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Abstract

A working assumption that processes of natural
and cultural evolution have tailored the mind to fit
the demands and structure of its environment begs
the question: how are we to characterize the struc-
ture of cognitive environments? Decision problems
faced by real organisms are not like simple multiple-
choice examination papers. For example, some in-
dividual problems may occur much more frequently
than others, whilst some may carry much more
weight than others. Such considerations are not
taken into account when (i) the performance of can-
didate cognitive mechanisms is assessed by employ-
ing a simple accuracy metric that is insensitive to
the structure of the decision-maker’s environment,
and (ii) reason is defined as the adherence to in-
ternalist prescriptions of classical rationality. Here
we explore the impact of frequency and significance
structure on the performance of a range of candi-
date decision-making mechanisms. We show that
the character of this impact is complex, since struc-
tured environments demand that decision-makers
trade off general performance against performance
on important subsets of test items. As a result, en-
vironment structure obviates internalist criteria of
rationality. Failing to appreciate the role of envi-
ronment structure in shaping cognition can lead to
mischaracterising adaptive behavior as irrational.

Keywords: decision making, frequency structure,
significance structure, rational synthesis, adaptive
behavior, externalism.

Running head: Rationality in Structured Envi-
ronments

1 Introduction to the problem
of environment structure

Organisms are matched to the demands of particu-
lar environments. Deep-sea creatures, for instance,
have evolved to require a high pressure aqueous en-
vironment, and to exploit the opportunities that
this environment affords (such as profound dark-
ness as a backdrop for bioluminescence) in order to
effect their survival and reproduction. When taken
out of the environment that they are adapted to,
such creatures can suffer explosive consequences.
Within biology this vital match between a biologi-
cal system and its environment is termed “fit”. The
environment to which an organism is fitted by evo-
lution is known as its “niche”.

In much the same way that biological devices are
matched to their niches, decision-making mecha-
nisms are also matched to particular kinds of task
(see, e.g., Gigerenzer, Todd, & the ABC Group,
1999). As in the case of biological fit, the suitabil-
ity of these cognitive mechanisms is predicated on
the structure of their environment. The success of
a particular cognitive mechanism will depend not
only upon the task demanded of it, but also the na-
ture of the problem it faces in achieving this task.
Whilst a tin-opener is suited to the task of opening
tins, it may not be suited to particular tins (such
as oil drums, etc.) — its limitations make it ill-
fitted to certain problems but suitable for others.
The extent to which an organism fits its niche, or
a mechanism matches the problem it faces, is the
extent to which it meets the demands of its envi-
ronment.

These considerations imply straightforwardly,
that different environment structures will, by defi-
nition, favor different cognitive mechanisms. Thus,



to evaluate the performance of these mechanisms,
we have to take environment structure into account.
But what is environment structure and how are we
to measure it? Here we concentrate on the ramifi-
cations of two well-specified aspects of environment
structure on the performance of cognitive decision-
making mechanisms.

To appreciate these two forms of environment
structure, imagine that you are a university profes-
sor. Every once in a while, a student who has been
offered a similar job by two universities approaches
you for your advice. Which job offer should they
accept?

1. Since neither job applications nor offers of em-
ployment are made at random, one might ex-
pect certain universities to feature more fre-
quently than others in this kind of decision.

2. Since not all universities have equal status,
some decisions of this kind may be more sig-
nificant than others.

Suppose that your students know that across all
the possible pairs of universities, your advice is cor-
rect 80% of the time. Suppose that they also know
that a colleague of yours is only correct 70% of the
time. Should they approach you for advice rather
than your less knowledgeable colleague? Not neces-
sarily. Despite the higher accuracy of your advice
across possible problems, the students may quite
rightly reject you if the 20% of cases in which you
err are the most important or frequent ones, while
your colleague does not make these frequent, costly
mistakes, but rather errs only in trivial or uncom-
mon circumstances.

Notice that in this example, general-purpose
knowledge (high accuracy across possible test
items) has been sacrificed for special purpose
knowledge (high accuracy across frequent or sig-
nificant test items). Notice also that failure to ap-
preciate either frequency or significance structure
in this example will lead observers to conclude that
students are acting irrationally in choosing the less
knowledgeable professor.

Putting ourselves in the shoes of the job-seeking
student, how should we assess the performance
of each professor before deciding whose advice to
heed? We might carefully select specific test items
which we expect to best discriminate between hy-
potheses regarding the professors. Whilst patterns
of success and failure across such a set of diagnostic
test items may reveal facts about how the profes-
sors go about solving their task, the performance
over such a set will not be representative of the

professors’ performance in general unless this set of
test items is itself representative.

Similarly, assessing the performance of each pro-
fessor using a multiple-choice paradigm in which
(i) the answer to each test item is weighted equally,
and (ii) either every possible test item is presented
once, or a uniform random sample of possible test
items is presented, will also fail to capture the
underlying structure of the problem, and there-
fore will misjudge any decision-making mechanism
adapted to that structure.

Assessing each professor on a representative or
“natural” sample (Brunswik, 1955) of test items is
the only way to reasonably decide between them.
This approach to assessment and the role of envi-
ronmental considerations derives from an ecologi-
cal perspective on rationality which itself follows
from the evolutionary biology considerations with
which this paper opened. In the next section we
present the foundations of this notion of ecological
rationality, before turning to specific examples of
frequency structure and significance structure, and
their implications for decision making in structured
environments.

2 Ecological Rationality

Consider two contrasting assumptions about how
best to conceive of cognitive mechanisms. The first
stems from an observation about origins.

e Assumption: Processes of natural and cultural
evolution (sometimes via the lifetime learning
fashioned by these processes) have tailored the
mind to fit the demands and structure of its
environment. Behavior must be adaptive, i.e.,
suited to its proper environment, to be suc-
cessful.

This assumption invokes a natural process (evo-
lution) and an externalist criterion of success (the
environment). It has a direct implication.

e Implication: The assessment of candidate cog-
nitive mechanisms must be sensitive to facts
concerning environment structure.

The second conception of cognitive mechanisms
considers them to approximate general-purpose,
optimal (and ultimately mythical) devices. It is
thus an assumption about goals.

e Assumption: Minds are best understood as
approximating a Laplacean superintelligence
(Laplace, 1951), which will, by definition,



achieve general-purpose, optimal performance
in any situation, no matter how rare; for any
price, no matter how costly; and for any re-
ward, no matter how meager.

This assumption invokes an ideal, and implies
internalist criteria for success.

e Implication: General purpose performance
cannot, by definition, rely upon assumptions
about the problem to be faced, hence the
behavior of candidate cognitive mechanisms
should conform to internalist rational crite-
ria, e.g., coherence, transitivity, etc., since it
is through the adoption of these criteria that a
superintelligence will achieve its optimal per-
formance.

Whilst this second, classically rational approach
to cognition is somewhat of a straw man, the in-
ternalist criteria which it promotes are widespread
within decision-making psychology and related
fields, taking the form of prescriptive norms; Your
Subjective Probabilities Must Sum to Unity! Be
Transitive in Your Choices! Be Coherent! Be Con-
sistent in Your Preferences! In contrast, the first
approach to cognition embraces an ecological per-
spective on rationality, dispensing with internalist
criteria in favor of an externalist performance met-
ric. In the same way in which evolutionary biology
assesses the fitness of adaptations in terms of the
extent to which they perform the task for which
they were selected, ecologically rational reasoning is
reasonable to the extent that it is successful within
its proper environment.

The perspective on cognition afforded by the con-
cept of ecological rationality is a powerful one. Un-
derstanding its rationale requires that certain lay
terms be given technical meanings. Although space
limitations prevent a full account of its derivation,
a few of the more pressing issues will be briefly
addressed here (readers are directed to Millikan,
1984, for an account of the role of evolution in un-
derwriting the attribution of functions to cognitive
mechanisms).

2.1 Proximality and Proxihood

First, the phrase “proper environment” is used
here (e.g. in the first assumption above) in the
same technical sense in which Millikan (1984, 1993)
employs the term “Normal conditions” to mean
“the conditions to which [a] device ...is biologi-
cally adapted” (Millikan, 1984, p.34). This biolog-
ical adaptation is ultimately evolutionary, but may

also involve learning, as in the case of a mecha-
nism which has evolved to detect mates, but is cal-
ibrated through some period of juvenile experience.
The nature of a mechanism’s proper environment
must typically be established historically since it
will usually be a past environment, although as
noted above, a mechanism which is calibrated by
individual learning of some kind may be properly
suited to its current environment, or at least to the
environment in which it was calibrated. In gen-
eral, the proper environment cannot be established
statistically by establishing what the current envi-
ronment of a mechanism typically is.

Since our knowledge of past environments will
generally be poor, establishing the structure of
these environments with the degree of precision
necessary in order to predict, in one fell swoop, the
adaptations which resulted from them may be hard,
if not impossible. However, taking as a working as-
sumption the hypothesis that, whatever these envi-
ronments were, they have shaped the character of
extant cognitive mechanisms allows us to approach
cognition and behavior as evidence from which to
infer the adaptive tasks faced by our ancestors and
the structure of the past environments in which our
ancestors had to achieve them (c.f. the evolution-
ary psychology approach to studying evolved cogni-
tive mechanisms as laid out by Cosmides & Tooby,
1987). This approach is clearly circular: current be-
havior is used to infer past environments which are
in turn used to predict current behavior-generating
mechanisms. However, this circularity is not vi-
cious. Each turn of the cycle produces new behav-
ioral hypotheses which can be tested and used to re-
vise our environmental assumptions. This process
is analogous to that employed by the proponents
of rational analysis (Anderson, 1991) who iterate
through a similar cycle, repeatedly revising the na-
ture of a decision problem until the optimal solution
to this problem matches the observed performance
of the natural decision makers they are interested
in.

Second, in using terms such as “success” and
“task” when describing the performance of a natu-
ral mechanism, we are eliding an important dimen-
sion. The manner in which these terms should be
interpreted depends on whether one is concerned
with explanations which are biologically ultimate
or more prozimate. Whilst ultimately every bio-
logical adaptation has been selected for the task
of effecting its own reproduction, with appropriate
caveats, organisms and the organs they contain can
also be considered to face more proximate adap-
tive subgoals (e.g., pumping blood, regulating body



temperature, finding food, seducing a mate). Sim-
ilarly, although the success of a natural cognitive
mechanism is ultimately cashed out in the same
fitness terms as any biological adaptation, its per-
formance can be understood more proximately in
terms of its reasoning success. This reasoning suc-
cess can be considered as a proxy for the biological
fitness of a reasoning mechanism.

However, establishing a proxihood relationship
between some measure of successful reasoning and
ultimate fitness is not straightforward. For exam-
ple, the capture of accurate information is often
considered to be a good measure of reasoning suc-
cess (e.g., Oaksford & Chater, 1994, 1996, but see
also Klauer, 1999). In his model of animal com-
munication, Grafen (1990) equates the success of a
choosy peahen with her accuracy in capturing the
mate value of her suitors. One might expect that
to the extent that a reasoning mechanism tends to
provide veridical information to the deliberation or
action systems which depend on this information,
such a reasoning mechanism would be fit. How-
ever, using the capture of veridical information as
a proxy for fitness ignores the possibility that even
accurate information may sometimes be epistemi-
cally worthless (Evans & Over, 1996).

For example, a decision-making mechanism used
by a peahen to judge the quality of peacocks may
provide equally accurate assessments in two cases,
yet if the first case involves a poor quality suitor
and the second a high quality suitor, the value of
these two pieces of equally accurate information
will differ greatly. The first assessment allows the
peahen to confidently reject a poor suitor, avoiding
the costly mistake of making a long-term invest-
ment with a poor-quality mate. In contrast, the
second assessment allows her to confidently accept
a good suitor, avoiding the (presumably) much less
costly mistake of overlooking the currently avail-
able good mate. Thus, these two decisions have
radically different implications for the peahen’s fit-
ness and hence the fitness of the peacock-assessing
mechanism that she employs. Moreover, for species
in which both sexes are choosy, whether a female’s
assessment of a particular potential mate is accu-
rate or not may have no impact on her fitness if the
suitor being assessed rejects her (Todd & Miller,
1999).

These examples highlight the fact that it is the
behavior which results from an organism’s reason-
ing rather than the reasoning itself which is the lo-
cus of selective pressure. Whilst accurate and error-
free reasoning is clearly typically a conduit leading
to adaptive behavior, it does not follow that “irra-

tional” reasoning must have negative consequences
for the success of an organism’s behavior. As we
move along the explanatory dimension from ex-
planations of decision-making behavior in terms of
some ultimate goal (reproduction) to explanations
in terms of increasingly proximate goals (successful
decision making of some kind) we do not ever reach
a legitimate explanation of an organism’s behavior
in terms of achieving the consistency, coherence,
transitivity, etc., that internalist rational criteria
demand. Goals may be proximate to varying de-
grees, but never entirely divorced from the ultimate
goal which all natural adaptive behavior subserves.
These internalist criteria may, to a certain extent,
be characteristic of successful decision-making be-
havior in a particular environment, but they are not
the decision-maker’s goal, merely a side-effect, of its
being well-designed to achieve whatever that goal
may be. A decision-maker’s deviation from these
rationalist tenets will therefore not necessarily re-
sult in its reduced ability to achieve its goals, since
the prescriptions of internalist rationality and the
goals of a decision-maker are not coincident.

For instance, in order to meet the criteria of clas-
sical rationality, one’s preferences must be transi-
tive, that is, if one prefers A over B, and B over
C, one must prefer A over C to remain rational.
Reinforcement training of various animals demon-
strates that they spontaneously develop novel tran-
sitive preferences when trained to make pairwise se-
lections between items with adjacent ranks on some
arbitrary scale (Delius & Siemann, 1998). That is,
when trained to prefer A over B, B over C, C over D
and D over E they spontaneously preferred B over
D, despite these two items having been reinforced
equally over the course of the training. Whilst
these data suggest that the mechanism governing
the learning of preferences embodies the principle of
transitivity, reanalysis of the original reinforcement
experiments reveals that simple associative learning
rules can account for the ability. The authors con-
clude that the “capacity for transitive responding
could thus be an example for [sic] a trait that has
primarily evolved by ezaptation rather than adap-
tation” (p.131, emphasis added) by which is meant
that the selective pressure to discriminate similar
stimuli may account for the transitive preferences
of pigeons, rats, and humans, rather than any ad-
vantage they gain from transitive preferences per
se. Indeed one can find examples of intransitivity
in the untrained preferences of animals, as shown
in the work of Shafir (1994) on the responses of
foraging honey bees to artificial stimuli.



2.2 Optimality and Analysis

Friends of classical rational norms will respond at
this point that these norms were never intended as
prescriptive rules, but as descriptive tools. Since
optimal performance will be achieved by an agent
following the prescriptions of classical rationality,
they serve a useful purpose in providing the means
to calculate a benchmark against which natural
performance may be measured. Whilst we as sci-
entists can calculate this benchmark, there is no
claim that cognitive mechanisms perform any such
calculation. The behavior generated by a rational
cognitive mechanism is, however, expected to be
well described, or at least approximated, by such
optimal models.

We have no objection to this use of optimality
modelling. However, it must be pointed out that
from this perspective, the discovery that human
reasoning fails to meet the internalist criteria of
rationality in some situation (whether it be experi-
mental or naturally occurring) should not necessar-
ily be the cause for concern that it has appeared to
be within the judgement and decision-making lit-
erature (e.g., Kahneman, Slovic, & Tversky, 1982).
If internalist rational criteria were never expected
to be implemented by cognitive mechanisms, but
merely to describe their proper behavior (c.f. An-
derson’s rational analysis), why should one expect
arbitrary laboratory test items or natural but novel
scenarios to provoke rational responses (c.f. Kahen-
man and Tversky’s heuristics and biases)?

Indeed, a tradition exists within behavioral ecol-
ogy which treats experimental results not as rev-
elatory of an animal’s rationality, but as indica-
tive of its evolutionary history. For example, the
field of optimal foraging theory (Stephens & Krebs,
1986) experimentally assesses the foraging behav-
ior of various species in an attempt to discover not
whether they are smart or stupid, or rational or
irrational, but what the selective pressures on for-
aging ability must historically have been for these
species, and what results these pressures have had
in terms of the cognitive adaptations which these
species possess. When confronted with what, by
the lights of internalist criteria, must be consid-
ered irrational behavior, rather than noting the ir-
rationality of the organism involved, these scientists
search for environments in which (and adaptive
goals for which) sacrificing the missing elements of
classical rationality makes sense.

The contrast between the approach of behavioral
ecologists and that of decision-making psycholo-
gists is crystalized in their response to the possibil-
ity of “inappropriate” probability matching in an-

imals and humans (Goodie, Ortmann, Davis, Bul-
lock, & Werner, 1999). The probability matching
phenomenon is most straightforwardly presented in
a case in which two sites which vary in the rate
at which they yield food are attended to in pro-
portion to these yields. Maximizing the consump-
tion of food would be achieved by attending solely
to the most productive food source. However it
is commonly held that animals and humans often
split their attention between the sources in propor-
tion to the expected rate of reward at each source
(e.g., Davison & McCarthy, 1988; Tversky & Ed-
wards, 1966). Whilst learning theorists and be-
havioral ecologists have worked towards discovering
in which situations such behavior is successful and
adaptive and in which it is not (Williams, 1988),
decision-making psychologists have taken the prob-
ability matching phenomenon to be evidence of hu-
man irrationality (e.g., Dawes, 1988).

2.3 Rational Synthesis

Furthermore, although cognitive mechanisms can
be expected to approximate optimal solutions to
the problems they have been adapted to, we can-
not assume that they are also built from approxi-
mately rational building blocks. Once we have set
aside optimality theories as a means to derive the
contents of organisms’ heads, it is difficult to see
immediately what assumptions are justified when
postulating the mechanisms which underpin adap-
tive behavior. An example from the study of vision
highlights this problem.

David Marr (1982) and J. J. Gibson (1979)
developed contrasting approaches to solving the
problem of how animals achieve visual percep-
tion. Marr’s computational approach yielded the
pipeline model, comprising a series of modules each
charged with performing a subpart of the entire
task. Each subpart was considered by Marr to be
the logical requirement of a system able to form a
model of the world around it on the basis of an im-
poverished two-dimensional array of intensity val-
ues (i.e., light falling on a retina). In contrast, Gib-
son’s ecologically inspired theory of direct percep-
tion concentrated on how the problem of vision was
intimately linked with the problems of acting in the
world. For Gibson, the task of vision was not to
construct a three-dimensional model of the world
from poor quality data, but to reveal the “affor-
dances” of the environment in which the agent was
located by exploiting invariants in the rich spatio-
temporal visual array.

However, whilst Marr’s system was buildable and



hence testable, Gibson’s theory offered almost no
clues as to what might constitute the subparts of
visual systems. Alluding to “resonating structures”
did nothing to operationalize his theory, which suf-
fered as a result. For our present purposes, what
is interesting about this example is that Gibson’s
ecological considerations did not directly suggest
candidate mechanisms in the same way that Marr’s
computational approach did. Without first princi-
ples from which to derive the contents of people’s
heads, from what source are we to postulate candi-
date cognitive mechanisms?

In Marr’s approach we can glean a clue as to a
way forward. Although the processes involved in
the pipeline were considered to be the logical pre-
cursors to establishing a three-dimensional model of
the system’s surroundings which could be passed to
a suitable spatial reasoning system, Marr did not
derive the structure of the pipeline entirely from
first principles. Rather, several important empir-
ical results from the neurobiology of vision (e.g.,
Hubel & Wiesel, 1959) inspired the design of some
of the building blocks from which the pipeline was
constructed. Once Marr grasped the properties of
single cells in the cat striate cortex, for example,
he was able to use this understanding to construct
edge-detection algorithms. The design process was
thus largely data-driven. Indeed the later stages
of Marr’s pipeline were never adequately modelled
due in part to a lack of empirical data with which
to inform their design. Like Marr, we must look
to empirical studies to suggest candidate cognitive
building blocks.

More generally, evolutionary processes can be ex-
pected to build complex cognitive as well as percep-
tual systems from combinations of building blocks,
themselves the adaptive result of selective pres-
sures. As such we should conceive of cognitive in-
nards as assemblies of limited cognitive subparts,
tinkered with and reassembled by mutation and
selection until they fit the environment to which
evolution has adapted them. By using empirical
evidence from the study of adults, children and
other species (e.g., Cummins & Allen, 1998) to sug-
gest the structure of candidate cognitive building
blocks, and then exploring how the behavior of var-
ious combinations of these building blocks varies
with the structure of their environment, we can ex-
plore the behavior of model cognitive systems from
the bottom up, rather than the top down (Gigeren-
zer & Todd, 1999).

For example, the recognition heuristic (Goldstein
& Gigerenzer, 1999) is predicated on a fundamen-
tal psychological phenomenon, recognition mem-

ory. This phenomenon has been well studied by
psychologists and animal behavior researchers. It
clearly subserves much of our everyday behavior.
The recognition heuristic utilizes recognition mem-
ory to guide decision-making behavior by exploiting
the fact that recognition tends not to be randomly
distributed across possible entities, but is typically
concentrated on the most important ones. The
heuristic can be stated as: “A recognized option
should be considered to be higher than an unrec-
ognized option on any important dimension”. This
is clearly a very simple rule. It can be considered
to be a building block in that it is informationally
self-contained and can act as a subpart of larger
cognitive strategies (e.g., Take The Best Gigeren-
zer & Goldstein, 1999).

This process of rational synthesis, the recombi-
nation of empirically validated cognitive building
blocks, has a counterpart in the field of behavior-
based robotics (Brooks, 1991a, 1991b). Increas-
ingly, roboticists interested in building intelligent
control systems are coming to realize that prob-
lems which appear intractable from the perspective
of control theory can be tackled effectively by as-
sembling networks of competing and cooperating
behavioral modules. Rather than providing this
system with some governing module responsible for
coordinating the behavior of these subparts (a fear-
some design problem), the robot designers rely on
interactions between the robot and its environment
to organize the robot’s behavior. Although discov-
ering an appropriate combination of modules is not
a trivial task, initial successes in both handcrafting
(Brooks, 1991a) and artificially evolving (Cliff, Har-
vey, & Husbands, 1993) such robots suggest that
this approach to understanding the design of com-
plex systems is fruitful.

In addition, roboticists interested in using
robotic systems to model natural systems have dis-
covered that building robots from empirically val-
idated building blocks can lead to new and inter-
esting theories of animal behavior. Webb (1994,
1996) reports the use of a robot cricket to demon-
strate that the phonotaxis achieved by natural fe-
male crickets when they approach calling males can
be achieved with practically no cognitive mecha-
nism at all, through relying on the acoustic prop-
erties of the cricket’s ears.

A repeated finding within these related fields is
that complex adaptive behavior can arise from the
interaction between simple mechanisms and their
environment. This observation formed the basis for
Valentino Braitenberg’s (1984) synthetic epistemol-
ogy, the use of artificially constructed systems (in



this case hypothetical ones) to explore the minimal
properties required of systems before various inten-
tional attitudes (fears, desires, beliefs, etc.) are at-
tributable to them. The rational synthesis we em-
ploy involves the construction of artificial reasoning
systems which are computationally undemanding,
and hence psychologically plausible, from decision-
making building blocks which are themselves com-
putationally undemanding, and hence psychologi-
cally plausible. We then explore the manner in
which the performance of such reasoning systems
is dependent on facts about the tasks they face and
the structure of the environment in which they find
themselves.

2.4 The Threat of Exploitation

Our concern with the explanatory role of environ-
ment structure in accounting for the performance
of a candidate cognitive mechanism has lead us to
reject internalist rational criteria as unnecessary for
such explanations. For example, what use is tran-
sitivity across all choices a cognitive mechanism
could ever be expected to make, for instance, if this
transitivity is achieved at the expense of adequate
response time on a few crucial choices? Might it
not be better to sacrifice this property within a set
of trivial choices in order to guarantee high speed
judgements in a few do-or-die situations?

Yet the employment of internalist rational crite-
ria in the judgement and decision-making literature
is commonplace. Why is this the case? One answer
is that if the domain to which a cognitive mecha-
nism is expected to apply is unstructured, as it is
by definition for the Laplacean Superintelligence,
and as is often implied by the use of a flat accuracy
performance metric, then environmental consider-
ations will appear superfluous. If success over here
is just as good as success over there, then general
performance wins out. A corollary of this position
is that any failure of reason is equally damaging to
a decision-maker’s performance. Irrationality will
be punished, since disregarding internalist crite-
ria of rationality will leave one open to exploita-
tion. However, limited, structured domains make
salient the fact that internalist criteria are obviated
when performance on a limited and structured set
of items is all that is expected of a cognitive mech-
anism.

Whilst an organism which fails to adhere to some
internalist maxim exposes itself to exploitation in
the form of an appropriate money pump or Dutch
book (Schick, 1986), for example, if no such ex-
ploitatory device exists within the organism’s en-

vironment, or if the losses due to exploitation are
more than made up for by the gains made in other
situations, then there is no force to the internalist
exhortations. In contrast, if there does exist an ex-
ploitatory entity leeching the irrational organism’s
utility and the organism’s irrationality does have
net negative consequences on its fitness, then one
need not appeal to internalist criteria to demon-
strate its irrationality. In this instance, the organ-
ism will be irrational by the lights of externalist
ecological considerations — it will be unfit.

2.5 Summary

To recapitulate, since organisms are adapted to fit
their environment by selective pressures, behaviors
and the mechanisms which produce them are only
intelligible in context. Cognitive mechanisms are
bespoke mechanisms, tailored to fit particular cir-
cumstances, they are “made to measure”. Whilst
there may be general trends in dress-making or tai-
loring (i.e., preference for economy, goodness of fit,
quality of material, etc.), these are mere trends, not
laws or a priori truths. In the same way that op-
ulent, wasteful, ill-fitting, uncomfortable clothing
can be fashionable in certain circumstances, so in-
consistent, intransitive, seemingly “irrational” cog-
nition will often be adaptive in particular structured
environments. As researchers we must find ways of
appreciating the manner in which a cognitive mech-
anism’s niche is reflected in its structure — we too
must be “made to measure” environment structure.

In the remainder of the paper we will explore two
important kinds of environment structure which
are well-defined and hence measurable. Frequency
structure describes the relative prevalence of differ-
ent decision items within a decision domain. Signif-
icance structure describes the relative importance
of different decision items within a decision domain.
Each class of structure will be explored through
manipulating the structure of an artificial decision
problem and observing the impact this manipula-
tion makes on the performance and structure of ap-
propriate decision-making heuristics. These rather
specific examples are carried out here in sufficient
detail to demonstrate the sort of analytical effort
that is often necessary to begin to understand why
a particular decision mechanism fits a particular en-
vironment. They also illustrate some more general
lessons about environment/agent interactions and
the nature of ecological rationality as a whole.



3 Frequency Structure

We define the frequency structure of a decision-
maker’s environment as the relative frequency with
which each test item is encountered by the deci-
sion maker. A flat frequency structure implies that
no test item is more likely to be encountered than
any other. In contrast, a skewed frequency struc-
ture implies that some items are more likely to be
encountered than others.

3.1 The German Cities Problem

Here we employ an arbitrary data set (first reported
by Gigerenzer, Hoffrage, & Kleinbolting, 1991) as
an arena in which to explore the effects of varying
frequency structure. The German Cities Problem
is an inference task concerning the population sizes
of a set of German cities. The task is to judge
which is the larger of a pair of German cities. The
cities involved are the 83 largest in Germany (all
cities with population above 100,000 inhabitants in
1988). The information upon which the judgement
must be based consists of nine binary cues (see
Fig. 1), for instance, whether the city has a soc-
cer team in the top league of the Bundesliga (the
German football league).

This task has previously been used as an infer-
ence problem with which to assess the performance
of a range of decision-making heuristics (Gigeren-
zer et al., 1991; Gigerenzer & Goldstein, 1996, 1999;
Hertwig, Hoffrage, & Martignon, 1999). However,
this previous research has proceeded with no at-
tention to frequency structure, assuming that each
comparison between a pair of cities occurs with
equal frequency and thus contributes equally to a
measure of decision-making performance.

Gigerenzer and Goldstein (1996) report that the
recognition rates for these cities (i.e., the propor-
tion of people claiming to recognize each city) in-
creases with population size. On this basis we
might assume that the actual frequency structure of
this pairwise comparison task (if people encounter
this problem at all) is not flat, but that high pop-
ulation cities tend to be reasoned about more fre-
quently than low population cities. This is clearly
one manner in which the German Cities Problem
environment could be structured. We explore this
and a second class of frequency skew, along with
their complements, by varying which pairs of Ger-
man cities are more likely to be encountered:

la. Product Skew: The likelihood that a pair of
cities will be encountered by a decision-maker

is proportional to the product of the city pop-
ulation sizes.

1b. Reciprocal Skew: This is the complement of
Product Skew, the frequency with which a pair
of cities will be encountered being inversely
proportional to the product of the city pop-
ulation sizes.

2a. Similarity Skew: The likelihood that a pair of
cities will be encountered by a decision-maker
is inversely proportional to the difference be-

tween the city population sizes.

2b. Difference Skew: This is the complement of
Similarity Skew, the frequency with which a
pair of cities will be encountered being propor-
tional to the difference between the city pop-

ulation sizes.

Whilst we do not know whether one or any of
these frequency structures characterizes the distri-
bution of city-size comparisons that people might
naturally face, these classes of skew have been cho-
sen because each is probably representative of some
natural problems. For example, if one encounters
entities (cities) at a rate proportional to their value
on some dimension (population size), then Prod-
uct Skew will describe the frequency structure of
pairwise comparisons between encountered entities.
Similarly, if comparisons between very different en-
tities are handled by some crude early filter, the
distribution of remaining comparisons will be bi-
ased towards pairs of similar entities. A mecha-
nism operating on this subset will be subjected to a
decision environment with a Similarity-Skewed fre-
quency structure. Red deer, for instance, assess the
fighting ability of potential opponents by using in-
creasingly sensitive measures (Clutton-Brock & Al-
bon, 1979). The challenger and harem-holder first
roar at each other. If there is a significant differ-
ence between the volumes, the quieter stag retreats.
If roaring fails to decide the contest the stags pro-
ceed to the next cue: parallel walking. If this cue
also fails to distinguish the stags, they proceed to
head-butting. Decision-making mechanisms occur-
ring late in such a sequential assessment will tend to
have to distinguish between more similarly matched
opponents than those employed earlier in the se-
quence.

For each class of frequency structure, we explore
two degrees of skewness.

1. Mild: The most frequent city pair occurs 10
times more often than the least frequent.



Cue Structure of the German City Environment

East Germany
Industrial Belt

University

License Plate
State Capital
Intercity Train

Soccer Team

Exposition Site
National Capital

| | |
Erlangen Recklinghausen ~ Freiburg Chemnitz

Citiesin order of increasing population size

Figure 1: Each city either possesses (+) or does
not possess (...) each of nine binary cues. Cities
in possession of any cue tend to have a larger pop-
ulation size than cities lacking that cue.

2. Extreme: The most frequent city pair occurs
100 times more often than the least frequent.

In each environment the least frequent city pair
occurs 10 times. For each environment, the propor-
tion of comparisons in which each individual city
takes part is shown in Fig. 2.

It is important to note that, rather than being
interested in the problem of comparing city sizes
itself, we are concerned with the influence of fre-
quency structure on decision problems in general
(but to make our points we will concentrate in
depth on this one particular example). Indeed the
German Cities Problem is one with perhaps little
intrinsic import, serving here as a model, rather
than an object of enquiry in its own right.

3.2 The Decision Algorithms

To explore the impact of environmental frequency
structure on the structure and performance of de-
cision mechanisms, we chose a small set of such
mechanisms for comparison. The four mechanisms
we use all make their choices on the basis of some
set of the available cues, but they vary in the ex-
act number of cues used and in the complexity of
cue processing. The most sophisticated algorithm
is multiple linear regression, which first computes
the optimal weights for weighting and combining
(summing) all of the available cues so that the to-
tal difference (error) between the algorithm’s pre-
dictions (here predicted population size) and the
actual criterion values (actual population size) is
minimized. Then, to make each individual choice

between a pair of objects (e.g. cities), predictions
are made for the criterion value of each object by
weighting and summing its cue values, and the ob-
ject (city) with the higher predicted criterion value
(population size) in the pair is then chosen as the fi-
nal decision outcome. Multiple regression thus uses
all available information (cues), and is sensitive to
their predictive relationship to every object.

The second algorithm, called Dawes’s Rule, sim-
ilarly uses all of the available cues, but it processes
them in a rather less sophisticated fashion. Ini-
tially, the algorithm must compute the direction
of association between each cue and the criterion
value — that is, does the cue on average indicate
a higher or a lower criterion value (so for exam-
ple, does having a Bundesliga soccer team indicate
a higher city size in over half of the city compar-
isons?). Then, to make each individual pair com-
parison, the number of negatively-associated cues
for each object is subtracted from the number of
its positively-associated cues to create a final score
or tally, and the object with the higher score is cho-
sen. This simple method works surprisingly well —
Robyn Dawes, after whom it is named, has demon-
strated its ability to come close to the performance
of multiple regression (Dawes & Corrigan, 1974) —
even though it is sensitive only to the “direction”
in which each cue points (indicating higher or lower
criterion values), but not how strongly.

The last two algorithms take a different approach
to decision making. Rather than combining all of
the available cues in some manner, they consider
cues one at a time, sequentially, until the first cue
that enables a decision to be made is found. This
decisive cue will be the first which discriminates
between the two objects being compared, i.e., one
object possesses the cue whilst the other does not.
If possession of the cue is positively correlated with
the criterion, the object in possession of the cue is
chosen. If possession of the cue is negatively cor-
related with the criterion, the object lacking the
cue is chosen. Once a decision has been reached
in this way the decision-making process is at an
end — all further cues are ignored. Thus all of the
available information need not be (and usually is
not) considered, let alone processed — and the ul-
timate decision is always made on the basis of just
one discriminating cue. By considering the cues in
different orders, different one-reason decision mak-
ing heuristics can be built (see Gigerenzer, Todd,
and the ABC Research Group, 1999, for further
details).

In particular, here we use the Take The Best algo-
rithm, which orders cues by their validity — that is,
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10



by how often they indicate the larger criterion value
in a pair of discriminated objects — so that the best
cues are considered first. Take The Best is thus sen-
sitive to the direction and strength with which cues
indicate the criterion values, but its sensitivity to
cue strength only extends to their ranking, not to
their precise differences in strength. (Hence, the
strength or validity of two cues could change sig-
nificantly without affecting how they are used by
Take The Best; only if their relative ranks change
— if one cue becomes stronger than the other —
will they be used in a different order.)

We also compare the effectiveness of an even sim-
pler one-reason decision algorithm, the Minimalist
heuristic, which examines cues in a random order,
stopping when it stumbles upon the first cue which
discriminates between the objects. Minimalist is
thus not sensitive to cue strength at all, but only
to what direction the cue points with respect to
the criterion (that is, whether it indicates higher or
lower criterion values, or in other words, whether
its validity is above or below 0.5). And yet despite
its extreme simplicity, Minimalist does not fall far
behind the other algorithms, as we will see in the
next section.

3.3 Their Performance

Each algorithm was parameterized (e.g., cues or-
dered or weighted) on the basis of the skewed en-
vironment within which their performance was to
be assessed. This ensures that each algorithm was
appropriately matched to its environment. FEach
algorithm was then made to judge which was the
larger of every possible pair of cities and their aver-
age performance across the entire set of pairs was
computed. However, some pairs of cities were pre-
sented multiple times according to the frequency
structure of the environment. Thus, a judgement
concerning a frequent pair of cities contributes more
to the performance of an algorithm than a judge-
ment concerning an infrequent pair of cities.
Whilst the performance of each algorithm rel-
ative to the others remained stable across envi-
ronments, the absolute performance (i) increased
with increasing Product Skew, (ii) increased with
increasing Difference Skew, (iii) decreased with in-
creasing Similarity Skew, and (iv) decreased with
increasing Reciprocal Skew (Fig. 3). It appears rea-
sonable that choosing the larger of two similarly
sized cities will be harder than making the same
judgements concerning pairs of dissimilar cities,
and perhaps that inferring the larger of a pair of
smaller cities will be harder than inferring the most
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populous of a pair of larger cities, since smaller
cities may resemble each other more than larger
ones. Because we are dealing with an artificial de-
cision problem we are in a position to move be-
yond these intuitive assessments of difficulty and
explore explanations for the variation in perfor-
mance caused by our manipulations of the prob-
lem’s frequency structure.

The source of changes in the algorithms’ perfor-
mances clearly lies in changes in both the predic-
tive validities and the discrimination rates of the
cues made available to the algorithms (Fig. 4 and
Fig. 5). Validity is defined as the ratio of the num-
ber of correct judgements made by a cue to the
total number of judgements made by a cue, whilst
discrimination rate is defined as the ratio of the
number of judgements made by a cue to the to-
tal number of judgements sought from a cue. Some
cues respond positively to a certain frequency skew,
tending to correctly predict a greater proportion
of judgements as those comparisons that the cue
discriminates correctly become increasingly over-
represented. In contrast, other cues may suffer from
the same frequency skew, as the comparisons that
they deal with correctly become increasingly under-
represented. In terms of both changes in valid-
ity and discrimination rate, groups of cues appear
to respond similarly to particular manipulations of
frequency structure, suggesting that a typology of
cues could be constructed.

In summary, we have seen that frequency struc-
ture affects the performance of decision-making al-
gorithms. Despite algorithms having been config-
ured to suit each structured environment, system-
atic differences in their performance were induced
by skewing the frequency structure of these envi-
ronments in particular ways. The general drop in
performance induced by Similarity Skew and Re-
ciprocal Skew coupled with the general increase in
performance induced by Product Skew and Differ-
ence Skew indicate that the former are harder to
deal with than the latter. Whilst different cues re-
spond differently to different frequency structures,
the character of this response is often shared by
several cues.

3.4 Explaining Performance in
Terms of Environment Struc-
ture

There are several possible explanations for the
changes in performance induced by changes in en-
vironment structure in this domain, some of which
are specific to the German cities problem and some
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of which are more general. The first and most
general is that there exist properties inherent to
dichotomous-cue pairwise choice problems which
imply that particular kinds of frequency structure
will be more difficult than others. The second is
that underlying properties of the decision criterion
of this particular problem control the impact of dif-
ferent frequency structures. Third, the distribu-
tions of the cues across the German cities might
influence the manner in which frequency structure
affects decision-making performance. Fourth, the
changes in environment structure may not make
the problem easier or more difficult in general, but
either favor or disfavor certain algorithms, of which
the ones tested are examples.

A combination of these explanations seems most
likely to account for the results reported above.
However, it is worth noting some points in favor
of this first explanation. Most importantly, all
four decision heuristics responded similarly to the
changes in environment structure that we imposed.
These heuristics differ in many ways, yet benefit or
suffer from the same kinds of environment struc-
ture. Furthermore, the effects on performance in-
duced by changes in environment structure occur
irrespective of the sensitivity of the algorithms to
these changes.

For example, the simplest of the strategies tested,
Minimalist, is affected by changes in environmen-
tal frequency structure, tracking the performance
of the other algorithms (although always at a slight
distance), despite it not being sensitive to most of
these changes. Recall that Minimalist uses the po-
larity of each cue to govern its inferences. As such,
this strategy treats environments identically unless
the polarity of at least one cue differs between them
(e.g., a cue which predicted high population size in
the flat environment predicts low population size in
the skewed environment).

For the frequency structures explored here, out
of the nine cues in eight skewed environments only
five reversals of predictive validity occurred. Four
of these reversals affected the East Germany cue,
whilst the remaining one affected the Industrial
Belt cue. The two cues which suffer validity re-
versal have the lowest validity of the nine available,
ensuring that their reversal makes little impact on
the performance of the algorithm. This is not sur-
prising since the polarity of cues with poor validity
will be more easily reversed by manipulation of an
environment’s frequency structure. These observa-
tions suggest that Minimalist is typically oblivious
to the manipulations of frequency structure that we
have imposed on the German Cities Problem.
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This type of analysis draws attention to the sen-
sitivity of algorithms to changes in their environ-
ment. Minimalist and Dawes’s Rule only accommo-
date changes in the polarity of cues. Take The Best
is only sensitive to changes in cue validity which
are large enough to cause changes in the rank or-
der of cues by their validity (see Fig.6). Multiple
regression is in principle sensitive to any change in
cue validity. Given these facts, it is understand-
able that the difference in performance between a
sensitive algorithm and a less sensitive algorithm
increases with the performance of the former, i.e.,
the degree to which a sensitive algorithm outstrips
its less sensitive competitors increases with the de-
gree to which the sensitive algorithm can exploit
the structure of its environment.

This can be seen by looking at the difference
between the performance of the most sensitive al-
gorithm, multiple regression, and that of the least
sensitive, Minimalist, across all nine environments.
This difference is impressively positively correlated
with the absolute performance of multiple regres-
sion (r=0.92). That is, multiple regression benefits
from its greater sensitivity to environment struc-
ture by exploiting this structure to a greater ex-
tent. Indeed all 6 such comparisons between al-
gorithms are correlated in the predicted direction
(r>0.75) except that Take The Best’s advantage
over Dawes’s Rule in terms of sensitivity does not
translate into an increasing advantage over Dawes
in the most structured environments (r=-0.6).

It is important to stress at this point that we
are considering here only the fitting performance of
the four algorithms — that is, how well they can ex-
ploit the structure in a particular set of data from a
particular environment. (This situation is also de-
scribed as one in which the data set on which the
algorithm is trained is the same as the data set on
which the algorithm’s performance is tested.) In
this case, the set of data being fitted by the al-
gorithms is the entire frequency-skewed set of all
pairs of cities. Thus, there is no generalization to
new data (where the training set and testing set
differ) in the analysis we present here. Generaliza-
tion performance is of course also of great interest
(see Martignon & Schmitt, this issue, for a detailed
discussion of the generalization robustness of sim-
ple algorithms including Take The Best). But first
we must understand more about how the structure
in a particular set of data can be exploited by al-
gorithms to make accurate decisions in that same
data set.

How can we test whether the changes in perfor-
mance induced by our manipulation of frequency
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Figure 6: Take The Best utilizes cues in an order
determined by their validities. Here the manner in
which this cue order changes as the result of fre-
quency structure affecting cue validities is shown
for the 9 environments.

structure are not due to some facts peculiar to Ger-
man cities (and other related environments)? One
clue comes from Fig. 2, where it appears that Prod-
uct and Difference Skew have qualitatively anal-
ogous affects on the frequency with which differ-
ent cities appear in test items. Similarly, Recipro-
cal and Similarity Skew have comparable effects on
these distributions. This could presumably account
for the similarity in performance of algorithms in
these environments — but how could this pattern
arise?

The similarity between Product- and Difference-
Skewed environments, and between Reciprocal- and
Similarity-Skewed environments, stems from the
underlying structure of the distribution of popula-
tion size across German cities. Since the population
of German cities decreases roughly exponentially
with rank, forming a so-called J-shaped distribu-
tion (see Hertwig et al., 1999), the largest cities
(which feature most frequently in the Product-
Skewed environments) are also very different from
most of the other cities, and hence feature most
frequently in the Difference-Skewed environments.
Similarly, the many small cities are similar in
size to each other and hence are disproportion-
ately represented in both the Reciprocal-Skewed
and Similarity-Skewed environments. (If the fre-
quency structure of each environment had been
determined using the rank, rather than the real
value, of each cities population size, these similari-
ties would be markedly reduced since they rely es-
sentially on the clustering of smaller cities and the
isolation of larger cities along the population size
dimension.)

Although pairs of the environments do indeed
appear alike in their gross characteristics, Prod-
uct and Difference Skew differ considerably in
the extent to which the most common pairs
are over-represented in comparison to the least
common pairs. Furthermore, Reciprocal and
Similarity Skew differ in that the latter fea-
tures particular mid-sized cities far more fre-
quently than the former. For example, in the
extreme Similarity-Skewed environment, Miinster
and Moénchengladbach, cities which differ in popu-
lation size by only two thousand inhabitants, fea-
ture in 28% more test items (mostly as a pair to-
gether) than the average, and in 62% more test
items than they appear in within the extreme
Reciprocal-Skewed environment (this accounts for
the blips to the right of center of the plot of the
two Similarity Skew environments shown in Fig. 2).
These differences in environment structure are re-
flected in the fact that some cues respond differ-
ently to manipulations which appear superficially
similar. For example, the Soccer cue gains va-
lidity under Difference and Reciprocal Skew but
loses it under Product and Similarity Skew (see
Fig. 4). Thus the apparent similarities between en-
vironments are perhaps not enough to explain the
manner in which algorithm performance varies with
frequency structure.

In line with the second explanation for environ-
mental impacts on performance given at the be-
ginning of this section, it could be the case that
the arbitrary set of nine cues upon which the al-
gorithms must base their judgements favor certain
city pairs over others. Perhaps we have provided
no cues which correctly discriminate between small
cities, or between similarly sized cities. This type
of explanation draws attention to the fact that in
structured environments, not just the predictive va-
lidity of a cue, but where that validity stems from in
the space of possible problem items, is important.
In order to assess the relevance of this argument,
we need to know whether the nine cues available
to the algorithms in this study are representative
of the 28 logically possible ways in which a binary
cue can apply to 83 objects.

The space required to plot each of these possible
cues is prohibitive, but we can expect to approx-
imate the qualitative results by carrying out the
same process for a toy problem of 5 objects, and
hence 25 = 32 possible cues (Fig. 7). There are
44342+ 1 = 10 possible pairwise comparisons
between 5 objects (ignoring order). In order to rep-
resent the manner in which a cue’s performance is
distributed across this space of possible compar-
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isons we plot the lower left half of a 5-by-5 matrix
containing the outcome of each comparison. Where
a cue fails to discriminate between a pair of objects
the cell is left blank; correct discriminations are
shown in grey; incorrect discriminations are black.
Taking the right angle as the origin, cells are in-
dexed by the coordinate (z,y) with object value on
the criterion decreasing with increasing = and in-
creasing with increasing y. This ensures that cells
near the right-angle of the triangle represent com-
parisons between objects with dissimilar values on
the criterion (e.g., A vs. E), whereas cells near the
hypotenuse represent comparisons between objects
with similar values on the criterion (e.g., B vs. C).
Cells in the upper corner represent comparisons be-
tween pairs of objects which both have high values
on the criterion (e.g., A vs. B), whereas cells in the
lower-right corner represent comparisons between
objects which both have low values on the criterion
(e.g., D vs. E).

The first thing to note about the distribution of
possible cues is that there are far fewer of them
than there are possible ways of coloring the cells of
one of the triangles used to represent each cue (i.e.,
310). This indicates that the nature of the problem
is constraining the kind of cues that are possible.
For example it is impossible for one cue to either
deal correctly with all possible comparisons or deal
incorrectly with all possible comparisons (i.e., no
triangle is entirely grey or black). We can see that
whilst cues exist which correctly discriminate large
cities from small cities (i.e., correctly deal with cells
in the right angle of the triangle) and correctly dis-
criminate amongst large cities (i.e., the upper cor-
ner), or small cities (the lower-right corner), there
are no cues which correctly discriminate amongst
many similar cities (i.e., the cells lying along the
hypotenuse of the triangle are never entirely grey).
These are facts about binary cues in general, and
thus will apply to a wide range of environments.

However, it is clear that this reasoning does not
straightforwardly apply when continuously valued
cues are available to an algorithm which is capa-
ble of using them. One continuous cue is sufficient
to accurately discriminate between all adjacent ob-
jects. Furthermore, a discrete cue with n possible
values is capable of distinguishing between all of
the adjacent pairs of n objects. A discrete cue with
a valency of ¢ is able to correctly make half of
these pairwise comparisons without incurring error
on the remaining pairwise comparisons between ad-
jacent objects. Two such cues would thus be suffi-
cient to achieve perfect performance on the leading
diagonal of a problem’s triangle diagram.
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With this understanding of the space of possible
cues in hand, we are in a position to assess the rep-
resentativeness of the cues made available to the al-
gorithms in the German Cities Problem. The set of
cues used in this problem were collected from rel-
evant almanacs containing data on German cities
(Ulrich Hoffrage & Ralph Hertwig, pers. comm.,
1999). As such the cues are a relatively representa-
tive sample of the kind of facts people might know
about cities. The manner in which correct and in-
correct judgements are distributed over the space
of possible comparisons for each cue is plotted in
Fig. 8 according to the same principles described
above for the 5-object case. The cues involved
in the German Cities Problem tend to allow dis-
crimination amongst the larger cities, and between
larger and smaller cities, but fail to discriminate
correctly amongst similarly sized cities, or amongst
small cities. The first of these deficiencies stems
from the logical constraints of pairwise choice and
binary cues. As just argued for the 5-object case,
there simply do not exist cues which correctly deal
with many comparisons between objects with sim-
ilar values on the criterion dimension. In order to
accurately deal with each comparison along the hy-
potenuse of the triangle diagrams presented here,
83 binary cues must be consulted.

In contrast, the fact that the cues available to
the algorithms facing the German Cities Problem
do not tend to discriminate amongst small cities,
is not a result of some constraint on binary cues.
This deficiency is due to this set of nine cues being a
biased sample of logically possible cues. Is there an
explanation for this bias, or must it be attributed to
the vagaries of sampling error? There are reasons
to believe that the former is most likely.

Whilst there may exist cues which discriminate
amongst smaller cities, they are unlikely to be
recorded in almanacs, which, since larger cities are
more interesting to their readers, tend to record
facts which are true of large cities, and false of
small ones. In addition, these facts are not true
of every large city, but tend to be false of almost
every small city, ensuring that they tend to discrim-
inate amongst large cities as well as between large
cities and small cities, but not to discriminate well
amongst small cities.

Thus, randomly sampling cues from those made
available in the public domain will tend to result
in a set of cues which is not representative of the
space of possible cues, but which is biased towards
those cues suitable to the structure of the prob-
lem which they have been selected for. This set of
cues will not be able to accommodate a manipula-



tion of environment structure, if this manipulation
opposes the natural structure of the problem re-
sponsible for their existence in the public domain.
In skewing the German Cities Problem in the di-
rection of small population size, we have opposed
the natural tendency for large cities to be more fre-
quently reasoned about and discussed. As a result,
the validity of cues taken from almanacs has tended
to fall under Reciprocal Skew.

This argument does not apply solely to the Ger-
man Cities Problem, but in principle can be gen-
eralized to any decision problem. Well adapted
decision makers will tend to recognize and attend
to cues which are well-suited to the predictive de-
mands of the problem as influenced by its frequency
structure and significance structure. This implies
that, to the extent that such cues are logically
possible, the cues used by such decision makers
will tend to discriminate correctly between frequent
and/or significant pairs of objects, possibly at the
expense of rare and/or insignificant pairs. How-
ever, such a selection of well-adapted cues will not
necessarily support performance on a differently
structured decision problem. More specifically, if
a decision problem is artificially skewed in favour
of precisely those items which are insignificant in
the natural decision-making problem, natural cues
will tend to be unable to cope with this manipula-
tion. For the German Cities Problem, this inability
to cope with unnatural problem structure is mani-
fested in the poor performance of algorithms in the
Reciprocal Skew conditions.

In concert, the effects outlined above ensure that
the structure of the 9 cues made available to al-
gorithms in the German Cities Problem favours
environments where they are more often called
on to choose between pairs of large cities, or be-
tween large and small cities (Product and Differ-
ence Skew, respectively). For the same reasons,
these algorithms will tend to perform poorly when
forced to choose more often between small or sim-
ilarly sized cities (Reciprocal and Similarity Skew,
respectively). These general trends should apply
to any binary-cue-based choice environment where
alternatives at one end of the criterion dimension
are more important or frequent than those at the
other end.

In summary, the variation of algorithm perfor-
mance with environment structure can be traced
to several sources. First, some classes of frequency
skew are inherently difficult to accommodate due to
the nature of binary cues and the pairwise choice
paradigm. This argument accounts for the reduced
performance on Similarity-Skewed environments.
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National Capital Soccer Team

Intercity Train License Plate

Figure 8: Judgement distributions for each of the 9
cues made available to the decision-making heuris-
tics in the German Cities Problem. Each triangle
represents all possible pairs of cities (because pair
order is irrelevant, the upper half of each matrix is
redundant, and hence omitted). Cities are arranged
in order of increasing population size from left to
right and top to bottom. Cues are arranged in order
of increasing validity in a flat environment. Grey
indicates correct inferences, black indicates incor-
rect inferences, and cues fail to discriminate in the
remaining instances.

Second, some classes of frequency skew are difficult
contingent on the cues available. This argument ac-
counts for the reduced performance on Reciprocal-
Skewed environments. Third, some algorithms are
more sensitive to environment structure than oth-
ers and are thus more likely to accommodate par-
ticular manipulations. The heuristics assessed here
vary in their sensitivity to environment structure,
and this sensitivity manifested itself in differences
in the size of the advantage one algorithm achieved
over another in different environments.

3.5 Concluding Thoughts on Fre-
quency Structure

By employing the German Cities Problem as a
toy environment, we have shown that frequency
structure impacts on the performance of decision-
making algorithms. The character of this impact
is complex. The presence of environment structure
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demands that decision-makers trade off general per-
formance against performance on important sub-
sets of test items. As a result, not only the validity
of a cue, but the source of this validity is of im-
portance to decision makers. Cues which gain their
validity from frequent test-items are more useful
than equivalent cues which gain their validity from
rare test-items.

Furthermore, environment structure interacts
with the necessary and contingent characteristics
of a decision problem, and the strengths and weak-
nesses of a particular algorithm, to influence the
performance of that algorithm.

4 Significance Structure

As well as differing in their relative frequency, natu-
rally occurring problems differ in their relative sig-
nificance. Consider a list of decisions which might
be faced on the way to work: Which tie should I
wear? Should I walk to the bus stop or ride my bi-
cycle? Which bus should I catch? Is it safe to cross
the road? How fast should I walk? How fast is that
car approaching? Should I jump left or right? How
am I going to make that 9:15 meeting now?

Clearly these dilemmas differ along many dimen-
sions; some are leisurely, some pressing; some are
conscious, some unconscious; some are casual, some
weighty. Here we will consider the effects of varia-
tion in the importance or gravity of decision prob-
lems on the structure and performance of decision-
making mechanisms.

There are two ways in which the significance
structure of a decision problem can be mischarac-
terized. First, the goal of the decision-maker may
be misconceived. For example, doctors may be as-
sessed on the accuracy of their diagnoses when what
is significant to them is not forming an accurate
judgement of what ails a patient, but prescribing
measures which will alleviate this ailment. Whilst
correct diagnoses are clearly a step towards this
goal, they do not constitute it. There may be di-
agnostic errors which have no effect on a doctor’s
prescription because the confounded conditions de-
mand the same treatment (see Connolly, this is-
sue, for discussion along these lines). Similarly,
the prescription of an incorrect treatment regime
may, nonetheless, sometimes result in a cured pa-
tient (e.g., prescribing a course of vitamin supple-
ments, complete rest and avoidance of dairy prod-
ucts, when the correct treatment was merely relax-
ation). Mischaracterising the aims of the decision
maker leads to a misunderstanding of what counts
as success and what counts as error.

The second, and related, manner in which signifi-
cance structure may be misconstrued is in failing to
appreciate that different decision problems differ in
their significance to the decision maker, i.e., failing
to discriminate between inconsequential decisions
and those of much greater significance. A doctor
confronted with what appears to be a case of in-
fluenza faces a decision problem which differs from
that of a colleague encountering what appears to be
a case of meningitis. Errors in treating such cases
would have radically different consequences. As-
suming that a doctor will not treat his patients with
100% accuracy, it is of the utmost importance that
the errors which are made are distributed amongst
the less important cases rather than those involving
life-threatening illnesses. Indeed, it may be neces-
sary to trade off accuracy in general against ac-
curacy over an important subset of decision items
(Sober, 1994). Assessing a doctor’s performance
using a metric which is insensitive to differences in
significance will fail to capture this trade-off.

In general, a problem’s significance structure is
the manner in which the different decision items
which constitute the problem differ in terms of their
consequences for the decision maker’s goal. For di-
chotomous decision problems such as the ones con-
sidered here, in which a test item’s significance can
be operationalized as the difference in value be-
tween the two possible outcomes of the decision re-
garding that item, significance structure describes
the manner in which this difference varies across
the space of possible test items.

4.1 The Mushroom Problem

Imagine a fungivorous forager which, throughout
its lifetime, encounters mushrooms, one after the
other. Whilst some of these mushrooms are good
sources of valuable nutrition, others contain dam-
aging toxins. When confronted by a mushroom,
the forager must decide whether to eat it, or re-
ject it in favor of a safe but mediocre food source
assumed to be ever present in the forager’s envi-
ronment. The forager must make its decisions on
the basis of binary cues which it is sensitive to,
and which together describe each mushroom, for
instance, odorous versus odorless, colorful versus
dull, and so on.

The significance of these decisions will vary
across the space of mushrooms liable to be encoun-
tered by a forager. How will this variation impact
on the success of the different foraging strategies
that such a forager might employ? In order to an-
swer this question we simulated such a forager, and
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Cue Validity Hits Misses  False Alarms Rejections
odor 0.886 0.419 0.015 0.098 0.467
gill-size 0.757 0.483 0.208 0.035 0.274
bruises? 0.744 0.339 0.077 0.179 0.405
population 0.670 0.240 0.052 0.278 0.430
gill-color 0.666 0.305 0.121 0.213 0.361
spore-print-color 0.661 0.429 0.250 0.089 0.232
habitat 0.624 0.466 0.324 0.052 0.158
gill-spacing 0.616 0.148 0.014 0.370 0.468
stalk-color-above-ring 0.556 0.445 0.371 0.073 0.111
cap-shape 0.555 0.290 0.217 0.228 0.265
stalk-shape 0.553 0.319 0.248 0.199 0.234
stalk-color-below-ring 0.552 0.439 0.369 0.079 0.113
cap-surface 0.551 0.377 0.308 0.141 0.174
stalk-surface-below-ring 0.537 0.082 0.027 0.436 0.455
cap-color 0.533 0.292 0.241 0.226 0.241
ring-number 0.522 0.518 0.478 0.000 0.004
ring-type 0.522 0.518 0.478 0.000 0.004
stalk-surface-above-ring 0.515 0.052 0.019 0.466 0.463
veil-color 0.505 0.024 0.001 0.494 0.481
gill-attachment 0.504 0.024 0.002 0.494 0.480

Figure 9: The appearance of each mushroom is
characterized by twenty dichotomous cues. The
rates of Hits, Misses, False Alarms and correct Re-
jections have been calculated across the entire set, of
8124 mushrooms. Hits are cases in which a cue cor-
rectly indicates that a mushroom is edible. Misses
are cases in which a cue incorrectly indicates that
a poisonous mushroom is edible. False Alarms are
cases in which a cue falsely indicates that an edi-
ble mushroom is poisonous. Correct Rejections are
cases in which a cue correctly indicates that a mush-
room is poisonous. Cues are shown ordered by their
Validity, where Validity=Hits+correct Rejections.

explored how the performance of various foraging
strategies was affected by manipulation of the sig-
nificance structure of the artificial mushroom envi-
ronment it inhabited.

We utilized Schlimmer’s (1987) database of 8124
different mushrooms from 23 species within the
Agaricus and Lepiota families (available from the
University of California, Irvine Machine Learning
Repository; Blake, Keogh, & Merz, 1998). Each
mushroom was described using 20 binary cues (di-
chotomized versions of the original data), as shown
in Fig. 9. Of the 8124 mushrooms, 4208 (51.8%)
were classified as edible, whereas 3916 (48.2%) were
classified as poisonous. The rates at which each cue
is able to distinguish poisonous from edible mush-
rooms can be captured by four values: Hit rate,
Miss rate, False Alarm rate, and Correct Rejection
rate. These rates correspond to the cue’s tendency
to correctly or incorrectly indicate edible mush-
rooms, and incorrectly or correctly indicate poi-
sonous mushrooms respectively, and are reported
in Fig. 9. A cue’s validity can be calculated as the
proportion of correct inferences it makes, i.e., as
the sum of its hit rate and correct rejection rate.

The significance structure of this decision prob-

2] 2] 2]
2 =2 =
0| 2 o | 2 o| £
2| 3 5|3 5| 3
Orthodox| G| & Flat| § | £ Lethal| §| &
Accept| +1| O Accept| +5| -5 Accept| +5|-
Reect| 0 | +1 Reject+.18+.18)  Reject|+.18+.18
- i e
NI R
Odorlo |5 |5 8|5 |% |2/ 2|3
+5|+15/+20| - | - | - | - | - | - | Edible
Accept
5 - -5|-5|-5|-5|-5|-10| Poisonous
_ Edible
Reject +.18
Poisonous

Figure 10: Four payoff matrices determining the
significance structure of the Mushroom Problem.
Each cell contains the points awarded for an indi-
vidual decision. Dashes in the Odor matrix indicate
that no mushrooms were present in a particular cell.

lem can be manipulated by defining different pay-
off matrices governing a decision maker’s perfor-
mance. Fig. 10 depicts the four significance struc-
tures we explored. The first represents a scheme
which assumes no significance structure exists. A
decision maker receives a point for each positive
response to an edible mushroom and each nega-
tive response to a poisonous mushroom, and no
points for any other responses. This scheme re-
wards accurate classification and is termed Ortho-
dox since accuracy metrics of this type dominate
much of decision-making psychology. A student be-
ing tested on his knowledge of mushrooms might
be assessed in this way — the student is sent out
into the environment with two baskets, one labeled
edible, one labeled poisonous. Upon his return, a
teacher awards a point for every mushroom that
the student has placed in the correct basket.

This Orthodox significance structure treats all
successes as equivalent and commensurate, and all
errors likewise. However, a forager actually con-
suming or rejecting mushrooms has not achieved
its goals to the same extent by rejecting a poi-
sonous mushroom as by consuming an edible one.
Although these are both appropriate behaviors, in
the latter case the forager has gained valuable nu-
trition, in the former it has avoided being poi-
soned. Similarly, for such a forager, the conse-
quences of the two classes of possible error differ
radically. Whilst the rejection of an edible mush-
room incurs an opportunity cost, the consumption
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of a poisonous one incurs the debilitating effects of
whatever toxin the mushroom contains.

The second payoff scheme attempts to cap-
ture this significance structure to a greater extent
through awarding points for eating edible mush-
rooms, deducting points for eating poisonous mush-
rooms, and awarding a negligible amount for reject-
ing mushrooms in favor of the alternative mediocre
foodstuff. The payoff matrix is constructed such
that eating all mushrooms achieves, on average, the
same score as rejecting all mushrooms. This scheme
can be considered to offer the forager the choice be-
tween a risky, but potentially high value food item
(the mushroom) and a safe, but relatively low value
food item (the alternative). It is termed Flat, since
each poisonous mushroom and each edible mush-
room are equivalently poisonous or nutritious.

The two environments described so far can be ad-
equately captured by a signal detection paradigm.
In varying the points awarded for eating and reject-
ing mushrooms which are poisonous or edible we
have been defining the costs and benefits of the four
cells in a signal detection matrix — hits, misses,
false alarms and correct rejections.

However, significance structure can be finer
grained than the signal detection picture implies.
In the third environment, termed Odor, the value
of consuming edible mushrooms and the cost of eat-
ing poisonous mushrooms is correlated with their
odor. Whilst the fungivore can discriminate be-
tween odorous and odorless mushrooms, the signifi-
cance of a decision involving a particular mushroom
depends on whether the mushroom smells “foul”,
“fishy”, “pungent”, and so forth, that is, on fea-
tures which are not directly available to the for-
ager, but may be recoverable from combinations of
the dichotomous cues which are available. Within
this environment, the costs and benefits of hits and
misses vary systematically across the space of deci-
sion items.

Furthermore, significance structure can some-
times be difficult to capture in the terms of signal
detection. For example, in reality poisonous mush-
rooms may be more dangerous than the deduction
of points implies. The fourth environment is iden-
tical to the Flat environment save that the con-
sumption of any poisonous mushroom results in the
death of the fungivore, that is, an immediate and
irreversible assignment of a score of zero points to
the forager. This Lethal environment ensures that
successes and failures cease to be measured in com-
mensurate ways. No amount of edible mushrooms
can be eaten to offset the consumption of a lethally
poisonous mushroom. This is indicated in Fig. 10
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Figure 11: Each cue is treated in one of seven ways.
The presence or absence of a cue can prompt a
forager to reject (cross) or accept (tick) a mush-
room, or to check the next cue (?). Notice that
since, across the entire population of mushrooms,
the presence of each cue tends to indicate edibil-
ity, high-performance foragers might be expected
to utilize rules 5, 6, and 7 more than 1, 2, and 3.
Rules 3 and 5 always stop search since they propose
a definite action based on the presence or absence
of the cue they apply to. Rule 4 ignores the cue it
is applied to.

by assigning a utility of negative infinity to the miss
cell of the Lethal payoff matrix.

These four environments demonstrate the range
of possibilities that a problem’s significance struc-
ture can cover. Real decision problems can be ex-
pected to exhibit significance structures which are
more complex still than those explored here since
neither options, nor the evidence upon which to
decide between them, need be binary in nature;
further, differing outcomes may not be as easily
reducible to a single dimensional of utility. In the
next section we assess the effects that the four vari-
ations of significance structure have on the perfor-
mance and structure of a class of simple decision
making algorithms.

We can make some general predictions regarding
the effects of these manipulations. For instance,
those algorithms tailored to an inappropriate sig-
nificance structure should tend to be outperformed
by those which are appropriately tailored. In ad-
dition, algorithms tailored to the Lethal environ-
ment should be conservative in their food choice,
whilst those tailored to the Flat or Odor environ-
ments should tend to make errors within a subset
of insignificant mushrooms in comparison to those
algorithms tailored to the Orthodox environment,
for whom one error is equivalent to any other.

4.2 The Algorithms

Here we explore a class of lexicographic decision
algorithms. Like Take The Best, described above,
these decision heuristics treat evidence one piece at



a time and make a decision based on the first piece
of evidence to suggest a course of action other than
checking for more information, i.e., the first piece
of information that allows a choice to be made. In
this case the evidence is in the form of binary cues
which are consulted in some order (tied ranks are
possible in which case the tied cues are consulted
in random order). Each cue is associated with a
stopping rule. This rule determines whether the
presence or absence of the cue leads to the forager
eating or rejecting the mushroom, or to the forager
consulting the next cue. We model seven different
stopping rules (Fig. 11). If an algorithm checks all
20 cues without making a decision, the action taken
is determined by a biased coin toss.

To understand how significance structure can in-
teract with the structure of decision mechanisms
and affect their performance, we will focus on this
example task to find and compare strategies which
perform well within each of the four environments
described above. We cannot assess each member of
the class of lexicographic rules since, given that cue
ranks may be tied, there are over 20! orderings of
cues and each ordering can be governed by 72° com-
binations of stopping rules. To find lexicographic
algorithms which suit the Mushroom Problem un-
der a particular significance structure, we imple-
mented a form of parallel search inspired by natural
evolution.

The genetic algorithm we used (Holland, 1975;
Goldberg, 1989; Mitchell, 1996) started with a pop-
ulation of 1000 randomly generated algorithms and
assessed the performance of each on the Mushroom
Problem under a particular significance structure
(i.e., in a particular environment). Each assessment
involved the particular algorithm encountering 100
mushrooms drawn at random from the population
of 8124, eating or rejecting each mushroom, and
gaining or losing points as a result. Once each of
the 1000 algorithms was assessed, a new population
of 1000 algorithms was generated by allowing the
better performing algorithms to “reproduce”, that
is, to be copied into the next generation. This copy-
ing procedure was subject to a small chance of error
which introduced “mutations” into the strategies.
The newly generated population of offspring algo-
rithms was then assessed as before and the process
was repeated until 5000 generations of simulated
evolution have taken place.

As a result of this assessment, reproduction, and
mutation cycle, the population of 1000 algorithms
became better and better adapted to the problem
it faced. Over many thousands of generations per-
formance increased as the algorithms converged on
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successful orderings of cues and appropriate stop-
ping rules for these cues.

In each of the four environments depicted in
Fig. 10 we assessed 20 independent populations
of 1000 algorithms each for 5000 generations of
simulated evolution. During reproduction, there
was a 1 in 100 chance that each of an algorithm’s
parameters might be mutated. Mutations, when
they did occur, consisted of (i) a cue’s rank be-
ing replaced by a random value drawn from the
set {0.5,1,1.5...20,20.5}!, (ii) a cue’s stopping rule
being replaced by one drawn at random from the
seven possible rules, or (iii) a strategy’s biased coin
being replaced by a coin with bias drawn randomly
from the range [0,1].

For each of the four environments, the top 5
(0.5%) foragers from each of the 20 populations
at generation 5000 were collected, and their long-
term mean performance over 10,000 lifetimes (i.e.,
1,000,000 mushrooms) was calculated. The best
such long-term mean performance was recorded.
Algorithms which failed to achieve a long-term
mean performance within 5% of this threshold were
discarded.

Duplicate equivalent strategies were then ex-
cluded. Strategies were deemed equivalent if they
exhibited the same cue ordering and applied the
same stopping rules to these cues, once redundant
cues had been removed. Redundant cues were ei-
ther those associated with stopping rule 4, those
which were never consulted because a cue associ-
ated with rule 3 or 5 preceded them in the cue
order, or those which, over the course of 10,000
lifetimes, although consulted, had never stopped
search. The remaining “elite” strategies are thus
unique and perform well in the environment to
which they were adapted.

4.3 The Elite Strategies

At this point, we will delve into a specific detailed
analysis of the evolved strategies in these environ-
ments to see what general principles we can uncover
and to demonstrate the sorts of analytic approaches
that can aid in such a search. A first indication that
the strategies fit for one environment tend to differ
from those fit for another is given by the Venn dia-
gram in Fig. 12 which demonstrates that of the 93
elite strategies found through evolutionary search,
only 2 occurred in more than one environment.

lHalf ranks were employed so that cues could mutate
to fall in between two previously adjacently ranked cues.
After reproduction, ranks were renormalized so that they
were again consecutive integers.
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Figure 12: Two elite strategies arose in both the
Orthodox and Flat environments. The remaining
strategies are unique to the environment in which
they evolved.
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Figure 14: The mean number of cues involved in the
elite strategies from each of the four environments
explored. This measure differs significantly across
the four conditions (x? test, p < 0.001). Whilst nei-
ther Orthodox and Flat, nor Odor and Lethal differ
from one another (x? test, p < 0.5), together Or-
thodox collapsed with Flat differ significantly from
Odor collapsed with Lethal (x2 test, p < 0.0001).

How do the elite strategies within one environ-
ment resemble each other, and how do they differ
from those found in different reward regimes? The
set of elite Orthodox strategies is heterogeneous in
that many cues feature across the strategy set, and
there is little consensus regarding which cues are
useful and which are not (Fig. 13). In contrast,
the other three sets of elite strategies each feature
a smaller number of cues, and exhibit a higher de-
gree of consensus regarding which cues are impor-
tant. Furthermore, each individual elite strategy
in the Odor and Lethal environments tends to in-
volve a slightly but significantly greater number of
cues than elite strategies found for the other two
environments (see Fig. 14).

In combination, these results suggest that as
the significance structure of a decision environment
becomes increasingly heterogeneous, i.e., the dif-
ference in significance between decision items in-

creases, appropriate strategies become increasingly
homogeneous and less frugal in cue use. While the
set of elite strategies for the Orthodox environment
is wide and shallow, those of the Lethal and Odor
environments are narrow and deep. This phenom-
ena is reminiscent of findings concerning the differ-
ences between novice and expert decision makers.
While novices tend to pursue a variety of strate-
gies and as a group may attend to many different
sources of potentially relevant information, experts
are less variable in their approach to a problem,
typically using just those few specific cues which
are most appropriate to the decision problem at
hand (Shanteau, 1992).

The particular cues which feature in elite strate-
gies for the Mushroom Problem can be regarded as
falling into three groups. First, a few high validity
cues (e.g., odor and bruises) show up in nearly ev-
ery elite strategy, regardless of which environment
the strategy has adapted to. Second, a set of aux-
iliary cues (e.g., stalk shape and gill-spacing) tend
to feature in many of the elite strategies within a
particular environment, but do not feature strongly
in alternative environments. Third, the remaining
utilized cues tend to be idiosyncratic to particu-
lar strategies within particular environments. It
is clear that attending to high validity cues will
be a useful part of most any decision strategy, and
this observation can account for those cues that are
utilized frequently across all environments. How-
ever, cues are not always utilized in proportion to
their validity, even within the Orthodox environ-
ment. Reasonably accurate cues may be utilized
only vary rarely. For example, gill-color, which is
ranked fifth in terms of validity, is never involved
in any elite strategy in any environments.

Similarly, what marks particular cues as appro-
priate to particular environments can be hard to
trace. The spore-print-color, habitat, and stalk-
surface-below-ring cues are present in many of the
elite strategies evolved within the Lethal environ-
ment. However, these cues share few features which
can explain their utility. They are mid-ranking
in terms of validity. Although the stalk-surface-
blow-ring cue enjoys a low Miss rate, which given
the significance structure of the the Lethal envi-
ronment would appear to be crucial to the utility
of cues, the other two are unremarkable in this re-
spect. However, spore-print-color and habitat do
enjoy low rates of False Alarms. How are we to
explain this curious choice of cues?

Given that no cue perfectly predicts edibility
across the entire set of mushrooms, no cue can ini-
tially be used by a lexicographic strategy to identify
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edible mushrooms without error. Since the con-
sumption of a poisonous mushroom is fatal in the
Lethal environment, every successful strategy there
must proceed by rejecting subsets of mushrooms on
the basis of cues which tend to make correct rejec-
tions and few false alarms. It is in this respect that
spore-print-color and habitat (and odor and gill-
size) excel, allowing a strategy to confidently reject
mushrooms in the knowledge that those unrejected
will for the most part be edible. A successful strat-
egy will use early cues of this kind to filter out poi-
sonous mushrooms such that those remaining can
be split into definitely edible or possibly poisonous
by a subsequent cue (e.g., stalk-surface-below-ring).

However, this rather involved explanation can-
not, enable us to state in advance which particular
cues will be employed within elite Lethal strategies,
but merely to offer a post-hoc analysis of success-
ful strategies. Even in this respect the explana-
tory strategy is imperfect since it cannot account
for why alternative cues were not utilized in place
of those that were. For example, there exist cues
with lower false alarm rates than spore-print-color
and habitat which were not employed to any great
degree. Why were these cues eschewed?

In the Odor and Flat environments, the distri-
bution of cue usage is even harder to understand.
Gill-spacing, a popular cue in the Odor environ-
ment, is unremarkable save that it enjoys a low miss
rate. However, there is little indication that misses
are more crucial in the Odor environment than in
the Flat environment, for instance, where the gill-
spacing is never utilized by an elite strategy.

The reason for the difficulty we experience in pre-
dicting and explaining the successful cue orderings
stems from the properties of lexicographic strate-
gies and our reliance on measures of cue perfor-
mance derived from their application to the entire
space of decisions. A strategy’s highest ranked cue
will be consulted in all decisions. However, since
this first cue may sometimes suggest a course of
action (i.e., eating or rejecting) other than check-
ing the value of the next cue, this next cue will
only figure in a subset of the decision made by a
strategy. Similarly, the third cue will be consulted
for a subset of this subset — a subsubset of en-
countered mushrooms — and so on. As a result,
characteristics of a cue which have been calculated
across the whole environment, even if they suitably
accommodate significance and frequency structure,
will tend to become less and less useful the deeper
into a lexicographic strategy the cue is placed.

Fig. 15 demonstrates this problem by depicting
the direction in which cues at each rank in a lexi-

cographic strategy tend to be utilized. Recall that
depending on the stopping rule employed in con-
junction with a cue, its presence or absence can be
the prompt for either positive (eat), negative (re-
ject) or neutral (check next cue) behavior. Rules
can be divided into those which tend to consider
the presence of a cue to be an indicator of edibil-
ity and/or its absence to be an indicator of toxi-
city, and those for which the presence or absence
of the cue indicates the opposite. One might ex-
pect that since, on average across the Mushroom
Problem data set, the presence of each cue tends to
indicate edibility, rules of the former kind might be
more useful and hence better represented in the set
of elite strategies. Fig. 15 shows that this is indeed
the case early in a strategy. The first cue used by
an elite strategy is always consulted in conjunction
with a rule of this expected polarity. However, as
we descend through the ranks, more and more of
the cues begin to be associated with rules which
operate in the opposite direction, until the polarity
of a cue across the whole population of mushrooms
ceases to be a predictor of rule use at all.

The divergence between the performance of a cue
over an entire space of problem items (global valid-
ity) and its performance across the subset of items
which it actually encounters as a consequence of the
cues preceding it in a lexicographic ordering (condi-
tional validity) can be expected to increase with the
rank of a cue, as mentioned above. In addition, the
rate at which this divergence increases with rank
can be expected to itself increase with the degree to
which the significance or frequency structure of an
environment tends to focus performance on fewer
decision items. Consider that in the Orthodox en-
vironment, the contribution of each individual suc-
cess or error on the part of a cue to its validity is
equal. In contrast, within the Odor environment,
there is a differential contribution of successes and
errors to global validity. If a particular mushroom
is highly nutritious, then successful cues will tend to
be able to identify it as edible. The global validities
of each of these cues will be inflated by their ability
to correctly identify this mushroom. However, the
conditional validity of only one cue will be increased
by this ability. This is due to the fact that, in prac-
tice, only one cue will ever be used to identify this
mushroom. The remaining cues which could also
have made this correct identification have missed
out. As a result, their conditional validities will not
reflect their global validities, since whilst the latter
measure takes their performance on every decision
item into account, the former does not.

This issue closely parallels the problem of model
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reduction in the statistical practice of multiple re-
gression. Many independent variables (cues) may
have high predictive power when fitted first, that is,
exhibit a high global validity. However, when the
complete model (all cues) is fitted, the predictive
power of each contributing variable will be less than
this first-fitting measure. Discovering the best set
of predictors is a problem which cannot be solved
by consulting global measures of validity alone.

This problem has implications for lexicographic
strategies which order their cues according to global
measures of validity, as Take The Best does. Their
performance will tend to degrade in increasingly
structured environments. This is shown to be true
for the Mushroom Problem in Fig. 16, which de-
picts the mean long-term performance of each set of
elite strategies in each environment and the perfor-
mance of a lexicographic strategy with cues ordered
according to their global validities. This Take-The-
Best-like strategy does indeed perform adequately
in the Orthodox environment, but abysmally in the
three structured environments.

In addition, Fig. 16 demonstrates that the abil-
ity of strategies evolved within one environment to
perform in another varies in an intelligible man-
ner. Whilst the elite strategies evolved within the
Orthodox, Flat, and Odor environments perform
at essentially the same level within the Orthodox
and Flat environments, more of a difference is dis-
cernible within the Odor and Lethal environments
between “foreign” strategies and those indigenous
to the environment. What this demonstrates is that
elite strategies from the Orthodox, Flat, and Odor
environments can distinguish roughly the same
numbers of poisonous and edible mushrooms (hence
their similar performance in the Orthodox environ-
ment); their performance differs in exactly which
mushrooms are correctly dealt with and which are
incorrectly dealt with (hence their varying perfor-
mance in the Odor environment). Elite strategies
evolved within the Odor environment are less likely
to make errors when faced with mushrooms which
are significant in their own environment, whereas
the errors made by elite Orthodox and Flat strate-
gies are distributed over the space of mushrooms
with no concern for their impact in the Odor envi-
ronment.

One possible explanation for the difference be-
tween novices and experts noted earlier stems from
these observations. If novices do not appreciate the
underlying significance structure of a domain, but
experts do, one would expect that in addition to
novices perhaps exhibiting a lower level of overall
performance, their pattern of successes and errors
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would not match that of experts, who are more
likely to gain their performance from correctly deal-
ing with problems which they consider to be impor-
tant and/or frequent.

In the Lethal environment the difference between
well-adapted strategies and interlopers is most ev-
ident. This results from the foreign algorithms’
tendency to tolerate a few misses, since their ef-
fects can be compensated for by an associated in-
creased number of hits. In the Lethal environment
this strategy is clearly maladaptive.

The Take-The-Best-like strategy achieves its low
level of performance in the Lethal environment by
rejecting every mushroom in favor of the alternative
food source. Its conservatism or risk aversion stems
from the fact that since no single cue is capable
of making error-free recommendations of edibility
across the whole space of mushrooms, and errors of
this kind are lethal, every cue is best used to reject
mushrooms (scoring on average 0.18 rather than
negative infinity). As a result every cue is ranked
equally and the absence of any cue is taken to be
reason enough to reject any mushroom. Since each
mushroom will lack at least one cue, every mush-
room is eventually rejected by this strategy. (Sim-
ilarly, within the Flat and Odor environments this
strategy uses the presence of any cue as evidence
in favor of eating a mushroom, since individually
each cue, across the entire population, would best
be employed as just such evidence. As a result,
all mushrooms are eaten in these two environments
and again roughly chance performance is achieved.)

The approach of the elite Lethal strategies falls
somewhere between this extreme risk aversion and
the blasé attitude to misses exhibited by elite for-
eign strategies. As discussed above, by using ini-
tial cues to exclude particular sets of mostly toxic
mushrooms, elite Lethal strategies are able to use
subsequent cues to accurately distinguish edible
mushrooms from the remainder. In this way they
achieve a remarkably competent performance, on
average wrongly rejecting (false-alarming) 1 in 10
edible mushrooms and wrongly accepting (missing)
no poisonous ones.

4.4 Concluding Thoughts on Signifi-
cance Structure

Using an artificial foraging task we have demon-
strated that manipulating the significance struc-
ture of a decision problem can have important im-
plications for the success of decision-making algo-
rithms. We have shown that in order to understand
the structure and performance of decision makers
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Figure 16: The average mean long-term performance across the four environments of elite strategies

evolved for particular environments and a Take-The-
their global validity. Performance is plotted on the

Best-like strategy (TTB) that uses cues in order of
y-axis such that a score of 100 would be obtained

by an omniscient and hence perfect forager. In the Orthodox and Lethal environments random behavior

would achieve a score of zero. In the Flat and Odor
a score of roughly 10. Whilst the more unstructured

environments, random performance would achieve
environments do not tend to discriminate between

groups of elite strategies, the more structured ones favor indigenous elite strategies. TTB performs ade-
quately in the Orthodox environment, but introducing significance structure results in severely reduced

performance.

in structured environments an appreciation of this
structure is necessary. Significance structure will
impact on the performance of strategies in com-
plex ways. Specifically, using global measures of
a cue’s performance will tend to become mislead-
ing as environment structure increases, because the
disproportionate contribution of a small number of
problem items to a cue’s effective performance will
cause such global measures of a cue’s utility to de-
viate from the effective utility of a cue within a
particular strategy. This was demonstrated for lex-
icographic cue orderings. Similar lessons are likely
to apply to alternative decision heuristics.

5 Overall Conclusions

Rather than conceiving of decision-making success
as equivalent to some general-purpose measure of
accuracy, the relevant measure is one which cap-
tures the extent to which a mechanism copes with
its environment, meeting the goals of the decision-
making agent. Such a measure must take into ac-
count the structure of the agent’s environment, in-
cluding both the environment’s frequency structure
and its significance structure. Employing this eco-
logically motivated form of assessment leads to a
new vision of what constitutes a good decision mak-
ing algorithm — sacrificing traditional notions of
accuracy and generality can reveal the advantage
of heuristics that evidence an increased ability to
cope with specific real environments despite their
failure to meet internalist criteria of rationality.
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