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Abstract

We present generalisations of several MacWilliams type identities, including
those by Kløve and Shiromoto, and of the theorems of Greene and Barg that describe
how the Tutte polynomial of the vector matroid of a linear code determines the rth
support weight enumerators of the code. One of our main tools is a generalisation
of a decomposition theorem due to Brylawski.

1 Introduction

Since the 1963 article [8] by F. J. MacWilliams, coding theorists have paid considerable
attention to the support (Hamming) weight distribution of linear codes. In later years,
this interest has increased due to results such as those by Wei [16] on rth generalised
Hamming weights, Kløve [6] and Simonis [13] on rth support (Hamming) weight distri-
butions (effective length distributions in Simonis’ terminology), and Shiromoto [11] on
λ-ply weight enumerators. Section 2 of this paper introduces notation and the various
enumerators, by presenting the MacWilliams identities [8] as well as their generalisations
by Kløve [6] and Shiromoto [11]. The two main results of this section, Theorems 3 and 7,
generalise these results. Proofs of these theorems appear in the later sections.

In Section 3, we generalise theorems due to Greene [5] and Barg [1] that describe
how the Tutte polynomial of the vector matroid of a linear code determines the rth
support weight enumerators of the code. We obtain two theorems which turn out to be
equivalent to each other and to the ‘Critical Theorem’ by Crapo and Rota [4]. The main
tool is a generalisation of the characterisation of Tutte-Groethendieck polynomials due to
Brylawski [3]. As applications of these theorems, we prove Theorems 3 and 7 of Section 2.

In Section 4, an alternative proof of Theorem 7 is presented. This proof relies on
coding-theoretical arguments rather than on matroid theory.

We assume a basic knowledge of matroid theory; for an excellent introduction to the
topic, see [10, 17, 18].

the electronic journal of combinatorics 9 (2002), #R19 1



2 Support enumerators of a linear code

Let Fq be the finite field over q elements and let E denote a set of n ≥ 1 distinct elements.
For purposes of readability throughout this paper, we will denote by {fe}A any multiset
{fe | e ∈ A} whose elements fe are labeled by the elements e of A ⊆ E. A linear code
on E over Fq is a subspace C of the vector space F

E
q . If v = {ve}E is a word of FE

q , then
let the set S(v) = {e ∈ E | ve 6= 0} denote the support of v. The (Hamming) weight
function w(v) = |S(v)| of a word v ∈ F

E
q is equal to the number of non-zero coordinates

of v.
For each i = 0, 1, ... let Ai be the number of codewords in C with weight i. The support

weight enumerator

A(z) =
n∑

i=0

Aiz
i

is the generating function of the sequence {Ai}i≥0. J. MacWilliams [8] proved the following
fundamental identity between the support weight enumerators of a linear code and its
dual.

Theorem 1 (MacWilliams identity) [8] If A(z) and B(z) are the support weight enu-
merators of a linear k-dimensional code C ⊆ F

E
q and of its dual C⊥, then

B(z) =
1

qk

(
1 + (q − 1)z

)n
A

( 1 − z

1 + (q − 1)z

)
.

A generalisation of the support weight enumerator is the support enumerator A
({ze}E

)
given by

A
({ze}E

)
=

∑
E′⊆E

AE′
∏
e∈E′

ze

where AE′ denotes the number of codewords whose support is E ′ ⊆ E. By setting
ze = z for all e ∈ E, we obtain the weight enumerator. The following theorem is the
MacWilliams identity for support enumerators. A proof will be provided in Section 4, but
for now remark that it follows from an equivalent result, Proposition 2 in [14], or from
stronger results such as Theorem 7 below or Theorem 14 in [9, Ch. 5. §6]. Note that we
obtain the MacWilliams identity by setting ze = z for all e ∈ E.

Theorem 2 Let C ⊆ F
E
q be a k-dimensional linear code. If A

({ze}E

)
and B

({ze}E

)
are

the respective support enumerators of C and the dual code C⊥, then

B
({ze}E

)
=

1

qk

(∏
e∈E

(
1 + (q − 1)ze

))
A

({ 1 − ze

1 + (q − 1)ze

}
E

)
.

A further generalisation of the support weight enumerator is the m-tuple support enu-
merator

A[m]({ze}E) =
∑

E′⊆E

A
[m]
E′

∏
e∈E′

ze
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where A
[m]
E′ denotes the number of ordered m-tuples of codewords in C whose union of

supports is E ′. The corresponding MacWilliams identity for m-tuple support enumerators
is as follows.

Theorem 3 If A[m]
({ze}E

)
and B[m]

({ze}E

)
are the m-tuple support enumerators of a

linear k-dimensional code C ⊆ F
E
q and of its dual C⊥ for some m ≥ 0, then

B[m]
({ze}E

)
=

1

qkm

(∏
e∈E

(
1 + (qm − 1)ze

))
A[m]

({ 1 − ze

1 + (qm − 1)ze

}
E

)
.

We will prove this result in Section 3.

Corollary 4 For each subset E ′ ⊆ E it holds that∑
E′′⊆E′

B
[m]
E′′ = (qm)|E

′|−k
∑

E′′⊆E\E′
A

[m]
E′′ .

Proof. Set ze = 1 for each element e ∈ E ′ and ze = 0 for each element e /∈ E ′. Now
apply Theorem 3. �

Define the numbers A
[m]
i =

∑
E′:|E′|=i

A
[m]
E′ for i = 0, . . . , n.

Let the m-tuple support weight enumerator of C be
given by the sum

A[m](z) =

n∑
i=0

A
[m]
i zi .

Note that A[m](z) may be obtained by setting all ze equal to z in A[m]
({ze}E

)
. As an im-

mediate corollary of Theorem 3, we obtain the following generalisation of the MacWilliams
identity by K. Shiromoto.

Theorem 5 [11]
If A[m](z) and B[m](z) are the m-tuple support weight enumerators of a linear k-

dimensional code C ⊆ F
E
q and of its dual C⊥ for some m ≥ 0, then

B[m](z) =
1

qkm

(
1 + (qm − 1)z

)n
A[m]

( 1 − z

1 + (qm − 1)z

)
.

A different generalisation of the support weight enumerator of a linear code C involves
the rth support weight distribution {A(r)

i | i ≥ 0} of C where

A
(r)
i =

∣∣{C ′ | C ′ is an r-dimensional subspace of C and
∣∣∣ ⋃
v∈C′

S(v)
∣∣∣ = i}∣∣.

The rth support weight enumerator is the corresponding generating function

A(r)(z) =
∑
i≥0

A
(r)
i zi .
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The next theorem is the MacWilliams identity for the rth support weight enumerator, due
to T. Kløve [6]. Shiromoto [12] proved the equivalence between this result and Theorem 5,
and J. Simonis [13] has proved a result which is equivalent to both these results.

Let [a]b denote the product
b−1∏
i=0

(qa − qi).

Theorem 6 [6] If A(r)(z) and B(r)(z) are the rth support weight enumerators of a linear
k-dimensional code C ⊆ F

E
q and of its dual C⊥ for all r such that 0 ≤ r ≤ k, then the

following identity holds for all m ≥ 0:

k∑
r=0

[m]rB
(r)(z) =

1

qkm

(
1 + (qm − 1)z

)n
k∑

r=0

[m]rA
(r)

( 1 − z

1 + (qm − 1)z

)
.

To generalise the rth support weight enumerators, define the rth support distribution
{A(r)

E′ | E ′ ⊆ E} of C where

A
(r)
E′ =

∣∣{C ′ | C ′ is an r-dimensional subspace of C and
⋃

v∈C′
S(v) = E ′}∣∣ .

The rth support enumerator is the sum

A(r)
({ze}E

)
=

∑
E′⊆E

A
(r)
E′

∏
e∈E′

ze .

Note that the support enumerator A
({ze}E

)
is given by the sum

A(0)
({ze}E

)
+ (q − 1)A(1)

({ze}E

)
= 1 + (q − 1)A(1)

({ze}E

)
.

The following theorem generalises both Theorem 2 and Theorem 6. The former may be
obtained by setting m = 1 and the latter may be obtained by setting ze = z for all e ∈ E.

Theorem 7 If A(r)
({ze}E

)
and B(r)

({ze}E

)
are the rth support enumerators of a linear

k-dimensional code C ⊆ F
E
q and of its dual C⊥ for all r such that 0 ≤ r ≤ k, then the

following identity holds for all m ≥ 0:

k∑
r=0

[m]rB
(r)

({ze}E

)
=

1

qkm

(∏
e∈E

(
1 + (qm − 1)ze

)) k∑
r=0

[m]rA
(r)

({ 1 − ze

1 + (qm − 1)ze

}
E

)
.

Theorem 3 and Theorem 7 are equivalent. This follows from the following oft-proved
theorem (originally due to E. Landberg [7]).
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Theorem 8 Let C be an r-dimensional subspace of FE
q . The number of ordered m-tuples

of vectors (v1, . . . , vm) ∈ Cm which span C is independent of the actual subspace C.
Indeed, this number equals [m]r.

Let C ⊆ F
E
q be a linear code and let E ′ ⊆ E. The family of ordered m-tuples of vectors

in C, whose union of supports is E ′, may be partitioned into m+1 blocks, according to the
dimension r of the span of the m vectors. Furthermore, Theorem 8 stipulates that there
are precisely [m]r m-tuples (v1, . . . , vm) of codewords of a fixed code C ′ of dimension r
such that v1, . . . , vm span C ′. Together, these two observations imply

Proposition 9 For each subset E ′ ⊆ E it holds that A
[m]
E′ =

k∑
r=0

[m]rA
(r)
E′ . Hence,

A[m]({ze}E) =

k∑
r=0

[m]rA
(r)({ze}E).

The equivalence of Theorems 3 and 7 now follows. By setting m = 1, the equivalence
of Theorems 5 and 6 is therefore also re-proved.
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3 The vector matroid of a linear code

Let G be a generator matrix for a linear code C ⊆ F
E
q . The vector matroid MC = M[G]

is the matroid over E whose independent sets are the linearly independent columns of G.
The code C and the matroid MC are quite closely related. For instance, it is easy to
show that MC is independent of the chosen generator matrix G and that the dual matroid
corresponds to the dual code:

M⊥
C = MC⊥. However, the code C contains more information than the matroid MC .

Indeed, a matroid M may, over the same field, be the vector matroid of several linear
codes which are not monomially equivalent. The results in this section demonstrate how
some of the matroid’s properties determine many properties of the codes, in particular
the various enumerators mentioned in the previous section.

The characteristic polynomial P (M; λ) of a matroid M on the set E may defined by
the sum

P (M; λ) =
∑
A⊆E

(−1)|A|λr(E)−r(A)

where r is the rank function of M. The rank generating function R(M; x, y) of M is
defined by the sum

R(M; x, y) =
∑
A⊆E

xr(E)−r(A)y|A|−r(A).

Note that P (M; λ) = (−1)r(E)R(M;−λ,−1). By an easy application of the identity
r(E) + r∗(A) = |A| + r(E \ A) one may show the duality identity

R(M∗; x, y) = R(M; y, x).

The following celebrated theorem by H. Crapo and G.-C. Rota describes the set of supports
S(C) of a linear code. We have restated the theorem slightly, in a manner similar to that
of Greene [5].

Theorem 10 [4] The m-tuple support enumerator of a linear code C ⊆ F
E
q is given by

A[m]
({ze}E

)
=

∑
A⊆E

P (MC/(E \ A); qm)
∏
e∈A

ze.

In particular, the following corollary is obtained by setting m = 1. This result has
been derived independently in [2].

Corollary 11 The support enumerator of a linear code C ⊆ F
E
q is given by

A
({ze}E

)
=

∑
A⊆E

P (MC/(E \ A); q)
∏
e∈A

ze.

The main importance of Theorem 10 and Corollary 11 is the fact that the matroid MC

determines the structure of the set of supports of C. In turn, this implies that the
codes representing M over Fq share a common set of supports of codewords. Indeed,
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Theorems 16 and 17 below state that the m-tuple support enumerator and rth support
enumerator of any linear code which represents M over Fq may be obtained by evaluating
certain polynomials associated with M.

C. Greene expresses the support weight enumerator A(z) of a code C as an evaluation
of the rank generating function R(MC ; x, y) of the matroid MC , as follows.

Theorem 12 [5] Let C ⊆ F
E
q be a k-dimensional linear code. Then the support weight

enumerator A(z) of C is given by

A(z) = (1 − z)kzn−kR
(
MC ;

qz

1 − z
,
1 − z

z

)
.

The application of the duality identity R(MC⊥; x, y) = R(MC; y, x) allows Greene to
re-prove Theorem 1. This procedure is repeated by A. Barg [1] who expresses rth support
weight enumerators A(r)(z) by the rank generating function and uses this to re-prove
Theorem 6.

Theorem 13 [1] Let C ⊆ F
E
q be a k-dimensional linear code. If A(r)(z) is the rth support

weight enumerator of C where 0 ≤ r ≤ n, then it holds for all m ≥ 0 that

k∑
r=0

[m]rA
(r)(z) = (1 − z)kzn−kR

(
MC ;

qmz

1 − z
,
1 − z

z

)
.

We will also follow this method, in order to express the rth support enumerator in
terms of matroid properties. For this purpose, we will generalise the rank generating
function. Let R be a domain and let R(X) be the ring of rational forms over R. Associate
to each element e ∈ E an indeterminate variable ze over R. If g and h are functions
on R(X), then define a generalised rank generating function Rg,h(M; x, y, {ze}E) by the
sum ∑

A⊆E

xr(E)−r(A)y|A|−r(A)
(∏

e∈A

g(ze)
) ∏

f /∈A

h(zf ).

Note that we obtain the usual rank generating function by letting g and h be the identity
function, and setting ze = 1 for all e ∈ E. L. Traldi [15] has independently investigated a
closely related polynomial (a generalised Tutte polynomial for doubly weighted matroids).

Proposition 14 Rg,h(M∗; x, y, {ze}E) = Rh,g(M; y, x, {ze}E).

Proof. We apply the identity r(E) + r∗(A) = |A| + r(E \ A):

Rg,h(M∗; x, y, {ze}E)

=
∑
A⊆E

xr∗(E)−r∗(A)y|A|−r∗(A)
(∏

e∈A

g(ze)
) ∏

f /∈A

h(zf )

=
∑
A⊆E

x|E\A|−r(E\A)yr(E)−r(E\A)
(∏

e∈A

g(ze)
) ∏

f /∈A

h(zf)

=
∑
A⊆E

yr(E)−r(A)x|A|−r(A)
(∏

e∈A

h(ze)
) ∏

f /∈A

g(zf)

= Rh,g(M; y, x, {ze}E). �
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The following theorem generalises the characterisation [3] of Tutte-Groethendieck poly-
nomials of a matroid due to T. Brylawski. A result which is closely related to the first
part of Theorem 15 appears in [15].

Theorem 15 If g and h are functions in R(X), then the generalised rank generating
function Rg,h is the unique function f(M, x, y, {ze}E) on a given minor-closed class A of
matroids M and variables x ∪ y ∪ {ze}E which satisfies the following conditions:

1. f(U0,1, x, y, ze) = yg(ze) + h(ze) and
f(U1,1, x, y, ze) = g(ze) + xh(ze);

2. If e is a loop or a coloop of M, then
f(M, x, y, {ze′}E) = f(M(e), x, y, ze)f(M\ e, x, y, {ze′}E−e)

3. If e is a neither a loop nor a coloop of M, then
f(M, x, y, {ze′}E) =
h(ze)f(M\e, x, y, {ze′}E−e) + g(ze)f(M/e, x, y, {ze′}E−e).

Furthermore, if g(x) and h(x) are functions in R(X) such that g(x), h(x) 6= 0′, and
f(M, x, y, {ze}E) is a function satisfying conditions 2 and 3, then for all e ∈ E it holds
that f(M, x, y, {ze′}E) is equal to

Rg,h(M;
f(U1,1, x, y, ze) − g(ze)

h(ze)
,
f(U0,1, x, y, ze) − h(ze)

g(ze)
, {ze′}E).

Proof. The proof is straightforward.

Rg,h(U0,1, x, y, ze) = xr(e)−r(∅)y|∅|−r(∅)h(ze) + xr(e)−r(e)y|e|−r(e)g(ze)

= h(ze) + yg(ze) and

Rg,h(U1,1, x, y, ze) = xr(e)−r(∅)y|∅|−r(∅)h(ze) + xr(e)−r(e)y|e|−r(e)g(ze)

= g(ze) + xh(ze)

so Rg,h satisfies condition 1. To show that Rg,h also satisfies conditions 2 and 3, observe
that

Rg,h(M, x, y, {ze′}E) =
∑
A⊆E

xr(E)−r(A)y|A|−r(A)
(∏

e′∈A

g(ze′)
) ∏

f /∈A

h(zf )

=
∑

A⊆E−e

(∏
e′∈A

g(ze′)
)( ∏

f /∈A∪e

h(zf)
)
F (A) ,

where F (A) = h(ze)x
r(M)−r(A)y|A|−r(A) + g(ze)x

r(M)−r(A∪e)y|A∪e|−r(A∪e). In order to evalu-
ate F (A) further, we must distinguish between three cases: e is either a loop, a coloop,
or neither of these. Suppose that e is a loop. Then r(M) = r(M\e) and rM(A) =
rM(A ∪ e) = rM\e(A) for all subsets A ⊆ E − e so

F (A) = yh(ze)x
r(M\e)−rM\e(A)y|A|−rM\e(A) +

yg(ze)x
r(M\e)−rM\e(A)y|A|−rM\e(A)

= (h(ze) + yg(ze))(x
r(M\e)−rM\e(A)y|A|−rM\e(A)) .
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Since h(ze) + yg(ze) = Rg,h(U0,1, x, y, ze) = Rg,h(M(e), x, y, ze), we see that

Rg,h(M, x, y, {ze′}E) = Rg,h(M(e), x, y, ze)Rg,h(M\ e, x, y, {ze′}E−e).

The two remaining cases are similar, and Rg,h satisfies conditions 1 and 2. The conditions
1, 2, and 3 recursively define Rg,h, which proves the uniqueness of the function Rg,h.

Suppose that g(x) and h(x) are functions on R(X) such that g(x), h(x) 6= 0, and that
f(M, x, y, {ze′}E) is a function which satisfies conditions 2 and 3 for all M ∈ A. Let F0

and F1 denote the terms

f(U0,1, x, y, ze) − h(ze)

g(ze)
and

f(U1,1, x, y, ze) − g(ze)

h(ze)
,

respectively.
First note that f(M, x, y, {ze′}E) is equal to Rg,h(M; F1, F0, {ze′}E) for M = U0,1, U1,1.

Now let M ∈ A be a given matroid on E, and let e be an element of E. Assume that
f(M′, x, y, {ze′}E) is equal to Rg,h(M′; F1, F0, {ze′}E) for the minors M′ = M\e′′,M/e′′

of M where e′′ 6= e is some element of E. Suppose that e′′ is a loop of M. By assumption
and by two applications of condition 2, it follows that

Rg,h(M; F1, F0, {ze′}E)

= Rg,h(M(e′′); F1, F0, ze′′)Rg,h(M\e′′; F1, F0, {ze′}E−e′′)

= f(M(e′′); F1, F0, ze′′)f(M\e′′; F1, F0, {ze′}E−e′′)

= f(M; F1, F0, {ze′}E) .

The cases in which e′′ is either a coloop or an element which is neither a loop nor a coloop
are similar. The theorem now follows by induction on |E|. �

Let C ⊆ F
E
q be a linear code. A puncturing C \E ′ of C by the coordinate set E ′ ⊆ E is

the code obtained by deleting from each vector v ∈ C the entries corresponding to E ′. A
shortening C/E′ of C by the coordinate set E ′ ⊆ E is the code obtained by first removing
from C all vectors v ∈ C whose support contain elements of E ′, and then shortening

by E′. Note that C \ E ′ and C/E ′ are subspaces of F
E\E′
q and that

MC\E′ = MC \ E ′ and MC/E′ = MC/E ′.

Any code C ′ obtained from a linear code C by a sequence of shortenings and puncturings
is a minor of C. The corresponding matroid MC′ is a minor of MC .

The following theorem generalises Theorem 12 for the m-tuple support enumerator.

Theorem 16 Let C ⊆ F
E
q be a k-dimensional linear code. Then

A[m]
({ze}E

)
= R1−x,x(MC ; qm, 1, {ze}E).

In particular, A
({ze}E

)
= R1−x,x(MC; q, 1, {ze}E).

the electronic journal of combinatorics 9 (2002), #R19 9



Proof. Let MC′ be the support matroid of each minor C ′ of C. Consider the m-tuple
support enumerators A

[m]
C′

({ze}E′
)

as a function A[m] on the family of all minors C ′ of C.

In order to apply Theorem 15, we must show that A[m] may be regarded as a function on
the family of all minors M′ of MC . First, note that

A
[m]
U0,1

(ze) = 1 and A
[m]
U1,1

(ze) = 1 + (qm − 1)ze (3.1)

are well-defined since these are the only corresponding support enumerators of the mi-
nors C ′ of C which have only one coordinate.

Suppose that C ′ ⊆ F
E′
q is a minor of C and let E ′′ and e′ be a subset and a member,

respectively, of the set of coordinates E ′ of C ′. If e′ is a loop of MC′, then e′ is not
contained in any of the supports of C ′ so

A
[m]
C′

({ze}E′
)

= A
[m]
C′\e′

({ze}E′−e′
)

= A
[m]
U0,1

(ze′)A
[m]
C′\e′

({ze}E′−e′
)
. (3.2)

If e′ is a coloop of MC′, then e′ is the support of some codeword v ∈ C ′. If e′ is not
contained in E′′, then the number A

[m]
E′′ is the same for C ′ as for C ′/e. However, if e′ is

contained in E′′, then consider an m-tuple (v1, . . . , vm) of codewords of C ′ \ e′ such that
∪m

i=1S(vi) = E ′′−e′. By appending to each codeword vi one of the q elements of Fq as the
(e′)th coordinate, qm new m-tuples are formed, of which only one does not have a union
of supports which contains e′. Conversely, any m-tuple (v1, . . . , vm) of codewords of C ′

such that ∪m
i=1S(vi) = E ′′ can be obtained in this manner. Note that C ′/e′ = C ′ \ e′ since

e′ is the support of some codeword. Hence,

A
[m]
C′

({ze}E′
)

= A
[m]
C′/e′

({ze}E′−e′
)

+ (qm − 1)ze′A
[m]
C′\e′

({ze}E′−e′
)

=
(
1 + (qm − 1)ze′

)
A

[m]
C′\e′

({ze}E′−e′
)

= A
[m]
U1,1

(ze′)A
[m]
C′\e′

({ze}E′−e′
)
. (3.3)

Now, suppose that e′ is neither a loop nor a coloop. If e′ is not contained in E ′′, then the
numbers of codewords whose support equals E ′ are identical for C ′ and for C ′/e′. On the
other hand, if e′ is contained in E ′′, then the number of m-tuples of codewords of C ′ \ e′

whose union of supports equals E ′′ − e′ is equal to the number of m-tuples of codewords
of C ′ whose union of supports equals either E ′′ or E ′ − e′.

From this, it follows that

A
[m]
C′

({ze}E′
)

= (1 − ze′)A
[m]
C′/e′

({ze}E′−e′
)

+ ze′A
[m]
C′\e′

({ze}E′−e′
)
. (3.4)

By induction, the identities (3.1), (3.2), (3.3), and (3.4) show that

A
[m]
C′

({ze}E′
)

depends only on the matroid MC′. Hence, condition 2 in Theorem 15
is satisfied by the identities (3.2) and (3.3), and identity (3.4) satisfies condition 3 in
Theorem 15 for the functions g : x 7→ 1 − x and h : x 7→ x on R(X). Theorem 15
concludes the proof. �

the electronic journal of combinatorics 9 (2002), #R19 10



As an immediate application of Proposition 14 and Theorem 16, we may prove Theo-
rem 3 as follows.

B[m]
({ze}E

)
= R1−x,x(MC⊥; qm, 1, {ze}E)

= Rx,1−x(MC; 1, qm, {ze}E) =
∑
A⊆E

(qm)|A|−r(A)
( ∏

e∈A

ze

) ∏
f /∈A

(1 − ze)

=
1

qkm

∑
A⊆E

(qm)r(E)−r(A)
(∏

e∈A

qmze

) ∏
f /∈A

(1 − ze)

=
1

qkm

(∏
e∈E

(
1 + (qm− 1)ze

))
R1−x,x

(
MC ; qm, 1,

{ 1 − ze

1 + (qm − 1)ze

}
E

)

=
1

qkm

(∏
e∈E

(
1 + (qm − 1)ze

))
A[m]

({ 1 − ze

1 + (qm − 1)ze

}
E

)
. �

The support generalisation of Theorem 13 is described in the following theorem.

Theorem 17 Let C be a k-dimensional subspace of F
E
q . Then for each m ≥ 0 it holds

that
k∑

r=0

[m]rA
(r)

({ze}E

)
= R1−x,x(MC ; qm, 1, {ze}E) .

Proof. Theorem 17 follows immediately from Proposition 9 and Theorem 16. �

Furthermore, Theorem 22 follows from Theorem 16, Theorem 17, and Lemma 21. In
turn, Theorem 22 implies that Theorem 12 and Theorem 13 are equivalent.

Theorem 7 follows as an immediate corollary from Proposition 14 and Theorem 17.
To conclude, we prove that the two latter theorems are also equivalent to Theorem 10:

R1−x,x(MC , qm, 1, {ze}E)

=
∑
A⊆E

(qm)r(E)−r(A)
(∏

e∈A

(1 − ze)
) ∏

f /∈A

zf

=
∑
A⊆E

(qm)r(E)−r(A)
(∑

B⊆A

(−1)|B| ∏
e∈B

ze

) ∏
f /∈A

zf

=
∑
A⊆E

∑
B⊆A

(−1)|B|(qm)r(E)−r(A)
∏

e∈B∪(E\A)

ze

=
∑
A⊆E

(∑
B⊆A

(−1)|B|(qm)(r(E)−r(E\A))−(r(B∪(E\A))−r(E\A))
) ∏

e∈A

ze .

Hence,

R1−x,x(MC, qm, 1, {ze}E) =
∑
A⊆E

P (MC/(E \ A); qm)
∏
e∈A

ze . �
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4 An alternative proof of Theorem 7

This section contains an alternative proof of Theorem 7 which does not depend on matroid
theory. The proof relies on Theorem 2 which, as mentioned in Section 2, follows easily
from a number of results. To make this section self-contained, however, a direct proof of
Theorem 2 is provided.

It is perhaps of interest to note that these proofs differ only very slightly, in an obvious
way, from one of the two original proofs [8] of the MacWilliams identity, and from Kløve’s
proof [6] of Theorem 6.

Proof of Theorem 2. Let χ be a non-trivial character of Fq and define g(u) for u ∈ F
E
q

by the sum ∑
v∈FE

q

χ
(〈u, v〉) ∏

e∈S(v)

ze .

We will now express the sum
∑

u∈C g(u) in two different ways and then identify the
support enumerators A

({ze}E

)
and B

({ze}E

)
. The first expression:

∑
u∈C

g(u) =
∑
u∈C

∑
v∈FE

q

χ
(〈u, v〉) ∏

e∈S(v)

ze

=
∑
v∈FE

q

( ∏
e∈S(v)

ze

)∑
u∈C

χ
(〈u, v〉) .

If v ∈ C⊥, then the inner sum equals |C|. On the other hand, if v /∈ C⊥,
then 〈u, v〉 assumes all values of Fq an equal number of times, whence the inner sum

is 0. Therefore, ∑
u∈C

g(u) = |C|
∑
v∈C⊥

∏
e∈S(v)

ze = |C| · B({ze}E

)
. (4.1)

For the second expression, consider g(u):

g(u) =
∑
v∈FE

q

χ
(〈u, v〉) ∏

e∈S(v)

ze

=
∑
v∈FE

q

∏
e∈S(v)

χ(ueve)ze

=
∏
e∈E

(
1 +

∑
ve∈Fq−0

χ(ueve)ze

)
.

If ue = 0, then the inner sum equals (q − 1)ze. Otherwise, the inner sum equals

ze ·
∑

a∈Fq−0

χ(a) = −ze. Hence,
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∑
u∈C

g(u) =
∑
u∈C

( ∏
e/∈S(u)

(
1 + (q − 1)ze

)) ∏
e∈S(u)

(1 − ze)

=
(∏

e∈E

(
1 + (q − 1)ze

))∑
u∈C

∏
e∈S(u)

1 − ze

1 + (q − 1)ze

=
(∏

e∈E

(
1 + (q − 1)ze

))
A

({ 1 − ze

1 + (q − 1)ze

}
E

)
.

By noting that |C| = qk, we may combine the above expression of
∑

u∈C g(u) with the
expression (4.1) to obtain the identity stated in the theorem. �

In order to prove Theorem 7, a few initial lemmas are required. Let G be a generator
matrix for C of rank k and for all l let Fl denote the family of l-dimensional subspaces
of Fk

q . Any r-dimensional subspace D of C may be represented by a generator matrix of
the form MG where M is a r × k matrix of rank r which is uniquely determined up to
row operations. Conversely, any such matrix MG generates a r-dimensional subspace D
of C. Therefore, if UD denotes the subspace of Fk

q which is dual to the row space of M ,
then

Lemma 18 For any r ≤ k, the map D 7→ UD defines a bijection between the r-dimensional
subspaces of C and Fk−r.

Let Ge and (MG)e denote the column of G and MG,
respectively, which corresponds to the element e. Define for each set U ⊆ F

k
q a corre-

sponding set s(U) = {e | Ge ∈ U}.

Lemma 19 If D is a subspace of C, then
⋃
v∈D

S(v) = E\s(UD).

Proof. E\
⋃
v∈D

S(v) = {e | (MG)e = 0} = {e | M(Ge) = 0} = s(UD). �

Let C(m) = {vG | v ∈ F
k
qm} be the code generated by G over Fqm .

Lemma 20 The support enumerator for C(m) is

Am

({ze}E

)
=

k∑
r=0

[m]k−r

∑
U∈Fk−r

∏
e/∈s(U)

ze.

Proof. Let Û = {y ∈ F
k
qm | ∀x ∈ F

k
q : 〈x, y〉 = 0 if and only if x ∈ U}.
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If y ∈ Û , then S(yG) = {e | y(Ge) 6= 0} = E\s(U). Note also that if U ∈ Fr, then
|Û | = [m]k−r. Since {Û | U is a subspace of Fk

q } partitions F
k
qm , it follows that

Am

({ze}E

)
=

∑
v∈C(m)

∏
e∈S(v)

ze =
∑

x∈Fk
qm

∏
e∈S(xG)

ze

=
k∑

r=0

∑
U∈Fr

∑
y∈Û

∏
e∈s(yG)

ze =
k∑

r=0

∑
U∈Fr

∑
y∈Û

∏
e/∈s(U)

ze

=
k∑

r=0

[m]k−r

∑
U∈Fr

∏
e/∈s(U)

ze. �

From Lemmas 18, 19, and 20, we obtain the following lemma.

Lemma 21 The support enumerator for C(m) is

Am

({ze}E

)
=

k∑
r=0

[m]rA
(r)

({ze}E

)
.

Note that Proposition 9 may be extended by Lemma 21 as follows.

Theorem 22 A[m]
({ze}E

)
= Am

({ze}E

)
=

k∑
r=0

[m]rA
(r)

({ze}E

)
.

Theorem 22 also follows from Theorem 16, Theorem 17, and Lemma 21.
Also note that Theorem 17 may be re-proved without the (indirect) use of Theorem 8.

Since the matroids MC and MC(m) are identical, and C(m) is a code over Fqm , it follows
from Theorem 16 and Lemma 21 that

k∑
r=0

[m]rA
(r)

({ze}E

)
= Am

({ze}E

)

= R1−x,x(MC(m) ; qm, 1, {ze}E)

= R1−x,x(MC ; qm, 1, {ze}E) .

Proof of Theorem 7. We apply Theorem 2 and Lemma 21:

k∑
r=0

[m]rB
(r)

({ze}E

)
= Bm

({ze}E

)

=
1

qkm

(∏
e∈E

(
1 + (qm − 1)ze

))
Am

({ 1 − ze

1 + (qm − 1)ze

}
E

)

=
1

qkm

(∏
e∈E

(
1 + (qm − 1)ze

)) k∑
r=0

[m]rA
(r)

({ 1 − ze

1 + (qm − 1)ze

}
E

)
. �
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[7] E. Landberg, Über eine Anzahlbestimmung und eine damit zusammenhängende
Reihe, J. Reine Angew. Math. 111 (1893), 78–88.

[8] F. J. MacWilliams, A theorem on the distribution of weights in a systematic code,
Bell System Tech. J. 42 (1963), 79–94.

[9] F. J. MacWilliams and N. J. Sloane, The Theory of Error-Correcting Codes, North-
Holland Publishing Company, Amsterdam, 1978.

[10] J. Oxley, Matroid Theory, The Clarendon Press, New York, 1992.

[11] K. Shiromoto, A new MacWilliams type identity for linear codes, Hokkaido Math.
Journal 25 (1996), 651–656.

[12] K. Shiromoto, The weight enumerator of linear codes over GF (qm) having generator
matrix over GF (q), Des. Codes and Cryptogr. 16 (1999), 87–92.

[13] J. Simonis, The effective length of subcodes, Appl. Algebra Eng. Com. Comp. 5
(1994), 371–377.

the electronic journal of combinatorics 9 (2002), #R19 15



[14] J. Simonis, MacWilliams identities and coordinate partitions, Linear Algebra Appl.
216 (1995), 81–91.

[15] L. Traldi, Series and parallel reductions for the Tutte polynomial, Discrete Math. 220
(2000), 291–297.

[16] V. K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inform.
Theory 37 (1991), 1412–1418.

[17] D. J. A. Welsh, Matroid Theory, Academic Press, London-New York, 1976.

[18] N. White, Theory of Matroids, Encyclopedia of Mathematics and its Applications, 26.
Cambridge University Press, Cambridge-New York, 1986.

the electronic journal of combinatorics 9 (2002), #R19 16


