
RESEARCH ARTICLE

MAGERI: Computational pipeline for
molecular-barcoded targeted resequencing

Mikhail Shugay1,2,3☯, Andrew R. Zaretsky1,2,4☯, Dmitriy A. Shagin1,2☯, Irina A. Shagina1,2,

Ivan A. Volchenkov2,4, Andrew A. Shelenkov2,4, Mikhail Y. Lebedin1,2,3, Dmitriy V. Bagaev1,

Sergey Lukyanov1,2, Dmitriy M. Chudakov1,2,3,5*

1 Shemyakin-Ovchinnikov Institute of bioorganic chemistry RAS, Miklukho-Maklaya 16/10, Moscow, Russia,

2 Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow, Russia, 3 Central
European Institute of Technology, Masaryk University, Brno, Czech republic, 4 Evrogen JSC, Miklukho-
Maklaya 16/10, Moscow, Russia, 5 Skolkovo Institute of Science and Technology, Nobel 3, Moscow, Russia

☯ These authors contributed equally to this work.

* chudakovdm@mail.ru

Abstract

Unique molecular identifiers (UMIs) show outstanding performance in targeted high-

throughput resequencing, being the most promising approach for the accurate identification

of rare variants in complex DNA samples. This approach has application in multiple areas,

including cancer diagnostics, thus demanding dedicated software and algorithms. Here we

introduce MAGERI, a computational pipeline that efficiently handles all caveats of UMI-

based analysis to obtain high-fidelity mutation profiles and call ultra-rare variants. Using an

extensive set of benchmark datasets including gold-standard biological samples with known

variant frequencies, cell-free DNA from tumor patient blood samples and publicly available

UMI-encoded datasets we demonstrate that our method is both robust and efficient in calling

rare variants. The versatility of our software is supported by accurate results obtained for

both tumor DNA and viral RNA samples in datasets prepared using three different UMI-

based protocols.

This is a PLOS Computational Biology Software paper.

Introduction

The ability to infer rare variants is important for a large domain of high-throughput genome

re-sequencing applications: cancer [1] and prenatal [2] diagnostics, studies of tumor heteroge-

neity and variability [3], bacterial [4] and viral [5] drug resistance, as well as microbiome pro-

filing[6] and basic evolutionary studies [7]. The detection of rare variants is also crucial for

clinical applications such as early detection of cancer and monitoring of its progression [8,9].

Conventional pipelines, however, do not suit well for the detection of ultra-rare mutations.

Current tools were shown to reliably detect mutations present at ~5% in real data[10–12],

while practical applications such as cancer detection require searching for rare mutations pres-

ent at a rate of ~0.1% [8,13–17]. As additional complication, commonly used variant calling
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tools do not perform well in ultra-high (> 1,000x) coverage setting [10], which is a prerequisite

to achieve the desired accuracy for mutations with less than 1% frequency. Rare variant detec-

tion capability is also limited by sequencing errors and sampling/library preparation biases

[18], requiring custom molecular assays [17,19] to reach the desired accuracy level.

Recently introduced unique molecular identifier (UMI) tagging approach[20–22] shows

outstanding performance in targeted re-sequencing experiments and facilitates (c)DNAmole-

cule quantification, and elimination of PCR and sequencing errors. While UMI tagging

approach was extensively used in a large number of recent studies [6,16,21–30], there is still no

dedicated software pipeline able to efficiently process UMI-tagged targeted re-sequencing

data.

At the same time, adapting existing software to the analysis of UMI-tagged data is unfeasi-

ble. For example, conventional software tools heavily rely on sequencing quality values to

estimate error rates at variant calling stage. Error frequencies, however, are not that straight-

forward to infer for UMI-assembled consensuses. Moreover, even after consensus assembly,

the data is rich for seemingly high-quality errors that are inevitable when using PCR to per-

form UMI tagging and can arise from 1st cycle PCR errors [21]. This problem is of high

importance and must be solved in order to implement a variant calling algorithm suitable for

UMI-tagged data.

Here we introduce MAGERI (Molecular tAgged GEnome Re-sequencing pIpeline), a dedi-

cated software tool that implements UMI tag extraction and processing routines, an assembly

routine that groups sequencing reads tagged with the same UMI into consensuses, and con-

sensus alignment and variant calling modules (Fig 1). The pipeline corrects errors in the UMI

sequences and performs fast and robust consensus assembly able to handle reads with high

error load, indels and random offsets. It also takes an advantage of data reduction by consensus

assembly and a priori knowledge of target region positions [31] to run a highly sensitive align-

ment algorithm. As UMI correction removes nearly all sequencing errors, MAGERI imple-

ments a variant quality scoring model that accounts for PCR errors introduced at the UMI

attachment stage and 1st cycle PCR errors that can propagate to become dominant variants in

the consensus sequence. A comprehensive benchmark of MAGERI software is performed

using a diverse set of high-throughput sequencing datasets that employ UMI-tagging approach

listed in Table 1.

Materials andmethods

Ethics statement

Tumor and blood samples from patients with malignant melanoma were collected at Molecu-

lar Biology & Cytogenetics Lab, Russian Center for Roentgenology & Radiology (Moscow,

Russian Federation). The study was approved by the local ethics committee and conducted in

accordance with the Declaration of Helsinki. All donors were informed of the final use of the

samples and signed an informed consent document.

Control DNA samples

For determination of analytical sensitivity and selectivity of the method, negative and positive

control DNA samples were constructed. Negative control sample was comprised of genomic

DNA extracted from PBMC of a healthy donor (kindly provided by Dr. Alexander Abramov,

NPCMPD, Moscow, Russian Federation). Positive control sample was obtained by using a

Tru-Q 7 1% Tier reference mutation panel (Horizon Dx, USA; Cat. ID HD734) and by mixing

Tru-Q 7 1% Tier reference with negative control sample at 1: 9 ratio. Tru-Q 7 mutation panel

and negative control DNA was fragmented with dsDNA Fragmentase (NEB, cat. # M0348)

Computational pipeline for molecular-barcoded targeted resequencing

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005480 May 5, 2017 2 / 17

agreement No 633592 (APERIM) in part of

developing algorithms to detect potential

immunotherapy targets. This publication reflects

only the author’s view and the Commission is not

responsible for any use that may be made of the

information it contains. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1005480


and dsDNA Fragmentase buffer (NEB, cat. # B0348) according to manufacturer’s protocol.

DNA concentration was determined by Qubit fluorometry and real-time qPCR with both

methods giving comparable results. Positive control sample was constructed based on real-

time qPCR data for Tru-Q 7 mutation panel and negative control. Control samples were fur-

ther tested for mutations in the hotspots of KRAS exon 2, NRAS exon 3, BRAF exon 15 and

EGFR exons 18–21 using Insider Mutation Detection Kits (Evrogen Lab Ltd, Moscow, Russian

Federation) and TaqMan Mutation Detection Reagents (Thermo Fisher, Waltham, Massachu-

setts, United States). Insider Mutation Detection Kits are based on wild-type blocking PCR

Fig 1. MAGERI pipeline. The figure describes four steps implemented in MAGERI pipeline. The pipeline starts with raw FASTQ files (either
single- or paired-end), UMI tagging information (such as primer and adapter sequences containing randomN bases, or the coordinates of N
bases in raw reads) and reference information (FASTA file, BED file with genomic coordinates and contig information. UMIs are extracted from
raw reads and used to group reads into molecular identifier groups (MIGs) which are then assembled into consensus sequences. Consensus
sequences are then mapped to corresponding references, variant calling is performed and MAGERI Q scores are computed for substitutions
using a Beta-Binomial model that accounts for PCR errors introduced during UMI tagging step in case UMIs are attached using PCR or
RT-PCR, or 1st cycle PCR errors in case UMIs are attached using ligation.

https://doi.org/10.1371/journal.pcbi.1005480.g001
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[32] coupled to real-time detection using two "kissing" (FRET) probes [33]. Kits’ limit of detec-

tion, specificity and selectivity as determined by manufacturer are 10 copies, 99,5% and 1% of

mutant DNA.

Mutation load was found to be present in the desired range–about 0.1% per each mutation

in positive control, while no mutations were detected in negative control samples. The list of

Tru-Q 7 variants covered by our primer panel (listed in S1 Table) together with their frequen-

cies provided by vendor is given in S2 Table.

ctDNA detection samples

Paired tumor and blood samples from two patients with malignant melanoma of the skin were

collected at Molecular Biology & Cytogenetics Lab, Russian Center for Roentgenology & Radi-

ology (Moscow, Russian Federation). Blood samples were obtained 1–2 hours before surgery

and processed within 40 minutes after collection. Plasma was separated from blood cells

according to standard protocols as described[34] and then stored at minus 80˚C. Tumor sam-

ples were provided as FFPE blocks with corresponding haematoxylin-eosin stained slides.

These slides were checked for tumor presence and for consistency with the provided blocks by

two certified pathologists. Afterwards, 10 6-um thick sections were cut from each block on a

rotary microtome and mounted on poly-L-lysine slides. DNA was extracted from FFPE sec-

tions on slides using QiaAMP FFPE Tissue Kit (Qiagen, Hilden, Germany) according to man-

ufacturer’s instructions with minor modifications: DNA was extracted from FFPE sections on

slides using three-step procedure. First, the FFPE tissue sections were deparaffinized using

100% hexadecane (incubation at 56˚C for 5 minutes) and air-dried. The slides were then mois-

turized with Tris-based buffer (pH 8.0) and tissue fragments were scraped off the slides using

200-ul pipette tips and put into 1.5-ml microcentrifuge tubes (Sarstedt). 500 ul of Tris-based

buffer (pH 8.0) and 40 IU of Proteinase K (Amresco) were added, the tube was vortexed briefly

and incubated at 56˚C for 4 hours. After repeated brief vortexing QiaAMP FFPE Tissue Kit

protocol was followed starting from section 14.

Circulating DNA extraction from plasma was performed on a QiaVac-24 vacuummanifold

using QiaAMP Circulating Nucleic Acids Kit (Qiagen, Hilden, Germany) according to manu-

facturer’s protocol for 5-ml plasma samples. DNA concentration was determined by real-time

Table 1. Datasets used for MAGERI benchmark.

Dataset Source UMI tagging
method

Sequencing
method

Control variants

Tru-Q 7 This
study

Linear PCR Illumina HiSeq 27 substitutions, 1 deletion. Variant frequency 1–30%, see
S2 Table for details

Tru-Q 7, 1:9 diluted with healthy donor
PBMC DNA

This
study

Linear PCR Illumina HiSeq 27 substitutions, 1 deletion. Variant frequency 0.1–3%, see
S2 Table for details

Healthy donor PBMC DNA This
study

Linear PCR Illumina HiSeq None, all variants are either allelic or erroneous

Tumor and plasma DNA from two
cancer patients

This
study

Linear PCR Illumina HiSeq BRAF V600E in tumor

Duplex sequencing [43] Ligation Illumina HiSeq ABL1 E279K at 1% frequency

HIV amplicon sequencing [37] RT-PCR Illumina MiSeq N/A*

Torrent [38] PCR Ion Torrent N/A**

*—no intrinsic control variants available. Two samples were used: supernatant from 8E5 cell line that should yield unmutated HIV cDNA and HIV cDNA

from patient plasma.

**—only sequencing data for a single template with no appropriate variants is publicly available

https://doi.org/10.1371/journal.pcbi.1005480.t001
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qPCR. Tumor DNA samples were analyzed for mutations in the hotspots of BRAF exon 15

using Insider B-Raf Mutation Detection Kit (Evrogen Lab Ltd, Moscow, Russian Federation),

TaqMan Mutation Detection Reagents (Thermo Fisher, Waltham, Massachusetts, United

States) and both tumors were found to be BRAFV600E-positive.

Libraries preparation and sequencing

UMI-tagged libraries preparation was performed as described on S1 Fig. To ensure robust

UMI attachment, tagging of each target DNAmolecule was performed using 5 cycles of linear

PCR amplification, followed by two-stage exponential amplification of tagged molecules com-

bined with attachment of Illumina sequencing adapters. Mutations in 63 “hot-spot” regions of

human proto-oncogenes and tumor suppressor genes were analyzed. Region-specific primers

were divided into 4 pools to ensure optimal performance of multiplexed PCR. Target region

length varied from 160 to 210 bp. Full list of genes, regions, primer sequences and their distri-

bution between the 4 pools are outlined in S1 Table. Efficiency of primer removal with E. coli

Exonuclease I (New England Biolabs, USA) was controlled by adding a spike template (158-bp

fragment of TurboFP650 fluorescent protein[35]) and primers for its amplification to each

multiplex PCR pool. UMI tagging primer for this template was included in the primer mix for

linear PCR amplification, whereas template itself was added only at the stage of exponential

amplification. Hence successful amplification of this sequence would occur only in case of

incomplete removal of UMI-tagging primers. Suppression of non-specific amplification prod-

ucts was achieved by concurrent use of nested and step-out PCR[36]. Sample preparation was

done: for control DNA samples–in duplicate for all 4 primer pools, for tumor DNA samples–

once for all 4 primer pools, for plasma DNA samples–once for primer pool 3 only (this pool

includes BRAF exon 15 due to limited quantity of DNA). Samples were pooled and sequenced

on HiSeq2500 lane using TruSeq V. 4 chemistry with 100-bp paired-end reads. List of

sequenced samples and the sequencing read yield is shown in S3 Table.

Software availability and implementation

MAGERI is implemented in Java v 1.8 and is distributed as a single cross-platform executable

JAR file [https://github.com/mikessh/mageri]. Software documentation is available here

[http://mageri.readthedocs.org/en/latest/]. Description, generated output files and scripts that

can be used to reproduce the analysis performed in this paper can be found here: [https://

github.com/mikessh/mageri-paper]. MAGERI is free for scientific and nonprofit use.

MAGERI analysis can run on a commodity hardware in a reasonable time. For example, pro-

cessing a sample of 30 million pair-end reads using a 32 GB RAM and 8-core Intel Xeon pro-

cessor UNIX server takes approximately 30 minutes with the most running time consumed by

I/O at the stage of primer matching and sample de-multiplexing. The analysis of duplex

sequencing dataset mentioned below takes ~10 minutes using the same hardware setup.

Default MAGERI parameters, scripts (R markdown templates) and MAGERI output used to

perform the analysis described in this paper can be accessed at [https://github.com/mikessh/

mageri-paper].

Data pre-processing: UMI extraction

Unique molecular identifier (UMI) sequences were first extracted from raw sequencing reads,

and UMIs with minimal quality (across the whole length of UMI sequence) less than a speci-

fied threshold (Phred 20) were discarded. Reads tagged with identical UMI sequence were

assembled into molecular identifier groups (MIGs). On this stage, in case a pair of MIGs have

a UMI sequence that differ by one or two substitutions and their relative sizes differ by 20 (400

Computational pipeline for molecular-barcoded targeted resequencing

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005480 May 5, 2017 5 / 17

https://github.com/mikessh/mageri
http://mageri.readthedocs.org/en/latest/
https://github.com/mikessh/mageri-paper
https://github.com/mikessh/mageri-paper
https://github.com/mikessh/mageri-paper
https://github.com/mikessh/mageri-paper
https://doi.org/10.1371/journal.pcbi.1005480


for two substitutions)-fold the smaller MIG is considered to be tagged by an erroneous UMI

sequence and discarded. Representative MIG size distribution is given at S2A Fig. Note that a

clear size peak is seen when the distribution is weighted by read count, as small MIGs repre-

sent the majority of unique UMIs but contain a minor fraction of reads. Also note that this dis-

tribution is highly skewed, so log transformation was applied. MIGs were size-thresholded

with the threshold selected to be the square root of peak position (that is, 1/2 of log-trans-

formed peak position). Discarded MIGs represent an erroneous UMI sub-variant or PCR/

sequencing artifacts. Given mismatches in the UMI sequence are corrected, one can safely use

a 5 reads per UMI coverage threshold as it is enough to remove nearly all sequencing errors,

unless an extremely poor sequencing quality dataset is being analyzed.

Data pre-processing: Consensus assembly

Reads within each MIG are aligned and assembled, the major (most frequent) nucleotide at

each position are combined to form the MIG consensus sequence. During the assembly proce-

dure, “core” sequence regions (30 bases, with +/-5 base offset to read center) were extracted

from each read and the most frequent core region was used to choose offset for each read.

Reads that do not match the core region or have more than two consequent mismatches (likely

due to indel errors) were dropped. The latter can be re-aligned using a local alignment algo-

rithm for indel-prone 454/IonTorrent data.

Differences between individual reads and the consensus sequence summarized in order to

be further used for estimation of PCR error rate. We hereafter refer to sub-variants that are

present within the consensus and are different from the most frequent base at a given position

as “minor” variants. We only consider bases above a certain quality threshold Q (e.g. Phred 30

for HiSeq or Phred 20 for longer MiSeq data that typically has lower quality) and variants hav-

ing frequency above corresponding value of 10−Q/10 for the calculation.

Consensus quality score (CQS) at a given position is calculated as

CQS ¼
40

3
� 4f � 1ð Þ

where f is the frequency of a dominant nucleotide.

Data pre-processing: Consensus sequence alignment

MIG assembly greatly reduces the effective number of sequences and allows to use a highly sen-

sitive alignment algorithm. A two-staged alignment scheme was used: best reference sequence

was selected based on K-mer matching, consensus sequence is than aligned to the best reference

hit using Smith-Waterman algorithm. Local alignment parameters were set as follows: match

reward of 1, mismatch penalty of -3, gap open penalty of -6 and gap extend penalty of -1. K-mer

matching score is calculated as the total information content of matching K-mers,

I ¼ �
X

k

fk log fk

where fk is the frequency of a given K-mer frequency among all K-mers in reference database.

The mapping quality score (MAPQ) is calculated as

MAPQ ¼ 10 � ðIbest hit � Inext best hitÞ

to resembleMAPQ scores calculated by commonly used software such as BWA and bowtie.

The performance of reference selection step was tested by simulating query sequences from

homologous reference database under fixed error rates (S4 Table). To filter false-positive
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mappings we have discarded consensus sequences displaying local alignments that have less

than 90% identity (accounting for substitutions only) or span less than 70% of query sequence.

To benchmark our aligner on a complex case with real genomic data, we have generated reads

from sequences of pseudogenes that had Cancer Gene Census (CGC) genes as parents accord-

ing to pseudogene.org. We then aligned those reads to CGC gene references and observed

false alignment rate of 4%. MAGERI aligner accuracy reported here is in a good agreement

with aligner benchmark for targeted capture sequencing [31].

Variant calling

Sequencing errors are the major source of false-positive variants inferred from HTS data. Con-

ventional variant callers rely on read count distribution and sequencing quality to estimate

error rate and compute variant quality scores. Rational interpretation of variant calling quality

for the UMI-assembled consensuses, however, requires a different approach in order to esti-

mate the consensus error probabilities appropriately. A straightforward way to do would be to

use the frequency of major nucleotide at each given position in consensus, e.g. in form of CQS

score described above. However, it turns out that, most erroneous variants remaining after

UMI-based consensus assembly are characterized by high CQS quality (S2B Fig).

These errors could not arise at the stage of sequencing, as demonstrated on the following

extreme example. Consider data with an average Phred quality of 20 (~1 error per 100 reads at

a given position) and 5 reads per UMI threshold. The resulting theoretical probability that an

error will become a dominant variant and emerge in the UMI consensus is 10−5, which is far

lower than the observed erroneous variant size distribution (S2C Fig). Thus it is clear that

errors remaining after UMI-assembling errors are not sequencing errors, and the probability

of erroneous variant call is not correlated with major nucleotide frequency.

It is important to note that running conventional software tools such as VarScan and

MuTect for assembled consensuses is unfeasible: telling real mutations from PCR and

sequencing error noise is a crucial part of variant caller which relies on sequencing quality.

However, the quality scores of assembled consensuses should not be confused with sequencing

quality scores having different meaning and distribution. Therefore these scores will not work

properly with conventional variant caller’s error model. As for the raw data, background se-

quencing error rate surpasses the 0.1% frequency threshold and complicate calling mutations

of 0.1–1% frequency.

MAGERI implements a Beta-Binomial model for handling PCR errors and assigning variant

quality scores. The model is fitted to error rates observed for six substitution types (A>C/T>G,

A>G/T>C, A>T/T>A, C>A/G>T, C>G/G>C, C>T/G>A) in a pooled dataset that contains

data from UMI-tagged sequencing experiments performed for a known template sequence and

9 different polymerases. A complete description of error model can be found here:

[https://github.com/mikessh/mageri-paper/blob/master/error_model/basic_error_model.

pdf].

the datasets available in SRA under the accession PRJNA352143 are to be published else-

where. Briefly, error frequencies for each substitution type are fitted with a Beta distribution

(S3 Fig),

�xy � Betaðaxy; bxyÞ; x; y 2 fA;T;G;Cg

observed error count nxyi under the coverage Ni at a given position i is then modelled with a

Beta-Binomial distribution,

nxyi � BetaBinomðNi; axy; bxyÞ
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which shows a good fit for errors observed in control healthy donor PBMC DNA (S3B Fig).

MAGERI Q scores are computed as transformed Beta-Binomial P-values

Q ¼ �10 log
10
PBetaBinom ðnxyi;Ni; axy; bxyÞ

To avoid floating point arithmetic issues, we have capped Q score calculation by setting a

maximum Q score of 100 (P = 10−10).

The model assumes that PCR errors are introduced at the UMI tagging step. In case UMI

attachment does not involve a PCR reaction (e.g. using ligation), the model can be adjusted to

account for errors coming from the following PCR amplification. The probability of PCR

error in this case should be adjusted by multiplying by the probability of a 1st cycle PCR error

propagating to become a dominant variant within the consensus sequence due to PCR ineffi-

ciency and stochastics (S4 Fig) as follows:

b
�1

xy :¼ b
�1

xy � l2ð1� lÞ

We should also note that it is possible to infer error rate by inspecting minor errors, i.e.

errors found in reads that did not make it to the final consensus sequence after MIG assembly.

This method relies on errors produced at early PCR cycles and requires good sequencing qual-

ity, high number of molecules and relatively high MIG size (UMI coverage) to perform

robustly (which is not always reachable, e.g. in cases using MiSeq instrument with relatively

low number of sequencing reads). The description and benchmark of the minor-based error

model can be found at [https://github.com/mikessh/mageri-paper/blob/master/error_model/

minor_based_error_model.pdf].

Duplex sequencing data analysis

We have downloaded raw datasets from SRA (run accession SRR1799908) and preprocessed

the data using “NNNNNNNNNNNNtgact” / “agtcaNNNNNNNNNNNN” primer patterns

for demultiplexing and used all ABL1 exon sequences with 100 bp overhangs for alignment.

The analysis is using default MAGERI parameters, not accounting for information from both

consensus sequences, with the only adjustment that involves the error probability which was

multiplied by the 1st cycle PCR propagation factor described above (PCR efficiency was set to

1.8).

HIV amplicon sequencing data analysis

We have downloaded HIV-1 protease gene amplicon sequencing data reported in Ref. [37]

from SRA (SRP052322). Datasets were pre-processed using “NNNNNNNNNcagtttaacttttgggc-

catccattcc” / “ctatcggctcctgnnnn” primer patterns and protease gene reference for HXB2 HIV-

1 genome assembly obtained using Sequence Locator tool (http://www.hiv.lanl.gov/content/

sequence/LOCATE/locate.html). Note that these libraries were prepared using RT-PCR and

sequenced using Illumina MiSeq instrument in contrast to previously mentioned datasets.

Default MAGERI parameters were used.

IonTorrent sequencing data analysis

IonTorrent data was obtained from [38] and processed using default MAGERI parameters

except for Torrent/454 settings preset for the consensus assembler: reads that have three or

more consequent mismatches compared to the consensus sequence (indicating the presence of

indels) were discarded and re-aligned using Smith-Waterman local alignment. UMI sequences

from the header of available FASTQ file were used. The only dataset available for the study

Computational pipeline for molecular-barcoded targeted resequencing
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[http://datadryad.org/resource/doi:10.5061/dryad.n6068] contains UMI-tagged sequencing

results for cloned FGFR3 exon 7 template sequence. The reported control variant (R248C) is

just 1 base away from the first base of the template and was not detected in reads.

Results

MAGERI benchmark using reference standard library

To test the accuracy of MAGERI pipeline we have selected a mutation reference standard with

known somatic variant frequencies (Horizon Dx, Cambridge, UK) that was previously used

for similar tasks [39,40] as a gold-standard dataset that can be used to assess the accuracy of

UMI-tagged data processing and ultra-rare variant calling software. Reference standard was

either used as-is or mixed with healthy donor PBMC DNA in 1:9 ratio to obtain a spectrum of

known variants with different frequencies (listed in S2 Table) that were grouped into three

tiers (0.1%, 1% and 5+%, listed in S5 Table), while healthy donor DNA alone served as a nega-

tive control.

UMI-tagged target amplicon libraries were generated using multiplex PCR amplification of

genomic regions (S1 Fig, S1 Table) carrying mutations known to be present in the mutation

reference standard. Resulting UMI-tagged libraries were then subject to deep sequencing on

Illumina HiSeq2500 platform (Raw sequencing data: PRJNA297719) yielding on average

16,073,484+/-7,149,885 reads per sample. Primers and UMI base positions were identifiable

for 87+/-4% of reads; UMI coverage distribution showed a clear peak (S2A Fig) sufficient for

optimal error correction. The fraction of reads that belong to high-coverage UMIs and were

successfully assembled was 99.9+/-0.3%, resulting in 33,911+/-14,203 consensus sequences,

98+/-4% of which were aligned to reference. A comprehensive MAGERI processing summary

is provided in S3 Table.

The number of variants that were identified by MAGERI prior to any variant quality filter-

ing was in a good agreement with the one expected from low-frequency template sampling sto-

chastics arising due to limited coverage (Fig 2A). Overall, variant frequencies obtained by

MAGERI were in good agreement with known variant frequencies provided by the manufac-

turer (Fig 2B, Spearman R = 0.83, n = 101 accounting for all variant tiers, independent replicas

and ignoring variants that were not detected). MAGERI variant quality scores (Q scores) for

errors observed in healthy donor DNA were also in a good agreement with empirical P-values

computed based on error frequencies (Fig 2C, Pearson R = 0.83, n = 2468). MAGERI Q scores

for errors observed in control dataset and known variants from reference standard are shown

in Fig 2D. These Q scores display a high area under curve (AUC) value when used as a thresh-

old to classify errors and 0.1% tier variants (AUC = 93%, CI95: 87–98%, 2468 control and 43

cases), which is significantly better than the one obtained when using observed variant fre-

quency as a threshold (AUC = 86%, CI95: 78–94%, Fig 2E).

MAGERI performance in circulating tumor DNA detection

To demonstrate applicability of MAGERI software to the analysis of patient samples we

decided to tackle the problem of detecting circulating tumor DNA (ctDNA) [16] in peripheral

blood of cancer patients. We have sequenced tumor and blood plasma DNA samples from two

patients with locally advanced malignant skin melanoma using the UMI-based library prepara-

tion protocol described inMaterials and Methods and ran MAGERI pipeline with default set-

tings. We focused on variant calling results for the exon 15 of BRAF gene since both tumors

were known to harbor the BRAF c.1798G>A (BRAFV600E[41]) mutation. The c.1798G>A

mutation was detected in both patients’ plasma DNA at a frequency of 0.4% and 3.3% (Fig 3).

Notably, the first patient’s plasma appear to contain the c.1799T>Amutation at 0.4%
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frequency, that is detected jointly (i.e. in the same MIGs) with c.1798G>A and together com-

prise the BRAFV600K variant[41] (Fig 3). The c.1799T>A variant is also present in the corre-

sponding tumor sample, albeit at a far smaller frequency than c.1798G>A. The probability of

jointly detecting this mutation pair simply by chance is P< 10−18 (Hypergeometric test), thus

the first patient demonstrates an interesting case of a rare subpopulation of tumor cells that is

dominant in ctDNA.

MAGERI analysis of UMI-tagged libraries prepared using distinct
methodologies

For the sake of an independent validation we have applied our pipeline to a dataset from a

recently published study[42,43] on duplex (double-stranded consensus) sequencing, an

approach shown to be the most sensitive and specific among the currently existing UMI-based

methods. This method relies on matching variants coming from both DNA strands tagged

with the same UMI to boost variant calling accuracy and eliminate errors. Interestingly, even

when operating with single-strand consensuses only (seeMaterials and Methods, Duplex

sequencing data analysis section for details), we were able to reliably call a specific ABL1 muta-

tion used by Schmitt et al. as a control at 0.8% frequency, while MAGERI Q scores were in a

Fig 2. MAGERI software benchmark using Tru-Q 7 reference standard and control donor DNA.
aNumber of detected variant for each variant frequency tier across two independent experiments with the
reference standard. Shaded areas show the 95% confidence intervals for expected fraction of recovered
variants, i.e. binomial proportion confidence intervals built using known variant frequency and template
coverage. b Frequency distribution of known Tru-Q 7 variants coming from each frequency tier and errors in
the control donor DNA. cMAGERI Q score and the empirical P-values of erroneous variants detected in
control donor DNA. dComparison of Q score distribution of erroneous variants and variants of each frequency
tier. Dotted and dashed lines show P < 0.05 and P < 0.01 thresholds respectively. eReceiver operation
characteristic (ROC) curve comparing the sensitivity and specificity of MAGERI Q scores (blue line) and
frequency-based thresholding (red line) in the task of classification of errors and 0.1% tier variants.

https://doi.org/10.1371/journal.pcbi.1005480.g002
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good agreement with empirical P-values for remaining erroneous variants (Fig 4A). As the

duplex sequencing dataset uses ligation for UMI attachment, Q-scores were adjusted to

account for the probability of 1st cycle PCR error propagation to become a dominant variant

within the consensus (seeMaterials and Methods, Variant calling section). It is necessary to

note that the setup that includes just a single test variant with a frequency that by far exceeds

that of the most abundant errors is inadequate for performing a comprehensive rare mutation

Fig 3. Detection of BRAF gene variants in tumor and plasma samples from two cancer patients. Each point represents a variant and
is colored according to MAGERI Q score, upper panel of each plot shows reference (top) and variant (bottom) bases. Variants passing Q 20
threshold (P < 0.01) are shown with bold circles. Chromosome position is given in hg19 assembly coordinates.

https://doi.org/10.1371/journal.pcbi.1005480.g003
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calling benchmark. Nevertheless, MAGERI was able to reliably quantify the distribution of

error frequencies in the described case. Using MAGERI and single-strand consensus sequenc-

ing can be beneficial, as duplex consensus pairing results in a dramatic decrease of coverage:

we observed a median of ~7000 consensuses per position for single-strand molecules and only

1000 consensuses for double-stranded molecules, which is far more than the expected 2x loss.

To demonstrate the versatility of our software pipeline, we have additionally tested it using

a dataset from a completely different domain, HIV amplicon sequencing recently published by

Zhou et al.[37] (seeMaterials and Methods). MAGERI was able to successfully process data

coming from a cDNA-based library sequenced with error-prone long reads with no parameter

modifications. Q scores computed by MAGERI for erroneous variants detected in HIV cDNA

from 8E5 cell line which serves as a control in this experiment were in good agreement with

empirical P-values computed from variant frequencies (Fig 4B, red dots). On the other hand,

HIV cDNA from patient sample that should contain a wealth of mutations displays a drasti-

cally different picture with many high-quality variants (Fig 4B, blue dots).

Indel detection and indel-prone sequencing data

Erroneous insertions and deletions (indels) at homopolymers are common in high-throughput

sequencing performed using Roche 454 and Ion Torrent instruments [44,45], and a detectable

fraction of such errors is generated by Illumina instruments [46]. While quality filtering of

indel calls is out of scope of current paper, we suggest that UMI-tagged sequencing will greatly

decrease the burden of indel errors and have implement the ability to output indel variants in

MAGERI pipeline. The results of indel calling in Tru Q 7 reference standard dataset and

healthy donor DNA show that the assembled consensus sequences still contain a fraction of

short indel errors, yet the known deletion in EGFR gene can be reliably detected at both 1%

and 0.1% frequency (Fig 4C).

Fig 4. MAGERI performance on different types of UMI-tagged data. a. Analysis of single-strand consensuses from duplex
sequencing data. Q scores of detected variants are plotted against empirical P-values, a smoothed fitting is shown with red line,
ABL variant known to be present in the sample at ~1% frequency is shown with black dot. b. Analysis of UMI-tagged HIV cDNA
sequencing data. MAGERI Q scores are plotted against empirical P-values for a control unmutated HIV cDNA from 8E5 cell line
(red) and HIV+ donor plasma sample (blue). c. Indel variants detected in Tru-Q 7 reference standard and PBMCDNA of a
healthy donor. Indel frequency is plotted against its size (number of added/deleted nucleotides). The figure shows known EGFR
deletion (ΔE746 − A750) in two independent experiments with a known frequency of 1% (original Tru-Q 7 reference standard)
and 0.1% (Tru-Q 7 reference standard diluted in 1:9 ratio with healthy donor DNA), erroneous variants present in healthy donor
DNA are shown with empty circles.

https://doi.org/10.1371/journal.pcbi.1005480.g004
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We have additionally tested the ability to assemble the indel-prone Ion Torrent data pub-

lished in Ref. [38] (seeMaterials and Methods). Presence of indels in sequencing reads had lit-

tle effect on the overall assembly efficiency and more than 99.9% of reads successfully

assembled into consensuses. Erroneous indels observed in the sequencing data from a cloned

FGFR3 exon 7 template can be efficiently filtered by increasing the MIG size threshold: 3 dele-

tions are observed at 5 reads per UMI threshold, 2 deletions are observed at 10–15 reads

threshold, and no indels are observed at 20+ threshold. It should be noted, however, that as

MAGERI does not implement any indel quality assessment algorithm, indel calls should be

manually checked for alignment artefacts and strand bias using MAGERI output in SAM

format.

Discussion

The results obtained with MAGERI can be used in a wide range of downstream analyses, such

as variant effect annotation[47], comparison with variant databases such as COSMIC and

dbSNP that can greatly improve reliability of variant calling, or somatic mutation phasing[48].

The latter, as we believe, will benefit much from the improvement in variant quantification

gained from template counting capabilities of UMI tags.

It is important to stress the fact that MAGERI implements a control-free rare variant caller.

In this sense it differs from the majority of somatic variant calling tools that aim at distinguish-

ing somatic variants of moderate frequency in homogenous tumor samples from germline

mutations and thus require a matched control sample[11]. In case of UMI-assembled data that

has low error rates the main focus is placed on calling rare variants which are unambiguously

somatic. High-frequency somatic variants are straightforward to obtain by subtracting variants

found in control sample.

MAGERI fills an important gap in genome re-sequencing analysis software family and

allows easy and efficient processing of high-throughput sequencing data generated using

UMI-based protocols. This software represents a solution for a wide range of applications

requiring high-accuracy rare variant detection such as tumor genomic heterogeneity studies,

translational studies involving ctDNA detection and discovery of rare resistant variants by

viral amplicon sequencing.

Supporting information

S1 Table. Genes, regions, and primer sequences.

(XLS)

S2 Table. Known Tru-Q 7 1% Tier standard variants used for MAGERI benchmark. The

table contains coordinates in hg19 assembly, variant type and name, and variant frequency as

reported by the vendor. Note that all variants are assayed in two independent experiments and

two dilutions (1X and 0.1X).

(PDF)

S3 Table. Processing statistics for Tru-Q 7 reference standard and healthy donor DNA.

The table contains sample name, experiment type (standard for Tru-Q 7 and blank for control

DNA), primer set (m1 − 4) used for amplicon sequencing, the ID of independent experiment

(replica). The statistics include: total number of reads, fraction of reads in which the UMI and

both forward and reverse primers were found unambiguously, number of unique UMIs and

number of MIGs that had enough coverage and were successfully assembled into consensus

sequences, fraction of reads in assembled UMIs and the total number of aligned consensuses.

(PDF)
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S4 Table. Benchmark of K-mer based reference selection algorithm.

(PDF)

S5 Table. Total number of variants in each frequency tier. Total number of variants in each

frequency tier coming from two independent experiments and two dilutions (1X and 0.1X) of

Tru-Q 7 reference standard.

(PDF)

S1 Fig. ctDNA library preparation outline. UMI tagging is ensured by five cycles of linear

PCR. Tagging primer is digested by ExoI treatment. Following steps comprise a combination

of nested (R3, R4-Int) and step-out (F2, F4-Ext primers) amplification. Illumina adapters for

TruSeq sequencing and flow-cell attachment oligonucleotides are included during amplifica-

tion. During the last step, sample index is inserted for the aims of demultiplexing of different

libraries.

(PDF)

S2 Fig. UMI extraction and variants in consensus sequences for Tru-Q 7 reference stan-

dard and healthy donor DNA. a.MIG size distribution, total number of reads in MIGs of a

specific size. Each sample is shown with color, two independent experimental replicas are

shown as solid and dashed lines. b.Histogram of consensus quality scores (share of major base

in consensus scaled to 0–40 range) for erroneous variants found in healthy donor DNA. c.His-

togram of MIG counts of errors observed in healthy donor DNA and error counts expected

from sequencing errors under 5 read MIG size threshold and a sequencing quality Phred score

of 20.

(PDF)

S3 Fig. Fitting a model of PCR error frequencies. a. Fitting Beta distribution to error fre-

quencies observed in UMI-tagged sequencing experiment of a template with a known

sequence. Grey area shows the density of observed error frequencies, red line shows the fitting.

b. Error counts observed in UMI- tagged sequencing of healthy donor DNA that should (black

line and points) and expected from the fitted Beta-Binomial model (red line).

(PDF)

S4 Fig. Estimating the probability of first-cycle PCR error becoming a dominant variant

among PCR products of DNAmolecule tagged with an UMI tag.Here epsilon is the error

probability and lambda is the PCR efficiency minus one.

(PDF)
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