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We present MadWeight, a new phase space generator aimed at efficiently computing the weights

needed in the matrix element method. Given an arbitrary decay chain and a user-defined transfer

function, the algorithm creates an optimized phase-space mapping to integrate the product of

the square matrix element and the transfer function. We illustrate the code with some applica-

tions, such as the use of these weights to discriminate signal from background in charged Higgs

production analyses.
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1. Introduction

During the past few years, the top quark mass measurements performed byCDF and D0 collab-
orations have been improved significantly through the use of the matrix elementmethod [1, 2, 3, 4].
In this approach, each experimental event is associated to a weight based on the square matrix el-
ement [5, 6]. The weights are then combined together into a likelihood to determine the most
probable value of the top-quark mass. The method has also been used in other analyses, for exam-
ple, in the search for the Standard Model Higgs produced in gluon fusiongg→ H →WW∗ [7] or
in the measurement of the single-top cross-section [8] at the Tevatron.

Although the method has become more and more popular, its practical applicationis not
straightforward. The numerical computation of the weights requires to build acode specific to
each process. In order to automate this step, we devised a new general algorithm to build automati-
cally a phase-space mapping corresponding to a given amplitude that allowsan efficient evaluation
of the weights for a large class of processes.

In this talk, we will first present the definition of weights in the matrix element method. Sec-
ondly, we will explain why we need to build a specific phase-space generator for each process
and how MadWeight succeeds to automate this step. Finally we will present twoapplications, the
top-quark mass measurement, and the potential observation of a charged Higgs issues from the top
quark decay.

2. Matrix Element Method

The matrix element method [9, 10] associates to each experimental event [x] a weight [P(x)]
given by the probability to observe this event according to a given theoretical frame [α ]. The
weight is defined as the convolution of the square matrix element with the resolution functionW
(also namedtransfer function):

P(x) =
1
σ

∫

dφ(y)|Mα |
2(y)dw1dw2 f1(w1) f2(w2)W(x,y), (2.1)

wherey is a parton-level phase-space point,dφ(y) is the phase-space measure andfi(wi) are the
Parton Distribution Functions. The normalization by the total cross sectionσ in (2.1) ensures that
P(x) is a probability density:

∫

P(x)dx= 1.

In principle, this definition provides the best discriminator on an event-by-event basis between
different theoretical frames. In particular, the most probable value ofα can be estimated through a
likelihood maximization method [10].

3. MadWeight

Although this method is conceptually simple, the numerical evaluation of the weightsP(x)
suffers from technical difficulties. The peaked behavior of the transfer function cannot be probed
efficiently by the usual phase-space integrators and hence requires dedicated effort.
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3.1 Adaptive Monte Carlo Integrator

Monte Carlo (MC) integration is the most efficient technique to evaluate highly dimensional
integrals. It consists in generating random points in order to estimate the integral. Even if this
technique is very simple and general, it is very inefficient in presence of sharp peaks. The easiest
way to improve the efficiency is to probe with more points the regions where the integrand is the
largest in magnitude. This is achieved, for example, in an adaptive way by VEGAS [11]. This
algorithm is only efficient for peaks aligned on the integration variables [12]. This means that a
phase space parametrization has to be found where the integrand is of the form

f (x) =

(

n

∏
i=1

Pi(xi)

)

×F(x), (3.1)

where the functionsPi ’s may vary abruptly with the value of a single variable of integrationxi ,
while F(x) is essentially flat all over the region under integration. If the integrand is ofthe form of
Eq. (3.1) in the parameterizationx, we say that all the peaks are factorized.

3.2 MadWeight Integrator

As we have seen in the previous section, the problem of evaluating the weights in Eq. (2.1)
through a MC integration can be reduced to the problem of choosing an appropriate phase-space
parameterization such that the sharp behavior of the integrand is factorized as in Eq. (3.1).

The abrupt part of the integrand in Eq. (2.1) is actually a product of one-dimensional func-
tions. In the squared matrix element, the strong variations are caused by the propagators and are
controlled by the invariant masses of the exchanged particles. On the otherhand, the transfer
function has a sharp dependence both in energy and in angles of any visible particle.

To obtain the appropriate parametrization of the phase-space, Madweightstarts from the stan-
dard measure:∏N

i=1
d3pi

(2π)3Ei
and then applies a series of analytical changes of variables. See [13] for

more details.

4. Examples of Applications

In this section, we present some illustrations of the code. The following analyses are based on
Monte Carlo events. This allows us to keep a control on the relevance of theresults, and hence to
validate our approach.

Unweighted events are generated with MadGraph/MadEvent [14]. These events are passed
through Pythia [15] for the parton-shower and the hadronization. Finallythe reconstruction in the
detector is simulated by PGS [16], tuned to the CMS detector.

4.1 Measurement of the top-quark mass

The top quark-mass is an important quantity in the standard model, as its accurate value can be
used to constrain the mass of not yet observed particles such as the Higgs. Several analyses based
on the matrix element method have been used by CDF and D0 collaborations to measuremt from
top-quark pair events (See [17] for a review). In this case the matrix element method provides a
better accuracy on the mass than other methods like neural networks or kinematical fits.

3



P
o
S
(
C
H
A
R
G
E
D
2
0
0
8
)
0
2
5

MadWeight O. Mattelaer

786

788

790

792

794

796

798

800

150 155 160 165 170

−ln(L)

mtop

mtop = 158.9±2.3 GeV

minput = 160 GeV

×

×

×
× ×

×

×

×

×
parabolic fit

786

788

790

792

794

796

798

800

150 155 160 165 170

−ln(L)

mtop

mtop = 158.9±2.3 GeV

minput = 160 GeV

×

×

×
× ×

×

×

×

×
parabolic fit

Figure 1: Plot of the likelihood for a sample of 20 events generated with mt, input = 160 GeV. The value
mt = 158.9±2.3statGeV has been extracted from the parabolic curve fitting the points.

In this first example, we consider the semi-leptonic channel of the top-quark pair production
at the LHC collider:

pp→ (t → b(W+ → j j ))(t̄ → b̄(W− → µ−ν̄µ)). (4.1)

In first approximation we consider the transfer function associated to the jet energy parametrized
by a double gaussian (we follow the parameterization introduced in [10]), all other quantities such
as the direction of visible particles and the energy of leptons are well measured. In other words the
corresponding transfer functions are given by delta distributions.

The Monte Carlo events have been produced with an input top-quark massat 160 GeV. They
have been required to contain the right number of jets and muons in the final state, but no kinematics
cuts have been applied. A sample ofN = 20 events is passed to MadWeight for the evaluation of
the weights. The mass of the top quark is extracted through the maximization of thelikelihood, or
equivalently the minimization of−ln(L(mt)).

−ln(L) = −
N

∑
i=1

ln(P(xi ;mt))+N∗Acc(mt), (4.2)

whereAcc(mt) correct the potential bias introduced both by the acceptance of the detector and
by the cuts imposed on the sample (this correction term is computed by standard Monte-Carlo
techniques).

The values of−ln(L(mt)) for different assumptions ofmt are displayed in Fig. 1. A fit by a
parabolic distribution provides the best estimation ofmt as well as the associated statistical error:
mt = 158.9±2.3statGeV which is compatible with the generated mass.

4.2 Charged Higgs studies in top-quark decays

The presence of charged Higgs is predicted by various models like 2HDM or MSSM. A
charged scalar doesn’t appear in the standard model, so that its observation would be a clear
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Figure 2: Distribution of events with respect to the discriminantd for a sample of pure events (solid line),
of background events (dotted line) and of mixed events (points).

signal of new physics. In this example, we consider the production of a light charged Higgs
(mH+ = 100GeV) originating from the decay of a top quark. We restrict ourself tothe follow-
ing topology:

pp→ (t → b(H+ → µ+νµ))(t̄ → b̄(W− → µ−ν̄µ)) (4.3)

Note that if we turn the charged Higgs in aW boson, the above process reduces to the Standard
Model top-quark pair production in the di-leptonic channel. This irreducible background cannot
be removed by a simple cut analysis. For the purpose of simplification, we will consider only this
background in the following.

The problem of identifying a charged-Higgs signal in top-quark pair events can be expressed
in the framework of the matrix element method. Using the weights defined in Eq. 2.1, we build an
event-by-event discriminating variable d(x) [8]:

d(x) =
PS(x)

PS(x)+PB(x)
(4.4)

wherePS(x) andPB(x) are the weights corresponding respectively to the signal and the background
hyppotheses.

The distribution of events with respect to this variabled is plotted in Fig. 2. The solid
(resp. dotted) line represents the normalized distribution for a sample of pure signal (resp. back-
ground) events. As the two types of sample lead to different shapes in the discriminant variable
d, this allows us to extract experimentally the fraction of signal events in a mixed sample. In our
pseudo experimental sample, we consider 1011 events with respectively 25.9% and 74.1% of sig-
nal/background events. The related distributions are, compared to the background curve [PB(d)],
systematically shifted towards the signal one [PS(d)]. This is interpreted as the presence of signal
events. Their relative number can be estimated by fitting the experimental pointswith the curve
(1− r)PB(d)+ rPS(d) wherer represents the fraction of signal events in the sample. The best fit
is obtained forr = 21±4%, compatible to expected value, which shows that the matrix element
method succeeds to identify a charged Higgs in top-quark pair events under the above simplifying
assumptions.
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5. Conclusion

We have presented a new algorithm to automatically compute the weights needed inthe matrix
element method. Given an arbitrary process, our code produces a phase-space generator optimized
to integrate the product of the matrix element and the resolution function.

This tool gives a practical access to a large number of possible applications. Indeed, the
matrix element method offers a powerful prescription to discriminate between different theoretical
hypotheses. This approach can be used not only for the measurement of Standard Model parameters
but also for the observation of new physics. For the purpose of studying the new horizons opened by
this method, MadWeight provides the resource for the practical evaluationof the weights, sparing
the user to focus on the integration techniques.
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