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• Finite mixture of Gaussians model with cluster-
variance σ2

◦Taking σ2→ 0, the negative log-likelihood of the
mixture of Gaussians model approaches the K-
means clustering objective
◦Taking σ2→ 0, the EM algorithm approaches the

K-means clustering algorithm
•Dirichlet process (DP) mixture of Gaussians model

with cluster-variance σ2

◦Taking σ2 → 0, the Gibbs sampler approaches
the DP-means clustering algorithm [2]

Background

•We show that the DP-means objective can be ob-
tained directly from the posterior, independent of
any inference algorithm
•We show that this expanded perspective on small-

variance asymptotics generalizes to a range of mod-
els beyond the DP mixture
• In particular, we find a K-means-like objective for

features, a generalization of clusters that relaxes the
exclusivity and exhaustivity assumptions
◦We apply small-variance asymptotics to the beta

process (BP) with Bernoulli likelihood (equiv-
alent to the Indian buffet process) with linear
Gaussian likelihood to obtain a K-means-like ob-
jective for features: BP-means

•We show empirical results for BP-means

Our contributions

•We consider likeli-
hood models that
are Gaussian around
some mean de-
termined by the
underlying combina-
torial structure (e.g.,
clusters or features).
• Small-variance asymp-

totics takes the vari-
ance of these Gaus-
sians to zero.
•We examine the ef-

fects of these limits
on the model likeli-
hood.

Small variance asymptotics: a cartoon

•Notation.
◦N data points xn, each with dimension D.
◦ znk = 1 if data point n belongs to cluster k and

zero else.
◦K+ is number of clusters (from generative

model; not fixed).
◦µk is mean of cluster k.
◦λ2 is a constant.
•Generative model: DP(θ) mixture of Gaussians

with σ2 variance.
• Small-variance limit.
◦ argmaxz,K+,µ P(z, µ|x)

= argminz,K+,µ−2σ2 log P(z, µ, x)

◦Taking σ2 → 0 and θ = exp(−λ2/2σ2) yields DP-
means problem:

argmin
z,K+,µ

K+∑
k=1

∑
n:znk=1

‖xn − µk‖2 + (K+ − 1)λ2

DP-means objective

•Notation.
◦ znk = 1 if data point n belongs to feature k and

zero else.
◦µk is mean of feature k.
◦K+ is number of features (from generative

model; not fixed).
◦X is N ×D matrix of the xn; Z is N ×K+ matrix

of the zn; A is K+ ×D matrix of the µk.
◦λ2 is a constant.
•Generative model: BP/IBP(γ) features; linear-

Gaussian likelihood with σ2 variance
• Small-variance limit.
◦ argmaxZ,K+,A P(Z,A|X)

= argminZ,K+,A−2σ2 log P(Z,A,X)

◦Taking σ2 → 0 and γ = exp(−λ2/2σ2) yields BP-
means objective:

argmin
Z,K+,A

tr[(X − ZA)′(X − ZA)] +K+λ2

BP-means objective

Iterate until no changes are made:
1. For n = 1, . . . , N

• For k = 1, . . . , K+, choose the optimal value (0 or
1) of znk.
•Let Z ′ equal Z but with one new feature (labeled
K+ + 1) containing only data index n. Set A′ = A
but with one new row: A′K++1,·← Xn,· − Zn,·A.
• If the triplet (K+ + 1, Z ′, A′) lowers the objec-

tive from the triplet (K+, Z, A), replace the latter
triplet with the former.

2. Set A← (Z ′Z)−1Z ′X .

BP-means algorithm

Other feature models yield the collapsed BP-means
and the finite K-features objectives tr[(X − ZA)′(X −
ZA)]. Let stepwise K-features denote dynamically
solving the latter problem for each fixed K then it-
eratively incrementing K by one until the BP-means
objective is not improved.

Other objectives

Data:
100 JPEG
240 × 320 × 3
photos [1];
four sample
photos at
right.

Stepwise K-
features with
λ = 1 identifies
5 features: the
table and these
four objects.
The upper two
features are
subtracted; the
lower two are
added.

Tabletop photos and features

We compare an IBP Gibbs sampler [1], collapsed
BP-means (Collap), the basic BP-means algorithm,
and stepwise K-features (FeatK).

Alg Per run Total #
Gibbs 8.5 · 103 — 10
Collap 11 1.1 · 104 5
BP-m 0.36 3.6 · 102 6
FeatK 0.10 1.55 · 102 5

Above Left: First column: run time per run in sec.
Second column: total running time (i.e., over mul-
tiple repeated runs for the final three). Third col-
umn: final number of features learned (the IBP # is
stable for > 900 final iterations). Above Right: His-
togram of collections of the final K values found
by the IBP for a variety of initializations and pa-
rameter starting values.

BP-means results: Tabletop photos

Row 1: 4 sam-
ple photos in a
set of 400 [3].
Rows 2: Three
features and
assignments
found using
the BP-means
objective.
Row 3: Clus-
ter centers
and assign-
ments using
K-means with
K = 3. Row
4: Same with
K = 4.

BP-means results: Face photos
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