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ABSTRACT Fast and accurate malicious domain detection is an essential research theme to prevent

cybercrime, and machine learning is an attractive approach for detecting unseen malicious domains in the

past decade. In this paper, we present MADMAX (MAchine learning-baseD MAlicious domain eXhauster), a

browser-based application leveraging extreme learning machine (ELM) for malicious domain detection. In

contrast to the existing work of ELM-based domain detection, MADMAX newly introduces two methods,

i.e., selection of optimized features to provide higher accuracy and throughput based on permutation

importance and real-time training to retrain a model with an updated malicious dataset for continuous

malicious domain detection. We demonstrate that MADMAX fairly outperforms the existing work with

respect to accuracy and throughput by virtue of the selection of optimized features. Moreover, we also

confirm a model with real-time training stably detects even unseen malicious domains, whereas accuracy of

a model without the real-time training decreases due to the unseen domains. The source codes of MADMAX

is publicly available via GitHub.

INDEX TERMS Browser application, extreme learning machine, feature selection, malicious domain

detection, machine learning, real-time training

I. INTRODUCTION

A. BACKGROUNDS

The use of malicious domains rapidly increases in cyber-

crime in recent years. For example, an adversary often uti-

lizes his/her generated malicious domains to operate com-

mand and control (C&C) servers or sets up phishing sites. A

typical countermeasure against such malicious domains is to

prepare for a deny list of these domains. Nevertheless, new

domains continuously appear since domain generation algo-

rithms (DGAs), which automatically generate new domains,

are often utilized. Consequently, countermeasures based on

a deny list are insufficient, and hence a framework to cover

even unseen domains is crucial.

Based on the background described above, domain detec-

tion based on machine learning has attracted attention in the

past years [1]. Meanwhile, a machine learning-based domain

detection tool on a browser, which is the closest interface

for a user, has never been proposed so far, to the best of

our knowledge. Although there is VT4Browsers1 which is an

add-on of Google Chrome to detect malicious domains on a

browser automatically, it is just a deny list-based approach.

Namely, existing browser-based applications may be ineffec-

tive against unseen domains. In contrast, existing works [2]–

[6] on (browser-independent) malicious domain detection

methods based on machine learning often utilizes a com-

plex and large-sized architecture. The training time becomes

longer in proportion to the architecture complexity despite

providing a high inference accuracy. In other words, they are

somewhat tough to introduce in a browser environment such

that a user utilizes them in real-time.

In this paper, we propose MADMAX (MAchine learning-

baseD MAlicious domain eXhauster), a novel application of

malicious domain detection based on machine learning to-

gether with browsing. Loosely speaking, MADMAX enables

1https://chrome.google.com/webstore/detail/vt4browsers/
efbjojhplkelaegfbieplglfidafgoka
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a user to detect malicious domains automatically by installing

the application as an add-on in his/her browser. MADMAX

is able to provide substantial advantages because it can cover

even unseen malicious domains that a deny list does not

contain.

In general, there are two technical problems for incorporat-

ing machine learning into an environment requiring the real-

time process, e.g., browsing. First, domain detection based

on machine learning may consume a long time compared to

a standard deny list-based tool since the machine learning

needs additional overheads such as feature extraction about

domains. Second, the trade-off between throughput and ac-

curacy of machine learning should be considered carefully.

Generally speaking, the throughput of a model decreases due

to the complicated computation of machine learning, whereas

a complicated machine learning model is often necessary for

providing high accuracy.

Besides, machine learning for cybersecurity may cause

concept drift [7], which is a change of essential features

because of the appearance of new malicious domains. Hence,

re-training to catch up with new domains, i.e., real-time

training, is necessary as well. For real-time training, the

throughput of the training is an essential factor. However,

complicated and large-sized architectures utilized in the ex-

isting works require the training time to be overlong, and

hence are unsuitable for real-time training. Whereas machine

learning research does often not take the training time into ac-

count, the training time is crucial when introducing machine

learning in a browser is considered. Thus, it is considered

that machine learning is no longer introduced into a browser

as far as we know.

A potential solution for the aforementioned problems is

malicious domain detection [8] based on extreme learning

machine (ELM) [9]. Informally, ELM is a neural network

with a single hidden layer, which can learn features without

backpropagation whose computational cost is heavy. Namely,

both learning and inferring domains can be run quite fast, and

thus the above problems can be solved potentially. In recent

years, ELM has been pointed out as the renaming of early

neural networks with random weights, and there are many

extensions so far [10].

Nonetheless, the existing work [8] just evaluated whether

ELM can infer malicious domains or not. In other words,

the existing work did not implement domain detection as an

application, and thus throughput and accuracy of malicious

domain detection with respect to features on the application

level are uncertain. More concretely, features should often

be extracted in real-time when an application is deployed in

the real world. Hence, the performance, including feature ex-

traction on an application-level implementation, needs to be

evaluated. Furthermore, a model should be updated following

the update of malicious domains. In doing so, we need to

confirm if the updated model can continuously and precisely

detect unseen malicious domains, which are newly generated

and rapid training. The results shown in the existing work are

thus insufficient for the feasibility of a web browser.

In contrast, we develop MADMAX as an application-

level implementation. Furthermore, through the use of more

features described in our previous works [11], we rigorously

select features such that a model providing a fast inference

and high accuracy is constructed. Consequently, MADMAX

outperforms the existing work [8] in terms of accuracy and

throughput. Moreover, via discussion on real-time training

in accordance with the update of a model, we confirm that

MADMAX can cover the update of malicious domains. In

comparison with the existing malicious domain detection

methods based on neural networks [2]–[6], MADMAX is

expected to reduce the training and inference time by virtue

of ELM.

To sum up, we make the following contributions:

• We present MADMAX, a browser-based application

for malicious domain detection. Notably, a prototype is

implemented as a browser add-on. The implementation

is publicly available via GitHub (https://github.com/

kzk-IS/MADMAX).

• We shed light on optimized features for accuracy and

throughput of domain detection by rigorously selecting

the features. As a result, we demonstrate that MAD-

MAX outperforms existing work [8] with respect to the

accuracy of malicious domain detection.

• We confirm that a model can learn features in real-

time; that is, it can continuously detect even unseen

malicious domains by virtue of introducing real-time

training. By contrast, we also show that accuracy of a

model without the real-time training decreases due to a

drift of malicious domains.

B. PAPER ORGANIZATION

The rest of this paper is organized as follows. Section II

describes domain names and a machine learning-based mali-

cious domain detection, including its formulation. Section III

presents the system requirements of MADMAX and then

explains the key questions to realize MADMAX. Section IV

describes the methodology for the design of MADMAX to

tackle the key questions. Section V evaluates the performance

of MADMAX, and then the discussions and limitations are

described in Section VI. Section VII describes related works,

and finally, the conclusion and future directions are presented

in Section VIII.

II. PRELIMINARIES

In this section, we describe domain names and malicious

domain detection based on machine learning as background

knowledge to understand this work.

A. DOMAIN NAMES

Domain names are texts correlated to network hosts and are

operated via the domain name system (DNS). In general,

domain names are hierarchically managed under namespaces

called a zone, and the highest domain is called root. The

most popular domains are .com, .us, and .jp, and such
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domains are called top-level domains (TLDs). There are plu-

ral domains under each TLD, and these domains are managed

hierarchically and distributively through their zones.

B. MALICIOUS DOMAIN DETECTION BASED ON

MACHINE LEARNING

Domain detection model based on machine learning makes

inferences to determine if the given domains are malicious

or not. Informally, the objective model is obtained whereby

a machine learning model learns features of domains and

their labels that represent the domains as benign or malicious.

Afterward, the model takes features of a target domain as

inputs and then infers its label. A typical approach for domain

detection in recent years is based on neural networks.

Problem Formulation: We formalize our approach

against the problem of domain detection based on machine

learning as follows. Let F = {f1, · · · , fl} be a set of features.

Each domain di ∈ D has features Fi = {fi,1, · · · , fi,l},

where D denotes a set of domains, and l ∈ N denotes the size

of Fi, i.e., the number of features of each domain. In addition,

each di ∈ D has a label Li ∈ {0, 1} ⊆ L, where 0 of each

label denotes a benign domain and 1 of each label denotes a

malicious domain. Given the size of D, i.e., the number of

domains, DFL = {(d1, F1, L1), · · · (dn, Fn, Ln)} denotes

the combinations with domains, features of each domain, and

labels of each domain. Let Model = M(DFL) denotes a

trained model, where M denotes a learning algorithm. Our

goal is to get the results of inference, Lt = Model(Ft),
by extracting features Ft = {ft,1, · · · , ft,l} from unlearned

domain dt.

C. EXTREME LEARNING MACHINE

We describe the development of extreme learning machine

(ELM) [9] which is a fast machine learning algorithm to

train single hidden layer feedforward neural networks [12].

Roughly speaking, ELM can obtain generalization perfor-

mance efficiently and, according to the paper [12], is able

to compute a global optimization equal to or better than

support vector machine (SVM) [13]. Also, ELM is much

faster and easier to implement than most state-of-the-art

machine learning approaches [14]. Consequently, there are

many applications of ELM in various areas, e.g., life science

or computer vision. Meanwhile, ELM has never been utilized

in the context of malicious domain detection except for Shi

et al. [8], to the best of our knowledge. As described in

Section I, concept drift is essential for malicious domain

detection, and hence the real-time training discussed in this

paper is a different problem from the above works.

The original ELM [9] is used in the context of supervised

learning for both classification tasks and regression tasks.

Although we focus on the original ELM in this paper, there

are many extensions of ELM to deal with imbalanced data

and errors in the real world. For instance, Xiao et al. [15]

proposed a class-specific cost regulation extreme learning

machine (CCR-ELM) to deal with imbalanced classifica-

tion data introducing a class-specific regulation cost into

the classification. Also, Zhang et al. [16] proposed residual

compensation ELM (RC-ELM) to deal with the prediction

error of ELM due to causes, e.g., non-linearity. The main

idea of RC-ELM is to introduce a multilayer structure to

build a feature mapping between input and output. Similarly,

Zhang et al. [17] proposed robust ELM (R-ELM) to deal

with highly complicated noise. According to Zhang et al.,

an objective function of R-ELM is constructed to fit the

noise using a mixture of Gaussian distribution to approximate

any continuous distribution between Gaussian noise and non-

Gaussian noise.

Furthermore, online sequential ELM (OS-ELM) [18]

learns data that is continuously obtained instead of preparing

for the data in advance. OS-ELM is utilized in actual applica-

tions such as stock price and weather forecasting. Afterward,

Zhao et al. [19] proposed FOS-ELM, a method of retraining

a model by sliding window [20] for each data block, which

is similar to the real-time training in this paper. Matias et

al. [21] also proposed an extension of OS-ELM to deal with

time-series data by introducing a forgetting factor. New data

is then biased rather than the old data. The methods described

above are beneficial because both past and future data should

be considered for the concept drift. Although we utilize the

original ELM [9] in this paper, the existing ELM algorithms

described above can be used for MADMAX.

III. MADMAX

MADMAX (MAchine learning-baseD MAlicious domain eX-

hauster) is a browser-based application for malicious domain

detection based on machine learning. In this section, we

first present the system requirements of MADMAX. Next,

malicious domain detection based on ELM is described as a

potential approach, and then the key questions in this paper

are described.

A. SYSTEM REQUIREMENTS

MADMAX is a malicious domain detection application

based on machine learning, which runs on a web browser

with high accuracy in a short time. Concretely, MADMAX is

a client-server application, where a machine learning model

deployed on a server infers domains sent from a browser

extension. The overview of MADMAX is shown in Fig-

ure 1. Preventing threats on web browsers is quite important

because users are commonly accessing websites through

web browsers. Meanwhile, add-ons are widely available on

various web browsers. Therefore, the use of add-ons is an

easily deployable approach for malicious domain detection.

Functions that MADMAX provides to users and servers

are shown as follows:

a: User-Side Functions

A user benefits from a function that automatically outputs

a warning by deploying the add-on when he/she accesses

a malicious site. Concretely, at first, MADMAX extracts a

domain from a URL of a website and then sends the domain

data to the server. Afterward, MADMAX displays a warning
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FIGURE 1: The overview of MADMAX

if the domain data represents a malicious domain. On the

other hand, MADMAX allows access to the website when

the domain data indicates that the website is benign.

b: Server-Side Functions

A server provides the following functions as a part of MAD-

MAX. The server first receives a domain as input from a

user and then returns whether it is malicious by utilizing

a trained model controlled by the server. At that time, the

server executes domain detection through the following three

functions:

1) Features extraction from a domain: A domain itself

has few features generally. Consequently, extracting

features based on DNS records for a domain is ex-

pected since the information itself is insufficient. How-

ever, in real-time domain detection through an add-on,

the throughput of feature extraction should be consid-

ered because the above feature extraction is a time-

consuming task in general.

2) Inference on a model: The server infers Model(Fi)
from features Fi of a domain di with a trained model

Model and then identifies if di is benign Li = 0 or

malicious Li = 1. The throughput of inference on the

trained model should be high because the latency of a

user is influenced by the throughput of the inference

itself as well as the feature extraction.

3) Update of a model: The server needs to continuously

detect unseen malicious domains through retraining a

model to be stored in the server with the latest malicious

domains. If the update based on retraining takes a long

time, a user may be exposed to threats of new mali-

cious domains. Consequently, a real-time trained model

should continuously detect malicious domains with high

accuracy, and hence the update of the model should be

finished within a short time.

B. MALICIOUS DOMAIN DETECTION BY ELM

We focus on the malicious domain detection [8] based on

extreme learning machine (ELM) [9] for the design of MAD-

MAX. ELM has been proposed for training single hidden

layer feedforward neural networks. The training process of

neural networks is roughly divided into three kinds of layers,

i.e., an input layer, one or more hidden layers, and an output

layer. The performance of neural networks is commonly

improved by increasing the number of hidden layers and

neurons in each layer. However, the training and inference

processes consume time in proportion to the increase of

the hidden layers. In contrast, ELM incorporates a pseudo-

inverse matrix for computing weight matrices in a single hid-

den layer. Therefore, ELM realizes significantly fast learning

and is suitable for malicious domain detection on a web

browser that needs the real-time process because ELM pro-

vides fast inference.

The inference process of ELM is formalized as follows.

Given features Fi = {fi,1, · · · , fi,l} of a domain di, ELM

calculates the following:

N
∑

j=1

βjA(Wj · Fi + bj) = Oi, (1)

where N denotes the number of nodes in a hidden layer, A(·)
denotes the activation function, Wj denotes the weight vector

on the input layer for the j-th node, bj the j-th bias term, and

Oi denotes the output of the inference. In addition, βj denotes

the parameter given by training ELM.

4 VOLUME 4, 2016
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The training process of ELM is to solve the minimization

problem defined as ||Hβ − L||, where β = (βT
1 , · · · , βT

N )T ,

and H is defined as follows:

H =







A(W1 · F1 + b1) . . . A(WN · F1 + bN )
...

. . .
...

A(W1 · Fn + b1) . . . A(WN · Fn + bN )







(2)

ELM randomly generates Wj and bj as the beginning step

of the training process, and then the minimization prob-

lem is regarded as the problem of finding β that satisfies

||Hβ − L||= 0. Namely, ELM can find β by computing

β = H†L, where ELM utilizes a pseudo-inverse matrix

to calculate H†. ELM then computes inverse matrices just

one time and finishes all the training process. Therefore, the

learning algorithm of ELM can obtain W, b, β in a shorter

time than backpropagation.

C. KEY QUESTIONS

The primary motivation for the design of MADMAX is to

allow users to distinguish benign domains from malicious

domains through an add-on on web browsers. To do this,

MADMAX needs to detect malicious domains in a short

time and continuously detect unseen malicious domains.

Concretely, we have two main key questions for the design

of MADMAX as follows:

The first key question is a trade-off between the accuracy

of the trained model and throughput on the server, including

feature extraction. Higher accuracy is generally obtained

from extracting more features. It also means that the through-

put of feature extraction becomes worthy in proportion to the

number of features. Although early literature [8] empirically

showed a high throughput of inference on their model, the

throughput of the inference for application-level, including

the feature extraction, was not explicitly shown. Namely,

a set F ′ ⊆ F of features to provide inference with high

accuracy and high throughput are still not evident.

The second key question is whether the inference model

can detect unseen malicious domains with high accuracy.

More specifically, a model should be trained and updated

in real-time because malicious domains are constantly gen-

erated, e.g., by domain generation algorithms (DGAs) as

described in Section I. Despite that ELM can provide a high

throughput of the training according to the early literature [8],

the model should also be continuously trained with the latest

malicious domains. Existing works do not clarify if the con-

tinuously training and detecting unseen malicious detection

is feasible.

The goal of this paper is to answer the two key questions

described above.

IV. METHODOLOGY

In this section, we describe the concrete methodology of

MADMAX. First, we describe how we tackle the key ques-

tions described in the previous section and then describe

selection of optimized features and real-time training as

concrete methods.

A. OVERVIEW OF METHODOLOGY

To realize MADMAX, we describe two methodologies to

answer the key questions described in Section III-C. At

the beginning step of the discussion, we answer the first

question, i.e., a trade-off between accuracy and throughput,

by selecting an optimized set of features. Next, we answer

the second question, i.e., continuous detection for malicious

domains, by incorporating the optimized features into an

ELM inside MADMAX. We describe more details below.

To answer the first key question, we focus on a set of

features presented in our previous work [11] and then, for

each subset of the features in [11], evaluate a trade-off be-

tween throughput, including feature extraction, and accuracy

of inference on ELM with the subset. More specifically, we

select the optimized features by leveraging the permutation

importance algorithm [22] for each subset. We call the above

process the selection of optimized features. Intuitively, the

permutation importance algorithm can clarify which feature

is practical to increase the accuracy of domain detection,

i.e., providing an importance ranking of features. Therefore,

we can decide the set F ′ of optimized features that provide

domain detection with high accuracy and high throughput by

determining the relationship between features, accuracy, and

throughput with respect to inference from the ranking. (See

Section IV-B for detail.)

Next, for the second key question, we introduce the real-

time training that enables MADMAX to continuously main-

tain high accuracy in detecting unseen malicious domains

generated in the future. In particular, a server updates ma-

licious domain dataset DFL and then retrains the model

Model = M(DFL). Intuitively, the real-time training is

expected to enable the model to detect the unseen malicious

domains, e.g., the concept drift [7]. For the update of the ma-

licious domain dataset, the domains are continuously pulled

in real-time from the open databases utilized in our previous

work [11]. Then the optimized features F ′ ⊆ F obtained

from the first methodology, the selection of optimized fea-

tures, are extracted for each newcomer malicious domain di.

In doing so, the model Model is retrained using the updated

dataset. (See Section IV-C for detail.)

B. SELECTION OF OPTIMIZED FEATURES

We describe how to select the optimized features by utilizing

the importance of the features below.

1) List of Features

We follow the features utilized in our previous work [11].

These features are defined from three perspectives, i.e., text-

based features, DNS-based features, and web-based features.

We describe these features in detail below.

VOLUME 4, 2016 5
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a: Text-Based Features

Text-based features represent information obtained from

strings of domain names and discuss whether malicious do-

mains can be detected from the domain names. In particular,

there are 14 features, i.e., the length of a domain name, rate

of vowels, the number of vowel characters, the number of

consonants, the number of consonant characters, conversions

of vowels and consonants, the number of numeric characters,

rate of numeric characters, conversions of numerals and

alphabets, the number of other characters, the length of max

consecutive characters, the entropy [23], and the reputation

value [24].

b: DNS-Based Features

DNS-based features represent information obtained from

DNS records of their corresponding domains and discuss the

difference of DNS records between malicious domains and

benign domains. In particular, there are eight features, i.e.,

the number of different IP addresses, the number of distinct

PTR records, the number of name servers, the number of MX

servers, the similarity between name servers, the number of

countries, the mean of TTL, and the standard deviation of

TTL.

c: Web-Based Features

Web-based features represent information obtained from

contents on domains and discuss characteristics of the con-

tents provided by malicious domains. In particular, there are

three features, i.e., the number of HTML tags of contents

in the corresponding web pages, the WHOIS lifetime to

represent the difference of expiration date and creation date,

the WHOIS active time to represent the difference of update

date and creation date.

2) Optimized Features

We describe how to optimize the features described above.

First, we utilize the dataset in our previous work [11] in-

cluding the above features and then adopt the permutation

importance [22] as a computation for the importance of

features. Hence, the importance for each feature fj among

a set F = {f1, f2, · · · , fl} of features is computed. Their

resulting features are represented under the importance, and

we call it the feature importance ranking.

Next, we choose a threshold T to decide features to be

utilized through the feature importance ranking. The top T

features are then utilized from the ranking, and the accuracy

of a model trained with the features and the computational

overhead for detecting domains are measured. In other words,

through computing the permutation importance for each

feature in advance, combinations of beneficial features for

malicious domain detection can be discovered. The afore-

mentioned process is shown in Figure. 2.

C. REAL-TIME TRAINING

This section describes the real-time update of the dataset and

the method of retraining with the updated dataset. The flow

of the real-time training is shown in Figure 3.

1) Real-Time Data Collection

We describe how to update the dataset for the retraining in

real-time. Loosely speaking, the training dataset is updated

by pulling the latest malicious domain data from the public

databases utilized in our previous work [11]. In particular,

benign domains are pulled from the top of Tranco2, and

malicious domains are continuously pulled from URLhaus3,

CyberCrime Tracker4, and PhishTank5 in real-time, respec-

tively. The trained dataset DFL is continuously updated in

real-time by extracting a set F ′ of the optimized feature

shown in Section IV-B with respect to an unseen domain di.

2) Retraining

We describe the proposed retraining method with an updated

dataset. The retraining with the dataset updated in real-time

will enable a machine learning model to detect even unseen

malicious domains, which are newly generated in the future,

with high accuracy as soon as possible. In the design of the

real-time training for MADMAX, n benign domains and n

malicious domains for some n ∈ N are given to an ELM as

input. More specifically, n benign domains are given only at

the initial process. In other words, the benign domains are

no longer updated. On the other hand, malicious domains

are constantly updated, and the ELM learns the latest n

domains in the updated dataset as inputs following some

regular schedule, e.g., for every ten minutes.

Although one might think of a retraining method such that

an ELM is retrained with only the latest n domains when n

unseen domains appear. The retraining in MADMAX is fast

even with such the retraining method.

D. ETHICAL CONSIDERATION

In this section, we discuss cybersecurity ethics for the design

of MADMAX.

First, we utilize Tranco [25], a pubic list for cybersecurity

research, which is based on commercial services such as

Alexa. According to the paper [11], Tranco is utilized as

benign domains. Domains included in both Tranco and the

public databases of malicious domains are dealt with as

both benign and malicious. Since services such as Alexa

are for the commercial purpose, MADMAX may poten-

tially degrade the effectiveness of those products by giving

their domains malicious labels. However, MADMAX may

still bring merits to their service providers. In particular,

via analysis on domains that are detected as malicious, the

providers may be able to find potential malicious services that

were undetected. Likewise, MADMAX will be beneficial for

improving the ranking of related services as well.

Besides, the features used in this paper are selected since

we focus on the general characteristics of malicious domains.

2https://tranco-list.eu/
3https://urlhaus.abuse.ch/
4https://cybercrime-tracker.net/
5https://www.phishtank.com/
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FIGURE 2: The flow of the selection of optimized features in MADMAX: First, the features are ranked through the permutation

importance. Second, the accuracy and throughput of a model are measured by utilizing the features chosen by a threshold T .

An appropriate threshold T is then decided based on the above experiments.

FIGURE 3: The flow of the real-time training in MADMAX: The real-time malicious domain dataset is updated from the

databases, and then a model is retrained by utilizing the latest n malicious data, i.e., domains, and the n benign data. The red

box and the green box represent datasets to update a model in each period, respectively.

From this perspective, we recommend providing feedback to

the owners or organizations whose domains are unfortunately

detected as malicious to encourage the update of their config-

urations. As described above, we aim to support the detection

of potentially malicious services. Namely, to prevent benign

domains from unfortunately detected as malicious domains

in the future, we strongly suggest a reconsideration of con-

figurations of domains.

V. EXPERIMENTS

In this section, we conduct two experiments to evaluate the

performance of MADMAX from the perspective of the key

questions described in Section III-C. In particular, we discuss

the selection of optimized features and the real-time training.

We first describe the experimental purposes and experimental

settings, including the implementation of MADMAX, and

then show the experimental results.

A. EXPERIMENTAL PURPOSES

We describe the experimental purposes.

First, we aim to evaluate the trade-off between throughput

and well-known metrics for detection, i.e., F1 score, G-mean,

accuracy, precision, and recall, and then find an optimized set

F ′

of features whereby malicious domains can be detected

VOLUME 4, 2016 7
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with high throughput and high scores of the metrics for

inference. In particular, the permutation importance [22] is

utilized to find F ′

from results of malicious domain detec-

tion.

Second, we confirm that MADMAX can continuously

detect unseen domains by utilizing the real-time training

described in Section IV-C. More concretely, by using the set

F ′

of features obtained in the first experiment, we compare

the scores of the metrics described above of a retrained

model with those of a model without the retraining. Hence,

we confirm that the real-time training supports the detection

of unseen malicious domains for MADMAX as well as

providing high scores of the metrics. Hereafter, we denote

by normal model a model without the real-time training, and

by retrained model a model with the real-time training for the

sake of convenience.

B. EXPERIMENTAL SETTINGS

1) Implementation

Implementation of MADMAX is shown below. All the user-

side functions of MADMAX are implemented as a Firefox

(version 81.0.2) add-on with JavaScript6. On the other hand,

all the server-side functions of MADMAX are implemented

on Amazon EC2 c4.8xlarge with Python7 and Flask8 library.

Especially, an ELM is implemented by utilizing the NumPy9

library. The permutation importance to compute the feature

importance is implemented using the scikit-learn10 library.

2) Evaluation Metrics

In this section, we define evaluation metrics in this paper

below. To do this, we first describe the four terms, i.e., true

positive (TP), true negative (TN), false positive (FP), false

negative (FN), to evaluate the detection performance. TP is

the number of malicious domains that are correctly detected

as malicious. TN is the number of benign domains that are

correctly detected as benign. FP is the number of benign

domains that are wrongly detected as malicious, and FN is

the number of malicious domains that are wrongly detected

as benign.

We then define the following evaluation metrics based on

the above four terms.

Accuracy: It is the ratio of correctly detected domains

to the total number of domains. The accuracy is defined as

follows:

Accuracy =
TP + TN

TP + TN + FP + FN
.

Precision: It is the ratio of the number of correctly detected

domains as malicious to the total number of detected domains

6https://developer.mozilla.org/ja/docs/Web/JavaScript
7https://www.python.org/
8https://flask.palletsprojects.com/en/1.1.x/
9https://numpy.org/
10https://scikit-learn.org/stable/modules/generated/sklearn.inspection.

permutation_importance.html

as malicious. The precision is defined as follows:

Precision =
TP

TP + FP
.

Recall: It is the ratio of the number of correctly detected

domains as malicious to the total number of malicious do-

mains. The recall is defined as follows:

Recall =
TP

TP + FN
.

F1 score: It is the harmonic mean of the precision and the

recall. The F1 score is defined as follows:

F1 score = 2× Precision×Recall

Precision+Recall
.

G-mean: It is the geometric mean of the precision and the

recall. The G-mean is defined as follows:

G−mean =
√
Precision×Recall.

3) Process of Experiments

We describe the process and settings of experiments for the

selection of optimized features and the real-time training

below.

a: Selection of Optimized Features

This experiment has three steps below.

First, we rank the features in a high order of importance

based on permutation importance. Then, we utilize a dataset

in our previous work [11], which includes 24,126 benign

domains and the 24,126 malicious domains, i.e., the 48,252

domains in total.

Second, we evaluate the accuracy with respect to the

threshold T and the number N of nodes in a hidden layer.

Then, we use the five-fold cross-validation, which provides

numerical stability for the evaluation.

Finally, we evaluate the throughput of MADMAX for T

based on the optimized value N . Then, 100 benign domains

and 100 malicious domains are randomly chosen from the

dataset. We measure the average time to receive results from

the server for benign domains and malicious domains by

utilizing these domains. Based on the above process, the

throughput of MADMAX from the user’s perspective can be

evaluated.

b: Real-Time Training

The retained model is trained with the real-time training

using an updated dataset, and then scores of the metrics by

the retrained model are compared with those by the normal

model. In this experiment, whereas a dataset for malicious

domains is updated as time goes on, benign domains are no

longer updated.

At the beginning of the experiment, we first collect time-

series data from the open databases shown in Section IV-C1

similarly to our previous work [11]. In particular, we collect

top 25,000 domains from Tranco [25] on November 25 as

8 VOLUME 4, 2016
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benigns, and extract the twenty-five features shown in Sec-

tion IV-B. We then shuffle the benign dataset, and 20,000 do-

mains are used as the training data, and the remaining 5,000

domains are used as the test data, respectively. Likewise,

we collect the 35,000 malicious domains from URLhaus,

CyberCrime Tracker, and PhishTank, including the time of

malicious domain, observed from January 29 to November

25. The domain data from the three databases described

above are merged and then sorted in chronological order.

Finally, the twenty-five features are extracted in the same

manner as the benign domains. Hereinafter, we define the

dataset of 35,000 malicious domains as d1 − d35,000 for the

sake of convenience. Using the time-series data described

above, we evaluate how much the F1 score, G-mean, and the

accuracy of the retrained model are different from those of

the normal model.

More specifically, both the normal model and the retrained

model are trained with 20,000 benign domains and 20,000

malicious domains, i.e., (d1-d20,000) as the training data,

where the malicious domains were generated from 22:48:07

29, Jan. and 15:10:52, 25 Aug. The real-time training is then

performed with malicious domains observed from 15:15:05,

25 Aug. to 12:01:15, 28 Oct. following the time series. In

doing so, di is corresponding to the latest malicious domain

data then, where a domain on the last row is used if multiple

malicious domains exist simultaneously.

Whereas the normal model is kept until the end of the

experiments, the retrained model is retrained iteratively

by shifting to the latest 20,000 malicious domains, i.e.,

(di−20,000-di), for every thirty seconds. Then, we evaluate the

scores of metrics for detection, i.e., F1 score, G-mean, and

accuracy, of the two models for every thirty seconds by uti-

lizing 5,000 benign domains and the future 5,000 malicious

domains, i.e., di-di+5000, as the test data. We also measure

the training time on a server to evaluate the throughput for

MADMAX, where throughput is computed as the average of

10,000 iterations.

C. RESULTS

The experimental results are shown below.

1) Selection of Optimized Features

First, we measure the permutation importance [22] for each

model with respect to the number N of nodes in a hidden

layer. The result on the feature importance is shown in

Table 1. The rankings are almost stable. For instance, the

top three important features are common for each number

of nodes except for N = 100.

Next, based on the feature importance ranking in Table 5,

the F1 score, the G-mean, the accuracy, the recall, and the

precision for T and the number N of nodes in a hidden

layer are shown in Figure 4, where the value of T means

the use of the top T features in Table 5. The score of the

precision is higher than that of the recall. It means that the

number of malicious domains wrongly detected as benign

is fewer than that of benign domains wrongly detected as

malicious. Meanwhile, the F1 score, the G-mean, and the

accuracy have numerical stability, and then we focus on the

F1 score. The highest F1 score is 0.885 for N = 600 and

T = 10. Moreover, the F1 score, the G-mean, and the

accuracy are improved by selecting the important features

rather than using all the features. According to Cao et al. [26],

more hidden layer nodes on ELM cannot guarantee the best

performance of the ELM. Our result described above is

identical to the finding by Cao et al. [26].

Following the above results, the model with 600 nodes is

utilized for evaluating the throughput of MADMAX because

the highest F1 score is achieved. The result of the through-

put is shown in Figure 5, where throughput is measured

with respect to the threshold T 11. Entirely, the throughput

decreases in proportion to the number of the threshold T ,

i.e., the number of features increases. For instance, while the

detection time is 1.0 seconds for benign domains and 1.5
seconds for malicious domains for T = 6, those are 3.3
seconds for benign domains and 4.6 seconds for malicious

domains for T = 10.

As a result, we first choose N = 600 and T = 10 as the

selection of optimized features from the perspective of the

F1 score. Meanwhile, also throughput should be considered

as a browser-based application. In the case of throughput,

the values of 5 ≤ T ≤ 10 in the column of N = 600
seem to provide high F1 scores. For these values of T , the

highest throughput is provided for T = 5 according to

Figure 5. Therefore, we measure the performance of the real-

time training for N = 600 and 5 ≤ T ≤ 10 in the next

paragraph. (See Table 1 for the selected features.)

2) Real-time Training

We show the results of the F1 score, G-mean, and the

accuracy of the two models, i.e., the normal model and the

retrained model, for each set in Figures 6, 7, and 8, where

the retraining is conducted 6,136 times totally during the

real-time training. Note that, as described in the previous

paragraph, we adopt N = 600 as the number of nodes in

a hidden layer and 5 ≤ T ≤ 10 as the number of optimized

features in this experiment. According to the figures, the F1

score, G-mean, and the accuracy for each model increase

entirely. Also, the results of the F1 score and the G-mean

are almost the same as each other.

Meanwhile, from early October, the F1 score, G-mean, and

accuracy of the normal model become lower than those of the

retrained model for each result. Namely, the retrained model

can provide a better F1 score, G-mean, and accuracy than the

normal model.

Meanwhile, the training time of the ELM model inside

MADMAX is shown in Figure 9. The training times are

stable for every threshold T and are 1.6 seconds.

11We do not take into account changing the number N of nodes for T =

10 because the primary key question in this paper is to find a set of optimized
“features".
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TABLE 1: Feature importance ranking based on the permutation importance with respect to the number N of nodes: The

rankings are sorted in accordance with the permutation importance. A higher position represents more important for malicious

domain detection. Each column represents the ranking based on the number N of nodes.
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(a) F1 score (b) G-mean

(c) Accuracy (d) Recall

(e) Precision

FIGURE 4: F1 score, G-mean, accuracy, recall, and precision for T and N : The heatmaps are introduced in measuring the five

evaluation metrics described in Section V-B2. The above maps are colored in accordance with the feature importance measured

by the permutation importance. The bar on the right side for each map represents colors based on the feature importance. The

red color and blue color mean high score and low score, respectively.
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FIGURE 5: The detection time with respect to the threshold:

Features are sorted in high order in accordance with the

feature importance.

VI. DISCUSSION

In this section, we discuss the results for each experiment

and then compare the performance of MADMAX with the

existing work [8] of the ELM-based malicious domain de-

tection. Next, we discuss results if an imbalanced dataset is

utilized as a more real-world application. We then discuss the

initialization of weight matrices of ELM inside MADMAX.

Finally, we explain the limitations of MADMAX.

A. SELECTION OF OPTIMIZED FEATURES

We discuss the results on the selection of optimized features

in terms of the feature importance, the improvement of accu-

racy, the throughput on malicious domains, and the trade-off

between accuracy and throughput.

a: Feature Importance

First, we discuss the feature importance. Our feature impor-

tance based on the permutation importance for MADMAX

is different from that based on the LightGBM [27] shown

in our previous work work [11]. In particular, in comparison

with the top 13 important features presented in [11], there are

only seven common features for MADMAX, i.e., the length

of a domain, the number of NS, the WHOIS lifetime, the

number of HTML elements, the mean of TTL, the number

of MX, and the entropy [23]. The difference indicates several

considerations for malicious domain detection as described

below.

According to our previous work [11], the length of do-

mains and the entropy are essential as the text-based features

because they represent the characteristics of malicious do-

main names generated by DGA. More specifically, names of

benign domains are usually composed of one or two words,

the second-level domain (SLD) and the top-level domain

(TLD). On the other hand, malicious domains generated

by DGA are often composed of long-and-random strings

to avoid collision of domain names [28]. In other words,

the generated domains are no longer registered as long as

they have a collision with existing domains. Consequently,

malicious domains tend to provide longer names and higher

entropy than benign domains.

Meanwhile, for DNS-based features, the number of NS

and the number of MX for malicious domains are less than

those for benign domains. The reason is that malicious do-

mains provide fewer functions compared to benign domains.

Although we omit the detail of domains from the perspective

of ethics, many multinational organizations are top benign

domains.

Likewise, for the web-based features, the number of

HTML elements in malicious domains tends to be fewer

than that in benign domains. Indeed, when we investigate

the average number of HTML elements in the 24,126 benign

domains and the 24,126 malicious domains, the average

numbers are 724 for the former and 136 for the latter. It

is considered that several malicious domains, which only

distribute malware, do not care about the provided web

contents’ designs. Therefore, the number of HTML elements

is less for malicious domains than benign domains.

b: Improvement of Accuracy

Second, MADMAX provides better scores for both the F1

score and the accuracy by selecting several important fea-

tures, rather than utilizing all the features shown in Figure 4.

It means that unnecessary features, which are removed by

the selection of optimized features, perturb essential charac-

teristics of malicious domains. Accordingly, the F1 score and

the accuracy of MADMAX can be improved by virtue of the

selection of optimized features.

c: Throughput on Malicious Domains

Third, Figure 5 shows that the detection time for malicious

domains is longer than that for benign domains. The reason

is that malicious domains are often unregistered because they

are newly generated. Namely, DNS records for malicious do-

mains should be requested from a browser with MADMAX

to DNS servers and hence consumes the time for extracting

the DNS-based features. Accordingly, Figure 5 shows that

the detection time for malicious domains much increases

from T = 1 to T = 2 and from T = 9 to T = 10 than

those of benign domains. The above insight is identical to

our previous work [11].

Meanwhile, the throughput decreases as the threshold T

increases according to Figure 5. For instance, the throughput

for both malicious and benign domains decreases from T = 6
to T = 7. Indeed, the reason is different for benign domains

and malicious domains. Generally speaking, benign domains

provide well-designed web content with numerous HTML

tags, so the time is consumed to obtain the contents. On

the other hand, HTML tags for several malicious domains

cannot be gained because they provide no HTML contents as

described above.
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(a) T = 5 (b) T = 6

(c) T = 7 (d) T = 8

(e) T = 9 (f) T = 10

FIGURE 6: F1 score of the normal model and the retrained model for each threshold T : The blue lines represent the precisions

for the normal model, and the orange line represents the precisions for the retrained model, respectively.

d: Trade-off

Finally, we conclude the trade-off between accuracy and

throughput for MADMAX. According to Figures 4 and 5, the

setting with T = 6 and N = 600, i.e., the length of domains,

the number of NS, the number of consonants, the number of

vowels, WHOIS lifetime, and the rate of numeric characters,

is optimal for MADMAX. Besides, if the highest detection

rate is necessary, the setting with T = 7 and N = 600, i.e.,

the number of HTML elements in addition to the six features

described above, is the best for MADMAX.

B. REAL-TIME TRAINING

We discuss the effect of the real-time training on detecting

unseen malicious domains below. According to the experi-

mental results shown in Section V-C2, since some concept

drifts occurred during the period, the accuracy of the normal

model decreased after early October for all the patterns. In

contrast, the retrained model was able to learn features of

newly appeared malicious domains.

For further discussion, we measure the precision and

the recall on the experiments and the results are shown in

Figures 10 and 11. According to these figures, the normal

VOLUME 4, 2016 13
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(a) T = 5 (b) T = 6

(c) T = 7 (d) T = 8

(e) T = 9 (f) T = 10

FIGURE 7: G-mean of the normal model and the retrained model for each threshold T : The blue lines and the orange lines are

defined in the same manner in Figure 7.

model has higher precision but lower recall than those of

the retrained model. The above fact means that the normal

model has fewer false positives but more false negatives

about malicious domains than the retrained model. In other

words, the normal model missed unseen malicious domains

while the retrained model could detect them. Tables 2- 7

show the metrics by each model at the time when the F1

score of the normal model and the retrained model is the most

distant for each threshold T . Each time for any T is within the

period after early October, i.e., the concept drift has occurred.

The F1 score and G-mean of the retrained model are at most

0.011 higher than those of the normal model. At that time, the

recall of the retrained model is at most 0.025 higher than that

of the normal model as a ratio of missing malicious domains.

In the experiments, the dataset of 2,500 malicious domains is

used as the test data. Then, the difference in the recall values

between the retrained model and the normal model implies

that the normal model misses 625 malicious domains more

than the retrained model.

Next, we discuss an update of the benign domain dataset.

In our real-time training experiment, only the data of ma-

licious domains were updated from August 25 to October

14 VOLUME 4, 2016
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(a) T = 5 (b) T = 6

(c) T = 7 (d) T = 8

(e) T = 9 (f) T = 10

FIGURE 8: Accuracy of the normal model and the retrained model for each threshold T : The blue lines and the orange lines

are defined in the same manner in Figure 6.

TABLE 2: The difference of metrics between the retrained model and the normal model for T = 5.

Metrics F1 score G-mean Accuracy Precision Recall

The normal model 0.819 0.82 0.811 0.785 0.857

The retrained model 0.829 0.831 0.818 0.781 0.884

difference 0.00976 0.01057 0.0067 -0.00441 0.0272

28, while the data of benign domains were used from Tranco

[25] on November 25 statically, i.e., without the update of the

24,126 domains. Thus, it is considered that both the F1 score

and the accuracy for each model increase entirely toward

November 25. This result indicates that the data of benign

domains should be updated for the real-time training.

Next, we discuss the throughput of the real-time training.

Although the retrained model was trained for every thirty

seconds in the experiment, we believe that the model would

be retrained only when a new malicious domain is pulled

VOLUME 4, 2016 15



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3080456, IEEE Access

Iwahana et al.: MADMAX

TABLE 3: The difference of metrics between the retrained model and the normal model for T = 6.

Metrics F1 score G-mean Accuracy Precision Recall

The normal model 0.828 0.817 0.82 0.792 0.868

The retrained model 0.837 0.826 0.83 0.802 0.875

difference 0.00855 0.00878 0.0095 0.01048 0.0062

TABLE 4: The difference of metrics between the retrained model and the normal model for T = 7.

Metrics F1 score G-mean Accuracy Precision Recall

The normal model 0.808 0.808 0.804 0.791 0.8256

The retrained model 0.818 0.819 0.812 0.790 0.849

difference 0.01058 0.0109 0.0082 -0.00016 0.0234

TABLE 5: The difference of metrics between the retrained model and the normal model for T = 8.

Metrics F1 score G-mean Accuracy Precision Recall

The normal model 0.825 0.825 0.826 0.831 0.818

The retrained model 0.834 0.834 0.832 0.823 0.845

difference 0.00931 0.00935 0.0057 -0.0082 0.027

TABLE 6: The difference of metrics between the retrained model and the normal model for T = 9.

Metrics F1 score G-mean Accuracy Precision Recall

The normal model 0.838 0.838 0.841 0.853 0.824

The retrained model 0.849 0.849 0.849 0.849 0.85

difference 0.01104 0.01092 0.0082 -0.00421 0.0258

TABLE 7: The difference of metrics between the retrained model and the normal model for T = 10.

Metrics F1 score G-mean Accuracy Precision Recall

The normal model 0.829 0.829 0.83 0.832 0.826

The retrained model 0.839 0.839 0.838 0.835 0.844

difference 0.01026 0.01027 0.0087 0.00236 0.0182

FIGURE 9: The training time for the real-time training of

MADMAX: The training time for the threshold T is mea-

sured by that of the ELM model on a server. Here, the number

N of nodes in the ELM model is 600.

from a malicious database in an actual use case. Indeed,

in the three databases for malicious domains used in our

experiments, domains are updated every twelve minutes on

average. In doing so, there are many cases where two or three

domains are newly given, and the variance is considerably

significant, e.g., in the maximized case, 64 domains are given

in just one update. The frequency of new domains in one

update is shown in Figure 12.

More concretely, we discuss the time required for pulling

data of the new domains from the databases to update the

retrained model, i.e., we call the time vulnerable slot against

unseen domains for the sake of convenience. As shown in

Figure 9, the training time of ELM with 600 nodes is gen-

erally within 1.6 seconds. We also measure the training time

with typical backpropagation for neural networks, which is

the same architecture as ELM used in the experiment above,

i.e., a neural network with 600 nodes in a hidden layer in the

same server setting. The time required for updating an ELM

model and a neural network model is then shown in Table 8,

where the time includes feature extraction for domains and

the training with its resulting features. According to Table 8,

MADMAX has a significantly higher throughput and dras-

tically shortens the vulnerable slot against unseen domains

than those of neural networks.

C. COMPARISON WITH EXISTING WORK

We discuss the performance of MADMAX in comparison

with the existing work [8] of the ELM-based malicious do-

main detection. Table 9 shows the results of comparing each

16 VOLUME 4, 2016
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(a) T = 5 (b) T = 6

(c) T = 7 (d) T = 8

(e) T = 9 (f) T = 10

FIGURE 10: Precision for the normal model and the retrained model for each threshold T : The blue lines and the orange lines

are defined in the same manner in Figure 6.

evaluation index with the throughput using the features used

in existing work [8] and the features selected by MADMAX.

Note that since a different dataset is used in [8], the com-

parison here is conducted using the dataset in our previous

work [11]. In the model of 600 nodes, the detection time of

the malicious domains is 0.7 seconds faster when utilizing

the 6 features in MADMAX compared to the features of the

existing work [8]. On the other hand, in the model of 500
nodes, the F1 score is 0.2 higher with the same throughput

when utilizing the 6 features in MADMAX compared to the

features of the existing work [8].

Consequently, MADMAX can provide better performance

than trivially introducing the existing work [8] by virtue of

our selection of the optimized features as a browser-based

application.

D. EVALUATION BY USING IMBALANCED DATASET

We discuss the performance of MADMAX with a balanced

dataset and an imbalanced dataset. Table 10 shows the re-

sults of comparing the F1 scores in training a model with

each of the balanced dataset and the imbalanced dataset

in which the number of benign and malicious domains is
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(a) T = 5 (b) T = 6

(c) T = 7 (d) T = 8

(e) T = 9 (f) T = 10

FIGURE 11: Recall of the normal model and the retrained model for each threshold T : The blue lines and the orange lines are

defined in the same manner in Figure 6.

biased. Concretely, the experiment is conducted in a total

of three datasets, i.e., the balanced dataset with the 24,126

benign domains and the 24,126 malicious domains, the im-

balanced dataset with the 6,050 benign domains and the

19,500 malicious domains, and the imbalanced dataset with

the 19,500 benign domains and the 6,050 malicious domains.

In addition, all twenty-five features are used, and the F1 score

is shown.

From Table. 10, in any model, the F1 score is higher

utilizing the UMD than the UBD and BD. It is likely to

capture malicious domains more accurately due to the small

number of benign domains. In other words, more accurate

detection is possible by constructing a dataset that collects

more malicious domains.

E. INITIALIZATION OF WEIGHT MATRICES

We discuss the initialization of weight matrices of ELM

inside MADMAX. We assumed that weight matrices of ELM

are randomly chosen in the experiments in Section V but did

not concern the impact of the initialization of weight matrices

on model performance. Stochastic parameters, i.e., weight

matrices, of ELM may potentially affect the instability of
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FIGURE 12: The frequency of new domains in one update:

The y-axis is represented as a log-scale graph. For 32, 34, 36,

37, 41, 42, 50, and 64 on the x-axis, only a new single domain

appears. Meanwhile, for more than 65 on the x-axis, no new

domain appears in one update.

TABLE 8: Time to update the ELM and neural network

model: As the number of newly pulled domains in one up-

date, we show for frequent one and two, and up to sixty-four,

respectively. We denote by ELM(X) the time to update an

ELM for X new domains in one update for any X . Similarly,

we denote by NN(X) the time to update a neural network in

the same manner.

Scheme T = 5 T = 6 T = 7 T = 8 T = 9 T = 10

ELM (1) 3.02 3.09 5.34 6.35 5.85 6.22

ELM (2) 4.47 4.61 9.11 11.13 10.13 10.87

ELM (3) 5.92 6.13 12.88 15.91 14.41 15.52

ELM (64) 94.37 98.85 242.85 307.49 275.49 299.17

NN (1) 101.45 90.52 90.77 171.78 199.28 283.65

NN (2) 102.9 92.04 94.54 176.56 203.56 288.3

NN (3) 104.35 93.56 98.31 181.34 207.84 292.95

NN (64) 192.8 186.28 328.28 472.92 468.92 576.6

malicious domain detection in general.

Fortunately, the above concern can be overcome by lever-

aging existing techniques [29], [30]. In particular, initializing

ELM with the Gaussian distribution can help the model

have a faster convergence rate than the uniform distribu-

tion. Besides, both a convergence rate and generalization

performance become better as long as a distribution with

more minor variances is provided. Thus, when MADMAX

is deployed in a real-world environment, the performance

will become stable by initializing weight matrices with the

Gaussian distribution suitable for the environment.

F. LIMITATIONS

We describe several limitations of the current specification of

MADMAX below.

1) Feature Importance

MADMAX leverages the permutation importance to deter-

mine the feature importance. However, the permutation im-

portance has a limitation, whereby particular feature impor-

tance degrades due to variance on features. For example, the

number of countries is one of the most important features for

detecting malicious domains [11]. Nonetheless, the feature

importance of the number of countries is relatively low for

MADMAX under the permutation importance. This reason

is that most of the malicious domains have "0" as the value

about the number of countries, and therefore the values are

stable even if they are shuffled randomly. In other words, the

number of countries does not have an impact on accuracy as

long as the permutation importance is utilized. Future work

will thus explore more possibilities by other methods for the

feature importance.

2) Server Managements

MADMAX is a client-server application, so it is necessary to

prepare and deploy a server that detects malicious domains to

use MADMAX in advance. Furthermore, since a user needs

to send domain data to the server through the browser add-on,

the server should be maintained continuously to provide the

functions of MADMAX. If a user wants to utilize MADMAX

local, he/she needs to set up a localhost environment and

then manage the server by him-/herself to detect malicious

domains.

3) Impossibility of Extracting Features

According to the experimental results in Section V-C2, in

the data collection process for the real-time training, several

features cannot be obtained, e.g., WHOIS lifetime due to the

failure of WHOIS search or the number of HTML elements

due to certificates with unavailable language. We call such

features missing values for the sake of convenience.

We then replace such features with zeros in the experi-

ments. Although we have not discussed that the performance

of MADMAX is influenced rigorously, generally speaking, a

model may learn the missing values themselves in proportion

to the number of the missing values. Namely, the malicious

domain detection by MADMAX may have an unexpected

influence caused by the missing values. As another way

to handle the missing values, when the missing values are

found, the corresponding data can be excluded, or the missing

values can be replaced with a numerical value other than 0.

Further studies, which take the missing values into account,

will need to be undertaken.

4) Accuracy Unstability on Nonlinear Data

The accuracy of the original ELM utilized in MADMAX

is often unstable, especially for nonlinear data. The dataset

utilized in the current experiments has linearity, and hence

accuracy is stable. However, nonlinear data may appear when

MADMAX is utilized in more various domains. To capture

nonlinear data, more advanced ELMs such as RC-ELM [16]

or robust-model ELM [17] can be utilized. We recommend

that further research should be undertaken on the topic men-

tioned above.

VII. RELATED WORK

In this section, we describe related works of malicious do-

main detection. Malicious domain detection is classified into
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TABLE 9: Comparison with the existing work [8]: Time of benign domains and time of malicious domains indicate the average

time to send each domain to the server and receive its result for repeating 100 times.

Scheme F1 score Accuracy Precision Recall Time of benign domains(s) Time of malicious domains(s)

Shi et al. [8](N = 500) 0.848 0.85 0.855 0.841 0.8 2.4

Shi et al. [8](N = 600) 0.85 0.851 0.856 0.843 0.9 2.3

MADMAX(T = 6, N = 500) 0.868 0.872 0.897 0.84 1.1 2.2

MADMAX(T = 10, N = 500) 0.883 0.886 0.902 0.865 3.5 4.5

MADMAX(T = 6, N = 600) 0.85 0.854 0.872 0.83 1.0 1.5

MADMAX(T = 10, N = 600) 0.885 0.885 0.9 0.867 3.3 4.6

TABLE 10: F1 score with respect to the number N of nodes

and three datasets. UBD means the imbalanced dataset with

19,500 benign domains and 6,050 malicious domains, UMD

means the imbalanced dataset with 6,050 benign domains and

the 19,500 malicious domains, and BD means the balanced

dataset with 24,126 benign domains and malicious domains.

N UBD UMD BD

100 0.674 0.928 0.851

200 0.691 0.936 0.863

300 0.709 0.939 0.865

400 0.730 0.940 0.868

500 0.735 0.940 0.870

600 0.742 0.943 0.871

700 0.747 0.943 0.872

800 0.746 0.944 0.873

900 0.752 0.944 0.875

1000 0.753 0.945 0.874

two types, i.e., a domain-based approach focusing on text

strings of domain names and a behavior-based approach

focusing on other information in addition to the text strings.

Roughly speaking, the domain-based approach utilizes only

domain names as texts, and the accuracy can be improved

by utilizing a complex deep neural network. On the other

hand, the behavior-based approach can improve accuracy by

increasing the kind of inputs. We describe the details of each

approach below.

A. DOMAIN-BASED APPROACH

The major way on the domain-based approach is to leverage

a complex and enriched model to detect malicious domains

only by domain names. Woodbridge et al. [2] took the limita-

tion of a deny list into account and utilized a long short-term

memory (LSTM) for the malicious domain detection. Next,

Bin et al. [31] utilized both convolution neural networks

(CNN) and LSTM to leverage a large amount of actual traffic.

Bin et al. [32] also compared the accuracy of five models

described below: a single LSTM layer model by Woodbridge

et al. [2], a combination model of forwarding LSTM layers

and backward LSTM layers by Dhingra et al. [33], parallel

CNN layers by Saxe et al. [34], stacked CNN layers by Zhang

et al. [35], and a hybrid model of stacked CNN layers and

a single LSTM layer by Vosoughi et al. [3]. Next, Berman

et al. [4] showed the first work based on CapsNet and, as a

result, a better performance than the conventional RNN and

CNN. Yanchen et al. [5] introduced an attention mechanism

that ignores parts of domain names under some designated

conditions. Furthermore, Luhui et al. [6] proposed a method

based on heterogeneous Deep neural networks which com-

bine parallel CNN and multiple LSTMs.

The works described above have utilized complicated ar-

chitectures and hence are unsuitable for use in a browser

environment. In contrast, MADMAX focuses on introducing

into a browser, and hence ELM is utilized.

B. BEHAVIOR-BASED APPROACH

The following four types of data are mainly used in most

research of malicious domain detection [1].

• DNS information

• Certificate information

• Structures of web pages

• Auxiliary information

We briefly describe each type below.

a: DNS Information

First, we describe research utilizing DNS information to

detect malicious domains. It is shown that hosts controlled

by botnets often have similar query content and time-series

patterns [36], [37]. In other words, malicious domains tend to

have intercommunication between clients and DNS servers

[36], [38]–[43]. In several works, such information is con-

verted into a data form such as a matrix or graph. For

instance, Grill et al. [44] proposed a knowledge-based mal-

ware detection algorithm for domain generation algorithms

(DGAs). Concurrently, Chiba et al. [45] utilized random

forests to infer domains based on the data registration date

and its reason on the list of trusted sites or denylist. Likewise,

machine learning models based on DNS traffic information

have been studied well [39], [46]–[48]. Nevertheless, MAD-

MAX is the first browser-based application by incorporating

machine learning into a browser, to the best of our knowl-

edge.

b: Certificate Information

There are several works that utilize certificate information for

malicious domain detection [49], [50]. Torroledo et al. [49]

focused on data such as issuer information whereby cer-

tificates are self-signed, and successfully detected malware

with high accuracy. Meanwhile, Anderson and McGrew [51]

built a classification model based on logistic regression by

extracting features from TLS and HTTP communications

that contain certificate information. Several works [49], [50]

showed that machine learning models such as deep neural
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networks (DNN) and support vector machines (SVM) could

detect malware and phishing sites by leveraging only on cer-

tificate information. However, detection based on certificates

cannot determine whether a site is malicious unless it sup-

ports HTTPS, and thus providing comprehensive detection is

difficult.

c: Structures of Web Pages

Structures of web pages can be utilized to detect malicious

sites. For example, Huang et al. [52] focused on texts, fonts,

and colors of the page, and Mao et al. [53] utilized cascading

style sheets (CSS), respectively. However, these attempts are

ineffective against code obfuscation techniques [54], [55].

Meanwhile, there is research [56]–[60] using images of

web pages displayed in a browser as a practical approach

against the code obfuscation. CNN is useful for providing

high accuracy because the above research is about image

processing [61], [62]. Hence, Abdelnabi et al. [63] built a

model for detecting phishing sites on CNN based on image

information from benign and malicious sites. However, the

computational cost of CNN is huge in general and thus is

unsuitable for a browser-based application.

d: Auxiliary Information

Finally, external information publicly available is often uti-

lized for malicious domain detection [51], [64], [65]. In

particular, denylists such as URLhaus and lists of popular

sites such as Tranco [25] are utilized similarly to our work.

Furthermore, geographic information obtained from IP ad-

dresses using the MaxMind Database12 [66]–[70] can also

be utilized. The potential performance of MADMAX may

be increased by incorporating geographic information into its

features.

VIII. CONCLUSION

This paper presented MADMAX, a browser-based applica-

tion for malicious domain detection by leveraging extreme

learning machine (ELM) [9]. The key insights for MAD-

MAX were the selection of optimized features and the real-

time training, and MADMAX discussed these functions as an

application-level implementation for the first time, as far as

we know. We released the implementation of MADMAX via

GitHub as well.

In the selection of optimized features, we showed that the

accuracy of malicious domain detection could be improved

by selecting important features rather than the use of all

25 features. Notably, throughput for detection of malicious

domains and benign domains was different due to extract-

ing DNS records. We also demonstrated that MADMAX

outperformed the ELM-based existing work [8] by virtue

of the selection of optimized features. On the other hand,

in the real-time training, we demonstrated that the retrained

model could continuously detect unseen malicious domains

12https://www.maxmind.com/

while the accuracy of the normal model decreases because of

missing a concept drift of malicious domains.

We also found a new problem for malicious domain detec-

tion through the design of MADMAX via the experiments,

i.e., the permutation importance, which are unavailable fea-

tures for several domains. Research into investigating the

influence of the permutation importance on domain detec-

tion and its improvement is already underway. Likewise, we

adopted the classic ELM to realize the real-time training in

this paper, but the current specification of MADMAX cannot

learn the dependencies between past and future domains.

Further studies, which take the online sequential ELM [18]

into account, will need to be undertaken to continuously learn

the stream information of malicious domains as time-series

data.

CODE AVAILABILITY

Our implementation of MADMAX is publicly available

via GitHub (https://github.com/kzk-IS/MADMAX) for re-

producibility and as reference for future works.
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