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Abstract

Metabolomics is a widely used technology for obtaining direct measures of
metabolic  activities  from diverse  biological  systems.  However,  ambiguous
metabolite  identifications  are  a  common  challenge  and  biochemical
interpretation is often limited by incomplete and inaccurate genome-based
predictions  of  enzyme  activities  (i.e. gene  annotations).  Metabolite,
Annotation,  and  Gene  Integration  (MAGI)  generates  a  metabolite-gene
association score using a biochemical reaction network. This is calculated by
a method that emphasizes consensus between metabolites and genes via
biochemical  reactions.  To  demonstrate  the  potential  of  this  method,  we
applied MAGI to integrate sequence data and metabolomics data collected
from Streptomyces coelicolor A3(2), an extensively characterized bacterium
that  produces  diverse  secondary  metabolites.  Our  findings  suggest  that
coupling metabolomics and genomics data by scoring consensus between the
two  increases  the  quality  of  both  metabolite  identifications  and  gene
annotations  in  this  organism.  MAGI  also  made biochemical  predictions for
poorly annotated genes that were consistent with the extensive literature on
this  important  organism.  This  limited  analysis  suggests  that  using
metabolomics data has the potential to improve annotations in sequenced
organisms  and also  provides  testable  hypotheses  for  specific  biochemical
functions. MAGI is freely available for academic use both as an online tool at
https://magi.nersc.gov and  with  source  code  available  at
https://github.com/biorack/magi  .  

Introduction

Metabolomics  approaches  now  enable  global  profiling,  comparison,  and
discovery  of  diverse  metabolites  present  in  complex  biological  samples1.
Liquid  chromatography  coupled  with  electrospray  ionization  mass
spectrometry  (LC-MS)  is  one  of  the  leading  methods  in  metabolomics1.  A
critical measure in metabolomics datasets is known as a “feature,” which is a
unique combination of mass-to-charge (m/z) and chromatographic retention
time1.  Each  distinct  feature  may  match  to  hundreds  of  unique  chemical
structures. This makes metabolite identification (the accurate assignment of
the  correct  chemical  structure  to  each  feature)  one  of  the  fundamental
challenges in metabolomics2-4.  To aid metabolite identification efforts,  ions
(each with a unique  m/z and retention time) are typically fragmented, and
the  resulting  fragments  are  compared  against  either  experimental5,  6 or
computationally predicted5, 7-11 reference libraries. While this method is highly
effective  at  reducing  the  search  space  for  metabolite  identification,
misidentifications are inevitable, especially for metabolites lacking authentic
standards. 

One  strategy  for  addressing  the  large  search  space  of  compound
identifications  is  to  assess  identifications  in  the  context  of  the  predicted
metabolism  of  the  organism(s)  being  studied.  Several  tools  do  this  with
varying  degrees  of  complexity  with  strategies  including  directly  mapping
metabolites onto reactions12 or scoring the likelihood of metabolite identities
using reaction networks and predictive pathway mapping13. However, many
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metabolites cannot be included in these approaches. This is due to a number
of factors, including the low coverage in reaction databases14, 15 (especially for
secondary metabolites16-19), incomplete or inaccurate set of reactions for an
organism,  and  enzyme  promiscuity  not  being  taken  into  account  when
formulating the potential metabolism of an organism. To help address these
challenges  computational  strategies  have  been  developed  including
MyCompoundID 20, 21, IIMDB 22, MINES 23 and the ATLAS of biochemistry  24 to
enzymatically  enlarge  compound  space  similar  to  the  retrosynthesis  tools
such as Retrorules 25 and rePrime26. These approaches can be complimented
by chemical networking to help address the limited number of metabolites
represented in reactions, by expanding reaction space based on chemical or
spectral similarity between metabolites. Effectively, even when a metabolite
is  not  directly  involved  in  a  reaction,  a  linkage  can  still  be  made with  a
reaction based on similarity to another well-studied metabolite16-19, 27. In this
way,  chemical  networking  is  a  viable  solution  that  expands  reaction
databases  to  integrate  with  already expansive metabolite  databases.  This
allows  more  putative  metabolite  identifications  to  be  assessed  using  the
predicted metabolism of the organism(s).

Recently,  approaches  have  been  developed  that  span  the  gap  between
metabolomics and genomics and allow for some enzyme promiscuity. GNP,
developed specifically for discovering new nonribosomal peptides (NRPs) and
polyketides,  uses  a  gene-forward  strategy  that  predicts  possible  chemical
structures of NRP and polyketide synthases and generates a set of predicted
MS/MS spectra based on those predictions; these predictions are then used to
mine MS data  28.  Pep2Path, also developed exclusively for NRPs and post-
translationally  modified  peptides  (RiPPs),  takes  a  Bayesian  approach  to
scoring putative NRPs and RiPPs based on the gene sequences present in the
assayed organism 29. Finally, a more general approach has been developed
where a mutant library of an organism is assayed for major differences in the
mass spectrometry profile, and the major differences are manually annotated
with human intuition 30. 

Due to the vast amount of knowledge about Streptomyces species, they are
an  excellent  target  for  developing  new  tools  for  metabolite  and  genome
exploration.  Representatives from this genus produce many antibacterials,
anticancer  compounds,  immunosuppresents,  antifungals,  cardiovascular
agents,  and  veterinary  products  including  erythromycin,  tetracycline,
doxorubicin,  enediyenes,  FK-506,  rapamycin,  avermectin,  nemadectin,
amphotericin,  griseofulvin,  nystatin,  lovastatin,  compactin,  monensin,  and
tylosin 31. Thus making them a highly relevant group for in depth studies to
link  natural  products  with  associated  genes.  In  particular,  Streptomyces
coelicolor is a model actinomycete secondary metabolite producer 32; studies
from over three thousand papers and over 60 years of work 33 have produced,
among other things, a detailed understanding of the secondary metabolites
this  organism  produces,  where  two  are  the  pigmented  antibiotics:
actinorhodin  and undecylprodiosin.  These  experiments  have  identified  the
biochemical pathways, genes, and regulatory processes that are necessary
for producing the associated secondary metabolites 34. 
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Here  we  report  Metabolite,  Annotation,  and  Gene  Integration  (MAGI),  an
approach  to  generate  metabolite-gene  associations  (Figure  1)  by  scoring
consensus between metabolite identifications and gene annotations. MAGI is
guided by the principles that the probability of a metabolite identity increases
if  there  is  genetic  evidence  to  support  that  metabolite  and  that  the
probability of a gene function increases if there is metabolomic evidence for
that function. Inputs to MAGI are typically a metabolite identification file of
LCMS features and a protein or gene sequence FASTA file. For each LCMS
feature, there are often many plausible metabolite identifications that can be
given a probability based on accurate mass error and/or mass fragmentation
comparisons. MAGI links these putative compound identifications to reactions
both directly and indirectly by a biochemically relevant chemical  similarity
network. Likewise, MAGI associates input sequences to biochemical reactions
by  assessing  sequence  homology  to  reference  sequences  in  the  MAGI
reaction  database.  For  each  sequence,  there  are  often  several  plausible
reactions with equal or similar probability. While annotation services would
typically  reduce  specificity  in  these  cases  (e.g.,  by simply  annotating  as
oxidoreductase), MAGI maintains all specific reactions as possibilities. Since
MAGI  links  both  metabolites  and  sequences  to  reactions  with  numerical
scores  that  are  proxies  for  probabilities,  a  final  integrative  MAGI  score  is
calculated  that  magnifies  consensus  between  a  gene  annotation  and  a
metabolite  identification.  We  applied  this  approach  to  one  of  the  best
characterized  secondary  metabolite  producing  bacteria,  Streptomyces
coelicolor  A3(2)35,  by  integrating  its  genome  sequence  with  untargeted
metabolomics data. MAGI successfully reduced the metabolite identity search
space by scoring metabolite identities based on the predicted metabolism of
an  organism.  Additionally,  further  investigation  of  the  metabolite-gene
associations  led  to  identification  of  unannotated  and misannotated  genes
that  were  subsequently  validated  using  literature  searches.  This  simple
example illustrates the key aspects of MAGI.

Methods

Media and culture conditions.  A 20 µL volume of glycerol stock of wild-
type S. coelicolor spores was cultured in 40 mL R5 medium in a 250-mL flask.
One liter of R5 medium base included 103 g sucrose, 0.25 g K2SO4, 10.12 g
MgCl2•6H20,  10  g  glucose,  0.1  g  cas-amino  acids,  2  mL  trace  element
solution, 5 g yeast extract, and 5.73 g TES buffer to 1 L distilled water. After
autoclave sterilization, 1 mL 0.5% KH2PO4,  0.4 mL 5M CaCl2•2H20, 1.5 mL
20% L-proline, 0.7 ml 1N NaOH were added as per the following protocol:
https://www.elabprotocols.com/protocols/#!protocol=486.  Each  flask
contained a stainless steel spring (McMaster-Carr Supply, part 9663K77), cut
to fit in a circle in the bottom of the flask. The spring was used to prevent
clumping of S. coelicolor during incubation. A foam stopper was used to close
each flask (Jaece Industries Inc., Fisher part 14-127-40D). Four replicates of
each sample were grown in a 28°C incubator with shaking at 150 rpm. On
day six, 1 mL from each replicate were collected in 2 mL Eppendorf tubes in a
sterile hood. Samples were centrifuged at 3,200 x g for 8 minutes at 4 °C to
pellet the cells. Supernatants were decanted into fresh 2 mL tubes and frozen
at -80 °C. Pellets were flash frozen on dry ice and then stored at -80 °C. 
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LCMS sample preparation and data acquisition. In preparation for LCMS,
medium samples were lyophilized. Dried medium was then extracted with
150  µL  methanol  containing  an  internal  standard  (2-Amino-3-bromo-5-
methylbenzoic  acid,  1  µg/mL,  Sigma,  #631531),  vortexed,  sonicated  in  a
water  bath  for  10  minutes,  centrifuged  at  5,000  rpm  for  5  min,  and
supernatant  finally  centrifuge-filtered through a  0.22 µm PVDF membrane
(UFC40GV0S, Millipore).  LC-MS/MS was performed in negative ion mode on a
2 µL injection, with UHPLC reverse phase chromatography performed using
an Agilent 1290 LC stack and Agilent C18 column (ZORBAX Eclipse Plus C18,
Rapid Resolution HD, 2.1 x 50 mm, 1.8 µm) at 60 °C and with MS and MS/MS
data  collected  using  a  QExactive  Orbitrap  mass  spectrometer  (Thermo
Scientific, San Jose, CA). Chromatography used a flow rate of 0.4 mL/min, first
equilibrating the column with 100% buffer A (LC-MS water with 0.1% formic
acid) for 1.5 min, then diluting over 7 minutes to 0% buffer A with buffer B
(100% acetonitrile with 0.1% formic acid). Full MS spectra were collected at
70,000  resolution  from  m/z 80-1,200,  and  MS/MS  fragmentation  data
collected at 17,500 resolution using an average of 10, 20 and 30 eV collision
energies.  

Feature detection. MZmine (version 2.23) 36 was used to deconvolute mass
spectrometry features. The methods and parameters used were as follows (in
the order that the methods were applied). MS/MS peaklist builder: retention
time between 0.5-13.0 minutes, m/z window of 0.01, time window of 1.00.
Peak extender:  m/z tolerance 0.01  m/z or 50.0 ppm, min height of 1.0E0.
Chromatogram  deconvolution:  local  minimum  search  algorithm  where
chromatographic threshold was 1.0%, search minimum in RT range was 0.05
minutes,  minimum  relative  height  of  1.0%,  minimum  absolute  height  of
1.0E5, minimum ratio of peak top/edge of 1.2, peak duration between 0.01
and 30 minutes. Duplicate peak filter: m/z tolerance of 0.01 m/z or 50.0 ppm,
RT tolerance of 0.15 minutes. Isotopic peaks grouper: m/z tolerance of 1.0E-6
m/z or 20.0 ppm, retention time tolerance of 0.01, maximum charge of 2,
representative isotope was lowest  m/z. Adduct search: RT tolerance of 0.01
minutes,  searching for  adducts  M+Hac-H,  M+Cl,  with  an  m/z tolerance  of
1.0E-5  m/z or 20.0 ppm and max relative adduct peak height of 1.0%. Join
aligner:  m/z tolerance  of  1.0E-6  m/z or  50.0  ppm,  weight  for  m/z of  5,
retention time tolerance of 0.15 minutes, weight for RT of 3. Same RT and m/
z range gap filler: m/z tolerance of 1.0E-6 m/z or 20.0 ppm. 

Metabolite  identification.   During  the  LCMS  acquisition,  two  MS/MS
spectra  were  acquired  for  every  MS  spectrum.  These  MS/MS  spectra  are
acquired using data-dependent criteria in which the 2 most intense ions are
pursued for fragmentation, and then the next 2 most intense ions such that
no  ion  is  fragmented  more  frequently  than  every  10  seconds.  To  assign
probable  metabolite  identities  to  a  spectrum  a  modified  version  of  the
previously described MIDAS approach was used7. Our metabolite database is
the  merger  of  HMDB,  MetaCyc,  ChEBI,  WikiData,  GNPS,  and  LipidMaps
resulting in approximately 180,000 unique chemical structures.  For each of
these structures, a comprehensive fragmentation tree was pre-calculated to
a depth of 5 bond-breakages; these trees were used to accelerate the MIDAS
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scoring  process.   The  source  code  to  generate  trees  and  score  spectra
against  trees  is  available  on  GitHub  (https://github.com/biorack/pactolus).
The following procedure was used in the MIDAS scoring.  Precursor m/z values
were neutralized by 1.007276 Da.  For each metabolite within 10 ppm of the
neutralized precursor mass, MS/MS ions were associated with nodes of the
fragmentation tree using a window of 0.01 Da using MS/MS neutralizations of
1.00727, 2.01510, and -0.00055, as described  7. For metabolite-features of
interest discussed in the text, retention time, m/z, adduct, and fragmentation
pattern were used to define a Metabolite Atlas 37 library (Supplementary Data
1). For each metabolite, raw data was inspected manually using MZmine 36 to
rule  out  peak  misidentifications  due  to  adduct  formation  and  in-source
degradation.

MAGI  biochemical  reaction  and  reference sequence  database.  The
MAGI  biochemical  reaction  database  was  constructed  by  aggregating  all
publicly available biochemical  reactions in MetaCyc and RHEA biochemical
reaction  databases  14,  15.  This  reaction  database  currently  includes 12,293
unique metabolite structures. Identical reactions were collapsed together by
calculating a “reaction InChI key,” where the SMILES strings of all members
of a reaction were joined together, separated by a “.” and converted to a
single  InChI  string  through  an  RDkit  (https://github.com/rdkit/rdkit)  Mol
object, and then the InChI key was calculated also using RDKit. Biochemical
reactions  with  identical  reaction  InChI  keys  have  identical  chemical
metabolites,  indicating  they  are  duplicates,  and  were  collapsed  into  one
database  entry,  retaining  reference  sequences.  Reference  sequences  for
each biochemical reaction from each database were combined to create a set
of  curated  reference  sequences  for  each  biochemical  reaction  in  the
database.

Chemical Network. In order to expand the chemical space beyond what is
in the biochemical reaction database, a chemical network was constructed to
relate all metabolites in the database to metabolites in biochemical reactions
by  biochemical  similarity.   In  each  molecule,  70  chemical  features
(Supplementary  Table  1)  were  located.   These  features  were  defined
previously as being biochemically relevant 38.  The count of each feature was
stored as a vector for each molecule.  The Euclidean distance between two
vectors  was  used  to  determine  similarity  between  two  molecules  and
construct a similarity network where every molecule is connected to every
molecule by the difference in their vectors.  This network was trimmed by
calculating  a  minimum-spanning  tree  based  on  frequency  of  biochemical
differences  where  more  frequent  differences  would  be  preserved  when
possible (Supplementary Data 2).

Gene Annotations of  Streptomyces coelicolor.  KEGG annotations were
obtained by submitting the S. coelicolor protein FASTA obtained from IMG to
the KEGG Automatic Annotation Server version 2.1  39 and downloading the
gene-KO  results  table.  KO  numbers  were  associated  with  reactions  by
assessing if there was a link to one or more KEGG reaction entries directly
from the  webpage of  that  KO.  For  BioCyc  annotations  and reactions,  the
BioCyc S. coelicolor database was downloaded. For the reactions in Table 1,
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KEGG and BioCyc reactions were manually inspected and compared to MAGI
reactions. 

MAGI  workflow.  An  input  metabolite  structure  is  expanded  to  similar
metabolite  structures  as  suggested  by  the  chemical  network  and  all
tautomers  of  those  metabolites. Searching  all  tautomeric  forms  of  a
metabolite  structure  is  a  known method  to  enhance  metabolite  database
searches  40.  Tautomers  were generated by using the MolVS package.  The
reaction  database  is  then  queried  to  find  reactions  containing  these
metabolites  or  their  tautomers.  Direct  matches  are  stereospecific,  but
tautomer  matches  are  not.  This  is  due  to  limitations  in  the  tautomer
generating method and in how the chemical network was constructed. The
metabolite score,  C, is inherited from the MS/MS scoring algorithm and is a
proxy for the probability that a metabolite structure is correctly assigned.  In
our case, it is the MIDAS score, but could be any score due to the use of the
geometric mean to calculate the MAGI score. The metabolite score is set to 1
as a default.

If  the reaction has a reference sequence associated with it,  this reference
sequence is used as a BLAST query against a sequence database of the input
gene sequences to find genes that may encode that reaction. The reciprocal
BLAST  is  also  performed,  where  genes  in  the  input  gene  sequences  are
queries  against  the  reaction  reference  sequence  database;  this  finds  the
reactions that a gene may encode for. The BLAST results are joined by their
common  gene  sequence  and  are  used  to  calculate  a  homology  score:
H=F+R−|F−R| where  F and  R are log-transformed e-values of the BLAST
results (a proxy for the probability that two gene sequences are homologs),
with  F representing the reaction-to-gene BLAST score,  and  R the gene-to-
reaction  BLAST  score.  The  homology  score  is  set  to  1  if  no  sequence  is
matched.

The reciprocal  agreement between both BLAST searches is  also assessed,
namely whether they both agreed on the same reaction or not, formulating a
reciprocal agreement score: α. α is equal to 2 for reciprocal agreements, 1 for
disagreements that had BLAST score within 75% of the larger score, 0.01 for
disagreements with very different BLAST scores, and 0.1 for situations where
one  of  the  BLAST  searches  did  not  yield  any  results.  For  cases  where
metabolites  are  linked  to  reactions  but  there  is  not  a  reference  protein
sequence available, a weight factor, X, is needed.  We chose, X, such that: i)
X=0.01  when  a  metabolite  is  not  in  any  reaction;  ii)  X=1.01  when  a
metabolite is in reaction missing a reference sequence; and iii) X=2.01 when
a metabolite is in a reaction with a sequence. These arbitrary scores were
selected solely to distinguish between different “agreement” states during
the reciprocal BLAST. We did not observe much difference in the plurality of
compound  annotations  depending  on  these  weights  (data  not  shown),
however, they did have an impact on the number of annotations that agreed
with  KEGG  and  MetaCyc  (Supplementary  Figure  4).  The  most  impactful
weight appeared to be the “close reciprocal  disagreement,” meaning that
there was not an exact match in the bidirectional BLAST, but the e-scores
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were within the given threshold. If this weight was low (0.01) or high (2.0),
there were fewer annotations that agreed with KEGG and MetaCyc. 

The final MAGI-score M=GM ( [ C , H , α , X ] )/ nL
is a proxy for the probability that

a  gene and metabolite  are  associated.  M is  generated by calculating the
geometric  mean  (GM)  of  the  metabolite  score  (C),  homology  score  (H),
reciprocal agreement score (α) and weight factor (X), and whether or not the
metabolite  is  present  in  a  reaction  (nL)  where  L is  the  network  level
connecting the metabolite to a reaction (a proxy for the probability that a
compound is involved in a reaction) and n is a penalty factor for the network
level.  Currently,  n  is  equal  to  4,  but  this  parameter  may  change  as  the
scoring function is optimized and more training data is acquired. We did not
observe this penalty factor to greatly affect the number of gene annotations
that agreed with KEGG or MetaCyc, though this did have a large impact on
the number of features with multiple suggestions for compound identities;
the  higher  the  penalty  factor,  the  lower  the  number  of  compound
suggestions. MAGI often gives a high score to multiple metabolites, which is
not  surprising  given  the  relatedness  of  many  metabolites  (e.g.  isomers).
Therefore,  we recommend carefully considering the top scoring molecules
and not assuming that the top ranked one is correct (Supplementary Figure
5).  Additional  benchmarking  analysis  shows  agreement  between  KEGG,
BioCyc and MAGI annotations for high MAGI homology scores (Supplementary
Discussion and SI Figures 2 and 3). The geometric mean was used  to account
for the different scales of the individual scores, but weights may be applied to
each individual score during the geometric mean calculation to further fine-
tune the MAGI scoring process.  We expect the weights to become further
optimized as more results are processed through MAGI. 

The final output is a table representing all unique metabolite-reaction-gene
associations,  their  individual  scores,  and  their  integrated  MAGI  score
(Supplementary Table 2). For scoring metabolite identities, a slice of this final
output  is  created  by  retaining  the  top  scoring  metabolite-reaction-gene
association for each unique metabolite structure; these can be mapped back
onto the mass spectrometry results table to aid the identification of  each
mass spectrometry feature.  For assessing gene functions,  another slice of
this final output is created by retaining the top scoring metabolite-reaction-
gene association for each unique gene-reaction pair. For a typical bacterial
genome of ~ 6000 genes and a metabolites file of ~ 6000 compounds, the
MAGI  calculation performed via the web service at  https://magi.nersc.gov/
should  take  about  thirty  minutes  to  complete.  While  MAGI  can  provide
valuable insights into primary metabolism, these reactions tend to be better
characterized and therefore a particularly important application of MAGI is for
secondary metabolite pathways.

Data Availability
All  source code is  available at  https://github.com/biorack/magi,  and the  S.
coelicolor mass  spectrometry  data  (.mzML  files)  and  MIDAS  results
(metabolite_0ae82b08.csv) can be found here:  https://magi.nersc.gov/jobs/?
id=0ae82b08-b2a3-40d8-bb9a-e64b567cacd2.
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Application Availability and Usage
Potential MAGI users may use the application on their personal computers by
downloading the source code from the GitHub repository, or may upload their
data files to the web service. In order to use MAGI, users must provide at
least one of the following: a FASTA file of genes they wish to be associated to
reactions, and/or a metabolites file they wish to associate to reactions. The
metabolites file should be in a table file format (e.g. .csv, .tsv, Excel), and
must have a column named “original_compound” that describes the InChI
Key for each metabolite of interest. If both FASTA and metabolite files are
provided, then  associations between genes and metabolites will be made as
well.

Results and Discussion

Improved metabolite identification for metabolomics. To examine how
MAGI  uses  genomic  information  to  filter  and  score  possible  metabolite
identities from a metabolomics experiment,  sequencing and metabolomics
data were obtained for  S. coelicolor. After processing the raw LCMS data to
find chromatograms and peaks, 878 features with a unique m/z and retention
time were found in the dataset. After neutralizing the  m/z values, accurate
mass searching, and conducting MS/MS fragmentation pattern analysis, 6,604
unique metabolite structures were tentatively associated with these features
(Supplementary  Table  3).  This  means  on  average  there  were  almost  8
candidate  structures  for  each  feature.  For  a  candidate  structure  to  be
associated with a feature, it must have at least one matching fragmentation
spectrum. As this is often the method for identifying metabolites, it highlights
the problem in deconvolution of  a  signal  to  a specific chemical  structure.
2,786 of  these structures  were then linked to a total  of  10,265 reactions
either directly or via the chemical similarity network, and the reactions were
associated with 3,181 (out of 8,210) S. coelicolor genes by homology. Finally,
a MAGI score was calculated for each metabolite-reaction-gene association
(Supplementary Table 4). 

An  example  that  illustrates  MAGI’s  utility  in  determining  the  most  likely
correct  metabolite identification is the feature putatively identified as  1,4-
dihydroxy-6-naphthoic acid.  Here, a feature with an m/z of 203.0345 was
observed.  This  feature was  associated  with  the chemical  formula  C11H8O4,
which could be derived from 16 unique chemical structures in the metabolite
database  (Supplementary  Table  5).  Mass  fragmentation  spectra  were
collected for this feature and analyzed using MIDAS7, a tool that scores the
observed  fragmentation  spectrum  against  its  database  of  in-silico
fragmentation trees for the 16 potential structures.  Based only on the MIDAS
metabolite  score,  the  top  scoring  structure  was  5,6-dihydroxy-2-
methylnaphthalene-1,4-dione. However, after calculating the MAGI scores, a
different  metabolite  received  the  highest  score.  Of  the  16  potential
metabolites, only 1,4-dihydroxy-6-naphthoic acid was in a reaction that had a
perfect match to genes in S. coelicolor (an E-value of 0.0 to SCO4326; Table
1). This metabolite is a known intermediate in an alternative menaquinone
biosynthesis pathway discovered in  S. coelicolor41,  42, making it  much more
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likely to be a metabolite detected from the metabolome of  S. coelicolor  as
opposed to the metabolite found by looking at mass fragmentation alone. 

Metabolomics-driven  gene  annotations.  MAGI  keeps  the  biochemical
potential of an organism unconstrained by considering a plurality of probable
gene  product  functions.  One  effect  of  this  is  that  more  reactions  are
associated with genes than other services (Figure 2A). Because reactions are
the pivotal link between metabolites and genes, this allows integration of a
larger  fraction  of  a  metabolomics  dataset  with  genes.  Furthermore,  MAGI
associates many genes that are not annotated using traditional approaches
with at least one reaction (Figure 2B). Out of a total of 8,210 predicted coding
sequences in  S. coelicolor,  KEGG and BioCyc have one or  more reactions
associated  with  1,106 and 1,294 genes,  respectively.  On the other  hand,
MAGI associated 5,209 genes with one or more reactions, out of which 3,719
genes had no reaction associated with them in either KEGG or BioCyc (Figure
2B). Of these 3,719 genes, 1,883 were linked to at least one metabolite in the
metabolomics data (Supplementary Table 4). Certainly,  not all  MAGI gene-
reaction associations are correct, however, this does provide many testable
hypotheses that give footholds to discover new biochemistry As can be seen
in Figure 2C, many of these new gene-reaction associations have high scores,
indicating a likely connection. 

Validation  of  gene-metabolite  integration  in  pathways.  One  of  the
most  well-known biosynthetic  pathways  in  S.  coelicolor is  the pathway to
synthesize the pigmented antibiotic actinorhodin35. We examined the MAGI
results involving the metabolites and genes of actinorhodin biosynthesis as a
proof-of-principle that MAGI successfully integrates metabolites and genes,
and that these results can be mapped onto a reaction network. Actinorhodin
and all of its detected intermediates were correctly identified and accurately
mapped to the correct genes (Figure 3A), despite some intermediates having
several  plausible  metabolite  identities  (Supplementary  Table  6).  Notably,
KEGG did not annotate the majority of actinorhodin biosynthesis genes, and
the one gene that it did annotate was incorrect (Table 1).

In another example, we examined the menaquinone biosynthesis pathway,
which is essential for respiration in bacteria43 and thus should be included in
every metabolic reconstruction for organisms that produce menaquinone. An
alternative menaquinone biosynthesis pathway was recently discovered and
validated in S. coelicolor41, 42, serving as another proof-of-principle exercise for
assessing the MAGI platform. MAGI linked 4 of 7 intermediate metabolites of
the pathway to the appropriate genes (Figure 3B, Supplementary Table 7).
Interestingly, while KEGG accurately assigned reactions to all but one of the
genes in this biosynthetic pathway,  BioCyC had vague textual annotations
and no reactions  (Table  1).  Therefore,  a  metabolomics  tool  that  relies on
BioCyc model  for  S.  coelicolor would  be unable to  integrate any of  these
metabolites  with  genes  for  the  purpose  of  either  improved  metabolite
identifications or gene annotations. 

Correction  of  annotation  errors.  Gene  annotation  pipelines  are
notoriously  error-prone44 and  yield  inconsistent  results  based  on  the

10

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469



bioinformatic analyses used: the database used for homology searches, and
what  kind  of  additional  data  (e.g. PFams,  genetic  neighborhoods,  and
literature mining) are incorporated into the annotation algorithm or not (see
Table 1 for some examples). For example, the undecylprodigiosin synthase
gene  is  known45,  yet  was  incorrectly  annotated  in  the  KEGG  genome
annotation  for  S.  coelicolor.  KEGG  annotated  this  gene  as  “PEP  utilizing
enzyme” with an EC number of 2.7.9.2 (pyruvate, water phosphotransferase
with  paired  electron  acceptors).  This  error  is  notable  because  the
undecylprodigiosin synthase reaction has an EC number of  6.4.1.-:  ligases
that  form  carbon-carbon  bonds.  On  the  other  hand,  BioCyc  correctly
annotates  SCO5896 as  undecylprodigiosin  synthase,  presumably  using
manual curation or a thorough literature-searching algorithm. 

MAGI  used metabolomics data  to score the possible gene annotations for
SCO5896 in addition to homology scoring (i.e. E-value).  In  the absence of
metabolomics data,  MAGI initially associated the  SCO5896 gene sequence
with  the  prodigiosin  synthase  and  norprodigiosin  synthase  reactions  via
BLAST  searches  against  the  MAGI  reaction  reference  sequence  database
(Figure 4). Metabolomics analysis revealed that the feature with an  m/z of
392.2720  could  potentially  be  undecylprodigiosin,  which  MAGI  associated
with only the undecylprodigiosin synthase reaction (Figure 4). Because this
reaction does not have a reference sequence in our database, it could not be
queried against  the  S. coelicolor genome. However,  the chemical  network
revealed that prodigiosin is a similar metabolite that is in a reaction that does
have  a  reference  sequence  (Figure  4).  When  the  prodigiosin  synthase
reaction’s reference sequence was queried against the S. coelicolor genome,
the top hit was SCO5896, thus making a reciprocal connection between the
mass spectrometry feature and gene via the prodigiosin synthase reaction
(Figure 4).

Making nonexistent or vague annotations specific. The vast majority of
sequenced genes have no discrete functional predictions, preventing the in-
depth understanding of metabolic processes of most organisms. S. coelicolor
is  well  known  to  produce  several  polyketides  and  is  known  to  have  the
genetic potential to produce many more. The SCO5315 gene product is WhiE,
a  known  polyketide  aromatase  involved  in  the  biosynthesis  of  a  white
pigment  characteristic  of  S.  coelicolor46,  47.  KEGG  and  BioCyC  textually
annotated the gene as “aromatase” or “polyketide aromatase,” but neither
links  the  gene  to  a  discrete  reaction.  Although  the  text  annotations  are
correct,  the lack of a biochemical reaction prohibits the association of this
gene with metabolites.  On the other hand,  MAGI was successfully able to
associate  SCO5315 with  an  observed  metabolite  (20-carbon  polyketide
intermediate with an  m/z of 401.0887) via a polyketide cyclization reaction
with  a  MAGI  consensus  score  of  4.59  (Table  1).  While  the  physiological
function  of  WhiE  is  to  cyclize  a  24-carbon  polyketide  intermediate,  the
enzyme has been shown to also catalyze the cyclization of similar polyketides
with varying chain length, including the 20-carbon species observed in the
metabolomics data presented here48-50. 
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In another example where other annotation services were unable to assign
any reactions to a gene product, MAGI associated SCO7595 with the anhydro-
NAM kinase reaction via the detected metabolite anhydro-N-acetylmuramic
acid  (anhydro-NAM)  (m/z 274.0941)  (Table  1).  Anhydro-NAM  is  an
intermediate  in  bacterial  cell  wall  recycling,  a  critically  important  and
significant metabolic process in actively growing bacterial cells;  E. coli and
other bacteria were observed to recycle roughly half of cell wall components
per generation51,  52.  MAGI also associated anhydro-NAM to  SCO6300 via an
acetylhexosaminidase reaction (Table 1) that produces the metabolite. KEGG
and RAST both annotate this gene to be acetylhexosaminidase with a total of
5 possible reactions, but none involve anhydro-NAM (Table 1). The detection
of  anhydro-NAM may  be  considered  orthogonal  experimental  evidence  to
indicate  that  SCO6300  can  act  on  N-acetyl-β-D-glucosamine-anhydro-NAM
along  with  the  other  acetylhexosamines  predicted  by  KEGG  and  RAST,
forming an early stage in anhydromurpoeptide recycling. In the absence of
MAGI,  a  researcher  may  have  been  able  to  manually  curate  a  metabolic
model by manually assessing the text annotations and adding reactions to
the model, but the MAGI framework not only makes this process easier, it
also  connects  an  experimental  observation  that  supports  the  predicted
function of the gene. 

Potential  for  making  novel  annotations. In  addition  to  these  few
examples,  there  are  hundreds  more  gene-reaction-metabolite  associations
that could be used to strengthen, validate, or correct existing annotations
from  KEGG  or  BioCyc,  as  well  as  discover  new  annotations  through
experimentation. These MAGI associations can be sorted by their MAGI score
to  generate  a  ranked  list  of  candidate  genes  and  gene  functions,  with
optional  hierarchical  grouping  and  filtering  of  the  list  by  homology,
metabolite, chemical network, and/or reciprocal  score. For example, of the
1,883  S. coelicolor genes that  were uniquely linked to a metabolite via a
reaction by MAGI, roughly one-third were connected directly to a metabolite;
that  is,  the  chemical  similarity  network  was  not  used to  expand reaction
space  (Figure  5A  and  Figure  2C  teal  markers).  Furthermore,  one-third  of
these genes had perfect  reciprocal  agreement between the metabolite-to-
gene and gene-to-metabolite search directions (Figure 5B and Figure 2C teal
circles). These 190 genes can be further separated or binned based on their
homology score or MAGI score (Figure 5C), resulting in an actionable number
of high-priority and high-strength novel gene function hypotheses to test in
future studies.

Limitations  of  this  study. In  this  study,  we  show  that  MAGI  produces
plausible  associations  between genes  and metabolites  from  Streptomyces
coelicolor. Since the associations shown in this paper are judged by manual
inspection, there are not enough validated links to compute a reliable false
discovery  rate  or  applicability  to  other  systems.  Therefore  an  important
future  work  will  be  to  broadly  apply  MAGI  across  many  organisms  and
evaluate the generality of this approach. This will ensure that the parameters
used are not over fit specifically to Streptomyces coelicolor. In addition, given
the paucity of direct biochemical validations of gene functions, it will likely be
necessary to integrate MAGI with high throughput mutagenesis studies to
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accurately determine false discovery rates.  Lastly, more unique metabolites
can be observed by combining data collected from polar and lipid fractions of
metabolites  along with combining positive and negative ionization modes.
The results here are based on measured signals from a small subset of the
Streptomyces coelicolor metabolome.

 
Conclusion 

In  this  work  we  describe  MAGI,  a  method  for  integrating  metabolomics
observations with genomic predictions to help overcome the limitations of
each  and  strengthen  the  biological  conclusions  made  by  both.  Using
Streptomyces coelicolor as a test case, we find that this method can help
strengthen  metabolite  identifications,  suggests  specific  biochemical
predictions  about  genes that  may  otherwise be  ambiguous,  and  suggests
new  biochemistry  via  the  chemical  network.  It  will  be  important  to  also
evaluate this approach for diverse organisms to determine the generality of
the method.  In order to facilitate broad usage by the academic community,
we provide MAGI through the National Energy Research Scientific Computing
Center (NERSC) at https://magi.nersc.gov, where users can upload their own
metabolite and FASTA files for analysis through MAGI.
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Figures and Tables

Figure  1.  MAGI  workflow for  consensus  scoring.  Mass  spectrometry
features are connected to metabolites via methods such as accurate mass
searching  or  fragmentation  pattern  matching.  These  metabolites  are
expanded  to  include  similar  metabolites  by  using  the  Chemical  Network.
These metabolites are then connected to reactions,  which are reciprocally
linked to input gene sequences via homology  (Reciprocal BLAST box). The
metabolite, reaction, and homology scores generated throughout the MAGI
process are integrated to form MAGI scores (Scoring box). For details on MAGI
scores, see Methods.
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Figure 2.  MAGI associates more genes with reactions that can be
ranked in S. coelicolor. a) Number of reactions associated with each gene
by MAGI, KEGG, and BioCyc. b) Venn diagram showing the genes connected
to one or more reactions by MAGI, KEGG, and/or BioCyc. c) Distributions of
the  associations  between  a  gene  and  a  reaction  for  genes  that  have
annotations  in  MetaCyc  or  Kegg  (orange),  or  are  unique  to  MAGI  (blue),
highlighting that there are several high-scoring MAGI associations for genes
with no annotation. 
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Figure 3.  Pathway views of MAGI results.  Metabolite,  homology,  and
integrative MAGI scores throughout the (a) actinorhodin and (b) menaquinone
biosynthesis pathways guides MAGI interpretations by visualizing results in a
broader  context.  Circular  nodes  represent  metabolites,  diamond  nodes
represent  reactions,  and  edges  represent  MAGI  consensus  scores.  Border
color  of  circular  nodes  corresponds  to  the  MIDAS  metabolite  score,  and
border width corresponds to the chemical network level searched in MAGI. Fill
color of diamond nodes correspond to the homology score. The line width of
the  edges  corresponds  to  the  MAGI  score.  Abbreviations  and legends  for
metabolites and reactions are in supplementary table 8. The final step(s) in
the menaquinone biosynthesis are currently not known and are represented
by dashed edges and a “?” as the reaction.
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Figure  4.  Flowchart  illustrating  the  key  components  of  the  MAGI
algorithm  and  process  for  associating  undecylprodigiosin  with
SCO5896. In the upper half of the flowchart, the mass spectrometry feature
with m/z 392.2720 at retention time 7.51 minutes was potentially identified
to  be  undecylprodigiosin,  which  is  in  the  undecylprodigiosin  synthase
reaction. This reaction has no reference sequence, so could not be directly
connected  to  any  S.  coelicolor genes.  Undecylprodigiosin  was  queried  for
similar metabolites in the chemical network, finding prodigiosin, which is in
the  prodigiosin  synthase  reaction.  This  reaction  does  have  a  reference
sequence, which was used in a homology search against the  S. coelicolor
genome (Reaction to Gene BLAST), finding  SCO5896 as the top hit. In the
lower half of the flowchart, the SCO5896 gene sequence was queried against
the entire MAGI reaction reference sequence database in a homology search
(Gene  to  Reaction  BLAST),  finding  the  prodigiosin  synthase  and
norprodigiosin synthase reactions. Norprodigiosin synthase did not have any
metabolomics  evidence,  The  metabolite-to-reaction  and  gene-to-reaction
results  were  connected  via  the  shared  prodigiosin  synthase  reaction,
effectively  linking  the  feature  392.2720  to  undecylprodigiosin  and  to
SCO5896.
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Figure 5. Prioritization of MAGI gene function suggestions. a) Of the
1,883 MAGI-specific gene-metabolite linkages (Figure 2C), 591 genes were
associated  with  a  reaction  that  was  directly  connected  to  an  observed
metabolite  (i.e. the  chemical  similarity  network  was  not  used  to  link  a
metabolite to the reaction) (light blue). b) Of those, 190 genes had reciprocal
agreement in bidirectional BLAST searches (light blue). c) Histogram of the
top MAGI scores of the 190 genes from panel (b). Through this process an
actionable  number  of  high-priority  and  high-strength  novel  gene  function
hypotheses to test in future studies can be identified. 
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Table 1. Comparison between MAGI, KEGG, and BioCyC annotations
for S. coelicolor genes discussed in this study.

Gene

MAGI
annotation
(reaction)

MAG
I
scor
e

Observed
Metabolite
Evidence

KEGG
annotation
(name)

KEGG
Reaction
Agreeme
nt  with
MAGI

BioCyc
annotati
on
(name)

BioCyc
Reaction
Agreeme
nt  with
MAGI

SCO4326 RXN-10622 5.68
Dihydroxy-
naphthoate

1,4-dihydroxy-
6-naphthoate
synthase

Agree ORF None

SCO4327 RHEA:25907 5.16 Futalosine None None ORF None

SCO4494 RXN-15264 5.57
Carboxy-
vinyloxy-
benzoic acid

Aminodeoxy-
futalosine
synthase

Agree ORF None

SCO4506 RXN-12345 5.57
Carboxy-
vinyloxy-
benzoic acid

chorismate
dehydratase

Agree ORF None

SCO4550 RXN-10620 5.03 Cyclic-DHFL

cyclic
dehypoxanthi
nyl  futalosine
synthase

Agree ORF None

SCO5074
RXN1A0-
6312

5.37

Bicyclic
intermediate
F  &  (S)-
Hemiketal

None None
ActVI-
ORF3

Agree

SCO5075
RXN1A0-
6316

1.22
Dihydro-
kalafungin

None None
ActVI-
ORF4

Agree

SCO5080 RXN-18115 4.87 DHK-red

3-hydroxy-
9,10-
secoandrosta-
1,3,5(10)-
triene-9,17-
dione
monooxygena
se
[EC:1.14.14.1
2]

Disagree:
R09819

ActVA-
ORF5

Agree

SCO5081
RXN1A0-
6318

4.63
Dihydro-
kalafungin

None None
ActVA-
ORF6

Agree

SCO5091
RXN1A0-
6307

5.95
Bicyclic
intermediate
E

None None ActIV Agree

SCO5315 RXN-15413 4.58
WhiE_20C_su
bstrate

None None
Polyketide
aromatas
e

None
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SCO5896 RXN-15787* 1.32
Undecyl-
prodigiosin

pyruvate,
water dikinase

Disagree:
R00199

RedH Agree*

SCO6300 RXN0-5226 3.22 Anhydro-NAM
beta-N-acetyl-
hexosaminida
se

Disagree:
R00022,
R05963,
R07809,
R07810,
R10831

hydrolase None

SCO7595 RHEA:24952 5.23 Anhydro-NAM
anhydro-N-
acetylmurami
c acid kinase

None ORF None

 * Due to chemical network search, this reaction was listed as the prodigiosin
synthase reaction but the metabolite connected to it was undecylprodigiosin,
requiring manual interpretation to determine the actual reaction connected
to the gene was undecylprodigiosin synthase.
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