. Table 1
summarizes the material properties used for the proposed model.

Table 1. Selected properties of the biopolymer-treated soil for the proposed model.

Material E (MPa) β (◦) ψ (◦) v

Plain soil 88 34 1 0.3

GG (1%) 234 63 1 0.3

GG (2%) 217 64 1 0.3

GG (4%) 184 65 1 0.3

BG (1%) 114 42 1 0.3

BG (2%) 130 46 1 0.3

BG (4%) 162 55 1 0.3

XG (1%) 249 54 1 0.3

XG (2%) 243 51 1 0.3

XG (4%) 233 46 1 0.3

The isotropic non-linear hardening was used in all of the test simulations and was
implemented into the model in a tabular form. The hardening was obtained from the
averaged values of the experimental tests (unconfined compression). The plastic strains
were calculated by subtracting the elastic-strain components from the amount of total strain.
Prior to that, the elastic-strain components were calculated by dividing the axial-stress
response with the modulus of elasticity. The example of actual and predicted hardening
responses for the unconfined compression are presented in Figure 2. The hardening curve
for the silty sand with 2% BG was interpolated from the parameters of the equations fitting
the experimental data.
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Figure 2. Hardening response for the unconfined compression test for silty sand treated with BG.

4. Results
4.1. Unconfined Compression Test

The linear Drucker–Prager model was used to simulate the 3D stress state of the
unconfined compression tests. A comparison between the numerically predicted responses
and experimentally observed responses for the unconfined compression test are presented
in Figures 3–5. The stress-strain responses of specimens with 0, 1, and 4% were used for the
calibration of the model, while the specimens with 2% were used for validation.

Figure 3 shows the numerical response (solid line) and experimental data (scatter
data) of the unconfined compression test of the BG-treated silty sand. For comparison, the
same results of the plain silty sand are shown in Figure 3a). From Figure 3, it can be seen
that the onset of strain localization (OSL) of the silty sand increased with the addition of
BG. Furthermore, it can be seen that the peak stress also increased with the biopolymer
addition. Figure 3a,b,d show a relatively better match between the experimental data and
the numerical response when compared with Figure 3c. That is because the numerical
response in Figure 3a,b,d were based on the calibrated material properties, whereas the
numerical response in Figure 3c was obtained from the predicted material properties. The
predicted model could not detect the OSL for the silty sand treated with 4% BG because
the actual critical hardening never equalized with the calculated critical hardening. Hence,
there is no OSL (red line) shown in Figure 3d.
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Figure 5. Unconfined compression-test results of the silty sand with (a) 0% additives; (b) 1% XG;
(c) 2% XG; (d) 4% XG.

In Figure 4, the numerical response and experimental data of the unconfined com-
pression test of the GG-treated silty sand can be seen. Additionally, the experimental and
numerical results of the treated silty sand were compared with the results of the plain silty
sand (Figure 4a). It can be seen that the peak stress increased with the increase of the GG
concentration. Figure 4 shows that the OSL of the silty sand increased with the addition of
GG. The exception is the concentration of 1% GG (Figure 4b). Even though the peak stress
of the silty sand increased with the addition of 1% GG, the OSL occurred at the lower strain
level for 1% GG. The reason behind this is that the onset of strain localization depended
on the yield stress and the peak stress, but it was primarily governed by the hardening
response. Furthermore, the numerical response of the silty sand with 2% GG showed a
relatively good match with the experimental data (Figure 4c).

Figure 5 shows the experimental data and the numerical response of the unconfined
compression test of the XG-treated silty sand. Figure 5 shows that the OSL of the silty sand
was postponed with the addition of XG. Additionally, it can be seen that the peak stress
also increased with the increase in XG. The numerical response of the silty sand treated
with 2% XG showed a relatively good correspondence with the experimental data even
though it was based on the predicted material properties. The predicted model could not
detect the OSL for the silty sand treated with 4% XG because the actual critical hardening
did not rise to the level of the calculated critical hardening. Therefore, as earlier, it is not
shown in Figure 5d.

Figure 6 summarizes the level of the total axial strain (Figure 6a) and the axial stress
at the OSL (Figure 6b). It is evident that the stress at the OSL increased with the increase
in biopolymer concentration, and that the level of total strain increased for most of the
biopolymer concentrations.
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the unconfined compression test of silty sand.

The bifurcation angle is represented by the angle between the minor stress axis (x3)
and the unit vector (n) that lays in the x1, x3 plane [36]. From Figure 7, it can be seen that
the addition of the biopolymers altered the bifurcation angle. In particular, the results show
that the bifurcation angle kept increasing with the increase in the GG and BG concentrations.
For the XG-treated soil, the highest bifurcation angle was achieved for the concentration
of 1%, and it kept decreasing with the increase in XG concentration. That phenomenon
can be related to the increase in the ductility of the material with the increase in the XG
concentration. However, in all cases of the treated soil, the bifurcation angle was higher
than that of the plain soil. In general, the increase in the bifurcation angle results in a
steeper deformation bend that changes the failure behavior.
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sion test).

4.2. Unconsolidated-Undrained Triaxial Test

The linear Drucker–Prager model was also used to simulate the 3D stress state of the
unconsolidated-undrained triaxial test. The experimental stress-strain response was com-
pared with the numerical response. The onset of strain localization was considered when
the actual hardening equalized with the critical hardening. The results are summarized
in Figure 8. The level of the stress at OSL increased with the increase of the biopolymer
concentration (Figure 8a). However, Figure 8 shows a trend of the decreasing level of strain
at the OSL with the increase in biopolymer concentration. The reason for this behavior is
the fact that the onset of strain localization depends on the yield stress and the hardening
response. These results indicate that the biopolymer-treated soil had a more brittle behavior
than the plain soil at higher confining pressures.
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The change in the bifurcation angle of triaxial specimens (Figure 8c) showed a sim-
ilar response, as seen in the unconfined compression test. For all biopolymer types and
biopolymer concentrations, the treated soil had a higher bifurcation angle than the plain
soil. Additionally, the bifurcation angle kept increasing with the concentration increase
of GG and BG. For the XG-treated soil, the highest bifurcation angle was achieved for the
concentration of 1%, and it kept decreasing for the higher concentrations of XG.



Polymers 2022, 14, 997 15 of 21

Figure 9 compares the stress-strain responses of the unconfined compression tests and
the triaxial tests of the silty sand. As described previously, the onset of strain localization
occurs close to the peak of the stress-strain curves. Comparing the peaks of the unconfined
compression- and triaxial-test curves, it can be observed that the peaks occur at a higher
stress-strain level for the triaxial tests. The reason for this is the applied confinement
pressure in the triaxial test. Schnaid et al. [41] demonstrated that the increase in confinement
pressure increases the level of the peak stress in the cemented sand and it postpones the
level of strain at which it occurs. Furthermore, the peak stress tends to increase with
the increase in biopolymer concentration. Observing only the results of the unconfined
compression tests, represented by scattered data, it can be seen that biopolymers tend
to increase the level of the peak stress and the level of strain at the peak (represented
by the arrow in Figure 9). The triaxial test results, represented by solid lines, also show
that the level of the peak stress increases with the addition of biopolymers. However,
the peak occurs at a lower strain level for the treated silty sand than for the plain silty
sand. Furthermore, the level of strain tends to decrease with the increase in biopolymer
concentration (represented by the arrow in Figure 9). Similar results were demonstrated
in previous research on stabilized soil [41,42]. This phenomenon is likely related to the
ductility of the specimens. The plain soil in the triaxial test demonstrated a more ductile
behavior than the treated specimens. Cemented soil can have an abrupt post-peak failure in
the triaxial test [43] that indicates the brittleness of the treated soil. It is also more prominent
in sand with few or no fine particles.
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Figure 9. Comparing unconfined compression test (UC) with the triaxial test (UU) for the plain
silty sand and silty sand treated with (a) XG; (b) GG; (c) BG. The arrows indicate the shift of the
stress-strain curves.

4.3. Digital Image Correlation

Figures 10 and 11 combine the experimental response, numerical response, and image-
processing results for clean sand and silty sand, respectively. The experimental responses
of the unconfined compression tests are presented by markers in Figures 10 and 11. The
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solid dark and red lines represent the numerically obtained stress-strain curve and the
OSL, respectively.

The heat maps in Figures 10 and 11 are presented as overlays on the soil surface and
show the strain concentration and strain propagation on the cube samples. Three heat maps
represent three different timestamps when the heat map was generated. The first image
represents the early stage of the unconfined compression with no visible strain localization.
The second image corresponds to the OSL from the analytical-numerical algorithm. The
third image represents the post-peak strain propagation. The arrows in the figures represent
the stress-strain level at which the heat map was captured.
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Figure 11. Image processing of strain localization for the silty sand with (a) no additives; (b) 0.5%
XG; (c) 1% GG under unconfined compression test compared with the numerically obtained OSL (red
line) and experimental data.
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Figure 10a represents the sand treated with 0.5% XG, whereas Figure 10b represents
the sand treated with 1% XG. Comparing the onset of strain localization in the sands with
different XG concentrations, it can be seen that OSL occurs at almost the same strain level;
in fact, it is moderately lower for the sand with 1% XG. However, the peak stress was higher
for the specimen treated with 1% XG. Shortly after reaching the peak stress, the stress
dropped more abruptly for the specimen with 1% XG because of the increased brittleness.

The heat maps in Figure 10a,b show the process of strain concentration for the sand
specimen. In both figures, in the early stages of the test, the strain distribution is uniform
along the whole surface. As it approaches the red line (OSL), the strains start to concentrate
in one deformation plane. The third heat-map image shows the propagation of the defor-
mation plane with the increase in strain after the OSL has been reached. Additionally, the
heat map shows the created bifurcation angle as the result of the strain localization. The
bifurcation angle of the sand with 0.5% XG was calculated as 65◦, while the bifurcation
angle of the sand with 1% XG was 75◦. It can be concluded that the increase in biopolymer
concentration can increase the bifurcation angle of sand. A similar trend was previously
reported for the biopolymer-treated silty sand where the bifurcation angle was found
through the analytical-numerical algorithm.

Observing Figure 11, a combination of the experimental response, numerical response
and image-processing results for silty sand can be seen. Figure 11a represents the plain
silty sand, Figure 11b represents the silty sand treated with 0.5% XG, and Figure 11c shows
the silty sand with 1% GG. Even though the peak stress increased with the addition of
biopolymers, the strain level for the OSL did not significantly change. This indicates that
higher concentrations of XG and GG are required to postpone the OSL of the silty sand.

The heat maps in Figure 11a–c show the process of strain concentration for the
biopolymer-treated silty sand. In all three figures, in the early stages of the test, the
strain distribution is uniform along the specimens’ surfaces. As it approaches the OSL,
the strains start to concentrate on one deformation plane. The second image shows the
high strain concentration at the moment of the OSL, which was determined from the
analytical-numerical algorithm. The third heat-map image shows the strain propagation
that occurs after the OSL. Additionally, the heat maps show the created bifurcation angle
due to the strain concentration. The bifurcation angle of the biopolymer-treated soil shows
higher values for the biopolymer-treated silty sand. The plain silty sand (Figure 11a) had
the bifurcation angle of 55◦. The silty sand with 0.5% XG Figure 11b) had the bifurcation
angle of 60◦, while the concentration of 1% GG (Figure 11c) resulted in the bifurcation
angle of 70◦. As reported previously in this study, the bifurcation angle of the silty sand
increased with the addition of biopolymers. The difference between the second heat-map
image (at the OSL), and the third image (after the OSL) was more prominent in the sand
than in the silty sand. The reason for this is the difference in the nature of the base material.
The treated sand had a more brittle response than the silty sand. Furthermore, the break of
the treated sand was cleaner, whereas the failure of the silty sand resulted in the partial
crumbling of the material. Therefore, the nature of the treated sand was more suitable to
observe using the image-processing software.

Observing the unconfined compression test using image-processing software showed
high strain concentrations at the moment of the OSL. However, there are some drawbacks
that should be considered. The image acquisition with a single camera and subsequent
processing gave a 2D output only on one side of the specimen. However, during the
actual 3D test, it was unknown on which specimen side the deformation band would occur.
Therefore, the digitally obtained deformation planes for the tested specimens might not be
the most critical ones. To solve these issues, multiple cameras facing each specimen side
should be used.
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5. Conclusions

The main objective was to perform the computational and experimental diagnostic
strain-localization analyses in biopolymer-treated soil. Two types of soil (silty and clean
sand) were investigated with the three types of biopolymers (xanthan gum, guar gum, and
beta-glucan). A numerical-analytical algorithm was implemented to capture the stress-
strain response and the inception of the strain localization. The experimental data were
collected for the plain soil, and soil with 1, 2, and 4% biopolymer concentrations. Three
strength tests were used for calibration. The experimental data of the silty sand with 2%
biopolymers were used for validation purposes.

The stress-strain response of the specimens subjected to uniaxial compression and
triaxial stress states were simulated. In addition, the inception of the strain localization
was calculated for each specimen and each stress state. It was found that the OSL was
postponed during unconfined compression for most biopolymer concentrations, while it
was advanced for the triaxial stress state. The peak stress in each test increased with the
increase in biopolymer concentration, and the OSL always occurred close to the level of the
peak stress. The bifurcation angle of silty sand increased with the increase in GG and BG
concentration, but it started to decrease after adding more than 1% XG.

Several cube specimens of sand were tested for the unconfined compression and
observed using image-processing software. The strain development was compared with
the calculated OSL. The OSL appeared close to the peak stress, at which moment the
image-processing software reported the initiation of the high strain concentrations. To
capture more precise strain distributions and bifurcation angles with the image-processing
software, a 3D image acquisition and analysis should be performed. That approach requires
more equipment and will be utilized in future research.

In conclusion, the diagnostic strain analysis shows that the presence of biopolymers in
the soil can influence the onset of strain localization. Depending on the stress state, soil type,
biopolymer type, and concentration, the strain localization can be postponed or advanced.
Analyzing the complex mechanics of biopolymer-treated soil helps to understand their
strength limitations. Understanding how biopolymers affect the strain localization and
failure of soil materials can lead to their utilization in engineering practices.
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