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Plants, as sessile organisms, adapt to different stressful conditions, such as drought,

salinity, extreme temperatures, and nutrient deficiency, via plastic developmental and

growth responses. Depending on the intensity and the developmental phase in which

it is imposed, a stress condition may lead to a broad range of responses at the

morphological, physiological, biochemical, and molecular levels. Transcription factors are

key components of regulatory networks that integrate environmental cues and concert

responses at the cellular level, including those that imply a stressful condition. Despite the

fact that several studies have started to identify various members of the MADS-box gene

family as important molecular components involved in different types of stress responses,

we still lack an integrated view of their role in these processes. In this review, we analyze

the function and regulation of MADS-box gene family members in response to drought,

salt, cold, heat, and oxidative stress conditions in different developmental processes of

several plants. In addition, we suggest that MADS-box genes are key components of

gene regulatory networks involved in plant responses to stress and plant developmental

plasticity in response to seasonal changes in environmental conditions.

Keywords: MADS-box genes, abiotic stress, development, growth, flowering

1. INTRODUCTION

Plants face seasonal fluctuations and stressful environmental conditions, involving alterations in
light quality and regimes (e.g., short or long days), precipitation, nutrient availability, temperature,
drought, flooding, salinity, and UV exposure, among others. Stressful conditions affect multiple
metabolic pathways that, in turn, can induce and integrate different intrinsic responses affecting
developmental and plant morphogenetic responses. These responses allow plants to survive and
adapt to a plethora of environments.
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Plant development and their responses to natural changing
environments and stressful conditions are often regulated by
complex regulatory networks that include various types of
molecular components, such as transcription factors (TFs),
regulatory RNAs, and enzymes (Fujita et al., 2011; Nakashima
and Yamaguchi-Shinozaki, 2013; Janiak et al., 2016; Wils and
Kaufmann, 2017; Cho, 2018; Gruszka, 2018; Sarvepalli et al.,
2019). In the context of regulatory networks, TFs are particularly
relevant because they regulate the expression of multiple
target genes and their loss or gain of function may lead to
dramatic phenotypic alterations or modified plastic responses to
environmental changes (Goto and Meyerowitz, 1994; Jack et al.,
1994; Kramer et al., 1998; Honma and Goto, 2001; Ditta et al.,
2004; Sakuma et al., 2006; Hernández-Hernández et al., 2007;
Nelson et al., 2007; Welch et al., 2007).

MADS-domain TFs are key members of regulatory networks
underlying multiple developmental pathways in plants, animals,
and fungi (Goto and Meyerowitz, 1994; Jack et al., 1994; Honma
and Goto, 2001; Pelaz et al., 2001; Messenguy and Dubois, 2003;
Nadal et al., 2003; Tapia-Lopez et al., 2008; Garay-Arroyo et al.,
2013; Cao et al., 2016; Thangavel and Nayar, 2018). The MADS
acronym was formed by the initials of the first four MADS-
domain proteins discovered: M for MINICHROMOSOME
MAINTENANCE FACTOR 1 from Saccharomyces cerevisiae,
A for AGAMOUS (AG) from Arabidopsis thaliana (from now
on, Arabidopsis), D for DEFICIENS from Antirrhinum majus,
and S for Serum Response Factor (SRF) from Homo sapiens
(Norman et al., 1988; Passmore et al., 1988; Jarvis et al., 1989;
Schwarz-Sommer et al., 1990; Sommer et al., 1990; Yanofsky
et al., 1990). The function of MADS-domain proteins has been
widely studied in different organisms; these proteins participate
in different developmental processes in plants (Smaczniak et al.,
2012a), in neural signal transmission, muscle development, and
tumor occurrence in humans (Cao et al., 2016), and in osmotic
stress response and cell survival in the stationary phase in yeast
(Nadal et al., 2003).

A gene duplication gave rise to two MADS-domain protein
lineages before the divergence of plants and animals; these
lineages are easy to identify due to a strong conservation
of the MADS and other protein domains: The Type I or
SRF-like genes and Type II or MEF2-like genes (MYOCYTE
ENHANCER FACTOR 2) (Alvarez-Buylla et al., 2000; Becker
and Theißen, 2003). The Type II lineage, also called MIKC-type
in plants, has been subdivided into MICKc and MICK* groups.
Furthermore, MIKCc contains 13 different gene subfamilies
or clades based on phylogenetic studies (Theißen et al., 1996;
Becker and Theißen, 2003; Parenicová et al., 2003). During
land plant evolution, the number and functional diversity
of MADS-box genes increased due to multiple gene and
genome duplications, reaching 108 members (see Table S3
from Parenicová et al., 2003) in Arabidopsis (Becker and
Theißen, 2003; Parenicová et al., 2003; Kaufmann et al.,
2005; Gramzow et al., 2010; Fan et al., 2013). Thus, MADS-
box genes are widely distributed in a taxonomically broad
range of monocot and dicot plant species (Table S1). It has
been proposed that changes in MADS-box gene structure,
expression, and function have been a major cause for

innovations in development during land plant evolution
(Theißen et al., 1996; Zahn et al., 2006).

MADS-domain proteins are able to bind DNA as homo
or heterodimers together with other MADS-domain proteins
or with other proteins as part of different protein complexes
(Schwarz-Sommer et al., 1992; Goto and Meyerowitz, 1994;
Davies et al., 1996; Huang et al., 1996; Mizukami et al., 1996;
Riechmann et al., 1996; Egea-Cortines et al., 1999; Pelaz et al.,
2000; Honma and Goto, 2001; Sridhar et al., 2006; Tröbner et al.,
2018) and function as tetramers in order to regulate transcription
of their target genes (Pelaz et al., 2000; Honma and Goto,
2001; Theißen and Saedler, 2001; Sridhar et al., 2006; Brambilla
et al., 2007; Immink et al., 2009; Melzer and Theißen, 2009;
Smaczniak et al., 2012b). MADS-domain protein interactions,
either with members of the same family or with other proteins,
could explain their specificity and their ability to orchestrate
different developmental programs that respond to external and
internal signals such as hormones (Sridhar et al., 2006; Brambilla
et al., 2007; Verelst et al., 2007; Hill et al., 2008; Liu et al.,
2009; Kaufmann et al., 2010; Smaczniak et al., 2012b; Han
et al., 2016). Besides, MADS-domain proteins have thousands
of target genes, as shown in different studies (Kaufmann et al.,
2009, 2010; Zheng et al., 2009; Deng et al., 2011; Schlesinger
et al., 2011; Sullivan et al., 2011). Finally, it is of great interest
to understand the MADS-domain proteins’ interactome along
the diverse developmental pathways they are involved in, and
how these interactions could modify gene regulation and, thus,
morphogenesis (Sablowski, 2010).

In Arabidopsis, MADS-box genes participate in diverse
developmental processes such as meristem specification,
flowering transition, seed, root and flower development, and
fruit ripening (Smaczniak et al., 2012a). Their function in
flower development has been deeply studied and summarized
in many excellent reviews (Smaczniak et al., 2012a; Yan et al.,
2016; Bartlett, 2017; Bloomer and Dean, 2017; Whittaker and
Dean, 2017; Callens et al., 2018; Theißen et al., 2018). Moreover,
several MADS-box genes have been implied in plant responses
to different abiotic stress conditions using both genomic and
functional genetic approaches (Table S1), but we are lacking an
integrative view of these studies.

The aim of this review is to integrate and analyze the
available information regarding the participation of MADS-
domain proteins in regulatory networks involved in abiotic stress
and developmental plastic responses, primarily in Arabidopsis
(see Figures 1, 2), but also in other plant species (see
Figures 2A–C, 3).

2. MADS-DOMAIN TRANSCRIPTION
FACTORS’ ROLE IN DEVELOPMENTAL
PLASTICITY RESPONSES TO STRESSFUL
CONDITIONS

Plant development is highly plastic, allowing plants to survive
and adapt to different environments (Ludlow, 1980; Zhu,
2016). Stressful conditions may trigger multiple endogenous
signaling pathways that, in turn, can induce an adjustment
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FIGURE 1 | Regulatory circuits mediated by MADS-box genes in response to abiotic stress in Arabidopsis thaliana. The different developmental processes affected

are indicated in red. Arrows and bar lines indicate induction and repression, respectively. Numbers on the arrows and/or bars indicate the reference where the data

were obtained: (1) Yu et al. (2017); (2) Fang and Fernandez (2002); (3) Yu L.-H. et al. (2014); (4) Zhang and Forde (1998); Gan et al. (2012); (5) Bechtold et al. (2016); (6)

Wang et al. (2018); (7) Lee et al. (2007); Li et al. (2008); (8) Riboni et al. (2013, 2016); (9) Seo et al. (2009); (10) Fernandez et al. (2000); (11) Zheng et al. (2009); Cosio

et al. (2017); (12) Bloomer and Dean (2017); (13) Chiang et al. (2009); (14) Sureshkumar et al. (2016) and Lutz et al. (2017).

of metabolic and morphogenetic processes. Among the abiotic
stress factors that greatly affect plant development in a
stage-specific manner, from seed germination to reproduction,
are drought, high salinity, low or high temperatures, and
nutritional deficiencies (Levitt, 1985; Manavalan et al., 2009;
Jogaiah et al., 2013; Osakabe et al., 2014; Zhu, 2016).
During abiotic stress conditions such as drought or heat,
the reactive oxygen species (ROS) concentration can be
augmented dramatically and surpass the cell’s antioxidant
system, thus generating oxidative stress (Choudhury et al.,
2017). To cope with oxidative stress, cells have developed
multiple antioxidant molecules that can be classified as enzymatic
or non-enzymatic according to their nature (Birben et al.,
2012). The former includes many enzymes that catalyze the
reduction of ROS such as catalase, peroxidase, superoxide
dismutase, peroxiredoxin, and glutaredoxins that use glutathione
as a cofactor (Mittler et al., 2004). Non-enzymatic ROS
detoxification molecules include multiple reducing agents like
flavonoids, carotenoids, and glutathione; these compounds
reduce ROS and prevent them from oxidizing other cellular
components (Maurino and Flügge, 2008). In this section, we
will review how MADS-domain TFs participate in abiotic stress
responses during vegetative growth, flowering, and root and
seed development.

2.1. Development of Vegetative Organs
Under Stress Conditions
Drought is one of the major factors that negatively affects
plant growth and survival and plants have developed different
adaptations to withstand water limitation (Boyer, 1982; Davies
and Zhang, 1991; Comstock, 2002; Chaves and Oliveira,
2004). Water stress can be induced not only by drought
but also by cold and high salinity conditions since they
reduce the water potential, generating low water availability.
Additionally, the phytohormone abscisic acid (ABA) is critical
to withstanding stress and integrating stress signals. Therefore,
plants are constantly regulating their ABA content in response
to different external and internal conditions (Vishwakarma et al.,
2017; Jurkiewicz and Batoko, 2018). Drought, cold, and high
salinity induce common response mechanisms that include
ABA-dependent and ABA-independent signaling transduction
pathways (Bartels and Sunkar, 2005; Yoshida et al., 2014a).

Rice (Oryza sativa) is one of the most important crops in the
world and its plantations are especially susceptible to drought
conditions. It has been reported that severalMADS-box genes are
differentially expressed during drought stress in rice (Table S1).
For example, the expression of OsMADS26, the rice AGL12
ortholog, is enhanced by mannitol, a compound that induces
osmotic stress by mimicking drought stress conditions (Lee et al.,
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FIGURE 2 | MADS-box genes are involved in abiotic stress response in different developmental processes in several plants. (A) OsMADS26 is a negative regulator of

drought stress tolerance in rice. The cartoon represents downregulation of OsMADS26 (OsMADS26-RNAi) and wild type plants in conditions of water stress for 18

days followed by 15 days of re-watering (Khong et al., 2015). (B) SlMBP11 is required in order to give more tolerance for salt stress to tomato plants. Plants are more

affected by salt stress condition (100 mM NaCl) when this gene is downregulated (SIMBP11-RNAi) (Guo et al., 2016). (C) Overexpression (OE) of TaMADS51 in

transgenic tobacco plants improves plant growth under phosphorous (P)-deprivation (Shi et al., 2016). In Arabidopsis: (D) SVP repress the onset of the flowering in

drought escape response at short day conditions. Cartoons are representative of wild type plants (16 weeks old) and svp mutants (8 weeks old) subjected to control

conditions or drought regime (Riboni et al., 2013). (E) AGL21 is important for LR development in control conditions and under nitrogen (N)-deprivation (Yu L.-H. et al.,

2014). (F) AGL21 function as a negative regulator of seed germination under osmotic stress conditions (300 mM mannitol) (Yu et al., 2017).

2008). OsMADS26 acts as a regulator of stress-related responses
such as drought or pathogen infections (Khong et al., 2015).
Interestingly, overexpression (OE) of this gene, either in rice or
in Arabidopsis plants grown under control conditions, causes a
severe stress phenotype that kills most plants. The majority of the
survivors, show reduced root/shoot growth, sterility, root curling,
and a pale green coloration (Lee et al., 2008). Accordingly,
OsMADS26-GR lines induced with different concentrations of
dexamethasone show curly leaves, short shoots and roots, and
roots with a purple pigmentation. The phenotypes observed in

the OE lines (either constitutive or inducible) correlated with
those observed in plants exposed to stressful conditions (Lee
et al., 2008). In contrast, Khong et al. (2015) did not observe
any severe phenotypic alteration in OsMADS26 OE plants grown
under control conditions.

Moreover, Lee et al. (2008) reported that OsMADS26
loss of function and wild type plants exhibited similar
behaviors under stress conditions. However, Khong et al. (2015)
found that, under water deficit, loss of function lines of
OsMADS26 (OsMADS26-RNAi) showed higher biomass and
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FIGURE 3 | The MADS-box genes participate in diverse genetic interactions that integrate the environmental signals to several development processes in different

plant species. The MADS-box genes are highlighted in orange boxes; arrows and bar lines indicate induction and repression, respectively; asterisk (*) means direct

regulation; and the numbers on the arrows indicate the reference where the data were obtained.
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yield, increased plant capacity to maintain both chlorophyll
a and b content and leaf relative water content (RWC), and
improved recovery potential after re-watering, compared to wild
type plants (Figure 2A). In addition, Lee et al. (2008) reported
that OsMADS26 positively regulates many genes involved in
stress-related processes, especially genes that participate in
ROS homeostasis such as NADPH-oxidase, peroxidase, and
oxidoreductases. Nevertheless, these results have little overlap
with those from Khong et al. (2015), who found that OsMADS26
negatively regulates drought, salt, and ROS responsive genes such
as RESPONSIVE TO ABA21, encoding a rice dehydrin, SALT
STRESS-INDUCED PROTEIN and the ROS scavenging enzyme
Peroxidase 22 (Figure 3).

Discrepancies between these two groups’ results may be
explained either by disparities in the expression levels of
OsMASDS26: no expression in the knockout mutant (Lee et al.,
2008) vs low expression in the OsMADS26-RNAi line (Khong
et al., 2015), or by the different genetic backgrounds employed
in the studies. Despite this, it seems clear that OsMADS26
plays a fundamental role as a stress-signal integrator and that
systemic approaches are still needed to unravel the participation
of OsMADS26 in the regulatory network underlying water
stress responses.

Other studies made in rice determined that OsMADS57, one
of the five MADS-domain proteins belonging to the AGL17
clade, functions as a promoter of tolerance to cold stress
(Arora et al., 2007). The gene is induced by salt, drought,
abscisic acid, and chilling. In addition, it was shown that the
OE line had a higher survival rate when exposed to chilling
temperatures (4◦C) than wild type plants, and the opposite was
true for the loss of function line. Moreover, OsMADS57 directly
represses the expression of Dwarf14, a gene involved in axillary
bud development, while it directly activates the expression
of OsWRKY94, which participates in several stress responses
and various plant developmental processes. Interestingly, both
binding and activation of OsWRKY94 by OsMADS57 were
shown to be temperature-dependent, suggesting that OsMADS57
may function as an on-off switch to change from transcriptional
repression at normal temperatures to activation at chilling
temperatures (Figure 3; Chen et al., 2018).

In Arabidopsis, the MADS-domain TF SHORT
VEGETATIVE PHASE (SVP) provokes modifications in
some developmental processes and gas exchange function in
response to progressive drought stress (Figure 1; Bechtold et al.,
2016). In addition, despite a significant reduction in stomatal
conductance under well-watered conditions and drought stress,
svp loss of function mutants exhibit elevated water loss and
maintain substantial photosynthetic CO2 assimilation rate
throughout the drying period due to persistent rosette growth
in comparison to wild type plants (Bechtold et al., 2016; see
Figure 2D). Furthermore, it was shown that SVP regulates the
expression of eight TFs that respond to drought; two of these,
DEHYDRATION RESPONSE ELEMENT B1A and FLOWERING
BHLH 3, are particularly interesting because they are involved in
early responses to drought and osmotic stress, such as stomatal
opening regulation (Kasuga et al., 2004; Yoshida et al., 2014b;
Bechtold et al., 2016).

In addition, it was also reported that SVP is induced by
drought stress and functions as a positive regulator of drought
resistance via ABA homeostasis. Wang et al. (2018) showed that
SVP loss of function mutants are sensitive to drought stress
conditions, while the OE lines are tolerant. Moreover, SVP affects
genes involved in ABA function as it directly downregulates the
expression of CYP707A1 and CYP707A3, the ABA 8-hydroxylase
genes that participate in ABA catabolism in Arabidopsis leaves.
SVP also upregulates AtBG1, a β-glucosidase gene involved in
the hydrolysis of ABA-glucose ester (ABA-GE) into ABA, an
important step for the accumulation of active ABA. All these
data suggest that SVP is an important component of a regulatory
network involved in drought responses (Figure 1; Riboni et al.,
2013; Bechtold et al., 2016).

In tomato (Solanum lycopersicum), the expression of SlMBP11
(an AGL15 ortholog) is induced by salt stress, dehydration,
and wounding (Figures 2B, 3). Knockdown lines of this gene
(SlMBP11-RNAi) are more sensitive to salt stress conditions
(100 mM NaCl) than wild type plants (Figure 2B), showing
reduced fresh weight as well as reduced root growth in both post-
germination and 5-week-old seedlings. Moreover, these plants
also showed lower RWC and chlorophyll content, alterations
associated with sensitivity to salt stress (Guo et al., 2016).
Additionally, several parameters related to oxidative damage
such as relative electrolyte leakage and malondialdehyde content
are higher in the SlMBP11-RNAi plants, suggesting that this
line is having an oxidative damage. Contrary to what happened
with the loss of function mutant of SlMBP11 in 5-week-old
seedlings, the OE of this MADS-box gene confers tolerance to
salt stress, has a higher RWC, accumulates greater amounts of
chlorophyll content and less amounts of malondialdehyde, and
shows diminished relative electrolyte leakage (Guo et al., 2016).

Interestingly, SIMBP8, a gene closely related to SIMBP11,
has the opposite effect on salt tolerance in tomato. This
MADS-box gene is a negative regulator of drought and high
salinity stress responses in this plant as SlMBP8-RNAi seedling
root and shoot growth are less inhibited than those of wild
type seedlings growing under salt stress conditions (100 mM
NaCl) and drought stress in a 5-week-old seedlings (Yin
et al., 2017). These authors also found that the RNAi line,
as the OE line of SlMBP11, has higher levels of RWC and
chlorophyll content, and less amounts of relative electrolyte
leakage and malondialdehyde, both in salt and drought stress
(Guo et al., 2016; Yin et al., 2017).

In pepper (Capsicum annuum), it was shown that CaMADS
(a MADS-box gene from the AGL2/SEP1 clade) is induced by
various stress conditions (Figure 3; Table S1). Downregulation
of this gene in pepper originates plants more sensitive to
cold, salt stress, and mannitol treatment, that show increased
malondialdehyde levels and electrolyte leakage, as well as lower
levels of chlorophyll than wild type plants. Moreover, the OE of
CaMADS in Arabidopsis plants confers a higher tolerance to cold,
salt, and osmotic stress, and contributes to a better recovering
capacity of the plants after cold stress conditions in comparison
to wild type plants (Chen et al., 2019).

Finally, the availability of mineral nutrients is another of
the most limiting resources of plant growth. Phosphorous (P)
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is an essential nutrient for plant growth that can alter the
root system architecture (Gruber et al., 2013; Rellán-Álvarez
et al., 2016; Shahzad and Amtmann, 2017). In Arabidopsis,
P deficiency inhibits primary root (PR) elongation while it
increases lateral root (LR) density and length (Svistoonoff et al.,
2007). Furthermore, in wheat (Triticum aestivum), nine out of 54
MADS-box genes are differentially regulated under P-deprivation
conditions (Shi et al., 2016). One of them, TaMADS51 that
is induced under P deprivation (12 µmol/L P), was used for
functional analysis in tobacco plants grown under hydroponic
conditions (Figures 2C, 3). The study showed that the OE of
this MADS-box gene improves plant growth and increments
plant biomass and P accumulation as well as antioxidant
enzymatic activities only under P deprivation growth conditions
(Figures 2C, 3; Shi et al., 2016).

2.2. Root Development
Root system architecture, i.e., the spatial arrangement of an
entire root system, changes plastically in response to various
environmental cues to ensure water and nutrient uptake to
sustain growth and survival (Shahzad and Amtmann, 2017).
In Arabidopsis, it is known that at least 50 MADS-box genes
are expressed in the root (Rounsley et al., 1995), but their
participation in root development in response to abiotic stress is
largely unknown.

GbMADS9 is a Ginkgo biloba MADS-box gene involved
in post-germination root growth in response to abiotic stress
tolerance (Yang et al., 2016); it is an ortholog of the B sister-
class genes of Arabidopsis. GbMADS9 is upregulated in response
to salt, drought and cold stresses (Figure 3); and Arabidopsis
OE lines of this gene exhibited longer roots than those of
wild type plants after 15 days under high osmotic stress (400
mM of mannitol). Additionally, malondialdehyde was lower,
while the chlorophyll and proline levels were higher in these
plants compared to those from wild type plants. Proline is
an amino acid that may enhance stress tolerance because
it works as an osmolyte, a metal chelator, an antioxidative
defense molecule, and a signaling molecule (Hayat et al., 2012).
Finally, enhanced tolerance to osmotic conditions was associated
with improved superoxide dismutase and catalase antioxidant
enzymatic activities in these OE lines (Yang et al., 2016). These
data suggest that the increase tolerance of the OE lines of
GbMADS9, could be dependent on the proline content and the
enhance of antioxidant activities.

Nitrogen (N) is an inorganic nutrient essential for plant
growth and development; it alters the root system architecture
depending on the N source as well as on its concentration
(Gruber et al., 2013). Vidal et al. (2010) found that Arabidopsis
PR growth is inhibited while LR density is increased under 5 mM
KNO3. In addition, Zhang et al. (1999) found a gradual increase
of LR length in roots locally exposed to increasing concentrations
of KNO3. It has also been reported that when the plants are
permanently exposed to high NO3- concentrations (≥10 mM),
LR production and initiation is inhibited (Zhang and Forde,
1998). These studies suggested that direct root contact to a NO3-
source stimulates LR meristem activity, while a high amount of
NO3- absorbed by the plant could have an inhibitory effect on it
(Zhang and Forde, 1998; Zhang et al., 1999). Next, we will review

in detail the involvement of MADS-domain proteins in root
system architecture changes due to alterations in nitrogen supply.

ARABIDOPSIS NITRATE REGULATED 1 (ANR1/AGL44) is
a well-known positive regulator of LR development in response
to nitrate availability (Zhang and Forde, 1998). ANR1 antisense
and co-suppressed lines show inhibition of LR elongation when
exposed to high N concentrations (Zhang and Forde, 1998).
Interestingly, LR growth in these lines is no longer responsive
to the stimulatory effect of NO3- supplied locally, suggesting
that ANR1 participates in the NO3- signal transduction pathway
that modulates LR growth (Zhang and Forde, 1998). Besides,
the OE of ANR1 in plants results in a higher LR density as well
as longer LRs either under control or high N conditions (Gan
et al., 2012). Accordingly, the OE in Arabidopsis of one of the
five rice ANR1 orthologs, OsMADS25, induced LR formation,
PR and LR length increments, and gains in root and shoot fresh
weight in the absence of NO3-, compared to wild type plants.
This effect is enhanced in response to increasing NO3- levels
(Figure 3; Yu et al., 2015). Additionally, two rice OE lines of
OsMADS25 showed longer PR and LRs and a higher density
of LRs than wild type plants. As expected, this gene’s RNAi
lines showed shorter PR and LRs and smaller LR numbers in
comparison to wild type plants under high nitrate (Yu et al.,
2015). Moreover, a previous study of the one published in 2015
by Yu et al., showed that diverse N sources have contrasting
effects overOsMADS25 expression levels: the gene is upregulated
by KNO3 and NH4NO3, whereas it is downregulated by NH4Cl
(Table S1; Yu C et al., 2014).

AGAMOUS LIKE21 (AGL21) is a MADS-box gene highly
expressed in the vascular tissue of the Arabidopsis PR and
in LR primordia (Yu L.-H. et al., 2014). This gene is
induced by different environmental stresses and plant hormone
treatments (Figure 1 and Table S1), suggesting participation in
root plasticity (Yu L.-H. et al., 2014). AGL21 OE lines produce
higher numbers and longer LRs both under N-deficient and
N-rich conditions (20 mM KNO3 and 20 mM NH4NO3),
while the loss of function mutant produces fewer and shorter
LRs than wild type plants in either N-growing conditions.
This data revealed that LR responses to nitrogen availability
in AGL21 mutant lines, are not directly proportional to the
concentration used. Finally, AGL21 positively regulates cell
division in LR primordia and LRs, but PR length was not affected
either in AGL21 OE or in loss of function lines (Figure 2E;
Yu L.-H. et al., 2014).

2.3. Involvement of MADS-Box Genes in
Flower Development
Tomato flowers are very sensitive to low temperatures, displaying
three different phenotypes, or combinations of them, after facing
cold stress: floral organ homeotic changes, modifications in organ
number, and differences in the pattern of organ fusion (Lozano
et al., 1998). Interestingly, several MADS-box genes, including
TOMATO APETALA3, are highly induced under cold stress
conditions (Table S1), suggesting that differential expression
of MADS-box genes could be responsible for these plastic
phenotypical alterations (Lozano et al., 1998).

Stamens are the male reproductive organs, consisting of a
filament and an anther in which microspores are produced. It
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has been shown that temperature influences sexual reproduction
(Kim et al., 2001; Bokszczanin, 2013), specifically, the
development and functioning of male gametophyte in monocot
and dicot species (Müller et al., 2016). Stamen specification
is regulated by a tetramer integrated by the MADS-domain
proteins AP3, PI, AG, and SEP (Theißen and Saedler, 2001).

Tomato develops many different stamen phenotypes under
continuous mild heat conditions (32◦C day, 26◦C night). They
include loss of pollen viability and deformation of some of the
anthers into pistil-like structures. The frequency of appearance
of these phenotypes is not constant, it increases as temperature
rises. The homeotic transformation of the anthers suggested
that the expression patterns of B and C class genes from
tomato should be analyzed: two AP3 genes, TAP3 and TOMATO
MADS BOX GENE6 (TM6), two PI genes, LePISTILLATA
(LePI) and TOMATO PISTILLATA, and two C-class genes
TOMATO AGAMOUS1 and TAG-LIKE1. Müller et al. (2016)
showed that, under mild heat conditions, the expression of
TM6, TAP3, and LePI is repressed in anthers while the other
MADS-box genes do not change their expression (Figure 3).
They decided to use a TM6-RNAi allele and observed weak
anther-to-pistil conversions under control conditions (25◦C day,
19◦C night) while, under a regimen of mild heat conditions
(32◦C/26◦C day/night) several phenotypes appeared, such as
strong anther deformation, reduced male fertility, and less
pollen production with lower viability than wild type plants,
resembling plants growing at high temperatures. These data
demonstrate that reduction in the expression of the MADS-box
gene TM6 mimics phenotypes obtained with high-temperature
growth conditions in tomato plants. Interestingly, plants
overexpressing AtGRXS17, a glutaredoxin that confers heat
tolerance when overexpressed, show fewer anther deformities
under mild heat conditions than wild type plants. Moreover,
these plants also show an increment in the expression of
TAP3 (Müller et al., 2016).

In rice, OsMADS3, an AG ortholog, is expressed in the
tapetum and in microspores during late anther development
stage. A knockout line of this gene (osmads3-3) shows homeotic
transformation of stamens into lodicules (Yamaguchi et al.,
2006). In another study, null expression mutant, osmads3-
4, is male sterile and exhibits defects in pollen development
due to oxidative stress, suggesting that OsMADS3 regulates
anther development (Hu et al., 2011). Using chromatin
immunoprecipitation and electrophoretic mobility shift assay, it
(Hu et al., 2011) showed that OsMADS3 regulates directly the
expression of MT-1-4b, a gene encoding a metal binding protein
that functions as a ROS-scavenger. Furthermore, silencing of
MT-1-4b by an artificial miRNA (MT-1-4b-amiRNA) provoked
defects in anther’s development and reduced mature pollen grain
formation (Figure 3). Finally, these authors also showed that
OsMADS3 affects the expression of many other ROS-scavenging
enzymes, suggesting that this MADS-box gene regulates male
reproductive development, in part, through ROS homeostasis.
It has been demonstrated that ROS participate in multiple
developmental processes like root and flower development,
meristem specification, and seed germination (Tsukagoshi et al.,
2010; Schippers et al., 2016; Zeng et al., 2017). Under normal

conditions, ROS production in plants is low, while under stress
conditions, it is highly induced andmay provoke cellular damage.
However, it has also been suggested that ROSmolecules may play
a role in stress signaling (Price and Hendry, 1991; Mittler, 2002).

2.4. Seed Development
Seeds enclose embryonic plants and are essential to determining
when and where plants should establish themselves. Seed
germination starts with initial water uptake by a quiescent
dry seed and terminates with the elongation of the embryonic
axes and the emergence of the embryonic root (Bassel
et al., 2011). This developmental process is highly regulated
by temperature and water availability. Also, under adverse
conditions, seed germination is arrested (dormancy), allowing
the plant to survive. Two plant hormones are important in
this developmental process as ABA delays germination, whereas
gibberellic acid (GA) promotes it (Shu et al., 2016).

In Arabidopsis, Yu et al. (2017) showed that AGL21, besides
its role in LR development, functions as a negative regulator
of seed germination under osmotic stress conditions. While
OE of AGL21 affects germination rate and seeds become
hypersensitive to salt stress (150 mM NaCl), to severe osmotic
stress (300 mM mannitol), and to ABA, the germination
rate of the AGL21 loss of function lines is less affected
than that of wild type plants under these stressful conditions
(Figures 1, 2F). Interestingly, the authors demonstrated that
AGL21 is involved in ABA signaling as it directly regulates the
expression of ABA INSENSITIVE 5 (ABI5); furthermore, they
also showed that AGL21-regulated seed germination depends
on ABI5.

Another gene involved in seed development in Arabidopsis is
AGL15. The OE lines of this gene retard silique maturation and
seed desiccation. Besides, seeds have a higher water potential for
a longer period of time than seeds from control plants (Figure 1;
Fang and Fernandez, 2002).

In rice, it has been shown that several Type I MADS-box
genes participate in early seed formation during the syncytial
stage of development that, among other things, determines
seed size (Folsom et al., 2014). Chen et al. (2016) showed
that the expression of three rice MADS-box genes, OsMADS82,
OsMADS87, and Os11g30220, is reduced upon heat treatment
(from mild 35◦C/30◦C to severe 39◦C/34◦C day/night) for
48 h after fertilization (Figure 3). Also, rice seed size and
seed viability are reduced during heat treatment because the
transition from syncytium to cellularization accelerates. Thus,
the authors decided to study the function of one of these
genes, OsMADS87, in rice mutant lines (Chen et al., 2016).
They found that decreasing OsMADS87 expression through
RNAi transgenic rice lines growing under normal conditions
accelerates endosperm cellularization and reduces seed size. On
the other hand, the OE of this gene does not change endosperm
cellularization but produces larger seeds at maturity compared
to wild type seeds. In heat stressed plants (35◦C) the OE and
the wild type lines show reduced seed size compared to control
conditions, while the RNAi lines are not further affected (Chen
et al., 2016). These data suggest that OsMADS87 participates
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in endosperm cellularization and seed size in response to
heat stress.

2.5. Flowering Time
Flowering is a developmental stage that involves the transition
from vegetative growth to a reproductive phase where flowers
are produced; this developmental stage is tightly regulated by
both endogenous and environmental cues (Hepworth and Dean,
2015; Kazan and Lyons, 2016). Complex regulatory networks
underlie this transition, where MADS-box genes play central
roles not only in the transition itself, but also in the shoot apical
meristem homeostasis and floral organ identity (Srikanth and
Schmid, 2011; Andrés and Coupland, 2012; Bloomer and Dean,
2017; Whittaker and Dean, 2017; Wils and Kaufmann, 2017).

Flowering is regulated by several environmental factors
including photoperiod, light quality, and temperature. It is also
regulated by different types of stress conditions such as drought,
temperature, oxidative, and salt stress (Blázquez and Weigel,
2000; Onouchi et al., 2000; Samach et al., 2000; Blázquez et al.,
2003; Moon et al., 2003; Balasubramanian et al., 2006). In this
section, we will review how MADS-box genes participate in the
coordination of the response to stress conditions during the
vegetative to flowering transition.

In Arabidopsis, flowering time is determined by the
expression of the so-called floral pathway integrators (FPIs),
including LEAFY, SUPPRESSOR OF OVEREXPRESSION OF
CONSTANS 1 (SOC1), and FLOWERING LOCUS T (FT)
(Blázquez and Weigel, 2000; Lee et al., 2000; Onouchi et al.,
2000; Samach et al., 2000; Moon et al., 2003, 2005). These
genes are antagonistically regulated by two TFs: CONSTANS
(CO), encoding a zinc finger protein, and FLOWERING LOCUS
C (FLC), encoding a MADS-box TF (Michaels and Amasino,
1999; Lee et al., 2000; Samach et al., 2000). During the
transition to flowering, FLC functions as part of a repressor
complex together with another MADS-domain protein, SVP
(Lee et al., 2007; Li et al., 2008).

During drought stress, one of the major morphological
changes in angiosperms, is the early transition from vegetative to
reproductive phase in order to complete their life cycle and make
seeds before the stress conditions become too severe, leading
to the plant’s death. This mechanism of drought escape has
been reported in several plant species (Xu et al., 2005; Franks
et al., 2007; Franks, 2011; Su et al., 2013; Ma et al., 2014). In
Arabidopsis, the onset of a drought escape response (in Col-
0 and Ler-1 accessions) is controlled by the photoperiod; it is
triggered by long day conditions (16 h light/ 8 h dark, LD) and
slight but significantly repressed (only in Col-0) under short
days (8 h light/16 h dark, also, short photoperiod, SD; Riboni
et al., 2013). These opposite responses partially depend both on
ABA, as ABA biosynthesis mutants flower later than wild type in
control and in stress conditions, and on the expression of three
MADS-box genes, SOC1, FLC, and SVP (Figure 1). Moreover,
SOC1 expression is induced by drought under a LD photoperiod
in an ABA-dependent way; in addition, the soc1-2 loss of function
mutant strongly reduced the drought escape response under
LD, and have a late flowering phenotype under this condition.
On the other hand, under SD, the drought response is strongly
dependent upon FLC / SVP complex repressor activity (Riboni

et al., 2013, 2016). Under SD drought conditions, loss of function
svp-41mutants recover the drought escape response (Figure 2D)
and flc-6 mutants show no alteration in their flowering time.
Riboni et al. (2013) proposed that the adaptive significance for the
interaction between drought and photoperiodic conditions relies
upon limiting the floral transition to drought episodes that occur
only in spring LDwhen environmental conditions allow plants to
fulfill their life cycle and preventing them from occurring during
SD of autumn, when environmental conditions are not favorable.

ROS are normally produced in mitochondria and chloroplasts
by specific enzymes. Although these molecules may function in
signaling, they could also be harmful for many biomolecules
(Birben et al., 2012). One of the strategies that cells use to cope
with oxidative stress is the synthesis of antioxidant enzymes such
as peroxidases (Birben et al., 2012). PRX17 is a class III peroxidase
present in all plant tissues, especially in young floral buds;
intracellularly, it localizes in the cell wall and is important for
lignin biosynthesis (Cosio et al., 2017). It has also been shown that
PRX17 functions as a flower promoter, as PRX17 loss of function
impairs the transition to flowering while the OE line of this
gene exhibits a slightly early flowering phenotype. Interestingly,
the OE of the MADS-box gene AGL15 is late flowering and
the protein binds to PRX17 promoter, repressing its expression.
Moreover, AGL15 not only regulates peroxidase expression but
also the protein activity suggesting that part of the late flowering
phenotype of the OE of AGL15 depends on the repression of
PRX17 (Cosio et al., 2017). Additionally, SlMBP11, the AGL15
ortholog from tomato (see section 2.1), positively regulates the
expression of catalase and other peroxidases, suggesting a general
function of AGL15 and its orthologs as ROS regulators.

Cold stress responses occur after a short exposure to either
chilling (<20◦C) or freezing (<0◦C) conditions (Chinnusamy
et al., 2007). Under these stressful conditions, plants show
different phenotypes such as chlorosis, reduced leaf expansion,
poor germination, and delayed flowering (Barah et al., 2013;
Jeon and Kim, 2013). Low temperature stress induces fast
transcriptional responses in plants, characterized by the
activation of the cold response pathway ICE-CBF-COR
(ICE: inducer of CBF expression; CBF: C-Repeat Binding
Factor, and COR: Cold Regulated) that, in turn, regulates
more than 100 target genes needed to withstand cold
(Seo et al., 2009; Wang et al., 2017).

The MADS-box gene SOC1 not only integrates diverse floral
inductive pathways (Boss et al., 2004) but also participates in a
crosstalk between cold sensing and flowering. SOC1 negatively
regulates cold response genes; for instance, the loss of function
of this gene (soc1-2) induces the expression of several COR and
CBFs genes, while in the OE line (soc1-101D), these genes are
repressed (Seo et al., 2009). Chromatin Immunoprecipitation
analysis showed that SOC1 repressed directly the expression of
the three CBF genes (Seo et al., 2009). As mentioned, CBFs
are known TFs that coordinate the expression of many genes
related to cold stress responses, their OE in Arabidopsis not
only activates COR genes but also FLC expression (a negative
regulator of SOC1) and causes late flowering as well as tolerance
to freezing conditions (Gilmour et al., 2004; Seo et al., 2009).
Interestingly, these cross regulation, creates a loop between cold
response signaling and flowering regulation (Figure 1).
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Other MADS-domain proteins that negatively regulate the
expression of FT and the transition to flowering in response
to changes in temperature in Arabidopsis are SVP and
FLOWERING LOCUS M (FLM, also known as MAF1 and
AGL27). FLM, as SVP, represses the expression of the FPIs and
functions as a negative regulator of flowering at low-temperature
conditions (16◦C, Lee et al., 2007, 2013; Posé et al., 2013).
Interestingly, the FLM transcript shows alternative splicing with
a different number of splice variants that depend on temperature
growth conditions and the plant ecotype. Arabidopsis Col-0
has two splice variants that are, translated; the FLM-β delays
flowering when overexpressed, whereas the OE of FLM-δ induces
early flowering (Figure 1; Scortecci et al., 2003; Posé et al., 2013).
Posé et al. (2013) showed that the relative accumulation of
the two splice variant transcripts in Col-0 is also temperature-
dependent, with FLM-β being the predominant form at 16◦C
while FLM-δ is the most abundant variant at 27◦C. The data
lead to the hypothesis that these two variants compete for the
interaction with SVP at both temperatures. Moreover, it has
been shown that SVP/FLM-β heterodimer is able to bind DNA,
whereas the SVP/FLM-δ complex is impaired in DNA binding
and may function as a dominant negative isoform. However,
recent studies contradict this hypothesis by demonstrating that
FLM-δ does not exercise a dominant-negative effect (Capovilla
et al., 2017; Melzer, 2017). Additionally, other studies showed
that at 16◦C the splice variant FLM-β is more abundant than
FLM-δ, but at 27◦C the copy number of both splice variants
was the same (Lee et al., 2013); and it was also shown that the
level of FLM-β rather than the FLM-β/FLM-δ ratio controls
flowering responses to high temperature (Figure 1; Sureshkumar
et al., 2016; Lutz et al., 2017). Furthermore (Lee et al., 2013), have
shown that the regulation of flowering upon temperature sensing
depends also on the degradation of the SVP protein at high
temperatures (Lee et al., 2013).

3. MADS-BOX GENES ARE KEY IN
MODULATING DEVELOPMENTAL
RESPONSES TO SEASONAL
TEMPERATURE CHANGES

Plant responses to various environmental conditions can
alter the timing of initiation and the duration of different
developmental events; moreover, the transition to different plant
developmental processes, such as flowering, seed dormancy
and germination, and bud dormancy and release, require
specific environmental changes to occur. For example, many
plants require a process known as vernalization (a prolonged
exposition to cold conditions) to optimize flowering time with
environmental conditions that ensure the maximum fitness
(Sung and Amasino, 2005; Bäurle and Dean, 2006; Shu et al.,
2016; Whittaker and Dean, 2017). In this section, we will
focus on the participation of several MADS-box genes in
seasonal low temperature-dependent developmental processes
such as vernalization, seed germination, and bud dormancy
and release.

3.1. Vernalization
Arabidopsis vernalizes at a wide range of temperatures (0–
16◦C) (Wollenberg and Amasino, 2012; Duncan et al., 2015),
and the process leads to cold-induced epigenetic silencing of
FLC (Figure 1; Bloomer and Dean, 2017). FLC is a protein
that represses flowering transition by repressing flowering gene
promoters, such as FT and SOC1. Upon vernalization, FLC
expression and protein levels decrease so the FPIs are expressed
and flowering is induced (Michaels and Amasino, 1999, 2001;
Sheldon et al., 1999, 2000; Johanson et al., 2000; Rouse et al.,
2002; Sung and Amasino, 2005; Whittaker and Dean, 2017).
Moreover, repression of FLC involves epigenetic changes in
histones, specifically an enrichment of trimethylated H3 lysine
27 (H3K27me3) and depletion of trimethylated H3 lysine 4
(Finnegan and Dennis, 2007; Yang et al., 2014).

Furthermore, and according to the data shown above, CBF
transcription factors induce the expression of FLC, and this could
explain the late-flowering phenotype of plants growing in cold
stress conditions. However, in vernalization treatments where
plants are exposed to prolonged cold conditions, CBFs genes
are upregulated but FLC expression is inhibited. This suggests
that vernalization reverses the cold stress CBFs’ induction over
FLC expression and that these two treatments affect flowering
transition via distinct mechanisms (Seo et al., 2009).

In Arabidopsis, FLC has five paralogs (MADS AFFECTING
FLOWERING, MAF1 to MAF5), whose proteins show between
53 to 87% of identity (De Bodt et al., 2003; Ratcliffe et al.,
2003). Similar to FLC, almost all MAF genes are regulated by
vernalization: FLM (MAF1), MAF2, and MAF3 are repressed,
whilst MAF5 is induced and MAF4 is not affected (Ratcliffe
et al., 2001, 2003). The loss of function mutant of FLM (flm-
1) has an early flowering phenotype, while the OE of this gene
retards flowering (Figure 1; Ratcliffe et al., 2001; Scortecci et al.,
2001). In addition, MAF2 is involved both in the vernalization
process (Ratcliffe et al., 2003) and in the flowering transition
of plants exposed to short treatments of cold stress. The loss of
function mutant of this gene (maf2) flowered disproportionately
early when growing in short-duration cold treatments that do not
elicit full vernalization in wild type plants; besides, regulation by
MAF2 was shown to be independent of FLC expression. These
data suggest that MAF2 regulates the repression of premature
vernalization in response to brief cold treatments (Ratcliffe et al.,
2003). In the Landsberg accession, the OE of FLC and of MAF1-
MAF5 produced late-flowering lines (Michaels and Amasino,
1999; Ratcliffe et al., 2003), and the OE lines ofMAF2 are unable
to respond to vernalization due to a continuous repression of
SOC1 (Ratcliffe et al., 2003).

The molecular mechanism activated in Arabidopsis in
response to vernalization is conserved in temperate cereals
(Greenup et al., 2010; Ruelens et al., 2013). In this group,
vernalization response is regulated by the MADS-box gene
VERNALIZATION1 (VRN1) in wheat and by its ortholog Vrn1-
H1 in barley (Trevaskis et al., 2003). These genes are flowering
promoters induced by vernalization, in an opposite manner
to FLC (Danyluk et al., 2003; Yan et al., 2003; Sasani et al.,
2009). In wheat and barley, the expression of VRN1 genes, in
plants not exposed to vernalization, depends on the cultivar
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and its requirements: high in spring lines that flower without
vernalization, moderate in semi-spring lines, and null in winter
lines that require vernalization to flower. Accordingly, the
expression of VRN1 in plants under vernalization correlates
with the lines used: strongly induced in winter lines and weakly
induced in spring lines (Trevaskis et al., 2003).

In plant perennial species, flowering continues throughout
the lifespan of the plant, alternating vegetative and reproductive
development. Interestingly, in Arabis alpina, a perennial
plant, the expression of the FLC ortholog PERPETUAL
FLOWERING 1 (PEP1) depends on the external temperature,
being upregulated in warm temperatures and downregulated
in cold environments (Figure 3). Moreover, and contrary
to what happens with FLC, PEP1 expression is high after
a vernalization treatment, correlating with the absence of
H3K27me3 marks (Wang et al., 2009). Functional analysis
using the loss of function mutant of PEP1 (pep1) showed
that this gene is important to prevent flowering before
vernalization and to facilitate the return to vegetative
development, thus, restricting the duration of flowering. In
addition, the OE of PEP1 lines were late-flowering. These
data suggest that PEP1 expression is one of the mechanisms
that A. alpina uses to perceive external temperature to be
able to transit between flowering and vegetative development
(Wang et al., 2009).

CO and FT-like genes have also been identified in barley
and some grass species but their functions in flowering have
not been described (Turner et al., 2005; King et al., 2006; Yan
et al., 2006; Faure et al., 2007). Finally, another MADS-box
gene with weak similarity to SOC1, HvOS2 was found in barley
(Hordeum vulgare) and its transcript levels decrease during
vernalization in a pattern similar to that of FLC in Arabidopsis
(Figure 3). However, although this gene does not contain the
H3K27me3 deposition mark, its OE (HvOS2) delays flowering
(Greenup et al., 2010).

3.2. Low Temperature-Dependent
Germination
FLC is not only important for flowering but also participates
in seed germination in response to seasonal environmental
factors such that higher levels of FLC in OE lines, or in
Arabidopsis accessions with different levels of FLC, provoke
significantly elevated rates of germination at cool temperatures
(10◦C) compared to those at 22◦C (Chiang et al., 2009).
Moreover, it was also demonstrated that this FLC phenotype
is dependent on the levels of ABA and GA, the two most
important hormones for the initial stages of germination. In
accessions with a strong FLC allele or in the OE lines of this
gene, the expression of CYP707A2, a gene that participates in
the catabolism of ABA, and GA20ox1, a gene that participates
in the synthesis of GA, are upregulated. Additionally, and
according to FLC-dependent germination models, the mutants
of two other MADS-box genes related to flowering transition,
APETALA1 (ap1-1) and soc1, showed higher germination
percentages at cool temperatures than wild type plants
(Chiang et al., 2009).

3.3. Bud Dormancy and Release
Dormancy could be seen as a survival strategy during periods
where the environmental conditions are adverse for growth. In
perennial plants of temperate climates, the induction of bud
dormancy by winter cold temperature and SD is a phenological
adaptive feature which ensures optimal protection of vegetative
and reproductive meristems against unfavorable environmental
conditions (Bielenberg et al., 2008; Ríos et al., 2014). This
latent state implies a reduction in meristematic cell proliferation
activity; in addition, during the initial steps of dormancy
formation, there is an increase in ABA levels and accumulation
of storage compounds, as well as an active gene regulation
engaged in the acquisition of desiccation and cold tolerance
(Rohde and Bhalerao, 2007; Ruttink et al., 2007). Furthermore,
SD induces bud dormancy by activating the ABA response
(Singh et al., 2019). On the other hand, dormancy release
requires resuming cell division, changes in some developmental
programs regarding hormone accumulation, sugar metabolism,
and epigenetic regulation. Moreover, for this transition to occur,
exposition to a certain period of chilling temperatures is required,
which could act as an active biological regulator more than as a
stress signal (Horvath et al., 2003; David Law and Suttle, 2004;
Rohde and Bhalerao, 2007; Liu et al., 2015).

Interestingly, the process of bud dormancy release in
perennials presents similarities with the vernalizationmechanism
for flowering in Arabidopsis and cereals (Considine and
Foyer, 2014); both processes require the occurrence of an
extended chilling period, they are affected by photoperiod,
and, in both processes, MADS-domain TFs are key regulatory
elements (Chouard, 1960; Horvath et al., 2003; Hemming
and Trevaskis, 2011). The MADS-box genes DORMANCY-
ASSOCIATED MADS-box (DAM) have been implicated in
regulating bud dormancy induction and release in woody plants.
The first study made on peach (Prunus persica) indicated the
participation of a cluster of six tandemly repeated PpDAM1-
PpDAM6 genes that are orthologs to SVP and AGAMOUS
LIKE24 from Arabidopsis (Bielenberg et al., 2004, 2008;
Jiménez et al., 2009). Deletion of all six DAM genes in
the evergrowing peach mutant provokes a constant growth
of terminal meristems facing winter conditions, and in SD,
the plants are also unable to form buds, displaying half the
frost hardiness shown by wild type dormant trees (Figure 3;
Rodriguez-A et al., 1994; Bielenberg et al., 2008).

Furthermore, there is a lot of molecular evidence that
shows that DAM-like genes are differentially regulated during
dormancy induction and release in various plant species
(Leseberg et al., 2006; Mazzitelli et al., 2007; Horvath et al., 2008,
2010; Yamane et al., 2008, 2011; Hedley et al., 2010; Ubi et al.,
2010; Sasaki et al., 2011; Wu et al., 2012; Saito et al., 2013).
Additionally, DAM genes have been identified in quantitative
trait loci that affect bud dormancy (Ruttink et al., 2007; Fan et al.,
2010; Rohde et al., 2011; Sánchez-Pérez et al., 2012; Romeu et al.,
2014; Zhebentyayeva et al., 2014).

Finally, the OE of DAM genes yield different developmental
alterations. For example, the OE of DAM6 in transgenic plums
(Prunus domestica) results in plants with some degree of dwarfing
and increased branching (Fan et al., 2010), and the OE of
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the PmDAM6 in a poplar hybrid (Populus tremula x Populus
tremuloides) promotes growth cessation and dormancy onset
under favorable conditions (Sasaki et al., 2011). Also, the OE of a
DAM ortholog of apple (35S:MdDAMb;Malus domestica, “Royal
Gala”) delays the timing of spring budbreak and produces plants
displaying a dominant main stem with few lateral shoots (Wu
et al., 2017a). Noteworthily, Horvath et al. (2008) suggested that
the interaction between DAMproteins and FT is fundamental for
dormancy transitions, resembling the interactions among these
genes’ orthologs during flowering transition.

There are still some other MADS-box genes whose expression
changes during dormancy transitions and that have been
functionally characterized (Horvath et al., 2008). For instance,
the ortholog of SVP (a repressor of flowering) of aspen plants,
SHORT VEGETATIVE PHASE-LIKE (SVL), is downregulated by
exposure to low temperatures, upregulated by ABA, and induced
by SD in an ABA-dependent pathway (Singh et al., 2018, 2019).
Moreover, loss of function of SVL plants (SVL-RNAi) showed
early budbreak, while OE plants display late budbreak compared
to wild type plants (Singh et al., 2018). In addition, the OE
of SLV in abi1-1 loss of function mutants rescues dormancy
regulation (Singh et al., 2019). SVL directly and positively
regulates the expression of an enzyme that participates in callose
deposition,CALLOSE SYNTHASE 1, involved in plasmodesmatal
closure important to promote dormancy (Singh et al., 2019).
Besides, it negatively regulates the expression of one of the FT
poplar orthologs (FT1) that participates in dormancy release
(Busov, 2019).

The SVP ortholog is also important for bud dormancy release
in kiwifruit (Actinidia spp.). This plant requires a minimum
number of chilling hours so that buds can reinduce growth;
however, chilling requirements vary among different species
(Lionakis and Schwabe, 1984; Snelgar et al., 2007). Ectopic
expression of SVP2 in a low-chill kiwifruit Actinidia eriantha
had a minimal effect on the duration of dormancy while it greatly
affected the duration of dormancy in a high-chill kiwifruit A.
deliciosa (Figure 3; Wu et al., 2012, 2017b).

Also, in apple, the ectopic expression of an ortholog of
SVP (35S:MdSVPa) delayed bud release (Wu et al., 2017a).
Furthermore, there are some reports of SVP ortholog regulation
in different plants during the onset and release of dormancy
(Mazzitelli et al., 2007; Yamane et al., 2008; Diaz-Riquelme et al.,
2009; Horvath et al., 2010; Wu et al., 2012).

In addition, it has also been shown that the OE of the
FUL-like gene of Populus in birch (Betula pendula) resulted in
delayed dormancy (Hoenicka et al., 2008). Moreover, a SOC1-
like gene was upregulated in poplar (Populus tremula x Populus
alba) during bud formation when induced by variations in the
photoperiod (Ruttink et al., 2007). Additionally, a SOC1-like
gene was expressed at higher levels relative to other tissues in
developing buds of white spruce (Picea glauca), implying that this
MADS-box could play a specialized role in bud development (El
Kayal et al., 2011). Also, different allelic variants of the SOC1-like
gene of apricot are associated with different chilling requirements
for dormancy release (Trainin et al., 2013).

Nevertheless, despite all these works, little is known about
how MADS-box genes contribute to the maintenance of bud
dormancy and dormancy release, functional investigations are

still required to determine the role played by DAM and other
MADS-box genes in the activity-dormancy cycle, together with
the identification of their target genes (Cooke et al., 2012). Even
so, these data support the parallelism between regulation of bud
dormancy and vernalization.

4. CONCLUSIONS

Alterations in gene regulation are among the most significant
mechanisms for phenotypic change (Hoekstra and Coyne, 2007);
within these, TFs can function as developmental switches given
their capacity to reprogram gene expression. It has also been
shown that TFs are important in regulating plant responses
to environmental stress along their lifespan. Moreover, it has
been shown that small changes in some key TFs determine
the evolution of different processes and structures. Specifically,
TFs of the MADS-box gene family are central regulators of
every aspect of Arabidopsis development as shown by mutant
analysis. Several data also suggest that distinct MADS-box genes
not only alter their expression levels when facing different
stress conditions but that they are involved in mediating plant
responses or tolerance to a wide range of abiotic stresses,
addressing their importance as integrators of environmental cues
and endogenous hormones in a taxonomically broad range of
plant species. Some MADS-box genes act as critical negative
regulators of growth improving plant survival, while others
function as positive regulators of stress tolerance, associated
with regulating the maintenance of primary metabolism,
ABA signaling, ROS homeostasis, and detoxification processes
through antioxidant enzymatic activities. Despite these studies,
many mechanisms whereby MADS-box genes coordinate the
transcriptional response to abiotic stress remain to be identified.
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