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Made to Measure: Ecological Rationality in StructuredEnvironmentsSeth Bullock and Peter M. ToddCenter for Adaptive Behavior and CognitionMax Planck Institute for Human DevelopmentLentzeallee 94, D-14195 Berlin, GermanyEmail: bullock@mpib-berlin.mpg.deJuly 23, 1999AbstractA working assumption that processes of naturaland cultural evolution have tailored the mind to �tthe demands and structure of its environment begsthe question: how are we to characterize the struc-ture of cognitive environments? Decision problemsfaced by real organisms are not like simple multiple-choice examination papers. For example, some in-dividual problems may occur much more frequentlythan others, whilst some may carry much moreweight than others. Such considerations are nottaken into account when (i) the performance of can-didate cognitive mechanisms is assessed by employ-ing a simple accuracy metric that is insensitive tothe structure of the decision-maker's environment,and (ii) reason is de�ned as the adherence to in-ternalist prescriptions of classical rationality. Herewe explore the impact of frequency and signi�cancestructure on the performance of a range of candi-date decision-making mechanisms. We show thatthe character of this impact is complex, since struc-tured environments demand that decision-makerstrade o� general performance against performanceon important subsets of test items. As a result, en-vironment structure obviates internalist criteria ofrationality. Failing to appreciate the role of envi-ronment structure in shaping cognition can lead tomischaracterising adaptive behavior as irrational.Keywords: decision making, frequency structure,signi�cance structure, rational synthesis, adaptivebehavior, externalism.Running head: Rationality in Structured Envi-ronments

1 Introduction to the problemof environment structureOrganisms are matched to the demands of particu-lar environments. Deep-sea creatures, for instance,have evolved to require a high pressure aqueous en-vironment, and to exploit the opportunities thatthis environment a�ords (such as profound dark-ness as a backdrop for bioluminescence) in order toe�ect their survival and reproduction. When takenout of the environment that they are adapted to,such creatures can su�er explosive consequences.Within biology this vital match between a biologi-cal system and its environment is termed \�t". Theenvironment to which an organism is �tted by evo-lution is known as its \niche".In much the same way that biological devices arematched to their niches, decision-making mecha-nisms are also matched to particular kinds of task(see, e.g., Gigerenzer, Todd, & the ABC Group,1999). As in the case of biological �t, the suitabil-ity of these cognitive mechanisms is predicated onthe structure of their environment. The success ofa particular cognitive mechanism will depend notonly upon the task demanded of it, but also the na-ture of the problem it faces in achieving this task.Whilst a tin-opener is suited to the task of openingtins, it may not be suited to particular tins (suchas oil drums, etc.) | its limitations make it ill-�tted to certain problems but suitable for others.The extent to which an organism �ts its niche, ora mechanism matches the problem it faces, is theextent to which it meets the demands of its envi-ronment.These considerations imply straightforwardly,that di�erent environment structures will, by de�-nition, favor di�erent cognitive mechanisms. Thus,1



to evaluate the performance of these mechanisms,we have to take environment structure into account.But what is environment structure and how are weto measure it? Here we concentrate on the rami�-cations of two well-speci�ed aspects of environmentstructure on the performance of cognitive decision-making mechanisms.To appreciate these two forms of environmentstructure, imagine that you are a university profes-sor. Every once in a while, a student who has beeno�ered a similar job by two universities approachesyou for your advice. Which job o�er should theyaccept?1. Since neither job applications nor o�ers of em-ployment are made at random, one might ex-pect certain universities to feature more fre-quently than others in this kind of decision.2. Since not all universities have equal status,some decisions of this kind may be more sig-ni�cant than others.Suppose that your students know that across allthe possible pairs of universities, your advice is cor-rect 80% of the time. Suppose that they also knowthat a colleague of yours is only correct 70% of thetime. Should they approach you for advice ratherthan your less knowledgeable colleague? Not neces-sarily. Despite the higher accuracy of your adviceacross possible problems, the students may quiterightly reject you if the 20% of cases in which youerr are the most important or frequent ones, whileyour colleague does not make these frequent, costlymistakes, but rather errs only in trivial or uncom-mon circumstances.Notice that in this example, general-purposeknowledge (high accuracy across possible testitems) has been sacri�ced for special purposeknowledge (high accuracy across frequent or sig-ni�cant test items). Notice also that failure to ap-preciate either frequency or signi�cance structurein this example will lead observers to conclude thatstudents are acting irrationally in choosing the lessknowledgeable professor.Putting ourselves in the shoes of the job-seekingstudent, how should we assess the performanceof each professor before deciding whose advice toheed? We might carefully select speci�c test itemswhich we expect to best discriminate between hy-potheses regarding the professors. Whilst patternsof success and failure across such a set of diagnostictest items may reveal facts about how the profes-sors go about solving their task, the performanceover such a set will not be representative of the

professors' performance in general unless this set oftest items is itself representative.Similarly, assessing the performance of each pro-fessor using a multiple-choice paradigm in which(i) the answer to each test item is weighted equally,and (ii) either every possible test item is presentedonce, or a uniform random sample of possible testitems is presented, will also fail to capture theunderlying structure of the problem, and there-fore will misjudge any decision-making mechanismadapted to that structure.Assessing each professor on a representative or\natural" sample (Brunswik, 1955) of test items isthe only way to reasonably decide between them.This approach to assessment and the role of envi-ronmental considerations derives from an ecologi-cal perspective on rationality which itself followsfrom the evolutionary biology considerations withwhich this paper opened. In the next section wepresent the foundations of this notion of ecologicalrationality, before turning to speci�c examples offrequency structure and signi�cance structure, andtheir implications for decision making in structuredenvironments.2 Ecological RationalityConsider two contrasting assumptions about howbest to conceive of cognitive mechanisms. The �rststems from an observation about origins.� Assumption: Processes of natural and culturalevolution (sometimes via the lifetime learningfashioned by these processes) have tailored themind to �t the demands and structure of itsenvironment. Behavior must be adaptive, i.e.,suited to its proper environment, to be suc-cessful.This assumption invokes a natural process (evo-lution) and an externalist criterion of success (theenvironment). It has a direct implication.� Implication: The assessment of candidate cog-nitive mechanisms must be sensitive to factsconcerning environment structure.The second conception of cognitive mechanismsconsiders them to approximate general-purpose,optimal (and ultimately mythical) devices. It isthus an assumption about goals.� Assumption: Minds are best understood asapproximating a Laplacean superintelligence(Laplace, 1951), which will, by de�nition,2



achieve general-purpose, optimal performancein any situation, no matter how rare; for anyprice, no matter how costly; and for any re-ward, no matter how meager.This assumption invokes an ideal, and impliesinternalist criteria for success.� Implication: General purpose performancecannot, by de�nition, rely upon assumptionsabout the problem to be faced, hence thebehavior of candidate cognitive mechanismsshould conform to internalist rational crite-ria, e.g., coherence, transitivity, etc., since itis through the adoption of these criteria that asuperintelligence will achieve its optimal per-formance.Whilst this second, classically rational approachto cognition is somewhat of a straw man, the in-ternalist criteria which it promotes are widespreadwithin decision-making psychology and related�elds, taking the form of prescriptive norms; YourSubjective Probabilities Must Sum to Unity! BeTransitive in Your Choices! Be Coherent! Be Con-sistent in Your Preferences! In contrast, the �rstapproach to cognition embraces an ecological per-spective on rationality, dispensing with internalistcriteria in favor of an externalist performance met-ric. In the same way in which evolutionary biologyassesses the �tness of adaptations in terms of theextent to which they perform the task for whichthey were selected, ecologically rational reasoning isreasonable to the extent that it is successful withinits proper environment.The perspective on cognition a�orded by the con-cept of ecological rationality is a powerful one. Un-derstanding its rationale requires that certain layterms be given technical meanings. Although spacelimitations prevent a full account of its derivation,a few of the more pressing issues will be brie
yaddressed here (readers are directed to Millikan,1984, for an account of the role of evolution in un-derwriting the attribution of functions to cognitivemechanisms).2.1 Proximality and ProxihoodFirst, the phrase \proper environment" is usedhere (e.g. in the �rst assumption above) in thesame technical sense in which Millikan (1984, 1993)employs the term \Normal conditions" to mean\the conditions to which [a] device . . . is biologi-cally adapted" (Millikan, 1984, p.34). This biolog-ical adaptation is ultimately evolutionary, but may

also involve learning, as in the case of a mecha-nism which has evolved to detect mates, but is cal-ibrated through some period of juvenile experience.The nature of a mechanism's proper environmentmust typically be established historically since itwill usually be a past environment, although asnoted above, a mechanism which is calibrated byindividual learning of some kind may be properlysuited to its current environment, or at least to theenvironment in which it was calibrated. In gen-eral, the proper environment cannot be establishedstatistically by establishing what the current envi-ronment of a mechanism typically is.Since our knowledge of past environments willgenerally be poor, establishing the structure ofthese environments with the degree of precisionnecessary in order to predict, in one fell swoop, theadaptations which resulted from them may be hard,if not impossible. However, taking as a working as-sumption the hypothesis that, whatever these envi-ronments were, they have shaped the character ofextant cognitive mechanisms allows us to approachcognition and behavior as evidence from which toinfer the adaptive tasks faced by our ancestors andthe structure of the past environments in which ourancestors had to achieve them (c.f. the evolution-ary psychology approach to studying evolved cogni-tive mechanisms as laid out by Cosmides & Tooby,1987). This approach is clearly circular: current be-havior is used to infer past environments which arein turn used to predict current behavior-generatingmechanisms. However, this circularity is not vi-cious. Each turn of the cycle produces new behav-ioral hypotheses which can be tested and used to re-vise our environmental assumptions. This processis analogous to that employed by the proponentsof rational analysis (Anderson, 1991) who iteratethrough a similar cycle, repeatedly revising the na-ture of a decision problem until the optimal solutionto this problem matches the observed performanceof the natural decision makers they are interestedin.Second, in using terms such as \success" and\task" when describing the performance of a natu-ral mechanism, we are eliding an important dimen-sion. The manner in which these terms should beinterpreted depends on whether one is concernedwith explanations which are biologically ultimateor more proximate. Whilst ultimately every bio-logical adaptation has been selected for the taskof e�ecting its own reproduction, with appropriatecaveats, organisms and the organs they contain canalso be considered to face more proximate adap-tive subgoals (e.g., pumping blood, regulating body3



temperature, �nding food, seducing a mate). Sim-ilarly, although the success of a natural cognitivemechanism is ultimately cashed out in the same�tness terms as any biological adaptation, its per-formance can be understood more proximately interms of its reasoning success. This reasoning suc-cess can be considered as a proxy for the biological�tness of a reasoning mechanism.However, establishing a proxihood relationshipbetween some measure of successful reasoning andultimate �tness is not straightforward. For exam-ple, the capture of accurate information is oftenconsidered to be a good measure of reasoning suc-cess (e.g., Oaksford & Chater, 1994, 1996, but seealso Klauer, 1999). In his model of animal com-munication, Grafen (1990) equates the success of achoosy peahen with her accuracy in capturing themate value of her suitors. One might expect thatto the extent that a reasoning mechanism tends toprovide veridical information to the deliberation oraction systems which depend on this information,such a reasoning mechanism would be �t. How-ever, using the capture of veridical information asa proxy for �tness ignores the possibility that evenaccurate information may sometimes be epistemi-cally worthless (Evans & Over, 1996).For example, a decision-making mechanism usedby a peahen to judge the quality of peacocks mayprovide equally accurate assessments in two cases,yet if the �rst case involves a poor quality suitorand the second a high quality suitor, the value ofthese two pieces of equally accurate informationwill di�er greatly. The �rst assessment allows thepeahen to con�dently reject a poor suitor, avoidingthe costly mistake of making a long-term invest-ment with a poor-quality mate. In contrast, thesecond assessment allows her to con�dently accepta good suitor, avoiding the (presumably) much lesscostly mistake of overlooking the currently avail-able good mate. Thus, these two decisions haveradically di�erent implications for the peahen's �t-ness and hence the �tness of the peacock-assessingmechanism that she employs. Moreover, for speciesin which both sexes are choosy, whether a female'sassessment of a particular potential mate is accu-rate or not may have no impact on her �tness if thesuitor being assessed rejects her (Todd & Miller,1999).These examples highlight the fact that it is thebehavior which results from an organism's reason-ing rather than the reasoning itself which is the lo-cus of selective pressure. Whilst accurate and error-free reasoning is clearly typically a conduit leadingto adaptive behavior, it does not follow that \irra-

tional" reasoning must have negative consequencesfor the success of an organism's behavior. As wemove along the explanatory dimension from ex-planations of decision-making behavior in terms ofsome ultimate goal (reproduction) to explanationsin terms of increasingly proximate goals (successfuldecision making of some kind) we do not ever reacha legitimate explanation of an organism's behaviorin terms of achieving the consistency, coherence,transitivity, etc., that internalist rational criteriademand. Goals may be proximate to varying de-grees, but never entirely divorced from the ultimategoal which all natural adaptive behavior subserves.These internalist criteria may, to a certain extent,be characteristic of successful decision-making be-havior in a particular environment, but they are notthe decision-maker's goal, merely a side-e�ect of itsbeing well-designed to achieve whatever that goalmay be. A decision-maker's deviation from theserationalist tenets will therefore not necessarily re-sult in its reduced ability to achieve its goals, sincethe prescriptions of internalist rationality and thegoals of a decision-maker are not coincident.For instance, in order to meet the criteria of clas-sical rationality, one's preferences must be transi-tive, that is, if one prefers A over B, and B overC, one must prefer A over C to remain rational.Reinforcement training of various animals demon-strates that they spontaneously develop novel tran-sitive preferences when trained to make pairwise se-lections between items with adjacent ranks on somearbitrary scale (Delius & Siemann, 1998). That is,when trained to prefer A over B, B over C, C over Dand D over E they spontaneously preferred B overD, despite these two items having been reinforcedequally over the course of the training. Whilstthese data suggest that the mechanism governingthe learning of preferences embodies the principle oftransitivity, reanalysis of the original reinforcementexperiments reveals that simple associative learningrules can account for the ability. The authors con-clude that the \capacity for transitive respondingcould thus be an example for [sic] a trait that hasprimarily evolved by exaptation rather than adap-tation" (p.131, emphasis added) by which is meantthat the selective pressure to discriminate similarstimuli may account for the transitive preferencesof pigeons, rats, and humans, rather than any ad-vantage they gain from transitive preferences perse. Indeed one can �nd examples of intransitivityin the untrained preferences of animals, as shownin the work of Sha�r (1994) on the responses offoraging honey bees to arti�cial stimuli.4



2.2 Optimality and AnalysisFriends of classical rational norms will respond atthis point that these norms were never intended asprescriptive rules, but as descriptive tools. Sinceoptimal performance will be achieved by an agentfollowing the prescriptions of classical rationality,they serve a useful purpose in providing the meansto calculate a benchmark against which naturalperformance may be measured. Whilst we as sci-entists can calculate this benchmark, there is noclaim that cognitive mechanisms perform any suchcalculation. The behavior generated by a rationalcognitive mechanism is, however, expected to bewell described, or at least approximated, by suchoptimal models.We have no objection to this use of optimalitymodelling. However, it must be pointed out thatfrom this perspective, the discovery that humanreasoning fails to meet the internalist criteria ofrationality in some situation (whether it be experi-mental or naturally occurring) should not necessar-ily be the cause for concern that it has appeared tobe within the judgement and decision-making lit-erature (e.g., Kahneman, Slovic, & Tversky, 1982).If internalist rational criteria were never expectedto be implemented by cognitive mechanisms, butmerely to describe their proper behavior (c.f. An-derson's rational analysis), why should one expectarbitrary laboratory test items or natural but novelscenarios to provoke rational responses (c.f. Kahen-man and Tversky's heuristics and biases)?Indeed, a tradition exists within behavioral ecol-ogy which treats experimental results not as rev-elatory of an animal's rationality, but as indica-tive of its evolutionary history. For example, the�eld of optimal foraging theory (Stephens & Krebs,1986) experimentally assesses the foraging behav-ior of various species in an attempt to discover notwhether they are smart or stupid, or rational orirrational, but what the selective pressures on for-aging ability must historically have been for thesespecies, and what results these pressures have hadin terms of the cognitive adaptations which thesespecies possess. When confronted with what, bythe lights of internalist criteria, must be consid-ered irrational behavior, rather than noting the ir-rationality of the organism involved, these scientistssearch for environments in which (and adaptivegoals for which) sacri�cing the missing elements ofclassical rationality makes sense.The contrast between the approach of behavioralecologists and that of decision-making psycholo-gists is crystalized in their response to the possibil-ity of \inappropriate" probability matching in an-

imals and humans (Goodie, Ortmann, Davis, Bul-lock, & Werner, 1999). The probability matchingphenomenon is most straightforwardly presented ina case in which two sites which vary in the rateat which they yield food are attended to in pro-portion to these yields. Maximizing the consump-tion of food would be achieved by attending solelyto the most productive food source. However itis commonly held that animals and humans oftensplit their attention between the sources in propor-tion to the expected rate of reward at each source(e.g., Davison & McCarthy, 1988; Tversky & Ed-wards, 1966). Whilst learning theorists and be-havioral ecologists have worked towards discoveringin which situations such behavior is successful andadaptive and in which it is not (Williams, 1988),decision-making psychologists have taken the prob-ability matching phenomenon to be evidence of hu-man irrationality (e.g., Dawes, 1988).2.3 Rational SynthesisFurthermore, although cognitive mechanisms canbe expected to approximate optimal solutions tothe problems they have been adapted to, we can-not assume that they are also built from approxi-mately rational building blocks. Once we have setaside optimality theories as a means to derive thecontents of organisms' heads, it is di�cult to seeimmediately what assumptions are justi�ed whenpostulating the mechanisms which underpin adap-tive behavior. An example from the study of visionhighlights this problem.David Marr (1982) and J. J. Gibson (1979)developed contrasting approaches to solving theproblem of how animals achieve visual percep-tion. Marr's computational approach yielded thepipeline model, comprising a series of modules eachcharged with performing a subpart of the entiretask. Each subpart was considered by Marr to bethe logical requirement of a system able to form amodel of the world around it on the basis of an im-poverished two-dimensional array of intensity val-ues (i.e., light falling on a retina). In contrast, Gib-son's ecologically inspired theory of direct percep-tion concentrated on how the problem of vision wasintimately linked with the problems of acting in theworld. For Gibson, the task of vision was not toconstruct a three-dimensional model of the worldfrom poor quality data, but to reveal the \a�or-dances" of the environment in which the agent waslocated by exploiting invariants in the rich spatio-temporal visual array.However, whilst Marr's system was buildable and5



hence testable, Gibson's theory o�ered almost noclues as to what might constitute the subparts ofvisual systems. Alluding to \resonating structures"did nothing to operationalize his theory, which suf-fered as a result. For our present purposes, whatis interesting about this example is that Gibson'secological considerations did not directly suggestcandidate mechanisms in the same way that Marr'scomputational approach did. Without �rst princi-ples from which to derive the contents of people'sheads, from what source are we to postulate candi-date cognitive mechanisms?In Marr's approach we can glean a clue as to away forward. Although the processes involved inthe pipeline were considered to be the logical pre-cursors to establishing a three-dimensional model ofthe system's surroundings which could be passed toa suitable spatial reasoning system, Marr did notderive the structure of the pipeline entirely from�rst principles. Rather, several important empir-ical results from the neurobiology of vision (e.g.,Hubel & Wiesel, 1959) inspired the design of someof the building blocks from which the pipeline wasconstructed. Once Marr grasped the properties ofsingle cells in the cat striate cortex, for example,he was able to use this understanding to constructedge-detection algorithms. The design process wasthus largely data-driven. Indeed the later stagesof Marr's pipeline were never adequately modelleddue in part to a lack of empirical data with whichto inform their design. Like Marr, we must lookto empirical studies to suggest candidate cognitivebuilding blocks.More generally, evolutionary processes can be ex-pected to build complex cognitive as well as percep-tual systems from combinations of building blocks,themselves the adaptive result of selective pres-sures. As such we should conceive of cognitive in-nards as assemblies of limited cognitive subparts,tinkered with and reassembled by mutation andselection until they �t the environment to whichevolution has adapted them. By using empiricalevidence from the study of adults, children andother species (e.g., Cummins & Allen, 1998) to sug-gest the structure of candidate cognitive buildingblocks, and then exploring how the behavior of var-ious combinations of these building blocks varieswith the structure of their environment, we can ex-plore the behavior of model cognitive systems fromthe bottom up, rather than the top down (Gigeren-zer & Todd, 1999).For example, the recognition heuristic (Goldstein& Gigerenzer, 1999) is predicated on a fundamen-tal psychological phenomenon, recognition mem-

ory. This phenomenon has been well studied bypsychologists and animal behavior researchers. Itclearly subserves much of our everyday behavior.The recognition heuristic utilizes recognition mem-ory to guide decision-making behavior by exploitingthe fact that recognition tends not to be randomlydistributed across possible entities, but is typicallyconcentrated on the most important ones. Theheuristic can be stated as: \A recognized optionshould be considered to be higher than an unrec-ognized option on any important dimension". Thisis clearly a very simple rule. It can be consideredto be a building block in that it is informationallyself-contained and can act as a subpart of largercognitive strategies (e.g., Take The Best Gigeren-zer & Goldstein, 1999).This process of rational synthesis, the recombi-nation of empirically validated cognitive buildingblocks, has a counterpart in the �eld of behavior-based robotics (Brooks, 1991a, 1991b). Increas-ingly, roboticists interested in building intelligentcontrol systems are coming to realize that prob-lems which appear intractable from the perspectiveof control theory can be tackled e�ectively by as-sembling networks of competing and cooperatingbehavioral modules. Rather than providing thissystem with some governing module responsible forcoordinating the behavior of these subparts (a fear-some design problem), the robot designers rely oninteractions between the robot and its environmentto organize the robot's behavior. Although discov-ering an appropriate combination of modules is nota trivial task, initial successes in both handcrafting(Brooks, 1991a) and arti�cially evolving (Cli�, Har-vey, & Husbands, 1993) such robots suggest thatthis approach to understanding the design of com-plex systems is fruitful.In addition, roboticists interested in usingrobotic systems to model natural systems have dis-covered that building robots from empirically val-idated building blocks can lead to new and inter-esting theories of animal behavior. Webb (1994,1996) reports the use of a robot cricket to demon-strate that the phonotaxis achieved by natural fe-male crickets when they approach calling males canbe achieved with practically no cognitive mecha-nism at all, through relying on the acoustic prop-erties of the cricket's ears.A repeated �nding within these related �elds isthat complex adaptive behavior can arise from theinteraction between simple mechanisms and theirenvironment. This observation formed the basis forValentino Braitenberg's (1984) synthetic epistemol-ogy, the use of arti�cially constructed systems (in6



this case hypothetical ones) to explore the minimalproperties required of systems before various inten-tional attitudes (fears, desires, beliefs, etc.) are at-tributable to them. The rational synthesis we em-ploy involves the construction of arti�cial reasoningsystems which are computationally undemanding,and hence psychologically plausible, from decision-making building blocks which are themselves com-putationally undemanding, and hence psychologi-cally plausible. We then explore the manner inwhich the performance of such reasoning systemsis dependent on facts about the tasks they face andthe structure of the environment in which they �ndthemselves.2.4 The Threat of ExploitationOur concern with the explanatory role of environ-ment structure in accounting for the performanceof a candidate cognitive mechanism has lead us toreject internalist rational criteria as unnecessary forsuch explanations. For example, what use is tran-sitivity across all choices a cognitive mechanismcould ever be expected to make, for instance, if thistransitivity is achieved at the expense of adequateresponse time on a few crucial choices? Might itnot be better to sacri�ce this property within a setof trivial choices in order to guarantee high speedjudgements in a few do-or-die situations?Yet the employment of internalist rational crite-ria in the judgement and decision-making literatureis commonplace. Why is this the case? One answeris that if the domain to which a cognitive mecha-nism is expected to apply is unstructured, as it isby de�nition for the Laplacean Superintelligence,and as is often implied by the use of a 
at accuracyperformance metric, then environmental consider-ations will appear super
uous. If success over hereis just as good as success over there, then generalperformance wins out. A corollary of this positionis that any failure of reason is equally damaging toa decision-maker's performance. Irrationality willbe punished, since disregarding internalist crite-ria of rationality will leave one open to exploita-tion. However, limited, structured domains makesalient the fact that internalist criteria are obviatedwhen performance on a limited and structured setof items is all that is expected of a cognitive mech-anism.Whilst an organism which fails to adhere to someinternalist maxim exposes itself to exploitation inthe form of an appropriate money pump or Dutchbook (Schick, 1986), for example, if no such ex-ploitatory device exists within the organism's en-

vironment, or if the losses due to exploitation aremore than made up for by the gains made in othersituations, then there is no force to the internalistexhortations. In contrast, if there does exist an ex-ploitatory entity leeching the irrational organism'sutility and the organism's irrationality does havenet negative consequences on its �tness, then oneneed not appeal to internalist criteria to demon-strate its irrationality. In this instance, the organ-ism will be irrational by the lights of externalistecological considerations | it will be un�t.2.5 SummaryTo recapitulate, since organisms are adapted to �ttheir environment by selective pressures, behaviorsand the mechanisms which produce them are onlyintelligible in context. Cognitive mechanisms arebespoke mechanisms, tailored to �t particular cir-cumstances, they are \made to measure". Whilstthere may be general trends in dress-making or tai-loring (i.e., preference for economy, goodness of �t,quality of material, etc.), these are mere trends, notlaws or a priori truths. In the same way that op-ulent, wasteful, ill-�tting, uncomfortable clothingcan be fashionable in certain circumstances, so in-consistent, intransitive, seemingly \irrational" cog-nition will often be adaptive in particular structuredenvironments. As researchers we must �nd ways ofappreciating the manner in which a cognitive mech-anism's niche is re
ected in its structure | we toomust be \made to measure" environment structure.In the remainder of the paper we will explore twoimportant kinds of environment structure whichare well-de�ned and hence measurable. Frequencystructure describes the relative prevalence of di�er-ent decision items within a decision domain. Signif-icance structure describes the relative importanceof di�erent decision items within a decision domain.Each class of structure will be explored throughmanipulating the structure of an arti�cial decisionproblem and observing the impact this manipula-tion makes on the performance and structure of ap-propriate decision-making heuristics. These ratherspeci�c examples are carried out here in su�cientdetail to demonstrate the sort of analytical e�ortthat is often necessary to begin to understand whya particular decision mechanism �ts a particular en-vironment. They also illustrate some more generallessons about environment/agent interactions andthe nature of ecological rationality as a whole.7



3 Frequency StructureWe de�ne the frequency structure of a decision-maker's environment as the relative frequency withwhich each test item is encountered by the deci-sion maker. A 
at frequency structure implies thatno test item is more likely to be encountered thanany other. In contrast, a skewed frequency struc-ture implies that some items are more likely to beencountered than others.3.1 The German Cities ProblemHere we employ an arbitrary data set (�rst reportedby Gigerenzer, Ho�rage, & Kleinb�olting, 1991) asan arena in which to explore the e�ects of varyingfrequency structure. The German Cities Problemis an inference task concerning the population sizesof a set of German cities. The task is to judgewhich is the larger of a pair of German cities. Thecities involved are the 83 largest in Germany (allcities with population above 100,000 inhabitants in1988). The information upon which the judgementmust be based consists of nine binary cues (seeFig. 1), for instance, whether the city has a soc-cer team in the top league of the Bundesliga (theGerman football league).This task has previously been used as an infer-ence problem with which to assess the performanceof a range of decision-making heuristics (Gigeren-zer et al., 1991; Gigerenzer & Goldstein, 1996, 1999;Hertwig, Ho�rage, & Martignon, 1999). However,this previous research has proceeded with no at-tention to frequency structure, assuming that eachcomparison between a pair of cities occurs withequal frequency and thus contributes equally to ameasure of decision-making performance.Gigerenzer and Goldstein (1996) report that therecognition rates for these cities (i.e., the propor-tion of people claiming to recognize each city) in-creases with population size. On this basis wemight assume that the actual frequency structure ofthis pairwise comparison task (if people encounterthis problem at all) is not 
at, but that high pop-ulation cities tend to be reasoned about more fre-quently than low population cities. This is clearlyone manner in which the German Cities Problemenvironment could be structured. We explore thisand a second class of frequency skew, along withtheir complements, by varying which pairs of Ger-man cities are more likely to be encountered:1a. Product Skew: The likelihood that a pair ofcities will be encountered by a decision-maker

is proportional to the product of the city pop-ulation sizes.1b. Reciprocal Skew: This is the complement ofProduct Skew, the frequency with which a pairof cities will be encountered being inverselyproportional to the product of the city pop-ulation sizes.2a. Similarity Skew: The likelihood that a pair ofcities will be encountered by a decision-makeris inversely proportional to the di�erence be-tween the city population sizes.2b. Di�erence Skew: This is the complement ofSimilarity Skew, the frequency with which apair of cities will be encountered being propor-tional to the di�erence between the city pop-ulation sizes.Whilst we do not know whether one or any ofthese frequency structures characterizes the distri-bution of city-size comparisons that people mightnaturally face, these classes of skew have been cho-sen because each is probably representative of somenatural problems. For example, if one encountersentities (cities) at a rate proportional to their valueon some dimension (population size), then Prod-uct Skew will describe the frequency structure ofpairwise comparisons between encountered entities.Similarly, if comparisons between very di�erent en-tities are handled by some crude early �lter, thedistribution of remaining comparisons will be bi-ased towards pairs of similar entities. A mecha-nism operating on this subset will be subjected to adecision environment with a Similarity-Skewed fre-quency structure. Red deer, for instance, assess the�ghting ability of potential opponents by using in-creasingly sensitive measures (Clutton-Brock & Al-bon, 1979). The challenger and harem-holder �rstroar at each other. If there is a signi�cant di�er-ence between the volumes, the quieter stag retreats.If roaring fails to decide the contest the stags pro-ceed to the next cue: parallel walking. If this cuealso fails to distinguish the stags, they proceed tohead-butting. Decision-making mechanisms occur-ring late in such a sequential assessment will tend tohave to distinguish between more similarly matchedopponents than those employed earlier in the se-quence.For each class of frequency structure, we exploretwo degrees of skewness.1. Mild: The most frequent city pair occurs 10times more often than the least frequent.8



Cue Structure of the German City Environment
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Figure 1: Each city either possesses (+) or doesnot possess (. . . ) each of nine binary cues. Citiesin possession of any cue tend to have a larger pop-ulation size than cities lacking that cue.2. Extreme: The most frequent city pair occurs100 times more often than the least frequent.In each environment the least frequent city pairoccurs 10 times. For each environment, the propor-tion of comparisons in which each individual citytakes part is shown in Fig. 2.It is important to note that, rather than beinginterested in the problem of comparing city sizesitself, we are concerned with the in
uence of fre-quency structure on decision problems in general(but to make our points we will concentrate indepth on this one particular example). Indeed theGerman Cities Problem is one with perhaps littleintrinsic import, serving here as a model, ratherthan an object of enquiry in its own right.3.2 The Decision AlgorithmsTo explore the impact of environmental frequencystructure on the structure and performance of de-cision mechanisms, we chose a small set of suchmechanisms for comparison. The four mechanismswe use all make their choices on the basis of someset of the available cues, but they vary in the ex-act number of cues used and in the complexity ofcue processing. The most sophisticated algorithmis multiple linear regression, which �rst computesthe optimal weights for weighting and combining(summing) all of the available cues so that the to-tal di�erence (error) between the algorithm's pre-dictions (here predicted population size) and theactual criterion values (actual population size) isminimized. Then, to make each individual choice

between a pair of objects (e.g. cities), predictionsare made for the criterion value of each object byweighting and summing its cue values, and the ob-ject (city) with the higher predicted criterion value(population size) in the pair is then chosen as the �-nal decision outcome. Multiple regression thus usesall available information (cues), and is sensitive totheir predictive relationship to every object.The second algorithm, called Dawes's Rule, sim-ilarly uses all of the available cues, but it processesthem in a rather less sophisticated fashion. Ini-tially, the algorithm must compute the directionof association between each cue and the criterionvalue | that is, does the cue on average indicatea higher or a lower criterion value (so for exam-ple, does having a Bundesliga soccer team indicatea higher city size in over half of the city compar-isons?). Then, to make each individual pair com-parison, the number of negatively-associated cuesfor each object is subtracted from the number ofits positively-associated cues to create a �nal scoreor tally, and the object with the higher score is cho-sen. This simple method works surprisingly well |Robyn Dawes, after whom it is named, has demon-strated its ability to come close to the performanceof multiple regression (Dawes & Corrigan, 1974) |even though it is sensitive only to the \direction"in which each cue points (indicating higher or lowercriterion values), but not how strongly.The last two algorithms take a di�erent approachto decision making. Rather than combining all ofthe available cues in some manner, they considercues one at a time, sequentially, until the �rst cuethat enables a decision to be made is found. Thisdecisive cue will be the �rst which discriminatesbetween the two objects being compared, i.e., oneobject possesses the cue whilst the other does not.If possession of the cue is positively correlated withthe criterion, the object in possession of the cue ischosen. If possession of the cue is negatively cor-related with the criterion, the object lacking thecue is chosen. Once a decision has been reachedin this way the decision-making process is at anend | all further cues are ignored. Thus all of theavailable information need not be (and usually isnot) considered, let alone processed | and the ul-timate decision is always made on the basis of justone discriminating cue. By considering the cues indi�erent orders, di�erent one-reason decision mak-ing heuristics can be built (see Gigerenzer, Todd,and the ABC Research Group, 1999, for furtherdetails).In particular, here we use the Take The Best algo-rithm, which orders cues by their validity | that is,9
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Figure 2: The distribution of test pairs across city size is shown for each of the four frequency-skewedenvironments in comparison to the default 
at environment. The 83 German cities are arranged on thex-axis in order of increasing population size. The proportion of test pairs featuring each city is plottedon the y-axis.

10



by how often they indicate the larger criterion valuein a pair of discriminated objects | so that the bestcues are considered �rst. Take The Best is thus sen-sitive to the direction and strength with which cuesindicate the criterion values, but its sensitivity tocue strength only extends to their ranking, not totheir precise di�erences in strength. (Hence, thestrength or validity of two cues could change sig-ni�cantly without a�ecting how they are used byTake The Best; only if their relative ranks change| if one cue becomes stronger than the other |will they be used in a di�erent order.)We also compare the e�ectiveness of an even sim-pler one-reason decision algorithm, the Minimalistheuristic, which examines cues in a random order,stopping when it stumbles upon the �rst cue whichdiscriminates between the objects. Minimalist isthus not sensitive to cue strength at all, but onlyto what direction the cue points with respect tothe criterion (that is, whether it indicates higher orlower criterion values, or in other words, whetherits validity is above or below 0.5). And yet despiteits extreme simplicity, Minimalist does not fall farbehind the other algorithms, as we will see in thenext section.3.3 Their PerformanceEach algorithm was parameterized (e.g., cues or-dered or weighted) on the basis of the skewed en-vironment within which their performance was tobe assessed. This ensures that each algorithm wasappropriately matched to its environment. Eachalgorithm was then made to judge which was thelarger of every possible pair of cities and their aver-age performance across the entire set of pairs wascomputed. However, some pairs of cities were pre-sented multiple times according to the frequencystructure of the environment. Thus, a judgementconcerning a frequent pair of cities contributes moreto the performance of an algorithm than a judge-ment concerning an infrequent pair of cities.Whilst the performance of each algorithm rel-ative to the others remained stable across envi-ronments, the absolute performance (i) increasedwith increasing Product Skew, (ii) increased withincreasing Di�erence Skew, (iii) decreased with in-creasing Similarity Skew, and (iv) decreased withincreasing Reciprocal Skew (Fig. 3). It appears rea-sonable that choosing the larger of two similarlysized cities will be harder than making the samejudgements concerning pairs of dissimilar cities,and perhaps that inferring the larger of a pair ofsmaller cities will be harder than inferring the most

populous of a pair of larger cities, since smallercities may resemble each other more than largerones. Because we are dealing with an arti�cial de-cision problem we are in a position to move be-yond these intuitive assessments of di�culty andexplore explanations for the variation in perfor-mance caused by our manipulations of the prob-lem's frequency structure.The source of changes in the algorithms' perfor-mances clearly lies in changes in both the predic-tive validities and the discrimination rates of thecues made available to the algorithms (Fig. 4 andFig. 5). Validity is de�ned as the ratio of the num-ber of correct judgements made by a cue to thetotal number of judgements made by a cue, whilstdiscrimination rate is de�ned as the ratio of thenumber of judgements made by a cue to the to-tal number of judgements sought from a cue. Somecues respond positively to a certain frequency skew,tending to correctly predict a greater proportionof judgements as those comparisons that the cuediscriminates correctly become increasingly over-represented. In contrast, other cues may su�er fromthe same frequency skew, as the comparisons thatthey deal with correctly become increasingly under-represented. In terms of both changes in valid-ity and discrimination rate, groups of cues appearto respond similarly to particular manipulations offrequency structure, suggesting that a typology ofcues could be constructed.In summary, we have seen that frequency struc-ture a�ects the performance of decision-making al-gorithms. Despite algorithms having been con�g-ured to suit each structured environment, system-atic di�erences in their performance were inducedby skewing the frequency structure of these envi-ronments in particular ways. The general drop inperformance induced by Similarity Skew and Re-ciprocal Skew coupled with the general increase inperformance induced by Product Skew and Di�er-ence Skew indicate that the former are harder todeal with than the latter. Whilst di�erent cues re-spond di�erently to di�erent frequency structures,the character of this response is often shared byseveral cues.3.4 Explaining Performance inTerms of Environment Struc-tureThere are several possible explanations for thechanges in performance induced by changes in en-vironment structure in this domain, some of whichare speci�c to the German cities problem and some11
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Figure 3: The performance of the four simulated algorithms in each of the 8 structured environments isplotted in comparison to the default 
at environment (middle of each panel). Whilst the relative successof algorithms with respect to each other changes little, their overall performance is dependent on thetype and degree of skew exhibited by the environment.
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Similarity (Extreme) Similarity Flat Difference Difference(Extreme)Figure 4: Cue Validity, calculated across all test pairs as (number of correct judgements)/(number oftest pairs), varies with environment structure. A cue which correctly predicts a frequent test pair enjoyshigher validity. Groups of cues respond similarly to changes in frequency structure.
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of which are more general. The �rst and mostgeneral is that there exist properties inherent todichotomous-cue pairwise choice problems whichimply that particular kinds of frequency structurewill be more di�cult than others. The second isthat underlying properties of the decision criterionof this particular problem control the impact of dif-ferent frequency structures. Third, the distribu-tions of the cues across the German cities mightin
uence the manner in which frequency structurea�ects decision-making performance. Fourth, thechanges in environment structure may not makethe problem easier or more di�cult in general, buteither favor or disfavor certain algorithms, of whichthe ones tested are examples.A combination of these explanations seems mostlikely to account for the results reported above.However, it is worth noting some points in favorof this �rst explanation. Most importantly, allfour decision heuristics responded similarly to thechanges in environment structure that we imposed.These heuristics di�er in many ways, yet bene�t orsu�er from the same kinds of environment struc-ture. Furthermore, the e�ects on performance in-duced by changes in environment structure occurirrespective of the sensitivity of the algorithms tothese changes.For example, the simplest of the strategies tested,Minimalist, is a�ected by changes in environmen-tal frequency structure, tracking the performanceof the other algorithms (although always at a slightdistance), despite it not being sensitive to most ofthese changes. Recall that Minimalist uses the po-larity of each cue to govern its inferences. As such,this strategy treats environments identically unlessthe polarity of at least one cue di�ers between them(e.g., a cue which predicted high population size inthe 
at environment predicts low population size inthe skewed environment).For the frequency structures explored here, outof the nine cues in eight skewed environments only�ve reversals of predictive validity occurred. Fourof these reversals a�ected the East Germany cue,whilst the remaining one a�ected the IndustrialBelt cue. The two cues which su�er validity re-versal have the lowest validity of the nine available,ensuring that their reversal makes little impact onthe performance of the algorithm. This is not sur-prising since the polarity of cues with poor validitywill be more easily reversed by manipulation of anenvironment's frequency structure. These observa-tions suggest that Minimalist is typically obliviousto the manipulations of frequency structure that wehave imposed on the German Cities Problem.

This type of analysis draws attention to the sen-sitivity of algorithms to changes in their environ-ment. Minimalist and Dawes's Rule only accommo-date changes in the polarity of cues. Take The Bestis only sensitive to changes in cue validity whichare large enough to cause changes in the rank or-der of cues by their validity (see Fig.6). Multipleregression is in principle sensitive to any change incue validity. Given these facts, it is understand-able that the di�erence in performance between asensitive algorithm and a less sensitive algorithmincreases with the performance of the former, i.e.,the degree to which a sensitive algorithm outstripsits less sensitive competitors increases with the de-gree to which the sensitive algorithm can exploitthe structure of its environment.This can be seen by looking at the di�erencebetween the performance of the most sensitive al-gorithm, multiple regression, and that of the leastsensitive, Minimalist, across all nine environments.This di�erence is impressively positively correlatedwith the absolute performance of multiple regres-sion (r=0.92). That is, multiple regression bene�tsfrom its greater sensitivity to environment struc-ture by exploiting this structure to a greater ex-tent. Indeed all 6 such comparisons between al-gorithms are correlated in the predicted direction(r>0.75) except that Take The Best's advantageover Dawes's Rule in terms of sensitivity does nottranslate into an increasing advantage over Dawesin the most structured environments (r=-0.6).It is important to stress at this point that weare considering here only the �tting performance ofthe four algorithms| that is, how well they can ex-ploit the structure in a particular set of data from aparticular environment. (This situation is also de-scribed as one in which the data set on which thealgorithm is trained is the same as the data set onwhich the algorithm's performance is tested.) Inthis case, the set of data being �tted by the al-gorithms is the entire frequency-skewed set of allpairs of cities. Thus, there is no generalization tonew data (where the training set and testing setdi�er) in the analysis we present here. Generaliza-tion performance is of course also of great interest(see Martignon & Schmitt, this issue, for a detaileddiscussion of the generalization robustness of sim-ple algorithms including Take The Best). But �rstwe must understand more about how the structurein a particular set of data can be exploited by al-gorithms to make accurate decisions in that samedata set.How can we test whether the changes in perfor-mance induced by our manipulation of frequency13
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Figure 6: Take The Best utilizes cues in an orderdetermined by their validities. Here the manner inwhich this cue order changes as the result of fre-quency structure a�ecting cue validities is shownfor the 9 environments.structure are not due to some facts peculiar to Ger-man cities (and other related environments)? Oneclue comes from Fig. 2, where it appears that Prod-uct and Di�erence Skew have qualitatively anal-ogous a�ects on the frequency with which di�er-ent cities appear in test items. Similarly, Recipro-cal and Similarity Skew have comparable e�ects onthese distributions. This could presumably accountfor the similarity in performance of algorithms inthese environments | but how could this patternarise?The similarity between Product- and Di�erence-Skewed environments, and between Reciprocal- andSimilarity-Skewed environments, stems from theunderlying structure of the distribution of popula-tion size across German cities. Since the populationof German cities decreases roughly exponentiallywith rank, forming a so-called J-shaped distribu-tion (see Hertwig et al., 1999), the largest cities(which feature most frequently in the Product-Skewed environments) are also very di�erent frommost of the other cities, and hence feature mostfrequently in the Di�erence-Skewed environments.Similarly, the many small cities are similar insize to each other and hence are disproportion-ately represented in both the Reciprocal-Skewedand Similarity-Skewed environments. (If the fre-quency structure of each environment had beendetermined using the rank, rather than the realvalue, of each cities population size, these similari-ties would be markedly reduced since they rely es-sentially on the clustering of smaller cities and theisolation of larger cities along the population sizedimension.)

Although pairs of the environments do indeedappear alike in their gross characteristics, Prod-uct and Di�erence Skew di�er considerably inthe extent to which the most common pairsare over-represented in comparison to the leastcommon pairs. Furthermore, Reciprocal andSimilarity Skew di�er in that the latter fea-tures particular mid-sized cities far more fre-quently than the former. For example, in theextreme Similarity-Skewed environment, M�unsterand M�onchengladbach, cities which di�er in popu-lation size by only two thousand inhabitants, fea-ture in 28% more test items (mostly as a pair to-gether) than the average, and in 62% more testitems than they appear in within the extremeReciprocal-Skewed environment (this accounts forthe blips to the right of center of the plot of thetwo Similarity Skew environments shown in Fig. 2).These di�erences in environment structure are re-
ected in the fact that some cues respond di�er-ently to manipulations which appear super�ciallysimilar. For example, the Soccer cue gains va-lidity under Di�erence and Reciprocal Skew butloses it under Product and Similarity Skew (seeFig. 4). Thus the apparent similarities between en-vironments are perhaps not enough to explain themanner in which algorithm performance varies withfrequency structure.In line with the second explanation for environ-mental impacts on performance given at the be-ginning of this section, it could be the case thatthe arbitrary set of nine cues upon which the al-gorithms must base their judgements favor certaincity pairs over others. Perhaps we have providedno cues which correctly discriminate between smallcities, or between similarly sized cities. This typeof explanation draws attention to the fact that instructured environments, not just the predictive va-lidity of a cue, but where that validity stems from inthe space of possible problem items, is important.In order to assess the relevance of this argument,we need to know whether the nine cues availableto the algorithms in this study are representativeof the 283 logically possible ways in which a binarycue can apply to 83 objects.The space required to plot each of these possiblecues is prohibitive, but we can expect to approx-imate the qualitative results by carrying out thesame process for a toy problem of 5 objects, andhence 25 = 32 possible cues (Fig. 7). There are4 + 3 + 2 + 1 = 10 possible pairwise comparisonsbetween 5 objects (ignoring order). In order to rep-resent the manner in which a cue's performance isdistributed across this space of possible compar-14



isons we plot the lower left half of a 5-by-5 matrixcontaining the outcome of each comparison. Wherea cue fails to discriminate between a pair of objectsthe cell is left blank; correct discriminations areshown in grey; incorrect discriminations are black.Taking the right angle as the origin, cells are in-dexed by the coordinate (x; y) with object value onthe criterion decreasing with increasing x and in-creasing with increasing y. This ensures that cellsnear the right-angle of the triangle represent com-parisons between objects with dissimilar values onthe criterion (e.g., A vs. E), whereas cells near thehypotenuse represent comparisons between objectswith similar values on the criterion (e.g., B vs. C).Cells in the upper corner represent comparisons be-tween pairs of objects which both have high valueson the criterion (e.g., A vs. B), whereas cells in thelower-right corner represent comparisons betweenobjects which both have low values on the criterion(e.g., D vs. E).The �rst thing to note about the distribution ofpossible cues is that there are far fewer of themthan there are possible ways of coloring the cells ofone of the triangles used to represent each cue (i.e.,310). This indicates that the nature of the problemis constraining the kind of cues that are possible.For example it is impossible for one cue to eitherdeal correctly with all possible comparisons or dealincorrectly with all possible comparisons (i.e., notriangle is entirely grey or black). We can see thatwhilst cues exist which correctly discriminate largecities from small cities (i.e., correctly deal with cellsin the right angle of the triangle) and correctly dis-criminate amongst large cities (i.e., the upper cor-ner), or small cities (the lower-right corner), thereare no cues which correctly discriminate amongstmany similar cities (i.e., the cells lying along thehypotenuse of the triangle are never entirely grey).These are facts about binary cues in general, andthus will apply to a wide range of environments.However, it is clear that this reasoning does notstraightforwardly apply when continuously valuedcues are available to an algorithm which is capa-ble of using them. One continuous cue is su�cientto accurately discriminate between all adjacent ob-jects. Furthermore, a discrete cue with n possiblevalues is capable of distinguishing between all ofthe adjacent pairs of n objects. A discrete cue witha valency of n2 is able to correctly make half ofthese pairwise comparisons without incurring erroron the remaining pairwise comparisons between ad-jacent objects. Two such cues would thus be su�-cient to achieve perfect performance on the leadingdiagonal of a problem's triangle diagram.

With this understanding of the space of possiblecues in hand, we are in a position to assess the rep-resentativeness of the cues made available to the al-gorithms in the German Cities Problem. The set ofcues used in this problem were collected from rel-evant almanacs containing data on German cities(Ulrich Ho�rage & Ralph Hertwig, pers. comm.,1999). As such the cues are a relatively representa-tive sample of the kind of facts people might knowabout cities. The manner in which correct and in-correct judgements are distributed over the spaceof possible comparisons for each cue is plotted inFig. 8 according to the same principles describedabove for the 5-object case. The cues involvedin the German Cities Problem tend to allow dis-crimination amongst the larger cities, and betweenlarger and smaller cities, but fail to discriminatecorrectly amongst similarly sized cities, or amongstsmall cities. The �rst of these de�ciencies stemsfrom the logical constraints of pairwise choice andbinary cues. As just argued for the 5-object case,there simply do not exist cues which correctly dealwith many comparisons between objects with sim-ilar values on the criterion dimension. In order toaccurately deal with each comparison along the hy-potenuse of the triangle diagrams presented here,83 binary cues must be consulted.In contrast, the fact that the cues available tothe algorithms facing the German Cities Problemdo not tend to discriminate amongst small cities,is not a result of some constraint on binary cues.This de�ciency is due to this set of nine cues being abiased sample of logically possible cues. Is there anexplanation for this bias, or must it be attributed tothe vagaries of sampling error? There are reasonsto believe that the former is most likely.Whilst there may exist cues which discriminateamongst smaller cities, they are unlikely to berecorded in almanacs, which, since larger cities aremore interesting to their readers, tend to recordfacts which are true of large cities, and false ofsmall ones. In addition, these facts are not trueof every large city, but tend to be false of almostevery small city, ensuring that they tend to discrim-inate amongst large cities as well as between largecities and small cities, but not to discriminate wellamongst small cities.Thus, randomly sampling cues from those madeavailable in the public domain will tend to resultin a set of cues which is not representative of thespace of possible cues, but which is biased towardsthose cues suitable to the structure of the prob-lem which they have been selected for. This set ofcues will not be able to accommodate a manipula-15



tion of environment structure, if this manipulationopposes the natural structure of the problem re-sponsible for their existence in the public domain.In skewing the German Cities Problem in the di-rection of small population size, we have opposedthe natural tendency for large cities to be more fre-quently reasoned about and discussed. As a result,the validity of cues taken from almanacs has tendedto fall under Reciprocal Skew.This argument does not apply solely to the Ger-man Cities Problem, but in principle can be gen-eralized to any decision problem. Well adapteddecision makers will tend to recognize and attendto cues which are well-suited to the predictive de-mands of the problem as in
uenced by its frequencystructure and signi�cance structure. This impliesthat, to the extent that such cues are logicallypossible, the cues used by such decision makerswill tend to discriminate correctly between frequentand/or signi�cant pairs of objects, possibly at theexpense of rare and/or insigni�cant pairs. How-ever, such a selection of well-adapted cues will notnecessarily support performance on a di�erentlystructured decision problem. More speci�cally, ifa decision problem is arti�cially skewed in favourof precisely those items which are insigni�cant inthe natural decision-making problem, natural cueswill tend to be unable to cope with this manipula-tion. For the German Cities Problem, this inabilityto cope with unnatural problem structure is mani-fested in the poor performance of algorithms in theReciprocal Skew conditions.In concert, the e�ects outlined above ensure thatthe structure of the 9 cues made available to al-gorithms in the German Cities Problem favoursenvironments where they are more often calledon to choose between pairs of large cities, or be-tween large and small cities (Product and Di�er-ence Skew, respectively). For the same reasons,these algorithms will tend to perform poorly whenforced to choose more often between small or sim-ilarly sized cities (Reciprocal and Similarity Skew,respectively). These general trends should applyto any binary-cue-based choice environment wherealternatives at one end of the criterion dimensionare more important or frequent than those at theother end.In summary, the variation of algorithm perfor-mance with environment structure can be tracedto several sources. First, some classes of frequencyskew are inherently di�cult to accommodate due tothe nature of binary cues and the pairwise choiceparadigm. This argument accounts for the reducedperformance on Similarity-Skewed environments.
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Figure 8: Judgement distributions for each of the 9cues made available to the decision-making heuris-tics in the German Cities Problem. Each trianglerepresents all possible pairs of cities (because pairorder is irrelevant, the upper half of each matrix isredundant, and hence omitted). Cities are arrangedin order of increasing population size from left toright and top to bottom. Cues are arranged in orderof increasing validity in a 
at environment. Greyindicates correct inferences, black indicates incor-rect inferences, and cues fail to discriminate in theremaining instances.Second, some classes of frequency skew are di�cultcontingent on the cues available. This argument ac-counts for the reduced performance on Reciprocal-Skewed environments. Third, some algorithms aremore sensitive to environment structure than oth-ers and are thus more likely to accommodate par-ticular manipulations. The heuristics assessed herevary in their sensitivity to environment structure,and this sensitivity manifested itself in di�erencesin the size of the advantage one algorithm achievedover another in di�erent environments.3.5 Concluding Thoughts on Fre-quency StructureBy employing the German Cities Problem as atoy environment, we have shown that frequencystructure impacts on the performance of decision-making algorithms. The character of this impactis complex. The presence of environment structure16
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demands that decision-makers trade o� general per-formance against performance on important sub-sets of test items. As a result, not only the validityof a cue, but the source of this validity is of im-portance to decision makers. Cues which gain theirvalidity from frequent test-items are more usefulthan equivalent cues which gain their validity fromrare test-items.Furthermore, environment structure interactswith the necessary and contingent characteristicsof a decision problem, and the strengths and weak-nesses of a particular algorithm, to in
uence theperformance of that algorithm.4 Signi�cance StructureAs well as di�ering in their relative frequency, natu-rally occurring problems di�er in their relative sig-ni�cance. Consider a list of decisions which mightbe faced on the way to work: Which tie should Iwear? Should I walk to the bus stop or ride my bi-cycle? Which bus should I catch? Is it safe to crossthe road? How fast should I walk? How fast is thatcar approaching? Should I jump left or right? Howam I going to make that 9:15 meeting now?Clearly these dilemmas di�er along many dimen-sions; some are leisurely, some pressing; some areconscious, some unconscious; some are casual, someweighty. Here we will consider the e�ects of varia-tion in the importance or gravity of decision prob-lems on the structure and performance of decision-making mechanisms.There are two ways in which the signi�cancestructure of a decision problem can be mischarac-terized. First, the goal of the decision-maker maybe misconceived. For example, doctors may be as-sessed on the accuracy of their diagnoses when whatis signi�cant to them is not forming an accuratejudgement of what ails a patient, but prescribingmeasures which will alleviate this ailment. Whilstcorrect diagnoses are clearly a step towards thisgoal, they do not constitute it. There may be di-agnostic errors which have no e�ect on a doctor'sprescription because the confounded conditions de-mand the same treatment (see Connolly, this is-sue, for discussion along these lines). Similarly,the prescription of an incorrect treatment regimemay, nonetheless, sometimes result in a cured pa-tient (e.g., prescribing a course of vitamin supple-ments, complete rest and avoidance of dairy prod-ucts, when the correct treatment was merely relax-ation). Mischaracterising the aims of the decisionmaker leads to a misunderstanding of what countsas success and what counts as error.

The second, and related, manner in which signi�-cance structure may be misconstrued is in failing toappreciate that di�erent decision problems di�er intheir signi�cance to the decision maker, i.e., failingto discriminate between inconsequential decisionsand those of much greater signi�cance. A doctorconfronted with what appears to be a case of in-
uenza faces a decision problem which di�ers fromthat of a colleague encountering what appears to bea case of meningitis. Errors in treating such caseswould have radically di�erent consequences. As-suming that a doctor will not treat his patients with100% accuracy, it is of the utmost importance thatthe errors which are made are distributed amongstthe less important cases rather than those involvinglife-threatening illnesses. Indeed, it may be neces-sary to trade o� accuracy in general against ac-curacy over an important subset of decision items(Sober, 1994). Assessing a doctor's performanceusing a metric which is insensitive to di�erences insigni�cance will fail to capture this trade-o�.In general, a problem's signi�cance structure isthe manner in which the di�erent decision itemswhich constitute the problem di�er in terms of theirconsequences for the decision maker's goal. For di-chotomous decision problems such as the ones con-sidered here, in which a test item's signi�cance canbe operationalized as the di�erence in value be-tween the two possible outcomes of the decision re-garding that item, signi�cance structure describesthe manner in which this di�erence varies acrossthe space of possible test items.4.1 The Mushroom ProblemImagine a fungivorous forager which, throughoutits lifetime, encounters mushrooms, one after theother. Whilst some of these mushrooms are goodsources of valuable nutrition, others contain dam-aging toxins. When confronted by a mushroom,the forager must decide whether to eat it, or re-ject it in favor of a safe but mediocre food sourceassumed to be ever present in the forager's envi-ronment. The forager must make its decisions onthe basis of binary cues which it is sensitive to,and which together describe each mushroom, forinstance, odorous versus odorless, colorful versusdull, and so on.The signi�cance of these decisions will varyacross the space of mushrooms liable to be encoun-tered by a forager. How will this variation impacton the success of the di�erent foraging strategiesthat such a forager might employ? In order to an-swer this question we simulated such a forager, and18



Cue Validity Hits Misses False Alarms Rejections
odor 0.886 0.419 0.015 0.098 0.467
gill-size 0.757 0.483 0.208 0.035 0.274
bruises? 0.744 0.339 0.077 0.179 0.405
population 0.670 0.240 0.052 0.278 0.430
gill-color 0.666 0.305 0.121 0.213 0.361
spore-print-color 0.661 0.429 0.250 0.089 0.232
habitat 0.624 0.466 0.324 0.052 0.158
gill-spacing 0.616 0.148 0.014 0.370 0.468
stalk-color-above-ring 0.556 0.445 0.371 0.073 0.111
cap-shape 0.555 0.290 0.217 0.228 0.265
stalk-shape 0.553 0.319 0.248 0.199 0.234
stalk-color-below-ring 0.552 0.439 0.369 0.079 0.113
cap-surface 0.551 0.377 0.308 0.141 0.174
stalk-surface-below-ring 0.537 0.082 0.027 0.436 0.455
cap-color 0.533 0.292 0.241 0.226 0.241
ring-number 0.522 0.518 0.478 0.000 0.004
ring-type 0.522 0.518 0.478 0.000 0.004
stalk-surface-above-ring 0.515 0.052 0.019 0.466 0.463
veil-color 0.505 0.024 0.001 0.494 0.481
gill-attachment 0.504 0.024 0.002 0.494 0.480Figure 9: The appearance of each mushroom ischaracterized by twenty dichotomous cues. Therates of Hits, Misses, False Alarms and correct Re-jections have been calculated across the entire set of8124 mushrooms. Hits are cases in which a cue cor-rectly indicates that a mushroom is edible. Missesare cases in which a cue incorrectly indicates thata poisonous mushroom is edible. False Alarms arecases in which a cue falsely indicates that an edi-ble mushroom is poisonous. Correct Rejections arecases in which a cue correctly indicates that a mush-room is poisonous. Cues are shown ordered by theirValidity, where Validity=Hits+correct Rejections.explored how the performance of various foragingstrategies was a�ected by manipulation of the sig-ni�cance structure of the arti�cial mushroom envi-ronment it inhabited.We utilized Schlimmer's (1987) database of 8124di�erent mushrooms from 23 species within theAgaricus and Lepiota families (available from theUniversity of California, Irvine Machine LearningRepository; Blake, Keogh, & Merz, 1998). Eachmushroom was described using 20 binary cues (di-chotomized versions of the original data), as shownin Fig. 9. Of the 8124 mushrooms, 4208 (51.8%)were classi�ed as edible, whereas 3916 (48.2%) wereclassi�ed as poisonous. The rates at which each cueis able to distinguish poisonous from edible mush-rooms can be captured by four values: Hit rate,Miss rate, False Alarm rate, and Correct Rejectionrate. These rates correspond to the cue's tendencyto correctly or incorrectly indicate edible mush-rooms, and incorrectly or correctly indicate poi-sonous mushrooms respectively, and are reportedin Fig. 9. A cue's validity can be calculated as theproportion of correct inferences it makes, i.e., asthe sum of its hit rate and correct rejection rate.The signi�cance structure of this decision prob-
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Figure 10: Four payo� matrices determining thesigni�cance structure of the Mushroom Problem.Each cell contains the points awarded for an indi-vidual decision. Dashes in the Odor matrix indicatethat no mushrooms were present in a particular cell.lem can be manipulated by de�ning di�erent pay-o� matrices governing a decision maker's perfor-mance. Fig. 10 depicts the four signi�cance struc-tures we explored. The �rst represents a schemewhich assumes no signi�cance structure exists. Adecision maker receives a point for each positiveresponse to an edible mushroom and each nega-tive response to a poisonous mushroom, and nopoints for any other responses. This scheme re-wards accurate classi�cation and is termed Ortho-dox since accuracy metrics of this type dominatemuch of decision-making psychology. A student be-ing tested on his knowledge of mushrooms mightbe assessed in this way | the student is sent outinto the environment with two baskets, one labelededible, one labeled poisonous. Upon his return, ateacher awards a point for every mushroom thatthe student has placed in the correct basket.This Orthodox signi�cance structure treats allsuccesses as equivalent and commensurate, and allerrors likewise. However, a forager actually con-suming or rejecting mushrooms has not achievedits goals to the same extent by rejecting a poi-sonous mushroom as by consuming an edible one.Although these are both appropriate behaviors, inthe latter case the forager has gained valuable nu-trition, in the former it has avoided being poi-soned. Similarly, for such a forager, the conse-quences of the two classes of possible error di�erradically. Whilst the rejection of an edible mush-room incurs an opportunity cost, the consumption19



of a poisonous one incurs the debilitating e�ects ofwhatever toxin the mushroom contains.The second payo� scheme attempts to cap-ture this signi�cance structure to a greater extentthrough awarding points for eating edible mush-rooms, deducting points for eating poisonous mush-rooms, and awarding a negligible amount for reject-ing mushrooms in favor of the alternative mediocrefoodstu�. The payo� matrix is constructed suchthat eating all mushrooms achieves, on average, thesame score as rejecting all mushrooms. This schemecan be considered to o�er the forager the choice be-tween a risky, but potentially high value food item(the mushroom) and a safe, but relatively low valuefood item (the alternative). It is termed Flat, sinceeach poisonous mushroom and each edible mush-room are equivalently poisonous or nutritious.The two environments described so far can be ad-equately captured by a signal detection paradigm.In varying the points awarded for eating and reject-ing mushrooms which are poisonous or edible wehave been de�ning the costs and bene�ts of the fourcells in a signal detection matrix | hits, misses,false alarms and correct rejections.However, signi�cance structure can be �nergrained than the signal detection picture implies.In the third environment, termed Odor, the valueof consuming edible mushrooms and the cost of eat-ing poisonous mushrooms is correlated with theirodor. Whilst the fungivore can discriminate be-tween odorous and odorless mushrooms, the signi�-cance of a decision involving a particular mushroomdepends on whether the mushroom smells \foul",\�shy", \pungent", and so forth, that is, on fea-tures which are not directly available to the for-ager, but may be recoverable from combinations ofthe dichotomous cues which are available. Withinthis environment, the costs and bene�ts of hits andmisses vary systematically across the space of deci-sion items.Furthermore, signi�cance structure can some-times be di�cult to capture in the terms of signaldetection. For example, in reality poisonous mush-rooms may be more dangerous than the deductionof points implies. The fourth environment is iden-tical to the Flat environment save that the con-sumption of any poisonous mushroom results in thedeath of the fungivore, that is, an immediate andirreversible assignment of a score of zero points tothe forager. This Lethal environment ensures thatsuccesses and failures cease to be measured in com-mensurate ways. No amount of edible mushroomscan be eaten to o�set the consumption of a lethallypoisonous mushroom. This is indicated in Fig. 10
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a time and make a decision based on the �rst pieceof evidence to suggest a course of action other thanchecking for more information, i.e., the �rst pieceof information that allows a choice to be made. Inthis case the evidence is in the form of binary cueswhich are consulted in some order (tied ranks arepossible in which case the tied cues are consultedin random order). Each cue is associated with astopping rule. This rule determines whether thepresence or absence of the cue leads to the foragereating or rejecting the mushroom, or to the foragerconsulting the next cue. We model seven di�erentstopping rules (Fig. 11). If an algorithm checks all20 cues without making a decision, the action takenis determined by a biased coin toss.To understand how signi�cance structure can in-teract with the structure of decision mechanismsand a�ect their performance, we will focus on thisexample task to �nd and compare strategies whichperform well within each of the four environmentsdescribed above. We cannot assess each member ofthe class of lexicographic rules since, given that cueranks may be tied, there are over 20! orderings ofcues and each ordering can be governed by 720 com-binations of stopping rules. To �nd lexicographicalgorithms which suit the Mushroom Problem un-der a particular signi�cance structure, we imple-mented a form of parallel search inspired by naturalevolution.The genetic algorithm we used (Holland, 1975;Goldberg, 1989; Mitchell, 1996) started with a pop-ulation of 1000 randomly generated algorithms andassessed the performance of each on the MushroomProblem under a particular signi�cance structure(i.e., in a particular environment). Each assessmentinvolved the particular algorithm encountering 100mushrooms drawn at random from the populationof 8124, eating or rejecting each mushroom, andgaining or losing points as a result. Once each ofthe 1000 algorithms was assessed, a new populationof 1000 algorithms was generated by allowing thebetter performing algorithms to \reproduce", thatis, to be copied into the next generation. This copy-ing procedure was subject to a small chance of errorwhich introduced \mutations" into the strategies.The newly generated population of o�spring algo-rithms was then assessed as before and the processwas repeated until 5000 generations of simulatedevolution have taken place.As a result of this assessment, reproduction, andmutation cycle, the population of 1000 algorithmsbecame better and better adapted to the problemit faced. Over many thousands of generations per-formance increased as the algorithms converged on

successful orderings of cues and appropriate stop-ping rules for these cues.In each of the four environments depicted inFig. 10 we assessed 20 independent populationsof 1000 algorithms each for 5000 generations ofsimulated evolution. During reproduction, therewas a 1 in 100 chance that each of an algorithm'sparameters might be mutated. Mutations, whenthey did occur, consisted of (i) a cue's rank be-ing replaced by a random value drawn from theset f0:5; 1; 1:5:::20; 20:5g1, (ii) a cue's stopping rulebeing replaced by one drawn at random from theseven possible rules, or (iii) a strategy's biased coinbeing replaced by a coin with bias drawn randomlyfrom the range [0,1].For each of the four environments, the top 5(0.5%) foragers from each of the 20 populationsat generation 5000 were collected, and their long-term mean performance over 10,000 lifetimes (i.e.,1,000,000 mushrooms) was calculated. The bestsuch long-term mean performance was recorded.Algorithms which failed to achieve a long-termmean performance within 5% of this threshold werediscarded.Duplicate equivalent strategies were then ex-cluded. Strategies were deemed equivalent if theyexhibited the same cue ordering and applied thesame stopping rules to these cues, once redundantcues had been removed. Redundant cues were ei-ther those associated with stopping rule 4, thosewhich were never consulted because a cue associ-ated with rule 3 or 5 preceded them in the cueorder, or those which, over the course of 10,000lifetimes, although consulted, had never stoppedsearch. The remaining \elite" strategies are thusunique and perform well in the environment towhich they were adapted.4.3 The Elite StrategiesAt this point, we will delve into a speci�c detailedanalysis of the evolved strategies in these environ-ments to see what general principles we can uncoverand to demonstrate the sorts of analytic approachesthat can aid in such a search. A �rst indication thatthe strategies �t for one environment tend to di�erfrom those �t for another is given by the Venn dia-gram in Fig. 12 which demonstrates that of the 93elite strategies found through evolutionary search,only 2 occurred in more than one environment.1Half ranks were employed so that cues could mutateto fall in between two previously adjacently ranked cues.After reproduction, ranks were renormalized so that theywere again consecutive integers.21
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creases, appropriate strategies become increasinglyhomogeneous and less frugal in cue use. While theset of elite strategies for the Orthodox environmentis wide and shallow, those of the Lethal and Odorenvironments are narrow and deep. This phenom-ena is reminiscent of �ndings concerning the di�er-ences between novice and expert decision makers.While novices tend to pursue a variety of strate-gies and as a group may attend to many di�erentsources of potentially relevant information, expertsare less variable in their approach to a problem,typically using just those few speci�c cues whichare most appropriate to the decision problem athand (Shanteau, 1992).The particular cues which feature in elite strate-gies for the Mushroom Problem can be regarded asfalling into three groups. First, a few high validitycues (e.g., odor and bruises) show up in nearly ev-ery elite strategy, regardless of which environmentthe strategy has adapted to. Second, a set of aux-iliary cues (e.g., stalk shape and gill-spacing) tendto feature in many of the elite strategies within aparticular environment, but do not feature stronglyin alternative environments. Third, the remainingutilized cues tend to be idiosyncratic to particu-lar strategies within particular environments. Itis clear that attending to high validity cues willbe a useful part of most any decision strategy, andthis observation can account for those cues that areutilized frequently across all environments. How-ever, cues are not always utilized in proportion totheir validity, even within the Orthodox environ-ment. Reasonably accurate cues may be utilizedonly vary rarely. For example, gill-color, which isranked �fth in terms of validity, is never involvedin any elite strategy in any environments.Similarly, what marks particular cues as appro-priate to particular environments can be hard totrace. The spore-print-color, habitat, and stalk-surface-below-ring cues are present in many of theelite strategies evolved within the Lethal environ-ment. However, these cues share few features whichcan explain their utility. They are mid-rankingin terms of validity. Although the stalk-surface-blow-ring cue enjoys a low Miss rate, which giventhe signi�cance structure of the the Lethal envi-ronment would appear to be crucial to the utilityof cues, the other two are unremarkable in this re-spect. However, spore-print-color and habitat doenjoy low rates of False Alarms. How are we toexplain this curious choice of cues?Given that no cue perfectly predicts edibilityacross the entire set of mushrooms, no cue can ini-tially be used by a lexicographic strategy to identify22
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Figure13:Thepercentageofelitestrategieswhichinvolveaparticularcueineachofthefourenviron-
mentstested.CuesareorderedasinFig.9,i.e.,inorderoftheirvalidityintheOrthodoxenvironment.
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edible mushrooms without error. Since the con-sumption of a poisonous mushroom is fatal in theLethal environment, every successful strategy theremust proceed by rejecting subsets of mushrooms onthe basis of cues which tend to make correct rejec-tions and few false alarms. It is in this respect thatspore-print-color and habitat (and odor and gill-size) excel, allowing a strategy to con�dently rejectmushrooms in the knowledge that those unrejectedwill for the most part be edible. A successful strat-egy will use early cues of this kind to �lter out poi-sonous mushrooms such that those remaining canbe split into de�nitely edible or possibly poisonousby a subsequent cue (e.g., stalk-surface-below-ring).However, this rather involved explanation can-not enable us to state in advance which particularcues will be employed within elite Lethal strategies,but merely to o�er a post-hoc analysis of success-ful strategies. Even in this respect the explana-tory strategy is imperfect since it cannot accountfor why alternative cues were not utilized in placeof those that were. For example, there exist cueswith lower false alarm rates than spore-print-colorand habitat which were not employed to any greatdegree. Why were these cues eschewed?In the Odor and Flat environments, the distri-bution of cue usage is even harder to understand.Gill-spacing, a popular cue in the Odor environ-ment, is unremarkable save that it enjoys a low missrate. However, there is little indication that missesare more crucial in the Odor environment than inthe Flat environment, for instance, where the gill-spacing is never utilized by an elite strategy.The reason for the di�culty we experience in pre-dicting and explaining the successful cue orderingsstems from the properties of lexicographic strate-gies and our reliance on measures of cue perfor-mance derived from their application to the entirespace of decisions. A strategy's highest ranked cuewill be consulted in all decisions. However, sincethis �rst cue may sometimes suggest a course ofaction (i.e., eating or rejecting) other than check-ing the value of the next cue, this next cue willonly �gure in a subset of the decision made by astrategy. Similarly, the third cue will be consultedfor a subset of this subset | a subsubset of en-countered mushrooms | and so on. As a result,characteristics of a cue which have been calculatedacross the whole environment, even if they suitablyaccommodate signi�cance and frequency structure,will tend to become less and less useful the deeperinto a lexicographic strategy the cue is placed.Fig. 15 demonstrates this problem by depictingthe direction in which cues at each rank in a lexi-

cographic strategy tend to be utilized. Recall thatdepending on the stopping rule employed in con-junction with a cue, its presence or absence can bethe prompt for either positive (eat), negative (re-ject) or neutral (check next cue) behavior. Rulescan be divided into those which tend to considerthe presence of a cue to be an indicator of edibil-ity and/or its absence to be an indicator of toxi-city, and those for which the presence or absenceof the cue indicates the opposite. One might ex-pect that since, on average across the MushroomProblem data set, the presence of each cue tends toindicate edibility, rules of the former kind might bemore useful and hence better represented in the setof elite strategies. Fig. 15 shows that this is indeedthe case early in a strategy. The �rst cue used byan elite strategy is always consulted in conjunctionwith a rule of this expected polarity. However, aswe descend through the ranks, more and more ofthe cues begin to be associated with rules whichoperate in the opposite direction, until the polarityof a cue across the whole population of mushroomsceases to be a predictor of rule use at all.The divergence between the performance of a cueover an entire space of problem items (global valid-ity) and its performance across the subset of itemswhich it actually encounters as a consequence of thecues preceding it in a lexicographic ordering (condi-tional validity) can be expected to increase with therank of a cue, as mentioned above. In addition, therate at which this divergence increases with rankcan be expected to itself increase with the degree towhich the signi�cance or frequency structure of anenvironment tends to focus performance on fewerdecision items. Consider that in the Orthodox en-vironment, the contribution of each individual suc-cess or error on the part of a cue to its validity isequal. In contrast, within the Odor environment,there is a di�erential contribution of successes anderrors to global validity. If a particular mushroomis highly nutritious, then successful cues will tend tobe able to identify it as edible. The global validitiesof each of these cues will be in
ated by their abilityto correctly identify this mushroom. However, theconditional validity of only one cue will be increasedby this ability. This is due to the fact that, in prac-tice, only one cue will ever be used to identify thismushroom. The remaining cues which could alsohave made this correct identi�cation have missedout. As a result, their conditional validities will notre
ect their global validities, since whilst the lattermeasure takes their performance on every decisionitem into account, the former does not.This issue closely parallels the problem of model24
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Figure 15: The percentage of elite strategies which treat cues in the predicted (full bars) vs. non-predicted(empty bars) direction across the rank order of cues, for the four environments. Because strategies varyin the number of cues they involve, columns vary in height. Notice that whilst early ranked cues tendto be treated in the predicted direction, the polarity of later cues is not predicted by global validitymeasures.
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reduction in the statistical practice of multiple re-gression. Many independent variables (cues) mayhave high predictive power when �tted �rst, that is,exhibit a high global validity. However, when thecomplete model (all cues) is �tted, the predictivepower of each contributing variable will be less thanthis �rst-�tting measure. Discovering the best setof predictors is a problem which cannot be solvedby consulting global measures of validity alone.This problem has implications for lexicographicstrategies which order their cues according to globalmeasures of validity, as Take The Best does. Theirperformance will tend to degrade in increasinglystructured environments. This is shown to be truefor the Mushroom Problem in Fig. 16, which de-picts the mean long-term performance of each set ofelite strategies in each environment and the perfor-mance of a lexicographic strategy with cues orderedaccording to their global validities. This Take-The-Best-like strategy does indeed perform adequatelyin the Orthodox environment, but abysmally in thethree structured environments.In addition, Fig. 16 demonstrates that the abil-ity of strategies evolved within one environment toperform in another varies in an intelligible man-ner. Whilst the elite strategies evolved within theOrthodox, Flat, and Odor environments performat essentially the same level within the Orthodoxand Flat environments, more of a di�erence is dis-cernible within the Odor and Lethal environmentsbetween \foreign" strategies and those indigenousto the environment. What this demonstrates is thatelite strategies from the Orthodox, Flat, and Odorenvironments can distinguish roughly the samenumbers of poisonous and edible mushrooms (hencetheir similar performance in the Orthodox environ-ment); their performance di�ers in exactly whichmushrooms are correctly dealt with and which areincorrectly dealt with (hence their varying perfor-mance in the Odor environment). Elite strategiesevolved within the Odor environment are less likelyto make errors when faced with mushrooms whichare signi�cant in their own environment, whereasthe errors made by elite Orthodox and Flat strate-gies are distributed over the space of mushroomswith no concern for their impact in the Odor envi-ronment.One possible explanation for the di�erence be-tween novices and experts noted earlier stems fromthese observations. If novices do not appreciate theunderlying signi�cance structure of a domain, butexperts do, one would expect that in addition tonovices perhaps exhibiting a lower level of overallperformance, their pattern of successes and errors

would not match that of experts, who are morelikely to gain their performance from correctly deal-ing with problems which they consider to be impor-tant and/or frequent.In the Lethal environment the di�erence betweenwell-adapted strategies and interlopers is most ev-ident. This results from the foreign algorithms'tendency to tolerate a few misses, since their ef-fects can be compensated for by an associated in-creased number of hits. In the Lethal environmentthis strategy is clearly maladaptive.The Take-The-Best-like strategy achieves its lowlevel of performance in the Lethal environment byrejecting every mushroom in favor of the alternativefood source. Its conservatism or risk aversion stemsfrom the fact that since no single cue is capableof making error-free recommendations of edibilityacross the whole space of mushrooms, and errors ofthis kind are lethal, every cue is best used to rejectmushrooms (scoring on average 0.18 rather thannegative in�nity). As a result every cue is rankedequally and the absence of any cue is taken to bereason enough to reject any mushroom. Since eachmushroom will lack at least one cue, every mush-room is eventually rejected by this strategy. (Sim-ilarly, within the Flat and Odor environments thisstrategy uses the presence of any cue as evidencein favor of eating a mushroom, since individuallyeach cue, across the entire population, would bestbe employed as just such evidence. As a result,all mushrooms are eaten in these two environmentsand again roughly chance performance is achieved.)The approach of the elite Lethal strategies fallssomewhere between this extreme risk aversion andthe blas�e attitude to misses exhibited by elite for-eign strategies. As discussed above, by using ini-tial cues to exclude particular sets of mostly toxicmushrooms, elite Lethal strategies are able to usesubsequent cues to accurately distinguish ediblemushrooms from the remainder. In this way theyachieve a remarkably competent performance, onaverage wrongly rejecting (false-alarming) 1 in 10edible mushrooms and wrongly accepting (missing)no poisonous ones.4.4 Concluding Thoughts on Signi�-cance StructureUsing an arti�cial foraging task we have demon-strated that manipulating the signi�cance struc-ture of a decision problem can have important im-plications for the success of decision-making algo-rithms. We have shown that in order to understandthe structure and performance of decision makers26



Orthodox Environment

0

20

40

60

80

100

Orthodox Flat Odor Lethal TTB

Flat Environment

0

20

40

60

80

100

Orthodox Flat Odor Lethal TTB

Odor Environment

0

20

40

60

80

100

Orthodox Flat Odor Lethal TTB

Lethal Environment

0

20

40

60

80

100

Orthodox Flat Odor Lethal TTBFigure 16: The average mean long-term performance across the four environments of elite strategiesevolved for particular environments and a Take-The-Best-like strategy (TTB) that uses cues in order oftheir global validity. Performance is plotted on the y-axis such that a score of 100 would be obtainedby an omniscient and hence perfect forager. In the Orthodox and Lethal environments random behaviorwould achieve a score of zero. In the Flat and Odor environments, random performance would achievea score of roughly 10. Whilst the more unstructured environments do not tend to discriminate betweengroups of elite strategies, the more structured ones favor indigenous elite strategies. TTB performs ade-quately in the Orthodox environment, but introducing signi�cance structure results in severely reducedperformance.in structured environments an appreciation of thisstructure is necessary. Signi�cance structure willimpact on the performance of strategies in com-plex ways. Speci�cally, using global measures ofa cue's performance will tend to become mislead-ing as environment structure increases, because thedisproportionate contribution of a small number ofproblem items to a cue's e�ective performance willcause such global measures of a cue's utility to de-viate from the e�ective utility of a cue within aparticular strategy. This was demonstrated for lex-icographic cue orderings. Similar lessons are likelyto apply to alternative decision heuristics.5 Overall ConclusionsRather than conceiving of decision-making successas equivalent to some general-purpose measure ofaccuracy, the relevant measure is one which cap-tures the extent to which a mechanism copes withits environment, meeting the goals of the decision-making agent. Such a measure must take into ac-count the structure of the agent's environment, in-cluding both the environment's frequency structureand its signi�cance structure. Employing this eco-logically motivated form of assessment leads to anew vision of what constitutes a good decision mak-ing algorithm | sacri�cing traditional notions ofaccuracy and generality can reveal the advantageof heuristics that evidence an increased ability tocope with speci�c real environments despite theirfailure to meet internalist criteria of rationality.

AcknowledgementsThis paper bene�ted from the comments of Valerie Chase,Jason Noble, and Henrietta Wilson, discussion with MartinLages and the ABC Group, and the programming assistanceof Martin Dieringer, Torsten Mohrbach, and R�udiger Sparr.ReferencesAnderson, J. R. (1991). The Adaptive Characterof Thought. Lawrence Erlbaum Associates,Hillsdale, NJ.Blake, C., Keogh, E., & Merz, C. J. (1998). UCIrepository of machine learning databases.http://www.ics.uci.edu/�mlearn/MLRepository.html. University of California,Irvine, Dept. of Information and ComputerSciences.Braitenberg, V. (1984). Vehicles: Experiments inSynthetic Psychology. MIT Press, Cambridge,MA.Brooks, R. A. (1991a). Intelligence without repre-sentation. Arti�cial Intelligence, 47, 139{159.Brooks, R. A. (1991b). New approaches to robotics.Science, 253, 1227{1232.Brunswik, E. (1955). Representative design andprobabilistic theory in a functional psychol-ogy. Psychological Review, 62, 193{217.Cli�, D., Harvey, I., & Husbands, P. (1993). Ex-plorations in evolutionary robotics. AdaptiveBehavior, 2 (1), 71{108.27



Clutton-Brock, T. H., & Albon, S. D. (1979). Theroaring of red deer and the evolution of honestadvertisement. Behaviour, 69, 145{170.Connolly, T. (1999). Action as a fast and frugalheuristic. Minds and Machines, ??, ??{??Cosmides, L., & Tooby, J. (1987). From evolutionto behavior: Evolutionary psychology as themissing link. In Dupr�e, J. (Ed.), The Lateston The Best: Essays on Evolution and Opti-mization, pp. 277{306. MIT Press/BradfordBooks, Cambridge, MA.Cummins, D. D., & Allen, C. (Eds.). (1998). TheEvolution of Mind. Oxford University Press,New York.Davison, M., & McCarthy, D. (1988). The Match-ing Law: A Research Review. Erlbaum, Hills-dale, NJ.Dawes, R. M. (1988). Rational Choice in an Un-certain World. Harcourt Brace Jovanovich,Orlando, FL.Dawes, R. M., & Corrigan, B. (1974). Linear mod-els in decision making. Psychological Bulletin,81, 95{106.Delius, J. D., & Siemann, M. (1998). Transitiveresponding in animals and humans: Exap-tation rather than adaptation? BehaviouralProcesses, 42, 107{137.Evans, J. S. B. T., & Over, D. E. (1996). Ratio-nality in the selection task: Epistemic utilityversus uncertainty reduction. PsychologicalReview, 103, 356{363.Gibson, J. J. (1979). The Ecological Approach toVisual Perception. Houghton Mi�in, Boston,MA.Gigerenzer, G., Todd, P. M., & the ABC Group(1999). Simple Heuristics that Make UsSmart. Oxford University Press, New York.Gigerenzer, G., & Goldstein, D. G. (1999). Bet-ting on one good reason: The Take The Bestheuristic. In Simple Heuristics that Make UsSmart (Gigerenzer et al., 1999), pp. 75{96.Gigerenzer, G., & Goldstein, D. G. (1996). Rea-soning the fast and frugal way: Models ofbounded rationality. Psychological Review,103 (4), 650{669.

Gigerenzer, G., Ho�rage, U., & Kleinb�olting, H.(1991). Probabilistic mental models: ABrunswikian theory of con�dence. Psycho-logical Review, 98, 506{528.Gigerenzer, G., & Todd, P. M. (1999). Fast and fru-gal heuristics: The adaptive toolbox. In Sim-ple Heuristics that Make Us Smart (Gigeren-zer et al., 1999), pp. 3{36.Goldberg, D. E. (1989). Genetic Algorithms inSearch, Optimization and Machine Learning.Addison-Wesley, Reading, MA.Goldstein, D. G., & Gigerenzer, G. (1999). Therecognition heuristic: How ignorance makesus smart. In Simple Heuristics that Make UsSmart (Gigerenzer et al., 1999), pp. 37{58.Goodie, A. S., Ortmann, A., Davis, J. N., Bul-lock, S., & Werner, G. M. (1999). Demons vs.heuristics in arti�cial intelligence, behavioralecology, and economics. In Simple Heuristicsthat Make Us Smart (Gigerenzer et al., 1999),pp. 327{356.Grafen, A. (1990). Biological signals as handicaps.Journal of Theoretical Biology, 144, 517{546.Hertwig, R., Ho�rage, U., & Martignon, L. (1999).Quick estimation: Letting the environmentdo the work. In Simple Heuristics that MakeUs Smart (Gigerenzer et al., 1999), pp. 209{234.Holland, J. H. (1975). Adaptation in Natural andArti�cial Systems. University of MichiganPress, Ann Arbour. Reprinted by MIT Press,1992.Hubel, D. H., & Wiesel, T. N. (1959). Receptive�elds of single neurons in the cat's striate cor-text. Journal of Physiology, 148, 574{591.Kahneman, D., Slovic, P., & Tversky, A. (1982).Judgement Under Uncertainty: Heuristicsand Biases. Cambridge University Press, NewYork.Klauer, K. C. (1999). On the normative justi�ca-tion for information gain in Wason's selectiontask. Psychological Review, 106, 215{222.Laplace, P. S. (1951). A Philosophical Essay onProbabilities. Dover, New York. (F. W. Tr-uscott and F. L. Emory, Trans.; Original workpublished 1814).28



Marr, D. (1982). Vision. Freeman, San Francisco,CA.Martignon, L., & Schmitt, M. (1999). Simplicityand robustness of fast and frugal heuristics.Minds and Machines, ??, ??{??Millikan, R. G. (1984). Language, Thoughtand Other Biological Categories. MITPress/Bradford Books, Cambridge, MA.Millikan, R. G. (1993). White Queen Psychol-ogy and Other Essays for Alice. MITPress/Bradford Books, Cambridge, MA.Mitchell, M. (1996). An Introduction to Genetic Al-gorithms. MIT Press/Bradford Books, Cam-bridge, MA.Oaksford, M., & Chater, N. (1994). A rational anal-ysis of the selection task as optimal selection.Psychological Review, 101, 608{631.Oaksford, M., & Chater, N. (1996). Rational ex-planation of the selection task. PsychologicalReview, 103, 381{391.Schick, F. (1986). Dutch bookies and moneypumps. Journal of Philosophy, 83, 112{119.Schlimmer, J. S. (1987). Concept acquisitionthrough representational adjustment. Tech.rep. 87-19, Deptartment of Information andComputer Science, University of CaliforniaIrvine.Sha�r, S. (1994). Intransitivity of preferencesin honeybees | support for comparative-evaluation of foraging options. Animal Be-haviour, 48, 55{67.Shanteau, J. (1992). Howmuch information does anexpert use? Is it relevant? Acat Psychologica,81, 75{86.Sober, E. (1994). From a Biological Point of View:Essays in Evolutionary Philosophy, chap. Theadaptive advantage of learning and a prioriprejudice, pp. 50{70. Cambridge UniversityPress, Cambridge.Stephens, D. W., & Krebs, J. R. (1986). ForagingTheory. Princeton University Press, Prince-ton, NJ.Todd, P. M., & Miller, G. F. (1999). From pride andprejudice to persuasion: Satis�cing in matesearch. In Simple Heuristics that Make UsSmart (Gigerenzer et al., 1999), pp. 287{308.

Tversky, A., & Edwards, W. (1966). Informationversus reward in binary choice. Journal ofExperimental Psychology, 71, 680{683.Webb, B. (1996). A robot cricket. Science, 275,62{67.Webb, B. (1994). Robotic experiments in cricketphonotaxis. In Cli�, D., Husbands, P., Meyer,J.-A., & Wilson, S. W. (Eds.), From Animalsto Animats 3: Proceedings of the Third In-ternational Conference on the Simulation ofAdaptive Behavior, pp. 45{54. MIT Press.Williams, B. A. (1988). Reinforcement, choice, andresponse strength. In Atkinson, R. C., Her-rnstein, R. J., Lindzey, G., & Luce, R. D.(Eds.), Stevens' Handbook of ExperimentalPsychology, pp. 167{244. Wiley, New York.

29


