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Numerous large-scale genomic studies of matched tumor-normal samples have established the somatic landscapes of

most cancer types. However, the downstream analysis of data from somatic mutations entails a number of computational

and statistical approaches, requiring usage of independent software and numerous tools. Here, we describe an R Bioconduc-

tor package, Maftools, which offers a multitude of analysis and visualization modules that are commonly used in cancer ge-

nomic studies, including driver gene identification, pathway, signature, enrichment, and association analyses. Maftools only

requires somatic variants in Mutation Annotation Format (MAF) and is independent of larger alignment files. With the im-

plementation of well-established statistical and computational methods, Maftools facilitates data-driven research and com-

parative analysis to discover novel results from publicly available data sets. In the present study, using three of the well-

annotated cohorts from The Cancer Genome Atlas (TCGA), we describe the application of Maftools to reproduce known

results. More importantly, we show that Maftools can also be used to uncover novel findings through integrative analysis.

[Supplemental material is available for this article.]

With advances in cancer genomics and reduction in costs, whole-

genome sequencing (WGS) and whole-exome sequencing (WXS)

of large cohorts of cancer samples have become the mainstream

way of determining genetic abnormalities associated with cancer

(Mardis and Wilson 2009; Vogelstein et al. 2013; Wheeler and

Wang 2013). Along with the many ongoing studies, a plethora of

published large-scale data sets offer opportunities for reanalysis to

advance our understanding of cancer genome and biology. Such

cohort-based large-scale characterizations often produce large

amounts of data in the form of somatic variants containing sin-

gle-nucleotide variants (SNV) and small insertion/deletions

(indels). Somatic variants provide baseline data for many analyses

such as driver gene detection, pathway analysis, mutational signa-

tures, and estimation of tumor heterogeneity, to name a few (Alex-

androv et al. 2013a; Lawrence et al. 2013b). However, these

downstreamanalyses ofmutational dataoften entailmanycompu-

tational/statistical approaches, which are laborious, time-consum-

ing, and cumbersome. On the other hand, visualization of these

complex and heterogeneous data plays key roles in genomic stud-

ies, with researchers finding it difficult to generate complicated

publication-quality images, such as oncoplots and lollipop plots.

Although a number of tools and software exist for each of these

tasks, they all require specific input data format (Ding et al.

2014). Although tools such as Mutational Significance in Cancer

(MuSiC) offer multiple analysis domains in a single software pack-

age, they require large alignment files and computational resourc-

es, hindering their usage in analyzing public data sets (Dees et al.

2012).

To address these issues, we developed a user-friendly,

R Bioconductor package, which we termed “Maftools.” Maftools

offers a multitude of analysis and visualization modules while

only requiring a single input text file containing somatic variants

inMAF format. MAF is a standard tab delimited text file format in-

troduced by TCGA for storing and distributing somatic variants,

containing complete somatic landscape of the cohort. MAF also

has several advantages over variant call format (VCF) in storing an-

notations of hundreds of samples while maintaining readability

and portability. With MAF files as a standard input, functions are

implemented inMaftools to performmany commonly used statis-

tical and computational analyses in cancer genome studies, in-

cluding but not limited to driver gene detection and analysis of

pathways, de novo signatures, and clinical parameter enrichment.

Maftools also provides options to integrate and analyze copy num-

ber variation (CNV) data generated by programs such as genomic

identification of significant targets in cancer (GISTIC) and circular

binary segmentation (CBS) algorithms (Olshen et al. 2004;Mermel

et al. 2011). In addition, Maftools can be used to perform variant

annotations and other common tasks such as data format conver-

sion and subset operations. Usage of Maftools is straightforward

with self-explanatory functions and is implemented as an open

source R package available through the Bioconductor project. Maf-

tools is independent of alignment files, facilitating analysis of pub-

lic data sets through data-mining approaches. Lastly, Maftools

provides various plotting functions to help researchers generate in-

tricate publication-quality images.

Corresponding authors: dchlin11@gmail.com,
a.mayakonda@dkfz-heidelberg.de
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.239244.118.

© 2018 Mayakonda et al. This article is distributed exclusively by Cold Spring
Harbor Laboratory Press for the first six months after the full-issue publication
date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it
is available under a Creative Commons License (Attribution-NonCommercial
4.0 International), as described at http://creativecommons.org/licenses/
by-nc/4.0/.

Resource

28:1747–1756 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/18; www.genome.org Genome Research 1747
www.genome.org

mailto:dchlin11@gmail.com
mailto:dchlin11@gmail.com
mailto:a.mayakonda@dkfz-heidelberg.de
mailto:a.mayakonda@dkfz-heidelberg.de
mailto:a.mayakonda@dkfz-heidelberg.de
http://www.genome.org/cgi/doi/10.1101/gr.239244.118
http://www.genome.org/cgi/doi/10.1101/gr.239244.118
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


Todemonstrate the application andperformance ofMaftools,

we used three different TCGA cohorts: esophageal carcinoma

(ESCA; WXS; N=186), acute myeloid leukemia (AML; WXS; N=

192), and breast invasive carcinoma (BRCA; WGS; N=96), which

all contain both somatic variants as well as copynumber variations

(The Cancer Genome Atlas Network 2012b, 2013, 2017). ESCA is

unique in its mutational pattern and its two molecularly distinct

subtypes—esophageal adenocarcinoma (EAC) and esophageal

squamous cell carcinoma (ESCC)—as we and others have charac-

terized previously (Lin et al. 2014, 2018a, b; Hao et al. 2016).

AML was selected because it has several well-known dysregulated

pathways and clinical associations. WGS data from BRCA is ideal

for the demonstration of rainfall plots and identification of hyper-

mutated genomic regions (known as “Kataegis”) (Alexandrov et al.

2013b).

Results

Maftools package overview

As described above, the Maftools package was developed to bring

the majority of standard analysis and visualization modules into

a single channel through implementation of well-established stat-

istical and computational approaches, while only requiring a sin-

gle and unaltered input data format.

Functions of Maftools are divided into three main modules

(Fig. 1): analysis, visualization, and annotation. Each of thesemod-

ules and key functions are described below.

Visualization

Clear and concise visualization of large-scale genomic data is a key

step in displaying critical information in an effective, precise, and

easy-to-comprehend manner. The visualization module in the

Maftools package offers various plotting functions to generate cus-

tomizable and feature-rich publication-quality plots from both

somatic mutation and CNV data sets. Some of the visualizations

offered by Maftools include oncoplots (also known as waterfall

plots, coMut plots, and oncoprints) to display somatic landscape,

lollipop plots (also known as stick plots, needle plots, and stem

plots) to illustrate the distribution of variants on a linearized pro-

tein structure, summary plots to summarize mutation load, transi-

tion/transversions plot, and rainfall plot to visualize Kataegis

phenotype.

Using ESCA and BRCA cohorts, we show some of the key vi-

sualizations generated using Maftools. Figure 2A, known as onco-

plots, displays significantly mutated genes (FDR<0.1) identified

by MutSigCV algorithm in ESCA cohort (Lawrence et al. 2013b).

Genes are sorted by mutational frequency, and samples are sorted

and ordered according to tumor histology, thereby differentiating

the mutational spectrum between and within subtypes of ESCA.

Options are available to include annotations as bottomannotation

bars to display clinical parameters. The transition and transversion

plot (Fig. 2B) summarizes SNVs into six categories. Figure 2C shows

a lollipop plot for a highly mutated gene, TP53, in ESCA. To keep

upwith the consistency of the plot design, lollipop plots generated

by Maftools follow the same visual aesthetics of the commonly

used online tools available as a part of cBioPortal (Cerami et al.

2012). Supplemental Figure S1 lists the rest of the visualization op-

tions available for plotting mutational data.

Multiple studies have reported hypermutated genomic re-

gions in several cancer types (Nik-Zainal et al. 2012; Alexandrov

et al. 2013a;D’Antonio et al. 2016). These genomic regions referred

to as “Kataegis,” presumed to be the result of aberrant activity of

apolipoprotein B mRNA editing enzyme, catalytic polypeptide-

like (APOBEC) cytidine deaminases, tend to be enriched in C>T

andC>GsubstitutionsoccurringwithinTpCpNtrinucleotide con-

texts (Lada et al. 2012). The rainfallPlot function ofMaftools visual-

izes the distribution of mutation spectrum with the simultaneous

identification of Kataegis loci (Fig. 2D;

Methods; Killick and Eckley 2014). From

96 WGS-derived TCGA BRCA samples,

rainfallPlot identified 195 hypermutated

genomic regions (Kataegis loci) that also

contained 98 (of 132) previously identi-

fied Kataegis regions (Supplemental

Table S1; D’Antonio et al. 2016).

Maftools can also be used to visual-

ize and summarize copy number data

generated by GISTIC or segmentation fi-

les generated by CBS algorithms. Copy

number data can be easily integrated

along with mutation data, further facili-

tating integrative analysis. Supplemental

Figure S2 displays plotting options avail-

able to visualize CNV data.

Analysis

Mutational signatures and enrichment analysis

Every cancer, as it progresses, leaves be-

hind a characteristic mutational pattern

that can reveal its underlying mutagenic

processes. Alexandrov et al. (2013a) have

shown that such mutagenic processes

canbe identifiedbyutilizingdimensional

Figure 1. Overview of Maftools package. Table headers describe available modules, namely,
Visualization, Set operation, Variant annotations, and Analysis. A small description and the corresponding
function (bold italics) in Maftools package are provided for every module. The typical workflow begins
with MAF object creation either by reading an MAF file or by converting existing annotations to an
MAF object, which is later passed to a desired function as an input (arrows). The visualization module
includes functions to generate publication ready plots from the input MAF object, whereas the analysis
module offers functions to perform commonly performed analyses in cancer genomics. The variant an-
notationmodule performs variant annotations using oncotator API and format conversion of annotations
generated by programs such as ANNOVAR. The set operation includes function for subsetting MAF ob-
ject based on user-defined queries.
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reduction techniques such as non-negative matrix factorization

(NMF). Specifically, this method classifies SNVs into six different

transition and transversion events, each of which is further classi-

fied into 16 subtypes based on immediate 5′ and 3′ bases surround-

ing the mutated base (Nik-Zainal et al. 2012; Alexandrov et al.

2013a). Typical de novo signature analysis includes frequencyma-

trix generation and NMF decomposition. We implemented two

functions, namely, trinucleotideMatrix and extractSignatures, to

streamline the complete process.We further extended this analysis

by signtaureEnrichment function to perform sample stratification,

signature enrichment, and association analysis.

Applying these functions on EAC and ESCC cohorts, we ro-

bustly reproduced previous findings by Lin et al. (WXS), TCGA

(WXS), and ICGC consortiums (WGS) (Secrier et al. 2016; The

Cancer Genome Atlas Network 2017; Lin et al. 2018a). Based on

cophenetic correlation metric, we identified three and five signa-

tures in ESCC and EAC, respectively (false positive rate <0.01%

in ESCC and <0.122% in EAC) (Fig. 3A,B; Supplemental Fig.

S3A–D). De novo signatures identified in ESCC were enriched in

APOBEC-related signature (COSMIC Signature 13; cosine similari-

ty: 0.838) and tobacco mutagen signature (COSMIC Signature 4;

cosine similarity: 0.881). In contrast, EAC samples had exclusively

COSMIC Signature 17, which is associated with gastric acid reflux

(cosine similarity: 0.979) (Dulak et al. 2013). In addition,DNAmis-

match repair (MMR) signature (COSMIC Signature 6) was noted in

both EACs and ESCCs (cosine similarity: 0.952 and 0.929, respec-

tively), in agreement with previous reports (Lin et al. 2018a).

Along with the signature analysis, we integrated a method

described by Roberts et al. (2013) to estimate APOBEC enrichment

in individual tumor samples. Consistent with the signature ana-

lysis, EACs showed no APOBEC enrichment, whereas 26% (25

of 96 samples) of ESCCs were enriched for APOBEC-associated

mutations (APOBEC enrichment score >2) (Fig. 3C; Supplemen-

tal Table S2). In line with previous findings, mutation burdens

among APOBEC-enriched samples were significantly higher than

APOBEC-negative ones (median: 196 versus 136; Wilcoxon rank-

sum test; P<0.001) (Fig. 3C; Harris et al. 2002; Taylor et al. 2013).

Furthermore, increased mutation rates within MED1, ZFP292,

and GPCR genes were detected in APOBEC-enriched samples

(Fisher’s exact test P<0.01). Of interest, these proteins play a role

in maintaining genome integrity, and their mutational enrich-

ment among APOBEC-high tumors suggests increased DNA dam-

age and APOBEC-mediated genome instability (Fig. 3C; Parsons

2003; Swanton et al. 2015).

Furthermore, we implemented a method to perform sample

classification and analysis of signature enrichment, wherein

samples were assigned to identified signatures using k-means clus-

tering of signature exposures, followed by Fisher’s exact tests

A B

C D

Figure 2. Key plots generated by Maftools visualization module. (A) Oncoplot displaying the somatic landscape of ESCA cohort. Genes are ordered by
their mutation frequency, and samples are ordered according to disease histology as indicated by the annotation bar (bottom). Side bar plot shows log10

transformed Q-values estimated by MutSigCV. (B) Transition and transversion plot displaying distribution of SNVs in ESCA classified into six transition and
transversion events. Stacked bar plot (bottom) shows distribution of mutation spectra for every sample in theMAF file. (C) Lollipop plot displayingmutation
distribution and protein domains for TP53 in ESCA with the labeled recurrent hotspots. Somatic mutation rate and transcript names are indicated by plot
title and subtitle, respectively. (D) Rainfall plot for TCGA breast cancer sample TCGA-A8-A08B. Each point is amutation color coded according to SNV class.
Hypermutated genomic segments identified by the change-point method are highlighted by black arrowheads.
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(Supplemental Fig. S4A,B). To test its performance, we compared

APOBEC enrichment scores (measured by trinucleotideMatrix

method) and APOBEC signature weight (measured by signatureEn-

richment function).Notably, this comparison revealed a high corre-

lation coefficient (Spearman’s correlation coefficient: 0.9438;

P-value<2.2 ×10−6) (Supplemental Fig. S4C), highlighting the

concordance between these two methods. We next performed an

enrichment analysis to identify genes preferentiallymutated along

with a particular signature. Applying this method on ESCCs re-

vealed exclusive mutations of the TGFBR2 gene in samples associ-

ated with COSMIC Signature 6 (Fisher’s exact text; P< 0.001) (Fig.

3D; Supplemental Fig. S4D; Supplemental Table S3). Signature 6

has been associated with MMR deficiency and is characterized by

C·G→T·A transitions at a NpCpG sequence context and C·G→A·T

transversions at CpCpC. Several solid tumors associated with Sig-

nature 6—such as breast, colon, and ovarian cancers—are shown

to be enriched for small indels, a characteristic feature associated

with Microsatellite Instability (MSI) (Helleday et al. 2014). Also,

TGFBR2 mutations have been previously shown to occur among

MSI tumors in colon cancer (The Cancer Genome Atlas Network

2012a). Specifically, truncating muta-

tions in TGFBR2 affecting BAT-RII do-

main, cause deficiency in mismatch

repair (MMR) pathways (Biswas et al.

2008). Similar to observations in colon

cancer, mutations in ecTBetaR2 domain

of TGFBR2 were mostly loss of function

(frame shift, indels, and splice site), fur-

ther highlighting the role of TBGBR2-

associated MMR-deficient pathways in

ESCC (Fig. 3E).

Combined observations from signa-

ture and enrichment analyses suggest

that the use of therapies such as metho-

trexate or poly(ADP-ribose) polymerase

(PARP) inhibitors targeting MMR-defi-

cient pathways may have therapeutic

activity in ESCC (Martin et al. 2010).

Cohort comparison and Pfam domain

summarization

Different forms of cancers differ in their

mutational burden andoverallmutation-

al landscape depending on tissue lineage

and underlying mutagenic processes

(Lawrence et al. 2013b). On the other

hand, clinical parameters and histopa-

thology contribute to tumor hetero-

geneity within a single cancer type. We

implemented mafCompare function to

identify such differentially mutated

genes (DMGs) and pathways between

two cohorts, wherein mutation load for

each gene is compared by Fisher’s exact

tests. Comparison of ESCC and EAC

cohorts revealed 38 genes to be differen-

tially mutated (P<0.01) (Fig. 4A; Supple-

mental Table S4). Among them, only

four genes (NFE2L2, TP53, LRP6, and

PDS5B) were significantly enriched in

ESCC, and the other 34 geneswere signif-

icantly enriched in EAC, largely validating our recent reports using

different cohorts (Lin et al. 2018a). These 34 EAC-specific genes

were enriched in ERBB signaling and pathways associated with

sodium channel signaling (Fig. 4B). ERBB signaling pathway has

been known to be dysregulated in EAC more frequently than

ESCC (Fichter et al. 2014; The Cancer Genome Atlas Research

Network 2017; Lin et al. 2018a). Alterations of genes involved in

sodium signaling pathways have not been documented in EAC.

Mutant genes of this pathway included SCN3A, SCN5A, and

SCN9A,which belong to the family of voltage gated sodium chan-

nels (VGSCs) involved in action potential initiation and conduc-

tion in excitable cells such as cardiac and neuronal cells (Catterall

2012).VGSCfactors areaberrantlyexpressed in several typesof can-

cers and contribute to cell migration and metastasis (Schönherr

2005; Fiske et al. 2006;House et al. 2015). In addition, VGSCmuta-

tions in glioblastoma are associated with shorter survival rates of

the patients (Joshi et al. 2011). However, their roles in EAC are un-

known. Notably, uniformly distributed activating mutations in a

mutually exclusivemanner (Fig. 4B; Supplemental Fig. S5) strongly

suggest that these may be gain-of-function variants.

A

C

B

D

E

Figure 3. Signature and APOBEC enrichment analysis. (A,B) Mutational signatures identified in ESCC
and EAC, respectively. The y-axis indicates exposure of 96 trinucleotide motifs to overall signature. The
plot title indicates best match against validated COSMIC signatures and cosine similarity value along
with the proposed etiology. (C) Results from the APOBEC enrichment analysis in ESCC. The box plot
shows differences in mutation load between APOBEC-enriched and nonenriched samples: (∗∗∗)
Wilcoxon rank-sum test; P<0.001. Donut plots display the proportion of mutations in tCw context.
Bar plots show the top 10 differentially mutated genes between APOBEC-enriched and non-APOBEC-
enriched samples: (∗∗∗) P<0.001; (∗∗) P<0.01; (∗) P<0.05, Fisher’s exact test. (D) Enriched TGFBR2mu-
tations in ESCC among samples associated with defects in DNA mismatch repair signature (COSMIC
Signature 6). (E) Lollipop plot showing the distribution of mutations in TGFBR2 and truncatingmutations
(frameshift deletions and splice site) in the BETR2 domain.
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The pfamDomains function in Maftools performs domain en-

richment analysis. Grouping protein domains helps to identify

most deregulated pathways and protein families involved in simi-

lar functions. In a separate analysis, EAC and ESCC showed similar

pattern of mutated protein domains, particularly those within the

top 10 (Fig. 4C,D; Supplemental Table S5). Interestingly, we ob-

served that a specific domain, pfam00520 (Ion_trans), was affected

more frequently in EAC (mutated 95 times across 41 genes) (Fig.

4C) compared to ESCC (mutated 35 times across 25 genes) (Fig.

4D). The Ion_trans domain is a family of six transmembrane heli-

cases responsible for ion transportation, primarily involved in ion

(Na+/Ca2+) signaling and L1CAM interaction pathways (Jiang et al.

2003). Importantly, these observations in the Ion_trans domain

strongly support our earlier results of mutated pathways involving

VGSCs (Fig. 4B) and the potential role of dysregulated sodium

channels in EAC.

Somatic interactions, cancer genes, and clinical enrichment analysis

Recent evidence from cancer genomic studies demonstrates that

key genes in dysregulated pathways are often mutated in a mutu-

ally exclusive manner (Yeang et al. 2008). Identification of such

gene sets can reveal de novo pathways and underlying mecha-

nisms of tumorigenesis. Here, we developed a somaticInteractions

function, which facilitates the identification of gene sets mutated

in either mutually exclusive or a co-occurring manner. To demon-

strate its performance, we used the TCGA AML cohort, which has

well-documented gene sets mutated in either a mutually exclusive

or co-occurring manner (The Cancer Genome Atlas Research

Network 2013). Importantly, our method accurately reproduced

a number of these observations, such as TP53/FLT3 (mutually ex-

clusive; P-value= 0.012) and NPM1/FLT3 (co-occurring; P-value =

0.00104) (Fig. 5A; Supplemental Table S6). Extending this method

further to gene sets of larger size (N=3) identified several pathways

mutated in an exclusive manner (exact test P<0.001), including

well-known transcription factor fusion genes, NPM1, TP53, and

RUNX1 (Fig. 5B; Supplemental Table S7; The Cancer Genome

Atlas Research Network 2013).

Cancer driver genes are defined by their capability of pro-

viding selective growth advantage to cancer cells when genetically

altered. Several mathematical approaches have been developed

to identify such driver genes, based on mutational frequencies,

functional impact, or by clonality modeling (Dees et al. 2012;

Gonzalez-Perez and Lopez-Bigas 2012; Lawrence et al. 2013b;

Zapata et al. 2017). To facilitate such detection, we built a function

oncodrive based on OncodriveCLUST algorithm, which leverages

the observation that a majority of the activating mutations within

oncogenes are clustered around mutational hotspots (Tamborero

et al. 2013). Applying oncodrive on the TCGA AML cohort identi-

fied 11 well-known oncogenes as significantly mutated (FDR<

0.1) (Fig. 5C). However, as noted in the original study, oncodrive

is biased toward oncogenes with mutational hotspots and has

less optimum performance in identifying potential tumor sup-

pressors, such as TP53, with randomly distributed mutations

across the gene body. Despite this, the majority of oncodrive results

overlapped with driver genes identified by the widely used pro-

gram MutSigCV (9 of 11) (Supplemental Fig. S6A; Lawrence et al.

2013b). The two drivers identified exclusively by oncodrive are

A

B

C D

Figure 4. Cohort comparison and domain enrichment analysis. (A) Differentially mutated genes between EAC and ESCC displayed as a forest plot. Bars
indicate 95% confidence interval of odds ratio. The adjacent table includes the number of samples in EAC and ESCC with the mutations in the highlighted
gene. P-value indicates significance threshold: (∗∗∗) P<0.001; (∗∗) P<0.01; Fisher’s exact test. (B) Mutated pathways involving genes associated with VGSC
and ERBB signaling in EAC. Genes associated with these pathways are preferentially enriched in EAC, mutated in a mutually exclusive manner.
(C,D) Frequently mutated pfam protein domains in EAC and ESCC, respectively. The top ten domains are highlighted. Bubble sizes are proportional to
the number of genes containing the highlighted domain. Ion_trans domain is largely mutated in EAC.
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known leukemic oncogenes, KIT and KRAS (Supplemental Fig.

S6B,C). These results underscore the performance of oncodrive

and suggest that combined approaches of multiple programs can

increase the sensitivity of identifying driver genes.

Via the pancanComparison function, users can analyze

MutSigCV results and compare them to pan cancer driver genes

identified by analyzingmore than4000 samples across 21 different

cancer types (Lawrence et al. 2014). Such comparison identifies

common driver genes as well as tumor-specific ones. Applying

pancanComparison on ESCA cohort revealed several common

driver genes, including TP53 and CDKN2A. Importantly, tumor-

specific driver genes, such as TGFBR2 and ZNF750, were uniquely

mutated in ESCC, validating the findings from us and others (Fig.

5D; Lin et al. 2014).

The clinicalEnrichment in Maftools

uses Fisher’s exact test to perform both

pairwise and groupwise comparisons to

determine associations betweenmutated

genes and clinical-pathological charac-

teristics (categorical variables). Clini-

cal-pathological data often includes

histopathological classifications, race,

gender, treatment, and smoking/drink-

ing history, among others. In AML, test-

ing for enrichments according to

French–American–British (FAB) classifi-

cations reproduced well-known associa-

tion patterns. For example, IDH1, IDH2

and CEBPA mutations were enriched

within M1 subtype (AML with minimal

maturation), and RUNX1 mutations

were enriched amongM0 subtype (undif-

ferentiated AML; Fisher’s exact test, P<

0.05) (Taketani et al. 2003; Patel et al.

2011). Similarly, DNMT3A mutations

were frequent in M5 subtype (acute

monocytic leukemia), in line with previ-

ous results (Fig. 5E; Yan et al. 2011). Fur-

thermore, RUNX1, IDH2, U2AF1, and

TP53mutationswere enriched among el-

der patients (age group >60; median=68;

N=81; Fisher’s exact test, P<0.05),

whereas CEBPAmutations were enriched

among younger individuals (age group

<60; median=47; N=111; Fisher’s exact

test, P<0.05) (Fig. 5F).

Variant annotations, format conversions,

and subset operations

Maftools also includes functions to

perform quick variant annotations and

format conversions. Oncotate function

takes raw variants stored in a simple tab-

ular format and annotates them using

oncotator’s REST web API. However, of-

ten this process is relatively slower and

time-consuming for larger inputs (most

time is needed for connecting to API

and retrieving annotations). Another

widely used tool for variant annotations

is Annotate Variation (ANNOVAR), capa-

ble of annotating a putative variant with several gene, region,

and filter-based annotations. Tabular output files generated

from ANNOVAR can be converted to MAF with function

annovarToMaf, which parses andmaps values from gene-based an-

notations into MAF-specific values. For converting VCF files to

MAF, we recommend vcf2maf utility (https://github.com/mskcc/

vcf2maf), which processes variant annotation (with Variant

Effect Predictor) and transcript prioritization.

Similar to TCGA, ICGC is an international consortium pro-

viding large-scale cancer genome data. However, somatic variants

from ICGC are in “simple somatic mutation format,” a standard

tab delimited text file introduced by the ICGC consortium to store

and distribute somatic variants. We implemented icgcSimpleMuta-

tionToMAF function, which converts ICGC mutation format files

B

C

A

E

D

F

Figure 5. Pathway and clinical enrichment analysis. (A) Mutually exclusive and co-occurring gene pairs
in AML displayed as a triangular matrix. Green indicates tendency toward co-occurrence, whereas pink
indicates tendency toward exclusiveness. (B) Significantly altered pathway identified in AML by CoMEt
exact test involving NPM1, RUNX1, and TP53 genes mutated in mutually exclusive manner (P<
0.001). (C ) Disease-associated driver genes identified by oncodrive in TCGA AML cohort (FDR<0.1).
Number of closely spacedmutational clusters are highlighted within brackets. (D) Pan cancer comparison
of significantly mutated genes in ESCA identified by MutSigCV against Pan cancer driver genes. TGFBR2
and ZNF750 are exclusively mutated in esophageal cancer, whereas other drivers, such as TP53, and
CDKN2A, are mutated in the global pan cancer cohort. (E,F) Bar plots displaying the association between
genes and clinical features, French–American–British (FAB) classification and age group, respectively (P<
0.05, Fisher’s exact test). Bars are annotated with the ratio of mutated samples to total samples. Error bars
display 95% CI of binomial ratios. The y-axis denotes the fraction of samples associated with the
phenotype.
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intoMAF, thereby streamlining ICGC data processing. subsetMaf is

another function inMaftools that allows subset operations ofMAF

files based on genes of interest, samples, or user-specified queries.

Discussion

With the rapid increase in genomic analysis, exponential growth

has occurred in the availability of software to reanalyze and un-

derstand these data (Ding et al. 2014). MuSiC is one of the most

widely used tools that offers several analysis modules to perform

tasks such as identification of significantly mutated genes, path-

way analysis, and clinical correlation tests (Dees et al. 2012).

However, its application is rather limited by its dependency on

alignment files, platform specificity, and large computational re-

quirements. This further limits its application on public data

sets, which are often restricted by the availability of raw alignment

files. Several tools such as EmU and deconstructSigs offer statistical

frameworks to identify de novo signatures and enrichment of

known signatures (Fischer et al. 2013; Rosenthal et al. 2016).

Other tools such as Dendrix, PathScan, and HotNet2 can be used

for pathway and network analysis (Wendl et al. 2011; Vandin

et al. 2012). However, these tools have different requirements of

data formats and much time is required in preparing data sets

and file format conversions, significantly hindering the efficiency

of cancer researchers.

Here, we introduce an R Bioconductor package, Maftools,

which integrates standard analyses modules that are frequently

performed in cancer genomics and provides a plethora of visualiza-

tion options to generate publication-quality images. Along with

the analysis of somatic variants, Maftools allows easy integration

of copy number data generated from either GISTIC or segmenta-

tion algorithms. Maftools utilizes well-established dimensional re-

duction and statistical methods, enabling reproducible data-

driven research with the requirement of few lines of code. In addi-

tion, inclusion of clinical data can identify novel clustering and

enrichment patterns. Moreover, Maftools is easy to use, platform

independent, and does not rely on large alignment files, greatly fa-

cilitating the exploration of genomic data sets such as those from

TCGA and ICGC.

Here, we reproduced many known results utilizing only MAF

files from the published TCGA data sets. More importantly,

we showed that Maftools can also be used to uncover novel find-

ings through integrative analysis. Via implementation of well-

established computational and statistical methods, Maftools

provides a wide range of functions for cancer genomic analyses.

In future updates, we will include gene expression as well as

DNA methylation data for integrative multiomic analysis.

Methods

Data sets

TCGA MAF files (ESCA: http://dx.doi.org/10.7908/C1BV7FZC;

LAML: http://dx.doi.org/10.7908/C1D21X2X) along with the

clinical data, MutSigCV (v1.41), and GISTIC2 results for ESCA

and AML cohort were obtained from Broad Firehose using fireho-

se_get utility (analysis stamp: 2016_01_28). Somatic mutations for

BRCA WGS samples were obtained from a published study

(D’Antonio et al. 2016) and were later converted to MAF using

vcf2maf utility. All raw input data and reproducible R code used

to generate the results are provided as Supplemental Data S1. Com-

putational time required for each function is provided in Supple-

mental Table S8.

R/Bioconductor package

Maftools is implemented as an open source R package and avail-

able as a part of the Bioconductor project (Gentleman et al.

2004). MAF file and the associated clinical data along with sum-

mary statistics are stored in an S4 class container. For faster data

processing and summarization of larger data sets, Maftools uses

data.table library, which offers performance of several magnitude

higher than base R functions. Packageworkflow is simple, with ev-

ery function taking MAF object as an input, and comes with a de-

tailed vignette including a case study describing the usage of

available modules.

Visualization

Visualization module in Maftools facilitates generation publica-

tion-quality images with easy to use and customizable functions.

Plots such as oncoplots and oncostrips are generated using

ComplexHeatmap Bioconductor package, whereas plots generated

to display results from analysis modules, such as forest plots, lolli-

pop plots, somatic interactions, rainfall plots, among others, are

generated using either ggplot2 or base R plot functions (Gu et al.

2016).

Signature and enrichment analyses

Mutational signature analysis in Maftools begins with the process

of extracting 5′ and 3′ adjacent bases surrounding the mutated

base, thereby constructing a count matrix M of dimension 96×

n, where n is the number of samples available in input MAF file.

This process is implemented in the function trinucleotideMatrix

whichuses BioStrings andGenomicRanges Bioconductor packages

for efficiently reading reference genome and extracting adjacent

bases while simultaneously classifying mutations into transition

and transversion events (Lawrence et al. 2013a).

Once the matrix is generated, the extractSignatures function

uses NMF to factorize count matrix M into two smaller matrices

—W(96× r) andH (r×n)—such that product ofWandH sufficient-

ly recomposes the original matrix M (Gaujoux and Seoighe 2010).

A key step in factorization is identifying optimal rank, r, used

to approximate the target matrix M. Several methods have been

described in recent studies such as Bayesian, and Expectation

Maximization–based approaches to estimate the ideal value of r

(Fischer et al. 2013; Kim et al. 2016). Here, we use the method de-

scribed by Brunet et al. (2004), wherein NMF is run on a range of

incremental values of r, and for each value, the cophenetic correla-

tion coefficient (measure of goodness of fit) is calculated. A final

optimal r is chosen such that further increase in r results in decreas-

ing values of the coefficient (Supplemental Fig. S3A,B). Signatures

identified following matrix factorization are scaled and compared

to knownmutagenic processes (COSMIC signatures), and a cosine

similarity value is estimated for the best possible match (Alexan-

drov et al. 2013b). For signature enrichment analysis, we use ma-

trix H, containing signature exposures for every sample in every

signature. Using k-means clustering, we group the samples into r

clusters, thereby assigning samples to an identified signature.

For APOBEC-based enrichment analysis, we integrated the

method described by Roberts et al. (2013) to estimate an en-

richment score, which defines the strength of APOBEC-related

mutagenic processes for every tumor sample in MAF. Briefly, en-

richment of C>T mutations occurring within tCw trinucleotide

context over all of the C>T mutations in a given sample is com-

pared to background cytosines and tCw occurring around ±20 bp

of mutated bases. We further extended this method to identify

genes associated with the APOBEC enrichment by classifying

samples as APOBEC-enriched (enrichment score >2) and non-

Summarize, analyze, and visualize MAF files
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APOBEC-enriched (enrichment score <2), followed by one-way

Fisher’s exact tests to identify genes overrepresented among

APOBEC-enriched samples.

Somatic interactions and pathway analysis

Somatic interactions function in Maftools allows users to identify

gene sets mutated in amutually exclusive or co-occurringmanner.

For a pair of genes, the pattern of exclusiveness or co-occurrence is

estimated by performing a Fisher’s exact test on a 2×2 contingen-

cy table containing frequencies of mutated and nonmutated sam-

ples. However, Fisher’s exact test is limited by degrees of freedom

for larger contingency tables (n >2; with 2n-n-1 degrees of free-

dom). To identify pathways involving gene sets (n>2) mutated

in an exclusive manner, we included Combinations of Mutually

Exclusive Alterations (CoMEt) algorithm implemented in the

cometExactTest R package (Leiserson et al. 2015). CoMEt exact

test takes a contingency table of 2n and computes the probability

for mutual exclusiveness. As an input to the CoMEt exact test,

we first identify all pair of genes that are mutated in a mutually ex-

clusive manner using Fisher’s exact test, and CoMEt exact test is

run on all unique combination of gene sets of size n. For example,

given a gene list of six genes and gene set of size three, the CoMEt

exact test is performed on 20 combinations (6C3) to identify gene

sets mutated in an exclusive manner. Options are included for us-

ers to manually specify the desired gene set size.

Identification of cancer genes

To identify disease-associated cancer genes, we reimplemented

OncodriveCLUST algorithm as previously described by Tamborero

et al. (2013). Briefly, candidate amino acid positions with muta-

tions above a background threshold (based on binomial distri-

bution accounting for protein length and mutation rate) are

compiled for every gene. Candidate positions occurring within a

distance of five amino acids are grouped together to form a cluster.

Clusters are further refined and extended by merging neighboring

amino acid positions occurringwithin five amino acids. Once clus-

ter formation is completed, a cluster score is calculated, which is a

ratio of mutations occurring within the identified clusters to the

total number of mutations. Finally, a P-value is estimated based

on t-statistic and Z-score.

OncodriveCLUST has originally been implemented in Py-

thon framework requiring users to prepare input data containing

gene symbols and amino acid positions. Its reimplementation as

a part of the Maftools package serves two purposes. The package

takes care of file parsing and input data preparation allowing

novice users to run the program easily. Its implementation in R

programming language exposes it to the larger bioinformatic com-

munity and also allows visualization of results in an intuitiveman-

ner (Fig. 5C).

Cohort comparison and enrichment analysis

mafCompare function in Maftools allows comparison of two inde-

pendent cohorts to identify differentially mutated genes or to per-

form association between clinical features. A 2×2 contingency

table of frequencies of mutation is calculated for every gene from

the input cohorts followed by Fisher’s exact test to identify genes

showing significant differences in their mutation frequencies.

Similarly, for clinical enrichment analysis, once again contingen-

cy tables are generated for every categorical variable followed by

Fisher’s exact test to calculate P-values. Results from cohort com-

parison and enrichment analysis are visualized as forest plots or

frequency bar plots (Figs. 4A, 5E,F).

Pfam domain summarization

Inspired by the Pfam annotation module of MuSiC, we imple-

mented pfamDomains function to identify and group mutations

by affected protein domains. However, the approach for grouping

mutations is much simpler. MuSiC requires a large database con-

taining protein foci translated to genomic loci, which is later que-

ried by external tools such SAMtools tabix to identify affected

protein domains. Here, we use protein change information (in

HGVSp format) to parse the protein position and transcript anno-

tations. These positions are later mapped onto the Pfam domain

database via rapid data.table foverlaps function for summarization.

Plotting options are available to display frequently affected do-

mains by means of bubble plots (Fig. 4C,D).

Change-point detection for identification of hypermutated

genomic regions

Hypermutated genomic regions are segments along the chromo-

some where the mutation rate is significantly higher than the av-

erage mutation rate across the genome. To identify such regions,

we utilize change-point detection method in which genomic

boundaries with the sharp decrease in distance between consecu-

tive mutations are identified. Briefly, mutations are ordered for ev-

ery chromosome based on the position, and distance between

consecutivemutations are calculated followed log transformation.

Log transformed inter-event distances are later fed into cpt.mean

function implemented in the changepoint R package to identify

potential change points (Killick and Eckley 2014). Consecutive

change points are merged into genomic segments and annotated

as Kataegis if the segment contained six or more consecutive mu-

tations with an average inter-mutation distance of <1000 bp.

Software availability

Maftools is implemented as an R package, released under MIT

license. Source code is available on GitHub (https://github.com/

PoisonAlien/Maftools) and can be installed via Bioconductor pro-

ject (https://bioconductor.org/packages/release/bioc/html/maftools

.html) (R Core Team 2018). R package source code is also available

in the Supplemental Data S2. In addition, we also provide an R

data package containing ready-to-use, precompiled somatic variants

fromBroad Firehose, andMulti-CenterMutationCalling inMultiple

Cancers project for all 34TCGA cohorts alongwith the relevant clin-

ical information (https://github.com/PoisonAlien/TCGAmutations)

(Ellrott et al. 2018).
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