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MAD FAMILIES AND ULTRAFILTERS
MARTIN WEESE!

ABSTRACT. For each almost disjoint family X let F(X) = {a C w: card {s € X:
s\a is finite) = 29}, I(X) = {a C w: card {s € X: card (s N @) = w} = 2°}.
Assuming P(2“) we show that for each nonprincipal ultrafilter p there exist a
maximal almost disjoint family X and an almost disjoint family Y with F(X) =
KY) =p.

1. Introduction. We refer the reader to [2] for unexplained notions. Let 4 be a
set; P (A) denotes the power set of 4 and card 4 denotes the cardinality of 4. Fin
denotes the set of finite subsets of w. For a, b € P (A4) we write a C b if a\b is
finite and we writea = ,bifa C ,band b C ,a.

Let X C ?(w)\Fin. X has the fip (finite intersection property) if for any finite
subset S of X, N S is infinite. X is almost disjoint if (i) for @, b € X with a # b,
a N b € Fin and (ii) for any finite subset S of X, w\ U S is infinite. X is called
mad family if it is a maximal almost disjoint family and X is called ad family if it is
an almost disjoint family.

Let P(2“) be the following proposition (considered by Rothberger [5]):

If F C 9 (w) has the fip and card F < 2° then there is d € % (w)\Fin with
a C b for each b € F.

The proposition P(2*) is weaker than Martin’s axiom (see [4]).
For X an ad family we set

F(X) = {a Cw: card{s eEX:sC ,a} =2w};
I(X) = {a C w: card{s € X: card(s N a) = w} = 2°}.

Then for each ad family X, F(X) C I(X); for X a mad family, I(X) = {a C w: for
each finite subset S of X, card(a\\ U S) = w}. We show:

THEOREM 1. Assume P(2°). Then for any nonprincipal ultrafilter p on w there exists
a mad family X with F(X) = p.

THEOREM 2. Assume P(2°). Then for any nonprincipal ultrafilter p on  there exists
an ad family X with I(X) = p.
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2, Proof of Theorems 1 and 2. Let p be any nonprincipal ultrafilter on w, let
{a: i<2°} be an enumeration of p such that for each b € p we have
card{i < 2“: b= g;} =2“ and let {b;: i <2°} be an enumeration of {b C w:
b & p, card b = w}. Let 4, = {a;: i <k}, B, = {b;: i <k}. We construct increas-
ing sequences {X;: i < 2°}, {Y;: i < 2°} of almost disjoint sets such that for each
i<2%:

(i) card X; < 2* and card Y; < 2“;

@) (X, U Y)np=2;

(i) X; N Y, =;

(iv) thereisc € X, ,\ X, with ¢ C a;;

(v) thereisd € Y, , with card(d N b,) = w;

(vi)fori < k < 2°if c € X; \ X, then card(c N b)) < w;

(vii) fori < k < 2% ifd € Y, \ Y, then card(d N b) = w.

Let X = U {X;:i<2°}, Y= U {Y;:i <2°}. Then X is an ad family and (v)
implies that X U Y is a mad family. (iv) implies that for each a € p, a € F(X) and
a € F(X U Y). (vi) implies that for each a C w with a & p, a & I(X). (vii) implies
that foreacha Cwwitha € p,a & F(X U Y). Thus (X) = F(X U Y) = p.

Now we describe the construction of the X; and Y, We set X, = Y, = .
Assume i < 2“ and for each k < i, X, and Y, are constructed. For i a limit ordinal
weset X; = U (X k<i}, Y, = U {Y: k <i}.

Now let i be a successor ordinal, i = k + 1. Let S = 4, U {w\b: b € B} U
{w\x: x € X, }. Then S has the fip and card S < 2“. P(2*) implies that there is
a C w with a\s € Fin for each s € S. Let a* C a N g; be such that a* & p and
card a* = w. Then we set X; = X, U {a*}. Assume there is s € X; U Y, with
card(s N b) = w. Then we set Y, = Y,. Assume now that no such s exists. Let
T=A4,U {w\b: b € B} U {w\x: x € X;}. Then T has the fip and card T < 2“.
P(2°) implies that there is ¢ C w with ¢\s € Fin foreachs € T. Let¢c* C c N gq;
be such that ¢* & p and card ¢* = w. Then we set Y, = Y, U {c* U b,}. It is now
easy to see that (i)—(vii) are satisfied.

3. Topological consequences. Let N be the discrete countable space and let SN be
the Stone-Cech compactification of N. Then BN \\N can be represented by the set
of all nonprincipal ultrafilters over w and the topology generated by the following
basis A: Foreacha Cwletd = {p € BN\ N:a € p} and ¥ = {d: a C w}. Then
a2 biff b g +a. Then Theorems 1 and 2 can be reformulated as follows:

THEOREM 1'. Assume P(2*). Then for eachp € BN\ N there is a dense system u,
of open sets such that for each a C w, a € p iff card{U € U,: U C 4} = 2.

THEOREM 2. Assume P(2°). Then for each p € BN\ N there is a system U, of
open sets such that for each a C w, a € p iff card{(U € U,: U N d # &} = 2°.

p € BN\N is a 2°-point if there is a family {U;: i < 2°} of pairwise disjoint
open sets with p € (clgyU)\N. We can use Theorem 1 to derive the following
theorem of Hindman [3] (Hindman used CH but there is little difficulty adapting
his proof to P(2“)):

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



MAD FAMILIES AND ULTRAFILTERS 477

THEOREM 3. Assume P(2°). Then each p € BN\ N is a 2°-point.

PROOF. Let X = {¢;: i < 2°} be a mad family with F(X) = p. For each i < 2*
choose an ad family {d,: k < 2°} withd, C c, for each k < 2“. For k < 2 let
U= U{d:i<2¢).
Then the U, are pairwise disjoint open sets and p is in the closure of each U,.
REMARK. Balcar and Vojta§ [1] proved Theorem 3 without any set-theoretical

assumption. It is also unknown whether Theorem 1 holds without any set-theoreti-
cal assumption.

4. Applications to superatomic Boolean algebras. Let % be a Boolean algebra.
a € |%| is an atom if a # 0 and for each b€ A, an b=aoran b=0. A is
atomic if for each b € |¥| there is an atom a with a < b. ¥ is superatomic if each
homomorphic image of % is atomic. 2 denotes the two-element Boolean algebra,
Pow(w) denotes the power set Boolean algebra over w. For 4 C Pow(w) let
Pow(w)[A4] denote the subalgebra of Pow(w) generated by 4 U w. For each Boolean
algebra A, AV denotes A factorized by the ideal generated by the atoms and for
each k € w we set A+ = A®)D_ If X is a mad family then Pow(w)[X] is a
superatomic Boolean algebra whose set of atoms is w and (Pow(w)[ X )@ = 2.

THEOREM 4. Assume P(2°). Then there are 2% nonisomorphic superatomic Boolean
algebras % whose set of atoms is w and with AP = 2.

PROOF. Let X be the class of all mad families X such that F(X) is a nonprincipal
ultrafilter. Let X, Y € %. X and Y ar called equivalent if there area € X, b€ Y
and a one-one function f from a onto b such that for each s € X with s C ,a there
is ¢t € Y with f[s] = ,¢. That means, X and Y are equivalent iff F(X) and F(Y) are
equivalent with respect to the Rudin-Keisler order of ultrafilters. Now there are 2
nonprincipal ultrafilters on w and each equivalence class with respect to the
Rudin-Keisler order contains 2“ ultrafilters. Let § C X be such that card § = 2%
and the elements of Y are pairwise nonequivalent. Let

® = {Pow(w)[ X]: X €5}
Then R is the desired class of superatomic Boolean algebras.

ADDED IN PROOF. As I was informed by Baumgartner, it is impossible to prove
Theorem 1 without any set-theoretical assumption.

REFERENCES

1. B. Balcar and P. Vojtas, Almost disjoint refinement of families of subsets of N (preprint).

2. W. Comfort and S. Negrepontis, The theory of ultrafilters, Springer-Verlag, Berlin and New York,
1974.

3. N. Hindman, On the existence of T-points in BN \ N, Proc. Amer. Math. Soc. 21 (1969), 277-280.

4. K. Kunen and F. D. Tall, Between Martin’s axiom and Souslin’s hypothesis, Fund. Math. 102
(1979), 173-181.

5. F. Rothberger, On some problems of Hausdorff and of Sierpinski, Fund. Math. 35 (1948), 29-46.

HUMBOLDT-UNIVERSITAT ZU BERLIN, UNTER DEN LINDEN 6, 108 BERLIN, GERMAN DEMOCRATIC
REPUBLIC

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



