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Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping

P. T. Cochrane, G. J. Milburn, and W. J. Munro
Department of Physics, The University of Queensland, Queensland 4072, Australia

~Received 14 September 1998!

We show how macroscopically distinct quantum superposition states ~Schrödinger cat states! may be used as

logical qubit encodings for the correction of spontaneous emission errors. Spontaneous emission causes a bit

flip error, which is easily corrected by a standard error correction circuit. The method works arbitrarily well as

the distance between the amplitudes of the superposed coherent states increases. @S1050-2947~99!06503-8#

PACS number~s!: 03.67.Hk

I. INTRODUCTION

In quantum information theory logical states are encoded

as two orthogonal pure states @1#. The simplest example is

provided by a single two-level system. The ground state ug&
and excited state ue& can then encode logical 0 and logical 1,
respectively. The ability to form a coherent superposition of
logical states is why we refer to logical states as qubits rather
than simply as bits @2#.

Quantum computation gains its power through the poten-
tial ability to unitarily manipulate a coherent superposition of
large collections of physical systems each encoding a single
qubit @3#. There is no fundamental reason to restrict oneself
to physical systems with two-dimensional Hilbert spaces for
the encoding. It may be more natural in some contexts to
encode logical states as a superposition over a large number
of basis states. When the system supporting the qubit encod-
ing is coupled to a perturbing environment an extra un-
wanted, and possibly uncontrollable, unitary interaction is
introduced, which can appear as an error in the encoded in-
formation. The coupling to the logical basis determines the
type of logical error. While the coupling to the environment
is fixed, we are free to choose how we encode the qubits,
hence the choice of basis for the logical encoding may
change the kind of error introduced. For example, with a
single qubit, a bit flip in one logical encoding basis can ap-
pear as a phase flip in another @4#. This is relevant, as some
kinds of errors are easier to fix than others. Chuang, Leung,
and Yamamoto @5# recently introduced a qubit coding for
two bosonic modes.

These modes could be two optical modes or two vibra-
tional modes of a single trapped ion. A particularly difficult
source of error for bosonic modes arises from exponential
decay of the energy. In a single mode, for example, one
could use the ground state and first excited state as the logi-
cal basis. While the ground state is invariant under decay, the
first excited state will ‘‘reset’’ to the ground state in a single
decay event. Such an error can in general be corrected by a
five-qubit code @6#. However, the code of Chuang, Leung,
and Yamamoto enables a more efficient error correction.

In this paper we give an example of how a careful choice
of the coding scheme can make a difficult error-correction
task simpler. Our example is based on a quantum code for a
single bosonic mode that enables amplitude damping or am-
plification to be corrected as a bit flip error. The code is
based on quantum superpositions of bosonic coherent states,

the so called ‘‘cat states’’ @7#. Our coding scheme is not
exact for very small amplitude coherent states, but improves
exponentially when amplitudes are greater than unity. We
demonstrate a completely unitary, adiabatic method to gen-
erate the cat states of our coding scheme.

II. CAT-STATE ENCODING FOR AMPLITUDE DAMPING

Let ua& be a coherent state for a single bosonic degree of
freedom. We then define two orthogonal states as symmetric
and antisymmetric superposition of coherent states by

uS&5N1~ ua&1u2a&), ~1a!

uA&5N2~ ua&2u2a&), ~1b!

where a is an arbitrary complex number. The normalization
constants are given by

N65~262e22uau2!21/2. ~2!

It is easy to verify that the symmetric cat state, uS& contains
only the even energy eigenstates, while the antisymmetric cat
state uA& contains only the odd energy eigenstates. This fea-
ture is independent of a . The two states are orthogonal and
we are led to the following logical encoding for a single
qubit,

u0&L5uS&, ~3a!

u1&L5uA&. ~3b!

Under free dynamics, the coherent state evolves as
ua(0)e2ivt&, however the two cat states remain orthogonal
and thus the logical encoding of the qubit is invariant under
free dynamics. Therefore, we can transform to the interaction
picture rotating at frequency v .

The amplitude damping model is the standard one for a
bosonic mode, of frequency v , weakly coupled to a zero
temperature heat bath @5,8# in the Born and Markov approxi-
mation. The system obeys the following master equation in
the interaction picture:

dr

dt
5

g

2
~2ara†

2a†ar2ra†a !. ~4!

The solution to this equation may be written as @9#
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r~ t !5 (
k50

`

Yk~ t !r~0 !Yk
†~ t !, ~5!

with

Yk~ t !5 (
n5k

`

AS n

k D @h~ t !#~n2k !/2@12h~ t !#k/2un2k&^nu

~6!

and h(t)5e2gt is the probability that the state is undecayed
up to time t.

Our objective is to correct for at most one decay event
over some characteristic time. In which case we only need to
consider the two terms corresponding to Y0 and Y1 . Coher-
ent states remain coherent under amplitude damping, and in
particular we have that

Y0ua&5e2~12h !uau2/2uAha&, ~7a!

Y1ua&5aAhe2~12h !uau2/2uAha&. ~7b!

It is then easy to see that a single decay event will cause an
even cat state to flip to an odd cat state and vice versa. It is
this feature that we are attempting to exploit through our
code states, so that a single decay event will correspond to a
bit flip. A no-decay event essentially leaves the state un-
changed. These statements are strictly only true for cat states
with an infinitely large coherent amplitude; however, we
now show that only small amplitudes are sufficient for prac-
tical purposes.

An error-correction code must satisfy the following con-
ditions @10#:

L^puYk
†Y luq&L50 for pÞq or kÞl , ~8a!

L^puYk
†Ykup&L5Pk for p50,1, ~8b!

where p ,q are 0 or 1, and Pk is a constant that depends only
on k. The first equation requires that all erroneous states are
orthogonal and the second requires the probability for each
event ~no decay or one decay! to occur to be independent of
the logical state. It is easy to see that the cat-state encoding
satisfies the first condition. The second condition however
requires more careful consideration. Using the conditional
states given above we find that

L^0uY0
†Y0u0&L

L^1uY0
†Y0u1&L

5

11e22ha2

12e22ha2 , ~9a!

L^0uY1
†Y1u0&L

L^1uY1
†Y1u1&L

5

12e22ha2

11e22ha2 . ~9b!

Each of these ratios should ideally be unity, but the departure
from ideality is insignificant even for such a small value as
a53. For example, with h50.9 we find Eq. ~9a! gives
1.001 49 for a52 but for a53 it gives 1.000 000 184.
While Eq. ~9b! gives 0.998 507 9 for a52 and 0.999 999 815
for a53. If we increase the amplitude to a55 the departure
from ideality is undetectable. Therefore, the logical qubits

are encoded in a manner that enables amplitude decay to be
corrected to any desired degree of precision.

We can see that after many spontaneous-emission events
the amplitude will eventually decay away to zero. If the co-
herent amplitude is too small then the ratios ~9a! and ~9b!
will deviate significantly from unity. It is therefore necessary
to have a sufficient initial amplitude to allow computation for
a reasonable amount of time and to know when it is prudent
to reset the states.

It is possible to determine the time scale over which the
states will be useful by considering the ratio ~9a!. This ratio
should not be significantly different from 1 for the encoding
to work, so we allow the difference to be no greater than a
small tolerance. The term responsible for any deviation of
the ratio is exp(22ha2), which we desire to be small enough
such that the ratio is within tolerance. This implies that ha2

has to be greater than some limiting value determined by the
tolerance, below which the state must be reset. Therefore,
given a certain error rate, initial coherent amplitude and de-
sired tolerance we have sufficient information to calculate
the time available for computation before reset.

III. LOGICAL OPERATIONS ON CAT STATES

A logical encoding is useless if we cannot implement one
and two qubit operations on the encoded states. We now
show how this can be done for the cat-state encoding defined
above. The particular form of qubit operations depends upon
the particular physical realization of the bosonic mode. For
the purposes of illustration we simply postulate particular
bosonic interactions to achieve the required gate operations.
We will show that the Hadamard transform may be imple-
mented by simple displacement of a single bosonic mode,
while the two qubit operation may be realized by a mutual
phase shift interaction term which commutes with the num-
ber operator of each bosonic mode.

If the bosonic mode is subject to a classical driving force
the Hamiltonian describing this process in the interaction
picture is

HD5\~ba†
1b*a !, ~10!

where b is the complex amplitude of the driving force. Let
us now choose b as real ~in general we choose b to be p/2
out of phase with a).

For a given cat-state amplitude we can choose the driving
amplitude such that

u5abt , ~11!

where t is the length of time the driving force is applied.
If the even cat state ~encoding u0&L) is driven we find that

e2iHDt/\u0&L5cos uu0&L2i sin uu1&L , ~12!

A displacement of this kind shifts the ‘‘cat’’ very slightly
by an amount b in a direction orthogonal to the orientation
of the cat state in phase space. The transformation is approxi-
mately equivalent to a Hadamard transform of the single
logical qubit when u5p/4 ~in the limit of large a and small
b) and will suffice as a universal one-qubit gate. We will
refer to this as an H gate.
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The simplest way to realize a two-qubit universal gate is
via the two mode interaction Hamiltonian

HP5\xa†ab†b , ~13!

where a ,b represent the mode amplitude operators for the
two bosonic modes of interest. We choose the interaction
time t such that xt5p . As the u0&L only has even bosonic
number while u1&L only has odd bosonic number, we
find that the interaction leaves the states,
u0&Lau0&Lb , u0&Lau1&Lb , u1&Lau0&Lb unchanged, but the
state in which both modes encode a u1&L transforms as

e2ipa†ab†bu1&Lau1&Lb52u1&Lau1&Lb . ~14!

This kind of conditional phase shift operation suffices for a
universal two-qubit gate. We will refer to this as a P gate.

Using the one- and two-qubit gates described above, we
can construct a controlled-not ~CN! gate. Let mode a code
the control bit and mode b code the target bit. A CN gate is
then made by applying an H gate to the target, then coupling
the target and the control by a P gate, and finally applying
another H gate to the target.

We have shown that simple one-mode and two-mode
transformations may be used to construct universal compu-
tational gates for a cat-state logical encoding of bosonic sys-
tems. Amplitude damping appears as a simple bit-flip error
in this encoding, and thus a three-qubit code can be used to
correct it. This leads to relatively simple fault tolerant imple-
mentations of the gate operations described above using
three coupled bosonic modes.

IV. UNITARY CONSTRUCTION OF CAT-STATE

ENCODING

The cat-state encoding described in this paper will be of
little use if we cannot encode our logical bits by unitary
transformations. Unfortunately, all previous schemes to gen-
erate cat states are based on an entanglement between a
bosonic mode and a two-level atom and require a measure-
ment readout @12#. The cat state produced is conditional on
the two, mutually exclusive, results of this measurement, and
we are equally likely to get an even cat state as an odd cat
state. This method of encoding would randomly assign logi-
cal bits and is of little practical use. We now describe a
unitary, although adiabatic, method to generate the two kinds
of cat state used to encode the qubits.

Consider the Hamiltonian,

HNL5\x~a†!2a2, ~15!

which could describe a Kerr nonlinearity for an optical
bosonic mode or the self-interaction of a single trapped ion
driven at the carrier frequency @13#, in which case x is pro-
portional to the fourth power of the Lamb-Dicke parameter.
The Hamiltonian in Eq. ~15! has two degenerate ground
states which are the ground state u0& and first excited state,
u1& of a single bosonic mode. In both cases the eigenvalue is
zero; however, each of these ground states is distinguished
by the parity operator, where u0& is even and u1& is odd. We
now consider the Hamiltonian

HC5HNL2\k@a2
1~a†!2# , ~16!

with k>0. Noting that the cat states u0&L , u1&L are eigen-
states of a2, it is easy to see that these same states are de-

generate eigenstates of HC when a5Ak/x and the eigen-
value is 2\k2/x . While the cat states are degenerate
eigenstates of HC they are distinguished by their parity. The
adiabatic theorem now enables us to predict that the even or
odd initial eigenstates of HNL ,u0&, u1&, will evolve respec-
tively into the even or odd eigenstates, u0&L , u1&L of HC as
we slowly turn on k from zero to a final target value. Thus,
we have a unitary method to code either a logical zero or
logical one as a cat state by choosing to start from a bosonic
ground state or a bosonic first excited state.

The adiabatic theorem is exact only in the case of infinite
slowness, which is of little use for logical encoding in quan-
tum computation, so what matters is how well we can do in
practice. To test this we consider two different ways to vary
k in time: linear and nonlinear.

The linear variation considered here consists of simply
increasing k according to k5t . The function k
5k0tanh2(lt) was used in the nonlinear case due to the ad-
vantageous shape of the tanh2 function.

Figure 1 illustrates the fidelity versus time variation of the
state uc& starting from the u1& Fock state with respect to the

equivalent cat state of mean photon number a5Ak/x . The
fidelity is measured as the modulus squared of the dot prod-
uct of the evolving state with the cat state. The notable fea-
tures of Fig. 1 are the fidelity oscillations, the ‘‘steady-state’’
fidelity, and the relative characteristics of the linear and non-
linear methods of varying k .

The fidelity oscillations result from carrying out the adia-
batic evolution faster than as required for exactness by the
adiabatic theorem. As the system evolves from t50 the fi-
delity will tend away from unity as the state uc& evolves
away from the relevant cat state. Continued evolution even-
tually causes uc& to more closely resemble the equivalent cat
state with the fidelity increasing accordingly. The retreat and
approach of the evolving state with respect to the cat state
causes the oscillations seen in Fig. 1.

The oscillations are damped by k until a ‘‘steady state’’ is
reached with constant fidelity. The ‘‘steady state’’ fidelity is
determined by how quickly k is increased from t50; a
slower initial increase implies a greater final fidelity. Hence,
there are two effects occurring with k: as k increases, oscil-
lations in fidelity are suppressed, and the faster k is increased

FIG. 1. Fidelity-time evolution, c starting from u1&.
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initially, the lower the steady-state fidelity of uc&.
For this adiabatic process to be useful we have two aims:

a steady state in a reasonable amount of time, and a state uc&
as close as possible to the desired final state. For linear k
these are complementary, although for nonlinear k we can
choose a function that can achieve both aims, hence the use
of the tanh2 function (s curve!. The s curve has the proper-
ties that it starts slowly, thus giving a high final fidelity, and
later damps the system very quickly to give a useful final
state in a reasonable amount of time. If the variables k0 and
l are chosen carefully, then it is possible to obtain a fidelity
of almost unity in a usefully short time.

We thus conclude that the unitary logical encoding in
terms of cat states may be performed with almost arbitrary
accuracy using this adiabatic method.

V. DISCUSSION AND CONCLUSION

We have shown that the even and odd cats states may be
used as a robust qubit encoding for a single bosonic mode
subject to amplitude damping. A single decay event will then
appear as a simple bit flip error. We have also shown how
the states may be prepared unitarily and how one-qubit and
two-qubit universal quantum gates may be realized. We now
turn to an assessment of how practical the scheme is for
present technology. To be specific we will consider the case
in which the bosonic mode is the center-of-mass vibrational
state of a single trapped ion. Cat states have been produced
in these systems using a conditional measurement scheme
@11#.

Given a cat state it is straightforward to protect it against
decay using two additional qubits. These could be the elec-
tronic states of two ions in the trap. The error-correction
circuit for a bit flip is well known and is given in Fig. 2. To
implement the gate we need to implement a CN gate be-
tween the vibrational state and the electronic states of the
two ions. Following de Matos Filho and Vogel @13# we con-
sider an ion trapped at an antinode of an optical standing
wave tuned to the atomic frequency; the carrier frequency. In

an interaction picture at frequency n the interaction Hamil-
tonian is

H I52\Vh2a†asx1\
Vh4

4
~a†!2a2sx , ~17!

where V is the Rabi frequency and h is the Lamb-Dicke
parameter. The first term in this expression suffices to build a
CN gate between the cat state and the electronic state. If we
choose the interaction time appropriately we can apply the
transformation

U5exp~2ipa†asx!. ~18!

When this acts on an even cat state it corresponds to the
identity on the electronic system. When it acts on an odd cat
state it corresponds to a p pulse in the electronic system. If
we code our electronic qubits as ug&1→u0& i and ue&1

→u1& i . The unitary interaction in Eq. ~18! will effect a CN
gate with the bosonic mode acting as the control and the
electronic mode acting as the target. Thus, joint excitation on
the carrier frequency of the two ion system will produce the
double CN gate in the first part of Fig. 2. The final double
CN gate in which the vibrational mode becomes the target
can easily be produced with the same Hamiltonian with H

gates either side. This procedure would enable a cat state,
once produced, to be protected from single decay events.
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FIG. 2. Three-qubit circuit to correct bit-flip errors.
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