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1. Introduction

During the past few years, the top quark mass measurements perforrf@&Hgnd DO collab-
orations have been improved significantly through the use of the matrix elenethod [IL[R[]3]]4].
In this approach, each experimental event is associated to a weightdrasiee square matrix el-
ement [b,[p]. The weights are then combined together into a likelihood to detetimnmost
probable value of the top-quark mass. The method has also been useeriarmtyses, for exam-
ple, in the search for the Standard Model Higgs produced in gluon fggien H — WW* [[] or
in the measurement of the single-top cross-secfipn [8] at the Tevatron.

Although the method has become more and more popular, its practical applicatian
straightforward. The numerical computation of the weights requires to buildda specific to
each process. In order to automate this step, we devised a new gdgerighen to build automati-
cally a phase-space mapping corresponding to a given amplitude that atiaffcient evaluation
of the weights for a large class of processes.

In this talk, we will first present the definition of weights in the matrix element nwti8®c-
ondly, we will explain why we need to build a specific phase-space gemdma each process
and how MadWeight succeeds to automate this step. Finally we will presemtpmlizations, the
top-quark mass measurement, and the potential observation of a chaggsddsues from the top
quark decay.

2. Matrix Element Method

The matrix element methofl][,]10] associates to each experimental &/anuvgight [P(x)]
given by the probability to observe this event according to a given thieardrame [a]. The
weight is defined as the convolution of the square matrix element with the tiesofunctionW
(also namedransfer functioi:

P9 = 5 [ do(3) M Z(y)dwsdwe fa () Fo W) Wi(x.y) @)

wherey is a parton-level phase-space pouh(y) is the phase-space measure dfd;) are the
Parton Distribution Functions. The normalization by the total cross seationR.]) ensures that
P(x) is a probability density; P(x)dx= 1.

In principle, this definition provides the best discriminator on an eventieytebasis between
different theoretical frames. In particular, the most probable valuwe cdn be estimated through a
likelihood maximization method J10].

3. MadWeight

Although this method is conceptually simple, the numerical evaluation of the weRgk}s
suffers from technical difficulties. The peaked behavior of the temfsinction cannot be probed
efficiently by the usual phase-space integrators and hence regai&ated effort.
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3.1 Adaptive Monte Carlo Integrator

Monte Carlo (MC) integration is the most efficient technique to evaluate highigmsional
integrals. It consists in generating random points in order to estimate theahtdgyen if this
technique is very simple and general, it is very inefficient in presencharpspeaks. The easiest
way to improve the efficiency is to probe with more points the regions where tegrand is the
largest in magnitude. This is achieved, for example, in an adaptive wayBsyAS [11]. This
algorithm is only efficient for peaks aligned on the integration variaflds [TBis means that a
phase space parametrization has to be found where the integrand is ofithe f

f(0) = <_|jp.<xi>> < F(x), (3.1)

where the function®’s may vary abruptly with the value of a single variable of integratin
while F(x) is essentially flat all over the region under integration. If the integrandtiseoform of
Eqg. (3.1) in the parameterizationwe say that all the peaks are factorized.

3.2 MadWeight I ntegrator

As we have seen in the previous section, the problem of evaluating thete@ighq. (2.])
through a MC integration can be reduced to the problem of choosing an@jgie phase-space
parameterization such that the sharp behavior of the integrand is factasze Eq. [(3]1).

The abrupt part of the integrand in Ed. {2.1) is actually a product ofdimensional func-
tions. In the squared matrix element, the strong variations are caused bsoffagators and are
controlled by the invariant masses of the exchanged particles. On thehathdy the transfer
function has a sharp dependence both in energy and in angles of éig p@rticle.

To obtain the appropriate parametrization of the phase-space, Madwstigistfrom the stan-
dard measuref] N, % and then applies a series of analytical changes of variables| $e@f13] f
more details.

4. Examples of Applications

In this section, we present some illustrations of the code. The following semBre based on
Monte Carlo events. This allows us to keep a control on the relevance afshls, and hence to
validate our approach.

Unweighted events are generated with MadGraph/MadEYeht [14]. eTénemnts are passed
through Pythia[[1]5] for the parton-shower and the hadronization. Fitizdlyeconstruction in the
detector is simulated by PGE[16], tuned to the CMS detector.

4.1 Measurement of the top-quark mass

The top quark-mass is an important quantity in the standard model, as itsteogltae can be
used to constrain the mass of not yet observed particles such as the Baygsal analyses based
on the matrix element method have been used by CDF and DO collaborationsdoramafrom
top-quark pair events (Sef J17] for a review). In this case the matrix eiemethod provides a
better accuracy on the mass than other methods like neural networks oratioal fits.
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Figure 1: Plot of the likelihood for a sample of 20 events generated Wit j,put = 160 GeV. The value
m = 1589+ 2.3515(GeV has been extracted from the parabolic curve fitting thetpo

In this first example, we consider the semi-leptonic channel of the togkqpaér production
at the LHC collider:

pp— (t = bW — jj)){t = bW~ — uvy)). 4.1)
In first approximation we consider the transfer function associated to tlem¢egy parametrized
by a double gaussian (we follow the parameterization introducdd]in [10dther quantities such
as the direction of visible particles and the energy of leptons are well mezhdurother words the
corresponding transfer functions are given by delta distributions.

The Monte Carlo events have been produced with an input top-quarkanaé® GeV. They
have been required to contain the right number of jets and muons in thetéitegllsut no kinematics
cuts have been applied. A sampleMdf= 20 events is passed to MadWeight for the evaluation of
the weights. The mass of the top quark is extracted through the maximizationlideiiteood, or
equivalently the minimization of-In (L(m)).

N
—ln(L)=—_Zl|n(P(Xa;m))+N*ACC(m), (4.2)

where Acdm) correct the potential bias introduced both by the acceptance of the desecto
by the cuts imposed on the sample (this correction term is computed by standate-Marlo
techniques).

The values of-In(L(m)) for different assumptions af are displayed in Fig[] 1. A fit by a
parabolic distribution provides the best estimatiompfas well as the associated statistical error:
m = 1589+ 2.345:GeV which is compatible with the generated mass.

4.2 Charged Higgs studiesin top-quark decays

The presence of charged Higgs is predicted by various models like 2ZHDMSSM. A
charged scalar doesn'’t appear in the standard model, so that its afiserwould be a clear
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Figure 2: Distribution of events with respect to the discriminanfior a sample of pure events (solid line),
of background events (dotted line) and of mixed events (phin

signal of new physics. In this example, we consider the production of & digarged Higgs
(my+ = 100GeV) originating from the decay of a top quark. We restrict oursethéofollow-

ing topology:

PP (t = b(H" — ) (E— bW~ — 1 vy) (4.3

Note that if we turn the charged Higgs in/é boson, the above process reduces to the Standard
Model top-quark pair production in the di-leptonic channel. This irredediackground cannot
be removed by a simple cut analysis. For the purpose of simplification, weandlider only this
background in the following.

The problem of identifying a charged-Higgs signal in top-quark paintean be expressed
in the framework of the matrix element method. Using the weights defined ip Bqwe fuild an
event-by-event discriminating variable d(¥) [8]:

Ps(x)
= B0+ R0
wherePs(x) andPs(X) are the weights corresponding respectively to the signal and the loaciayr
hyppotheses.

The distribution of events with respect to this variablés plotted in Fig. [R. The solid
(resp. dotted) line represents the normalized distribution for a sample efsogmal (resp. back-
ground) events. As the two types of sample lead to different shapes insttrindnant variable
d, this allows us to extract experimentally the fraction of signal events in a mixexgble. In our
pseudo experimental sample, we consider 1011 events with respect/@% 2nd 741% of sig-
nal/background events. The related distributions are, compared to tkgrband curve P?g(d)],
systematically shifted towards the signal o4 d)]. This is interpreted as the presence of signal
events. Their relative number can be estimated by fitting the experimental pgthtthe curve
(1—r)Zs(d) +r ZPs(d) wherer represents the fraction of signal events in the sample. The best fit
is obtained forr = 21+ 4%, compatible to expected value, which shows that the matrix element
method succeeds to identify a charged Higgs in top-quark pair events tinedgbove simplifying
assumptions.

(4.4)
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5. Conclusion

We have presented a new algorithm to automatically compute the weights nedldednatrix
element method. Given an arbitrary process, our code producesa-phace generator optimized
to integrate the product of the matrix element and the resolution function.

This tool gives a practical access to a large number of possible applisationieed, the
matrix element method offers a powerful prescription to discriminate betwiffenesht theoretical
hypotheses. This approach can be used not only for the measureiSéntdard Model parameters
but also for the observation of new physics. For the purpose of stgdyeénew horizons opened by
this method, MadWeight provides the resource for the practical evaluatitire weights, sparing
the user to focus on the integration techniques.

6. Acknowledgement

We would like to express our gratitude to V. Lemaitre and F. Maltoni for théjr died advice.
P. Artoisenet is a Research Fellow of the Fonds National de la RechBoibetifique, Belgium.
This work is supported by the Institut Interuniversitaire des Sciencet&dires, and by the Belgian
Federal Office for Scientific, Technical and Cultural Affairs throualé Interuniversity Attraction
poles (IAP) P6/11.

References

[1] A. Abulenciaet al.[CDF Collaboration], Phys. Rev. 85 (2007) 031105 [arXiv:hep-ex/0612060].
[2] A. Abulenciaet al.[CDF Collaboration], Phys. Rev. Le®9 (2007) 182002 [arXiv:hep-ex/0703045].
[3] V. M. Abazovet al.[DO Collaboration], Phys. Rev. 24 (2006) 092005 [arXiv:hep-ex/0609053].
[4] V. M. Abazovet al.[DO Collaboration], Phys. Rev. 05 (2007) 092001 [arXiv:hep-ex/0702018].
[5] K. Kondo, J. Phys. Soc. Japr7 (1988) 4126.
[6] R. H. Dalitz and G. R. Goldstein, Phys. Rev4b (1992) 1531.
[7] A. Abulenciaet al.[CDF Collaboration], CDF note 9500 (2008).
[8] V. M. Abazovet al.[DO Collaboration], Phys. Rev. 28 (2008) 012005 [arXiv:hep-ex/0803.0739].
[9] K. Kondo, J. Phys. Conf. Se53 (2006) 202.

[10] M. F. Canelli. Ph.D. Thesis University of Rochester@3)

[11] G.P. Lepage, Journal of Computational Phy&i¢$1978) 192.

[12] S. Weinzierl, [arXiv:hep-ph/0006269].

[13] P. Artoisenet, V. Lemaitre, F. Maltoni, O. Mattelaergrogress.

[14] F. Maltoni and T. Stelzer, JHE®B02 (2003) 027 [arXiv:hep-ph/0208156].

[15] T. Sjostrand, S. Mrenna and P. Skands, JHBEE5 (2006) 026 [arXiv:hep-ph/0603175].

[16] J. Conway, http://www.physics.ucdavis.edu/conweséarch/software/pgs/pgs4-general.htm.

[17] P. A. Movilla Fernandez [CDF Collaboration and DO Cblteation], Frascati Phys. Se# (2007)
259 [arXiv:hep-ex/0705.3910].



