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Macrospin dynamics in antiferromagnets triggered
by sub-20 femtosecond injection of nanomagnons
D. Bossini1,*,w, S. Dal Conte2,3,*, Y. Hashimoto1,w, A. Secchi1, R.V. Pisarev4, Th. Rasing1, G. Cerullo2,3 & A.V. Kimel1

The understanding of how the sub-nanoscale exchange interaction evolves in macroscale

correlations and ordered phases of matter, such as magnetism and superconductivity,

requires to bridging the quantum and classical worlds. This monumental challenge has so far

only been achieved for systems close to their thermodynamical equilibrium. Here we follow in

real time the ultrafast dynamics of the macroscale magnetic order parameter in the

Heisenberg antiferromagnet KNiF3 triggered by the impulsive optical generation of spin

excitations with the shortest possible nanometre wavelength and femtosecond period. Our

magneto-optical pump–probe experiments also demonstrate the coherent manipulation of

the phase and amplitude of these femtosecond nanomagnons, whose frequencies are defined

by the exchange energy. These findings open up opportunities for fundamental research on

the role of short-wavelength spin excitations in magnetism and strongly correlated materials;

they also suggest that nanospintronics and nanomagnonics can employ coherently

controllable spin waves with frequencies in the 20 THz domain.
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E
xperimental studies allowing to investigate correlated
matter in general, and magnetism in particular, at the
sub-nanometre length- and femtosecond timescales of the

exchange interaction have recently developed into an exciting
research area. The experiments involving ultrashort timescales
provided intriguing results, like the femtosecond laser-induced
transient ferromagnetic state of a ferrimagnet alloy1 and even
light-induced superconductivity2. However, in these cases the
wavelengths of the photo-induced excitations lie orders of
magnitude above the lengthscale of the exchange interaction.
An alternative strategy consists in the investigation of the
magnetic order induced by introducing impurities with atomic
resolution in space3–5, but without temporal resolution.
A hitherto unexplored approach to the problem, which
combines the femtosecond timescale with the nanometre
lengthscale, consists in studying the ultrafast dynamics of the
macroscale magnetic order parameter triggered by spin
excitations with wavelength and period matching the length-
and timescales of the exchange interaction.

These spin excitations correspond to magnons (or spin
waves) with wavevector near the edges of the first Brillouin zone.
In antiferromagnetic materials these magnons can be elegantly
excited in the time domain, via a second-order impulsive
stimulated Raman scattering process involving pairs of magnons
with wavevectors almost equal in magnitude and opposite in
sign. It was demonstrated that in the absence of an external
magnetic field, such spin excitations can be generated only by a
modification of the exchange interaction6 and cannot be
triggered by a change of the spin–orbit coupling. A light-
induced modification of the exchange interaction generates pairs
of magnons (as shown in the Methods section) and properly
describes the Raman spectra6,7. The microscopic mechanism of
perturbation of the exchange interaction by a laser pulse has
been recently described in terms of an effective energy shift of
the charge-transfer transition8,9. Although pairs of spin waves
could in principle be generated throughout the whole Brillouin
zone, the magnon density of states is largest in the high-
frequency region near the zone edges, where the frequencies
are defined mostly by the exchange interaction6,7 (Supple-
mentary Note 1 and Supplementary Fig. 1). Note that the
wavelength of these magnons is comparable to the distance of
nearest-neighbour spins, whose interactions determine the
macroscopic magnetic order. Therefore, studying the photo-
induced dynamics of such magnons discloses the response of the
magnetic system to excitations on the length- and timescales of
the exchange interaction. A bound state of two high-energy,
high-wavevector and counter-propagating spin waves, usually
denoted as two-magnon (2M) mode, can be induced by a
femtosecond light pulse. The frequency and wavevector of this
magnetic excitation are the sums of the frequencies and
wavevectors of the two magnons involved in the bound
state6,7,10,11. Although an impulsive excitation of the 2M
mode was reported, the subsequent dynamics of the
magnetic order parameter has not been discussed12. A
previous attempt to measure the light-induced evolution of
the 2M mode directly in the frequency domain, via the
femtosecond-stimulated Raman scattering technique, could
reveal a modification of the Raman shift of the 2M peak only
during the overlap of the laser pulses13. This signal is dominated
by nonlinear purely optical effects, originating from the
simultaneous interaction of three ultrashort intense laser
pulses with the sample. Therefore, disentangling the optical
and the magnetic components of the signal was possible only via
a sophisticated data analysis and modelling. In femtosecond-
stimulated Raman scattering no signal at delays subsequent the
instrument response time was observed, which did not allow to

disclose the dynamical response of the magnetic order to the 2M
excitation.

The present work reports the femtosecond dynamics of the
macroscopic magnetic order parameter, by means of an impulsive
all-optical injection of the intrinsically highest-frequency spin
excitations with wavevectors near the edges of the Brillouin zone.
The wavelengths of the corresponding magnons are of the
order of 1 nm, and the frequencies in the 20 THz range. We
demonstrate the manipulation of the order parameter via the
coherent control of the short-range magnons: by changing the
conditions of the photo-excitation we arbitrarily reverse the phase
of the spin waves and enhance or quench their amplitude. Our
time-resolved approach discloses even a dynamical coupling of
the high-wavevector magnons with a lattice vibrational mode.

Results
Experimental approach. An excellent system for the all-optical
excitation and detection of the dynamics of high-frequency and
shortest-wavelength magnons is the cubic Heisenberg antiferro-
magnet KNiF3, which is ordered below the Néel point TN¼ 246
K. In this material the Raman cross-section of the 2M mode is so
high that it dominates the whole spectrum6,14. A time-domain
excitation of the 2M mode in KNiF3 (n2ME22 THz,
periodE45 fs, wavevectorE107 cm� 1 and wavelengthE1 nm)
can be achieved by the impulsive stimulated Raman scattering
mechanism, provided that the duration of the stimulus is shorter
than the period of the magnetic mode15,16. A successful impulsive
excitation of such high-frequency magnons therefore demands
laser pulses with a duration significantly shorter than 40 fs. To
meet these requirements we used linearly polarized sub-20-fs
laser pulses, with a central photon energy of 2.2 eV. For the probe
we employed equally short pulses centred around 1.3 eV and with
a polarization perpendicular to that of the pump.

Light scattering by a magnon pair can be visualized as two
spin-flip events, one on each sublattice, such that the total spin
remains unchanged6,7,14 (Fig. 1a). Consequently, the transient
magneto-optical Faraday and Kerr effects, which measure light-
induced variations of the total spin, fail to track the dynamics of
such a magnetic excitation. On the other hand, the 2M process is
expected to be revealed by those second-order magneto-optical
effects, which depend quadratically on the transversal spin
components (that is, on the spin deviations), so that a pair of
spin-flip events can be detected even if the total spin is unaffected
(see discussion in Method section and equations (6) and (7)).
Such a magneto-optical effect depends on the spin operators via
the same spin-correlation function appearing in the Heisenberg
term of the Hamiltonian17 (equation (9)). In particular, we define
the antiferromagnetic linear dichroism (ALD) in terms of the
symmetric components of the dielectric tensor Elns for which
Elns ¼Enls , where n and l are indices. The following definition
holds:17,18

Elns ¼
X

ij

X
gd

rlngdhŜg*i Ŝd+j i ð1Þ

where rlngd is a magneto-optical polar fourth rank tensor and
lngd are spatial coordinate indices, while Ŝ*i and Ŝ+j are the spin
operators located on two nearest-neighbour sites (i, j), belonging
to oppositely oriented magnetic sublattices (* and + ). Note that
the ALD induces a rotation of the probe polarization in the
experimental configuration shown in Fig. 1b (see Methods
section). It is crucial to notice that the two spins in the
correlation function belong to two different ionic sites on
opposite sublattices. This fact differentiates the ALD from the
more conventional magnetic linear birefringence and dichroism
(see equation (9) and discussion in the Methods). The
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macroscopic magnetic order of an ideal Heisenberg
antiferromagnet is conveniently described in terms of the
antiferromagnetic vector L, which is the order parameter18 and
is defined as

L¼
X

i

hŜ*i i�
X

j

hŜ+j i ¼ S* � S+ ð2Þ

where S* and S+ are the total spins of the two sublattices
(Fig. 1a). Our considerations about the dynamics of the spin
system triggered by the impulsive excitation of the 2M mode are
based on the approximation of non-interacting magnons. In
this framework it is straightforward to demonstrate that the
z-projection of L has the same time dependence as the spin-
correlation function, at the leading terms in the magnon
operators (equations (11) and (12)). Here z is the direction
parallel to the spins in equilibrium. The dynamics of Lz, at the
leading order in the excitation intensity, is given by

DLzðtÞpA sinðo2MtÞ ð3Þ
where o2M is the frequency of the 2M mode and A is the
amplitude. Equation (3) describes a purely longitudinal,
non-precessional, dynamics of the antiferromagnetic vector
(see Supplementary Note 2 for the complete derivation).
Therefore, by detecting the femtosecond dynamics of the ALD,
we access the time evolution of the macroscopic order parameter
via the spin-correlation function, which ultimately defines also
the dynamics of the exchange energy.

Femtosecond dynamics of the magnetic system. Figure 2a shows
the typical result of a time-resolved measurement of the laser-
induced spin dynamics. The transient rotation of the probe
polarization shows oscillations in time with a period of E45 fs
(that is, a frequency of E22 THz) that are damped on a 500-fs
timescale. The oscillatory dynamics is superimposed on an
incoherent increase of the background, as it is clear from the
difference between the time trace and the zero line at longer
delays (4500 fs). The spectrum of the oscillation measured in the
time-domain experiment closely matches the 2M mode as
measured by spontaneous Raman. To definitely assess the nature
of the 22 THz mode, we performed temperature-dependent
measurements (Fig. 3a) and we compared the temperature
dependence of the time-domain signal with that of the sponta-
neous Raman spectra of the 2M bound state (Fig. 3b,c). Figure 3
shows that the frequency and the lifetime of the pump-induced
oscillations decrease as the Néel point is approached, in qualita-
tive and quantitative agreement with spontaneous Raman
data6,14. Thus, Fig. 2a unambiguosly reveals the femtosecond spin
dynamics triggered by the impulsive excitation of the 2M mode in
KNiF3, which is not accessible with any other experimental
approach.
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Figure 1 | 2M mode and experimental configuration. (a) The 2M

excitation is equivalent to a spin-flip event per sublattice. Thus, the

magnetization of each sublattice (S* and S+ , represented by the two red

arrows with opposite orientation) and, therefore, the antiferromagnetic

vector (Lz, blue arrow) is decreased in the excited state. The sum of the

spins of the two sublattices, thus the total magnetization, vanishes both in

the ground and in the excited state. (b) Schematic representation of the

experimental geometry. The pump (green pulse) photon energy was tuned

to 2.2 eV in the transparency window of the material. This choice avoided

contributions of laser-heated electrons and phonons to the spin dynamics19.

The central photon energy of the probe beam (red pulse) was 1.3 eV. The

arrows indicates the direction of propagation of the two laser beams.
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Figure 2 | Laser-induced dynamics of the antiferromagnetic vector.

(a) The transient rotation of the probe polarization was measured with the

electric fields of the pump and the probe beams linearly polarized along the

z and x axes, respectively. The pump fluence was set to E8.6 mJ cm� 2.

The corresponding dynamics of Lz (blue arrows) is schematically

represented. When the pump pulses impinge on the sample (0 delay)

Lz decreases, due to the generation of magnons. At positive delays,

oscillations at the frequency of the 2M mode are visible (equation (3)). The

black line is a fit to the data (equation (13)). (b) The phase of the oscillation

is shifted by p when the orientation of the electric field of the probe (EProbe)

is rotated by 90�. The pump beam was linearly polarized along the z axis,

the fluence was set to E12 mJ cm� 2. The measurements reported in both

panels were performed at 80 K.
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A fit to the data in Fig. 2a (see Methods section,
equation (13)) gave td¼ (167±4) fs (damping of the coherent
oscillations) and tr¼ (255±16) fs (rise time of the incoherent
background response). While td represents the decoherence of
the 2M band, we interpret tr as the characteristic demagnetiza-
tion time of the two sublattices, solely driven by magnetic
interactions19. As a laser pulse excites a continuum of magnons
with different frequencies, the damping time td of the
oscillations observed in our experiment is actually due to the
decoherence of the inhomogeneous ensemble of the coherently
excited magnons. This is usually described20 by means of the
characteristic time T�2 . The demagnetization of the sublattices is
a result of the heating of spins, which is caused by the
decoherence of single-magnon modes19 in the ensemble, on a
timescale generally indicated with T2 (T24T�2 )20. Measuring the
probe polarization dependence of the signal (Fig. 2b) allowed us
to demonstrate that the detected rotation of the polarization in
our experiment arises from the symmetric components of the
El;n tensor and, in particular, from the ALD. In fact the change
of sign and the different amplitude of the two data sets shown in
Fig. 2b is predicted by the microscopic theory of the ALD
(Supplementary Notes 2 and 3).

Coherent control. The ability to arbitrarily manipulate the
properties of spin waves is a necessary requirement for the
development of magnon-based devices21. Figure 4a demonstrates
the control of the phase of the nanomagnons. The upmost time
traces were measured exciting the sample with orthogonally
polarized pump beams. A clear p shift of the phase of the
oscillations is observed, if the polarization of the excitation beam
is rotated by 90�. This phase shift is due to the non-equivalence of
the excitations of the magnetic system induced by light linearly

polarized along and orthogonally to the direction of the spins.
This interpretation is substantiated by a symmetry analysis of the
two-magnon excitation (Supplementary Note 4), based on the
point group of KNiF3. The coherent nature of the photo-induced
spin dynamics enables the manipulation of the amplitude of the
spin waves, by means of a sequence of laser pulses. We
demonstrate this effect in Fig. 4a employing two time-delayed
excitation pulses. Tuning the delay we can either amplify or
strongly quench the oscillations compared with the case when the
spin dynamics is triggered by a single-pump pulse. Figure 4b
reveals the periodic dependence of the amplitude of the first
magnetic oscillation on the delay between the pump pulses. Such
a coherent control of the femto-nanomagnons allows a direct and
complete manipulation of the antiferromagnetic order parameter
on the femtosecond timescale.

Time-frequency analysis. The real-time measurement of the
ultrafast spin dynamics triggered by short-range magnons allows
us to disclose another phenomenon not observable with equili-
birum techniques. Figure 5a shows the spectrum of the time trace
in Fig. 2a obtained via a Fourier transform (blue curve). On the
same graph we plot the spectrum of the 2M mode measured via
spontaneous Raman scattering at the same temperature
(red curve). The zoom in the inset of Fig. 5a shows two sidebands
at about 7.5 THz from the central 2M frequency, which appear to
originate from a modulation of the 2M mode in the time domain.
Figure 5b shows a two-dimensional spectrogram obtained by
performing a time-frequency analysis22,23 of the data in Fig. 2a
(Supplementary Note 5). The colour map in Fig. 5b represents the
time-dependent spectrum of the 2M mode. The frequencies of the
peak of the spectrum at different time delays are traced by a blue
dotted line. This curve displays a periodic oscillation of n2M,
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Figure 3 | Temperature dependence of the ultrafast spin dynamics. (a) Rotation of the probe polarization as a function of the temperature. The pump and

the probe beams are linearly polarized along the z and y axes, respectively. The fluence is E8.6 mJ cm� 2. (b,c) The temperature dependence of the
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data (blue circles). The error bars in b and c for the time-domain data are defined as the half width at half maximum of the 2M frequency distribution. The

error bars for the Raman data are defined by the instrumental sensitivity (E2 cm� 1) and are not visible in this scale.
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which is consistent with the observation of the sidebands in the
inset of Fig. 5a. We define the relative frequency shift as

Dn2M

n2M
¼ n2M�hn2Mi

hn2Mi
ð4Þ

where hn2Mi is the average frequency in the temporal interval
where the oscillations have a significant amplitude (0–500 fs). We
plot the peaks of the spectra obtained by the time-frequency
analysis as a function of the delay in the inset of Fig. 5b. The
frequency of the modulation of n2M is E7.5 THz, which
corresponds to the frequency of the infrared-active phonon24,25

(E7.7 THz), assigned to the stretching vibration of the Ni–F–Ni
bond. Unlike other phonon modes in this material, the frequency
of the stretching mode is temperature-independent24,25, which is
consistent with the data (Supplementary Fig. 2). Considering only
the term of the polarization of the first order in the electric field of
light, it would be concluded that this stretching mode is not
Raman-active26. However, the light–matter interaction at the next
order (hyper-Raman scattering26,27) allows to excite lattice
vibrations with the symmetry of the stretching mode (F1u) in
cubic crystals27. It is well established that a frequency modulation
as the one shown in Fig. 5b can be modelled in terms of coupled
oscillators23. Therefore, we assign the modulation of n2M

to the interaction on the femtosecond timescale between the
stretching mode and the 2M mode, which are simultaneously
and coherently excited by the laser pulse. The 2M–phonon

interaction was previously suggested11, however our time-
resolved experiment provides the first evidence of this effect.

Discussion
We would like to underline that the dynamics here reported is
totally different from the spin response previously observed after
the photo-excitation of the low-energy magnons with wavevectors
at the centre of the Brillouin zone in this material19. In fact, our
previous investigation revealed spin oscillations with the period of
11 ps (that is, a 90-GHz frequency), which are still visible 200 ps
after the photo-excitation. This spin dynamics was generated by a
single spin-flip event (that is, one-magnon mode), thus the
magnetic linear birefringence, which depends quadratically on the
spin of a single atom but only linearly on the spin deviation
(equation (9)), was employed to probe the response of the
magnetic system. The interaction relevant for the low-energy
magnons is the spin–orbit coupling, which defines the frequency
of such collective excitations6. The use of 100-fs laser pulses
prevented the access to high-frequency magnetic modes19. The
present work describes a completely different regime of spin
dynamics, whose characteristic timescale is determined by the
exchange energy6. Moreover, the measurements of the time
evolution of the spin-correlation function (via ALD) provide an
access to the dynamics of the exchange energy. Within the
approximations of our model, the spin-correlation dynamics
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corresponds to the longitudinal dynamics of the order parameter
(equations (11) and (12) and Supplementary Note 2).

In summary, our results reveal the dynamics of the
macroscopic order parameter triggered by impulsively excited
nanometre-wavelength and femtosecond-period magnons.
Moreover, our experiment pushes the coherent control of
magnons, previously demonstrated at the centre of the Brillouin
zone28,29, to the edges of the Brillouin zone, laying the
foundations for a magnon-based nanotechnology operating in
the 20-THz regime. Our investigation concerned an ideal
Heisenberg antiferromagnet, however the approach here
employed to study the femtosecond dynamics of the
macroscopic magnetic order parameter caused by short-range
spin excitations can be employed in a broad group of
multisublattice systems6,7. In particular, it will become
possible to monitor the evolution of the exchange energy
during a photo-induced phase transition and to probe the
femtosecond dynamics of the sub-nanometre range spin
correlations in strongly correlated materials. This might even
elucidate the dynamical interplay between short-range spin
excitations and high-temperature superconductivity in
cuprates30–32.

Methods
Sample. Our sample was a 340-mm-thick (100) plane-parallel plate of KNiF3,
which has a perovskite crystal structure (point group m3m). Two equivalent Ni2þ

sublattices are antiferromagnetically coupled below the Néel temperature
TN¼ 246 K (ref. 19). This material is known to be a cubic Heisenberg
antiferromagnet because of its very weak anisotropy. The positive sign of the cubic
magnetic anisotropy constant determines the alignment of spins along the [001],
[010] or [100] axes18. The measurements on the KNiF3 sample are carried out at a
minimum temperature of 77 K in a liquid nitrogen cryostat. The temperature of the
sample is monitored by a thermocouple placed on the sample holder.

Light source. For the pump–probe experiments we used a regeneratively amplified
mode-locked Ti:Sapphire laser, providing 150-fs, 500-mJ pulses at 780 nm and
1 kHz repetition rate. The laser drives two non-collinear optical parametric
amplifiers (NOPAs) operating in two different spectral ranges33. Both NOPAs are
pumped by the second harmonic of the laser (that is, 390 nm) and seeded by the
white-light continuum produced by focusing the 780-nm beam into a sapphire
plate. The amplified pulse from the first NOPA, which initiates the dynamics
(pump), has a spectrum spanning the 500–700 nm range and is compressed to
nearly transform-limited duration (that is, 8 fs) by a pair of custom-made chirped
mirrors. The amplified pulse, generated by the second NOPA (probe), covers the
frequency range between 820 and 1050 nm, and is compressed to nearly transform-
limited duration (that is, 13 fs) by a couple of fused silica prisms. The temporal
resolution of the set-up has been characterized by the cross-correlation frequency-
resolved optical gating technique and was below 20 fs (ref. 32). The pump and
probe beams were focused on the sample by a spherical mirror down to
approximately 100 and 70 mm spot sizes, respectively. The high temporal resolution
is preserved by using a very thin (200 mm) fused silica window as optical access to
the cryostat. The two pump pulses employed to show the coherent control of the
2M mode were generated in a Michelson interferometer scheme. One of these
beams was reflected by mirrors mounted on a stepper-motor delay line, able to
introduce a minimum time delay of 0.3 fs. The two orthogonal polarizations were
obtained with a polarizer sheet (thickness E0.3 mm), to avoid the use of thicker
waveplates and the consequent broadening of the pulse duration.

Detection scheme. We measured the pump-induced rotation of the probe
polarization employing a balanced-detection scheme. The transmitted probe is split
by a Wollaston prism into two orthogonal linearly polarized beams, and focused on
a couple of balanced photodiodes. The Wollaston prism is rotated to equalize the
probe intensities on the two photodiodes. The pump-induced imbalance of the
signal registered by the two photodiodes is measured by a lock-in amplifier, which
is locked to the modulation frequency of the pump beam (that is, 500 Hz). Our
apparatus was able to detect rotations of the polarization on the order of 1 mdeg.

Excitation mechanism. As explained in the main text, a light-induced modifica-
tion of the exchange interaction generates the 2M mode6,7. This concept can be
easily verified by taking into account the transient value of the exchange in the
energy of the magnetic medium

Ĥ¼J0

X
i;j

Ŝ*i � Ŝ
+
j þ

X
i;j

DJijðtÞŜ*i � Ŝ
+
j ð5Þ

where DJij(t) is the laser-induced modification of the exchange interaction, while J0

is the value of the exchange in the ground state. The ij indices refer to the
anisotropic coupling of light with the magnetic system, determined by the
polarization of the laser beam, which breaks the isotropic symmetry of J0

(Supplementary Note 2). The second term of the equation can be rewritten by
expanding the dot product in the following way

X
i;j

DJijðtÞ Ŝx*
i Ŝx+

j þ Ŝy*
i Ŝy+

j þ Ŝz*
i Ŝz+

j

� �
ð6Þ

Defining z as the direction along which the spins are oriented at equilibrium, this
equation shows that the modification of the exchange generates terms in the energy
quadratic in the transversal spin components (that is, x and y). Such contributions
describe the process of generation of two magnons6 reported in Fig. 1a. This
becomes evident by introducing the conventional ladder operators Ŝ� ¼ Ŝx � iŜy ,
in terms of which we can rewrite equation (6) as

X
i;j

DJijðtÞ
1
2

Ŝþ*i Ŝ�+j þ Ŝ�*i Ŝþ+j

� �
þ Ŝz*

i Ŝz+
j

� �
ð7Þ

The physical interpretation of the first two terms of the last equation consists in
two spin-flip processes, one on each sublattice. Once a positive direction of the
quantization axis is chosen (direction of Lz in Fig. 1a), flipping a spin on the * (+ )
sublattice results in a decrease(increase) of the total spin, taken into account by
Ŝ�*i (Ŝþ+j ). In conclusion, a transient modification of the exchange interaction,
which breaks the isotropic symmetry of J0, triggers two magnons described by the
quadratic dependence of the Hamiltonian on the transversal spin components.
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Figure 5 | Spectrum of the ultrafast response of the antiferromagnetic

vector. (a) The Fourier transform of the time trace measured at 80 K (blue

curve) is compared with the spontaneous Raman spectrum obtained at the

same temperature (red curve). In the inset a zoom of the Fourier transform

reveals two sidebands at E±7.5 THz away from the peak frequency.

(b) The squared modulus of the Wigner distribution of the signal is

represented by the colour plot. At each time step a blue dotted line

highlights the maximum of the spectrum, in which black represents zero

intensity. In the inset the relative frequency shift (equation (4)) is plotted as

a function of the delay showing E7.5 THz oscillations.
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Antiferromagnetic linear dichroism. The Hamiltonian representing the
interaction between light and the magnetic system can be written as6

Ĥ ¼
X
l;n

ElnðŜÞElEn ð8Þ

where Eln is the dielectric tensor that depends on the spin (Ŝ), while l, n are indexes
and E is the electric field of light. The tensor Eln can be expanded in powers of the
spin operators. Following a well-established approach6,17, we may express the
spin-dependent components of El;n as

Eln ¼
X

i

X
g

Klng Ŝgi
� �
þ
X

i

X
gd

Glngd Ŝgi ihŜdi
� �

þ
X

i;j

X
gd

rlngd Ŝg*i Ŝd+j
D E

ð9Þ

where higher-order terms are omitted. Each term in this expansion represents a
magneto-optical effect and a Raman mode, given the intimate connection between
the tensors defining the Raman scattering on magnons and the magneto-optical
coefficients6,34. The first and second terms involve spin operators at a single ionic
site i, they describe the linear magneto-optical effects: the complex Faraday effect
and the magnetic linear birefringence(and dichroism), respectively. In terms of
Raman scattering the first two terms of equation (9) are connected with the lowest
energy magnetic excitations, correspondent to a single spin-flip process, the so
called one-magnon modes. These spin waves have wavevectors close to the centre
of the Brillouin zone and their frequencies are mostly defined by the spin–orbit
coupling. Note that although the second term is quadratic in the spin, it describes a
single-magnon excitation and a linear magneto-optical effect. In fact this term is
linear in the spin deviation, that is, in the spin transversal component, which
implies a linear dependence on the spin ladder operators and therefore the
generation of a single magnon6 (see discussion in the previous section). The
magnetic linear birefringence was employed to probe the spin dynamics in
reference19, which accordingly reports the excitation and the time evolution of the
low-energy one-magnon mode in KNiF3.

In the present study we measure the ALD, which is accounted for by the last
term in equation (9): the quadratic dependence on the spin deviations (equations
(6) and (7)) of this term allows to unravel the dynamics of the 2M mode, triggered
by two spin-flip processes. Moreover, the two spin operators in this term belong to
different sublattices, being placed on different ionic sites i, j. This is the pivotal
difference between this magneto-optical effect and the others described so far: the
ALD probes the correlations between spins on different sites. Since in KNiF3 only
the nearest-neighbour interaction is significant, the dynamics of the spin-
correlation function in the last term of equation (9) defines also the dynamics of
the exchange energy. The transient ALD, which consists of a different absorption
for light beams linearly polarized along and orthogonally to the direction of the
antiferromagnetic vector, results in the detected rotation of the probe polarization.

Dynamics of the order parameter. The dynamics of the spin-correlation function
can be related to the dynamics of the order parameter in a straightforward way.
The z-component of the local spins on sites i, j, belonging to the * and +
sublattices respectively, can be written as

Ŝz*
i ¼ S� b̂

y
i b̂i; Ŝz+

j ¼ � Sþ â
y
j âj ð10Þ

where the operators b̂
y
i b̂i and â

y
j âj (introduced rigorously in Supplementary Note

2) represent the number of spin deviations from the maximum values of local spins
for both sublattices ±S. We can then write the expectation value of the spin-
correlation function on a time-dependent state |c(t)i as

cðtÞh jŜz*
i Ŝz+

j cðtÞj i � � S2 þ S cðtÞh j b̂
y
i b̂i þ â

y
j âj

� �
cðtÞj i; ð11Þ

where only the leading terms in the creation and destruction operators have been
considered. Recalling the definition of the antiferromagnetic vector in equation (2),
the time-dependent z-component of the order parameter is given by

LzðtÞ ¼
X

i

cðtÞh jŜz*
i cðtÞj i�

X
j

cðtÞh jŜz+
j cðtÞj i

¼ SN � 2
N

X
i;j

cðtÞh j b̂
y
i b̂iþ â

y
j âj

� �
cðtÞj i;

ð12Þ

where N is the total number of spins. It stems from equations (11) and (12) that the
time-dependent parts of the spin-correlation function and of the antiferromagnetic
vector are proportional.

Fitting procedure. The transient rotation of the probe polarization was fitted
employing the following function:

f ðtÞ¼Csin½ð~oðtÞtþfÞ�e � t=tdð Þ þHðtÞD 1� e � t=trð Þ
� �

ð13Þ

where C and D are amplitude coefficients, f is the phase of the oscillations, H(t) is
the Heaviside function, td is the damping time of the oscillations and tr is the
characteristic rise time of the incoherent contribution to the signal. Considering the
outcome of the Wigner analysis in Fig. 5b, we employed a time-dependent

frequency ~o in the sinusoidal function, namely

~oðtÞ ¼ 2pn2M½1þGsinð2pnmodtþcÞ� ð14Þ

where n2M is the 2M frequency, G is an amplitude coefficient, nmod is the
modulation frequency and c is the phase. From the Wigner analysis we set the
following parameters: n2M¼ 22.12 THz; G¼ 0.002; nmod¼ 7.5 THz; c¼ 45�; and
D¼ 2.3 � 10� 3 deg. The fit parameters allowing to reproduction at best the data
(Fig. 2) are as follows: C¼ (2.5±0.1) � 10� 2 deg; f¼ (220±1)�; td¼ (167±4) fs;
and tr¼ (255±16) fs.
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