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Abstract 

The design and management of infrastructure is a significant challenge for traffic engineers and planners. Accurate 

traffic characterization is necessary for effective infrastructure utilization. Thus, models are required that can characterize 

a variety of conditions and can be employed for homogeneous, heterogeneous, equilibrium and non-equilibrium traffic. 

The Lighthill-Whitham-Richards (LWR) model is widely used because of its simplicity. This model characterizes traffic 

behavior with small changes over a long idealized road and so is inadequate for typical traffic conditions. The extended 

LWR model considers driver types based on velocity to characterize traffic behavior in non lane discipline traffic but it 

ignores the stimuli for changes in velocity. In this paper, an improved model is presented which is based on driver 

reaction to forward traffic stimuli. This reaction occurs over the forward distance headway during which traffic aligns to 

the current conditions. The performance of the proposed, LWR and extended LWR models is evaluated using the First 

Order Upwind Scheme (FOUS). The numerical stability of this scheme is guaranteed by employing the Courant, 

Friedrich and Lewy (CFL) condition. Results are presented which show that the proposed model can characterize both 

small and large changes in traffic more realistically. 

Keywords: Lighthill Whitham and Richards (LWR) Model; Driver Reaction; Traffic Stimuli; First Order Upwind Scheme. 

 

1. Introduction 

Traffic models are employed to predict vehicle behavior and are essential to the design of effective control 

strategies [1]. Changes in traffic velocity occur due to driver interactions and can result in significant spatial changes 

in density. Traffic flow is impacted by leading as well as adjacent vehicles [2] and driver interactions are due to 

forward and lateral changes in traffic. The minimum distance between consecutive vehicles to avoid an accident is 

called the forward distance headway. Large changes in velocity occur with a small forward headway, and vice versa. 

The distance a vehicle maintains with adjacent vehicles is called the lateral distance headway. A small lateral distance 

headway tends to reduce traffic flow and vice versa [3]. Thus, traffic models should consider both the lateral and 

forward distance headways to adequately characterize traffic flow. 
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Traffic flow can be categorized according to road conditions and is described as homogeneous or heterogeneous, 

equilibrium or non-equilibrium. In homogeneous traffic, parameters such as velocity and headway do not vary 

spatially [5] and vehicles follow lane discipline. Heterogeneous traffic consists of motorized and non-motorized 

vehicles and lane discipline is often not followed [6]. In an equilibrium flow, velocity is a function of density and the 

distance between vehicles is inversely proportional to density. Thus, the distance between vehicles is small when the 

density is large and vice versa. In a non-equilibrium flow, the velocity and distance between vehicles are not based on 

density [7]. 

Macroscopic traffic models consider the cumulative behavior of traffic including density, velocity and flow and are 

widely employed due to their low computational complexity and simplicity [4]. Greenshields proposed a linear 

relationship between traffic velocity and density [8] which can be expressed as: 𝑣(𝜌) = 𝑣𝑚 (1 − 𝜌𝜌𝑚) (1) 

Where 𝑣𝑚  is the maximum velocity, 𝜌  is the density and 𝜌𝑚  is the maximum density. Greenberg considered a 

logarithmic relationship between velocity and density [9]. However, the free flow velocity of this model tends to 

infinity at low densities which is not realistic. Underwood employed an exponential relationship between the velocity 

and density [10]. The limitation of this model is that the velocity approaches zero for large densities. The Greenshields 

model has been modified to provide a more realistic characterization of traffic flow [11, 12],  and this is commonly 

employed in traffic flow modeling. 

Lighthill and Whitham and Richards proposed a first-order macroscopic traffic flow model which is called the The 

Lighthill-Witham-Richards (LWR) model [13, 14]. It is based on vehicle conservation on a highway which can be 

characterized by temporal changes in traffic density and spatial changes in flow. This model is given by: 𝜕𝜌𝜕𝑡 + (𝜕𝜌𝑣(𝜌))𝜕𝑥 = 0 (2) 

Where 𝑣(𝜌) is the equilibrium velocity distribution [31]. The LWR model is the simple to implement [15] and is 

adequate for small changes in traffic flow [16, 17]. However, it has limitations in characterizing non-equilibrium 

traffic such as when there are large changes in flow [18]. Whitham improved the LWR model [16] by incorporating 

the time headway which is required during velocity alignment. Coscia [19] improved the LWR model by 

incorporating the delay in driver reaction to a change in traffic conditions. Daganzo [20] considered the effect of lanes 

and classes of vehicles on flow. However, this model assumes instantaneous traffic alignment which is unrealistic. 

Chanut and Buisson [21] also incorporated classes of vehicles, particularly cars and trucks, but it is difficult to 

characterize the classes. Drivers presumption to changes ahead is called anticipation [22], and relaxation is the 

alignment to changes in traffic flow. The movement of vehicles towards equilibrium conditions is called diffusion 

[23]. Ismael [24] proposed a macroscopic model based on forward distance headway. This model includes anticipation 

and diffusion terms but cannot characterize traffic behavior during congestion. 

Most macroscopic models are based on only homogeneous traffic [25]. However, the LWR model was modified in 

[26] to consider large traffic velocity changes at bottlenecks. Another variation considers driver response as quick or 

sluggish in non lane discipline traffic [45]. The response of quick drivers is reduced by leading slow vehicles. To 

avoid speed reduction, quick drivers overtake slow vehicles when there is sufficient space between two leading 

vehicles. This model can be expressed as: 𝜕𝜌𝑧𝜕𝑡 + ∑𝐴
𝑝=1 𝑐𝑧𝑝 𝜕𝜌𝑝𝜕𝑥 = 0 

(3) 

Where 𝑧 represents the driver type, 𝐴 is the number of types, 𝜌𝑧 is the density of vehicles having type 𝑧 drivers, 𝜌𝑝 is 

the density of vehicles having type 𝑝 drivers, and 𝑐𝑧𝑝 is the response of type 𝑧 drivers to the presence of type 𝑝 drivers 

ahead which is given by: 𝑐𝑧𝑝 = 𝑣𝑧𝜎𝑧𝑝 + 𝜌𝑝 𝜕𝑣𝑧𝜕𝜌𝑝 (4) 

Where 𝜎𝑧𝑝 is 1 if 𝑧 = 𝑝 and 0 if 𝑧 ≠ 𝑝, and 𝑣𝑧 is the speed density relationship for driver type 𝑧: 𝑣𝑧 = 𝑣𝑓𝑧 (− (𝜌𝑧𝜌0 /2)2) (5) 

Where 𝑣𝑓𝑧 is the free flow speed of type 𝑧 drivers and 𝜌0 = 50 veh/km. While this model can characterize non lane 

discipline traffic, it ignores traffic stimuli. Thus, the density behavior of this model with different driver types is 
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similar to that of the LWR model. Further, the effect of vehicle interactions is not considered and an aggregate 

response is used for different speeds which is not an accurate characterization of traffic flow.  

Traffic aligns to spatial changes in density based on the forward and lateral distances headways between vehicles. 

In congestion, these headways are small. Driver response is the reaction to changes in forward traffic stimuli. A driver 

is more responsive and alignment is quick with small headways. Conversely, a driver is less responsive and alignment 

is slow with large headways. A driver maintains a safe forward distance headway ℎ and lateral distance headway 𝑏𝑠 

during alignment. The ratio of lateral distance headway to safe lateral distance headway is a stimulus for driver 

reaction. This reaction is quick for a large traffic stimulus and vice versa. The LWR model characterizes traffic 

similarly for different conditions which causes unrealistic behavior. In this paper, a macroscopic model is proposed to 

characterize traffic conditions based on driver reaction and traffic stimuli. Traffic alignment is assumed to occur over 

the distance headway. The proposed, LWR and extended LWR models are evaluated over a straight road using the 

First Order Upwind Scheme (FOUS) to illustrate the advantages of our approach. 

The remainder of this paper is organized as follows. The proposed model is presented in Section II. The numerical 

solution and stability analysis are given in Section III. The performance of the proposed, LWR and extended LWR 

models is evaluated in Section IV and some conclusions are drawn in Section V. 

2. Traffic Flow Modeling 

Traffic can be characterized considering driver behavior and traffic flow theory [43, 44]. The steps in developing a 

traffic flow model are shown in Figure 1. First, a framework is built based on qualitative statements and behavioral 

assumptions [27]. Second, the related literature and physical laws are used to propose a traffic model [28]. Then the 

performance of the proposed model is evaluated numerically [29]. This is typically achieved by discretizing the model. 

These results are used to modify the model if necessary to improve the traffic characterization. The remainder of this 

section presents the traffic model. 

 

Figure 1. The steps in the development of a traffic flow model 

The LWR model given in Equation 2 is based on the conservation of vehicles [30]. It is known that this model 

cannot characterize large changes in flow [18], and these changes can be significant when there are many driver 

interactions. Velocity alignment is based on forward changes in density [32] and driver reaction occurs during the time 

headway 𝜏 . Further, velocity aligns according to the equilibrium velocity distribution [4]. The corresponding 

acceleration can be expressed as: 𝑎 = Δ𝑣𝜏  (6) 

Where Δ𝑣 is the change in velocity during alignment. The distance headway is covered during time headway and 

aligns to the equilibrium velocity of the forward traffic. The rate of change in alignment during 𝜏 is the transition 

velocity given by: 𝑣𝑡 = 𝑑𝜏  (7) 

Substituting 𝜏 from Equation 7 in Equation 6 gives: 𝑎 = 𝑣𝑡Δ𝑣𝑑  (8) 

The driver reaction to the change in forward conditions is: 𝑣𝑟 = 𝑎𝑡 (9) 

Examination / Observation 

Traffic Theory 

The Traffic Model 

The Discretized Model 

Simulations and Numerical Validation 
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Where 𝑡 is the interaction time. Vehicle interaction is large during congestion so a large change in 𝑣𝑟  is expected. 

During free flow, interactions are low and 𝑣𝑟  should be small. From Herman and Prigogine (1979) [33] we have: 𝑡 = 1𝑣𝑡  (10) 

For a small 𝑡 the transition velocity is large and alignment is quick. Thus, more changes in traffic and larger 

variations in flow are expected. For a large 𝑡, the transition velocity is small and alignment is slow. Then there are 

fewer changes so the flow is smooth. Substituting Equations 8 and 10 in Equation 9 gives: 𝑣𝑟 = Δ𝑣𝑑  (11) 

Traffic aligns to the equilibrium velocity 𝑣(𝜌) according to the forward conditions so that: Δ𝑣 = 𝑣(𝜌) − 𝑣 

and this gives: 𝑣𝑟 = 𝑣(𝜌) − 𝑣𝑑  (12) 

The forward distance headway between vehicles can be expressed as: 𝑑 = ℎ + 𝑣𝑡𝜏 (13) 

Where ℎ is the safe distance to perceive forward traffic changes [34]. Substituting this in Equation 12 gives: 𝑣𝑟 = 𝑣(𝜌) − 𝑣ℎ + 𝑣𝑡𝜏  (14) 

This indicates that a driver reacts and aligns to forward conditions while covering the forward distance headway. 

Lateral distance headway is the safe distance between two adjacent parallel vehicles. This can be used to 

characterize traffic heterogeneity [35]. As the lane width decreases, this headway decreases. Further, the lateral 

distance is small in the presence of large vehicles, in congestion, and when lane discipline is not followed. In free flow 

conditions, the lateral distances between vehicles is large. With heterogeneous traffic, the changes in flow are small 

and tend to zero for small lateral distances which makes vehicles vulnerable to accidents. The stimulus 𝑀 for driver 

reaction is ratio of the actual lateral distance 𝑏𝑎 to the safe lateral distance 𝑏𝑠: 𝑀 = 𝑏𝑎𝑏𝑠  (15) 

When 𝑀 is less than 1, traffic maneuverability is restricted so only small changes in traffic occur. This is called an 

inactive bottleneck and results in slow spatial and temporal traffic evolution. For a typical traffic flow: 𝑏𝑎 = 𝑏𝑠, 
so that 𝑀 = 1, while for free flow traffic: 𝑏𝑎 > 𝑏𝑠, 
so that 𝑀 > 1. Driver response is the product of reaction Equation 14 and stimulus Equation 15 which gives [7]: 𝑣(𝜌) − 𝑣ℎ + 𝑣𝑡𝜏 𝑀 (16) 

This indicates that whenever there is a change in stimulus, velocity alignment occurs according to the leading 

conditions over the distance headway ℎ. The proposed model is then obtained by substituting Equation 16 as 𝑞(𝜌) in 

Equation 2 which gives: 𝜕𝜌𝜕𝑡 + 𝜕(𝜌𝑣𝑟𝑀)𝜕𝑥 = 0 (17) 

This characterizes traffic flow based on driver response. When the behavior is typical (𝑀 = 1), and there are no 

changes in traffic conditions, so the proposed model becomes: 𝜕𝜌𝜕𝑡 + 𝜕𝜕𝑥 ( 𝜌𝑣(𝜌)ℎ + 𝑣𝑡𝜏) = 0 (18) 
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Which indicates a homogeneous flow. A driver maintains a safe distance headway with the leading vehicles. Further, 

if the forward distance headway, ℎ𝑡 + 𝑣𝑡𝜏 is equal to 1, then Equation 18 gives the LWR model. Thus in the LWR 

model, the headway is 1 regardless of the traffic conditions, which is unrealistic. Conversely, the proposed model can 

be employed to characterize both homogeneous and heterogeneous flows realistically. 

3. Discretization of the Proposed, LWR and Extended LWR Models 

Macroscopic traffic flow models are partial differential systems. Typically there is no analytic solution due to 

abrupt changes in traffic flow [36], so they are solved using numerical approximations [37]. The first order upwind 

scheme (FOUS) [38] is used here to obtain numerical solutions for the proposed and LWR models. This technique is 

less complex than the central difference, downwind, Lax-Friedrichs and Leap-Frog schemes [39]. In this scheme, a 

uniform computational grid is obtained by dividing the solution space spatially and temporally (𝑥, 𝑡). The width of a 

road segment is Δ𝑥 which is the difference between two consecutive points in the 𝑥 direction while Δ𝑡 is the time step 

in 𝑡 direction. The density is approximated over equidistant road segments (𝑥𝑖 + Δ𝑥, 𝑥𝑖 − Δ𝑥) and then approximated 

over the time interval (𝑡𝑛+1, 𝑡𝑛), where 𝑡𝑛+1 − 𝑡𝑛 = Δ𝑡. 

The traffic models are approximated by spatial derivatives of flow and temporal derivatives of density, 

respectively. The forward in time density approximation is: 𝜕𝜌(𝑡𝑛, 𝑥𝑖)𝜕𝑡 = 𝜌𝑖𝑛+1 − 𝜌𝑖𝑛Δ𝑡  (19) 

and backward in space flow approximation is: 𝜕𝑞(𝑡𝑛, 𝑥𝑖)𝜕𝑥 = 𝑞𝑖𝑛 − 𝑞𝑖−1𝑛Δ𝑥  (20) 

Substituting Equations 19 and 20 in Equation 2 gives: 𝜌𝑖𝑛+1 = 𝜌𝑖𝑛 − Δ𝑡Δ𝑥 (𝑞(𝜌𝑖𝑛) − 𝑞(𝜌𝑖−1𝑛 )) (21) 

Where the flux 𝑞(𝜌𝑖𝑛) for the LWR model at the 𝑖-th time step and 𝑛-th road segment is: 𝜌𝑖𝑛𝑣(𝜌𝑖𝑛) (22) 

and the flux 𝑞(𝜌𝑖−1𝑛 ) at the (𝑖 − 1)-th time step and 𝑛-th road segment is: 𝜌𝑖−1𝑛 𝑣(𝜌𝑖−1𝑛 ) (23) 

Then the density at the 𝑖-th time step and (𝑛 + 1)-th road segment with the LWR model is approximated as: 𝜌𝑖𝑛+1 = 𝜌𝑖𝑛 − Δ𝑡Δ𝑥 (𝜌𝑖𝑛𝑣(𝜌𝑖𝑛) − 𝜌𝑖−1𝑛 𝑣(𝜌𝑖−1𝑛 ))  (24) 

and the density at the 𝑖-th time step and (𝑛 + 1)-th road segment with the extended LWR model is approximated as: 

𝜌𝑧𝑖𝑛+1 = 𝜌𝑧𝑖𝑛 − ∑𝐴
𝑝=1 𝑐𝑧𝑝 Δ𝑡Δ𝑥 (𝜌𝑝𝑖𝑛 ) − (𝜌𝑝𝑖−1𝑛 )) 

(25) 

The flux 𝑞(𝜌𝑖𝑛) for the proposed model at the 𝑖-th time step and 𝑛-th road segment is: 𝜌𝑖𝑛 𝑣(𝜌𝑖𝑛) − 𝑣𝑖𝑛ℎ + 𝑣𝑡𝜏 𝑀 (26) 

and the flux 𝑞(𝜌𝑖−1𝑛 ) at the (𝑖 − 1)-th time step and 𝑛-th road segment is: 𝜌𝑖−1𝑛 𝑣(𝜌𝑖−1𝑛 ) − 𝑣𝑖𝑛ℎ + 𝑣𝑡𝜏 𝑀 (27) 

At the 𝑖-th time step and (𝑛 + 1)-th road segment, the density with the proposed model is approximated as: 𝜌𝑖𝑛+1 = 𝜌𝑖𝑛 − Δ𝑡Δ𝑥 (𝜌𝑖𝑛 𝑣(𝜌𝑖𝑛) − 𝑣𝑖𝑛ℎ + 𝑣𝑡𝜏 𝑀 − 𝜌𝑖−1𝑛 𝑣(𝜌𝑖−1𝑛 ) − 𝑣𝑖𝑛ℎ + 𝑣𝑡𝜏 𝑀) (28) 

A numerical technique approximating a convergent dynamic system should be stable [40]. This can be guaranteed 
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by choosing a suitable time step Δ𝑡 . The traffic covers a maximum distance of 𝑣𝑚Δ𝑡  during a time step. To 

approximate the density during this time, the distance covered by the traffic should be less than a road segment so that: 𝑣𝑚Δ𝑡 ≤ Δ𝑥 (29) 

and rearranging gives: Δ𝑡 ≤ Δ𝑥𝑣𝑚 (30) 

This provides a guide to the maximum allowable time step Δ𝑡. In this case, the slope of the gradient is always less 

than or equal to 1, which is known as the Courant number given by: 𝑐 = 𝑣𝑚 Δ𝑡Δ𝑥 (31) 

The Courant, Friedrich and Lewy (CFL) condition 𝑐 ≤ 1  guarantees numerical stability [40]. The maximum 

velocity for the models is set to 𝑣𝑚 = 17 m/s, and the time and roads steps are Δ𝑡 = 0.1 s and Δ𝑥 = 5 m, respectively. 

The CFL condition gives: 𝑐 = 17 × 0.15 = 0.34 ≤ 1 (32) 

so the numerical solutions will be stable. 

4. Performance Results 

 The performance of the proposed and LWR models is evaluated over a 200 m straight road section and the 

extended LWR model over a 500 m section. The simulation parameters are given in Table 1. The total simulation time 

is 30 s, and the time and road steps are 0.1 s and 5 m, respectively. The maximum normalized density is 1 which 

represents a road that is 100%  occupied. The maximum velocity is 17  m/s and the target equilibrium velocity 

distribution is Equation 1 [8] for the proposed and the LWR models, while for the extended LWR model the target 

velocity distribution is Equation 5. Three driver types are considered so 𝐴 = 3, and the maximum speeds are 16.55, 25 and 33.33 m/s for 𝑧 = 1, 2 and 3, respectively [45]. The relaxation time is 𝜏 = 2.5 s and 𝑑 = 5 m [41-43]. The 

traffic stimuli [44] values are 𝑀 = 0.5, 1 and 1.5, and non periodic boundary conditions are employed. The initial 

density distribution is given in Figure 2. The density is 0.10 at 1 m, increases to 0.19 at 40 m, decreases to 0.011 at 125 m, and then increases to 0.19 at 200 m. 

Table 1. Simulation Parameters 

Description Value 

Simulation time 30 s 

Road length for proposed and LWR models 200 m 

Road length for the extended LWR model 500 m 

Maximum velocity 𝑣𝑚 = 17 m/s 

Maximum velocity for type 1 drivers 𝑣𝑚1 = 16.55 m/s 

Maximum velocity for type 2 drivers 𝑣𝑚2 = 25 m/s 

Maximum velocity for type 3 drivers 𝑣𝑚3 = 33.33 m/s 

Time step 0.1 s 

Road step 5 m 

Maximum density 𝜌𝑚 = 1 

Relaxation time 𝜏 = 2.5 s 

Traffic stimulus 𝑀 = 0.5, 1 and 1.5 
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Figure 2. Initial density distribution over a 𝟐𝟎𝟎 m road section 

 The density behavior of the proposed model at 5 s over a 200 m road section with traffic stimuli 𝑀 = 0.5,1 and 1.5, is given in Figure 3. With 𝑀 = 0.5, the density is 0.011 at 5 m, increases to 0.19 at 40 m, decreases to 0.021 at 140 m, and is 0.19 at 200 m. With 𝑀 = 1, the density is 0.021 at 5 m, increases to 0.19 at 40 m, decreases to 0.011 

at 135 m, and is 0.19 at 200 m. With 𝑀 = 1.5, the density is approximately 0 at 5 m, increases to 0.19 at 35 m, then 

decreases at 130 m to 0.021, and is 0.19 at 200 m. These results show that the density evolution varies with the 

lateral distance headway. With a smaller traffic stimulus this evolution is slower, whereas it is quicker with a larger 

stimulus. 

 

Figure 3. Traffic density behavior of the proposed model over a 𝟐𝟎𝟎 m road section at 𝟓 s with 𝑴 = 𝟎. 𝟓, 𝟏 and 𝟏. 𝟓 

The density behavior of the proposed model over a 200 m road section at 10 s with 𝑀 = 0.5, 1 and 1.5 is given in 

Figure 4. With 𝑀 = 0.5, the density is 0.011 at 5 m, increases to 0.19 at 40 m, decreases to 0.011 at 140 m, and then 

increases to 0.19 at 200 m. With 𝑀 = 1, the density at 5 m is 0, increases to 0.19 at 40 m, and then decreases to 0.021 at 140 m. After 140 m, it gradually increases and reaches 0.19 at 200 m. With 𝑀 = 1.5, the density is 0.01 at 20 m, increases to 0.20 at 35 m, and then decreases to 0.023 at 160 m. At 195 m and 200 m, it is 0.20 and 0.19, 

respectively. Thus, the density evolution is faster for a larger traffic stimuli and this is very evident at 10 s. 

 

Figure 4. Traffic density behavior of the proposed model over a 𝟐𝟎𝟎 m road section at 10 s with 𝑴 = 𝟎. 𝟓, 𝟏 and 1. 𝟓 

The density behavior of the proposed model at 20 s with 𝑀 = 0.5, 1 and 1.5 is given in Figure 5. With 𝑀 = 0.5, 

the density is 0.0041 at 10 m, increases to 0.19 at 30 m, and is 0.012 at 150 m and 0.19 200 m. With 𝑀 = 1, at 25 

m the density is 0.0011, increases to 0.19 at 40 m and then decreases to 0.022 at 175 m. It is 0.21 and 0.18 at 195 m 

and 200 m, respectively. With 𝑀 = 1.5, the density is 0.0021 at 49 m, increases to 0.17 at 55 m, and at 190 m and 
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200 m it is 0.031 and 0.14, respectively. These results show that a small traffic stimulus impedes density evolution, 

so it is slowest with 𝑀 = 0.5. 

 

Figure 5. Traffic density behavior of the proposed model over a 𝟐𝟎𝟎 m road section at 𝟐𝟎 s with 𝑴 = 𝟎. 𝟓, 𝟏 and 𝟏. 𝟓 

The density behavior of the proposed model with 𝑀 = 0.5, 1 and 1.5 at 30 s is given in Figure 6. With 𝑀 = 0.5, 

the density is 0.011 at 20 m, increases to 0.20 at 35 m, gradually decreases to 0.014 at 160 m, and then increases to 0.19 at 200 m. With 𝑀 = 1, the density is 0.0021 at 40 m, increases to 0.17 at 55 m, gradually decreases to 0.034 at 190 m, and then increases to 0.14 at 200 m. With 𝑀 = 1.5, the density is 0.011 at 60 m and gradually decreases 0.041 at 200 m. These results show that the difference in density with a small and large traffic stimulus increases over 

time. 

 

Figure 6. Traffic density behavior of the proposed model over a 𝟐𝟎𝟎 m road section at 𝟑𝟎 s with 𝑴 = 𝟎. 𝟓, 𝟏 and 𝟏. 𝟓 

The density behavior of the LWR model over a 200 m road section at 5 s, 10 s and 20 s is given in Figure 7. At 5 

s, the density is 0.050 at 42 m, increases to 0.18 at 55 m, then decreases to 0.024 at 190 m, and is 0.068 at 200 m. 

At 10 s, the density is 0.010 at 80 m and increases to 0.13 and 0.14 at 100 m and 105 m, respectively. It is 0.061 at 200 m. At 20 s, the density is 0.0021 and 0.042 at 185 m and 200 m, respectively. Thus, the density behavior with 

the LWR model is similar for all traffic stimuli, which is unrealistic. 

 

Figure 7. Traffic density behavior of the LWR model over a 𝟐𝟎𝟎 m road section at 𝟓, 𝟏𝟎 and 𝟐𝟎 s   

The density behavior of the proposed model for 30 s over a 200 m road section with 𝑀 = 0.5, 1 and 1.5 is shown 

in Figures 8 to 10, respectively. These figures show that the temporal and spatial evolution of traffic density is slow 

with 𝑀 = 0.5, faster with 𝑀 = 1 and quick with 𝑀 = 1.5. The corresponding density behavior of the LWR model is 
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given in Figure 11. Comparing this with Figures 8 to 10, the LWR model temporal and spatial density evolution is 

quicker than the proposed model even with 𝑀 = 1.5 . Further, the proposed model characterizes traffic more 

realistically as the density changes according to the traffic stimulus, whereas the LWR model provides the same 

results for all stimuli. 

 

Figure 8. Traffic density behavior of the proposed model with 𝑴 = 𝟎. 𝟓 for 𝟑𝟎 s 

 

Figure 9. Traffic density behavior of the proposed model with 𝑴 = 𝟏 for 𝟑𝟎 s 

 

Figure 10. Traffic density behavior of the proposed model with 𝑴 = 𝟏. 𝟓 for 𝟑𝟎 s 

 

Figure 11. Traffic density behavior of the LWR model for 𝟑𝟎 s over a 𝟐𝟎𝟎 m road section 
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The density behavior of the extended LWR model over a 500 m road section with three user types and 𝑣𝑓𝑧 =16.55, 25 and 33.33 m/s at 5, 10 and 20 s is shown in Figure 12. At 5 s, the density is 0.011 at 140 m and increases 

to 0.15 at 165 m. It is 0.05 at 340 m, 0.15 at 355 m and 0.070 at 500 m. At 10 s, the density increases from 0 at 295 

m to 0.13 at 320 m. It is 0.080 at 460 m and 0.14 at 500 m. At 20 s, the traffic has left the 500 m road section. 

Unlike the proposed and LWR model behavior shown in Figures 6 and 8 respectively, traffic moves very fast with the 

extended LWR model. Further, there are large changes in density with the extended LWR model at 5 s between 150 

m and 340 m and between 340 m and 500 m.  

 

Figure 12. Density behavior of the extended LWR model with three driver types and 𝒗𝒇𝒛 = 𝟏𝟔. 𝟓𝟓, 𝟐𝟓 and 𝟑𝟑. 𝟑𝟑 m/s, on a 𝟓𝟎𝟎 m straight road section at 𝟓, 𝟏𝟎 and 𝟐𝟎 s 

The traffic density behavior over a straight road section was evaluated for the proposed, LWR and extended LWR 

models. The results for the proposed model show that the density evolution is smooth and varies with the traffic 

stimulus. With 𝑀 = 0.5, this evolution is slow due to the small lateral distances between the vehicles, and is faster 

with 𝑀 = 1 and 𝑀 = 1.5 as shown in Figures 4 to 6. Thus, this model can characterize traffic behavior with different 

driver reactions. Conversely, the LWR model does not consider driver reaction as Figure 7 shows that the behavior is 

the same for different conditions. Further, Figure 12 shows that the extended LWR model exaggerates traffic behavior 

as the vehicles move very fast regardless of the driver type. 

5. Conclusion 

The LWR model is widely employed to model traffic behavior, but it cannot accurately characterize traffic flow for 

large changes in traffic. This is because it does not have the flexibility to model the effects of different traffic stimuli, 

which is unrealistic. The extended LWR model was developed to overcome some of the shortcomings of LWR model 

by incorporating the effects of different driver types in non lane discipline traffic. However, this model does not 

consider interactions between vehicles. A new macroscopic model was proposed which characterizes the traffic flow 

based on driver reaction. This is motivated by the fact that drivers react when a traffic stimuli is noticed. Results were 

presented which show that the traffic evolution with the proposed model varies with the traffic stimuli. The temporal 

and spatial evolution is slow with 𝑀 = 0.5, faster with 𝑀 = 1 and quick with 𝑀 = 1.5. Thus, the proposed model 

improves on the LWR and extended LWR models and can be employed to characterize both small and large changes 

in traffic flow. 

The design and management of infrastructure remains a significant challenge for traffic engineers and planners. An 

advantage of the proposed model is that it can characterize various traffic conditions. It can be employed for 

homogeneous, heterogeneous, equilibrium and non-equilibrium traffic. Further, it can be employed in autonomous 

vehicles to aid in traffic alignment during transitions. This model can be extended by including the lateral and forward 

distance headway distributions to better predict traffic flow. 
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