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Magic-angle (θ = 1.05◦) twisted bilayer graphene (MATBG) has shown two seemingly contradic-
tory characters: the localization and quantum-dot-like behavior in STM experiments, and delocal-
ization in transport experiments. We construct a model, which naturally captures the two aspects,
from the Bistritzer-MacDonald (BM) model in a first principle spirit. A set of local flat-band or-
bitals (f) centered at the AA-stacking regions are responsible to the localization. A set of extended
topological semi-metallic conduction bands (c), which are at small energetic separation from the
local orbitals, are responsible to the delocalization and transport. The topological flat bands of the
BM model appear as a result of the hybridization of f - and c-electrons. This model then provides
a new perspective for the strong correlation physics, which is now described as strongly correlated
f -electrons coupled to nearly free c-electrons - we hence name our model as the topological heavy
fermion model. Using this model, we obtain the U(4) and U(4)×U(4) symmetries of Refs. [1–5] as
well as the correlated insulator phases and their energies. Simple rules for the ground states and
their Chern numbers are derived. Moreover, features such as the large dispersion of the charge ±1
excitations [2, 6, 7], and the minima of the charge gap at the ΓM point can now, for the first time, be
understood both qualitatively and quantitatively in a simple physical picture. Our mapping opens
the prospect of using heavy-fermion physics machinery to the superconducting physics of MATBG.

Introduction — Since the initial experimental discovery
of the correlated insulator phases [8] and superconduc-
tivity [9] in MATBG [10], extensive experimental [11–35]
and theoretical [1–7, 36–113] efforts have been made to
understand the nature of these exotic phases. Theoretical
challenges for understanding the correlation physics come
from both the strong interaction compared to relatively
small band width as well as from the topology [36, 38, 41–
43, 104], which forbids a symmetric lattice description
of the problem. The two flat bands of MATBG posses
strong topology in the presence of C2zT (time-reversal
followed by C2z rotation) and particle-hole (P ) symme-
tries [104], which supersedes the earlier, C2zT symmetry-
protected fragile topology [41, 42]. This strong topology
extends to the entire continuum BM model, and implies
the absence of a lattice model for any number of bands.
The topology is also responsible to exotic phases such as
quantum anomalous Hall states [2, 5, 55, 60, 82, 84] and
fractional Chern states [96, 98, 99, 109].

Two types of complementary strategies have been
proposed to resolve the problem of the lattice descrip-
tion. One is to construct extended Hubbard models
[1, 7, 37, 40, 42, 49, 51, 67, 71], where either C2zT
[1, 7, 40, 49, 67] or P [42] becomes non-local in real space.
The other is to adopt a full momentum-space formalism
[2, 5, 6, 85, 86, 105, 106, 111], where locality becomes hid-
den. (Besides the two strategies, some phenomenological
models are also proposed [39, 48, 63, 64, 90, 92, 97, 100].)
The real and momentum space strong coupling models
elucidated the nature of the correlated insulator states:
they are ferromagnets - sometimes carrying Chern num-
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bers - in a large U(4) or U(4)×U(4) symmetry space that
contains spin, valley and band quantum number [1, 2, 4].
The dispersion of the excitations above the correlated in-
sulators [2, 6, 7] - where superconductivity appears upon
doping - is, despite being exact - not physically under-
stood.

In the current manuscript, nevertheless, we find it pos-
sible to write down a fully symmetric model that has
a simple real space picture, which, remarkably and el-
egantly, solves the aforementioned puzzles. We refor-
mulate and map the interacting MATBG as an effective
topological heavy fermion system, which consists of local
orbitals (f) centered at the AA-stacking regions and delo-
calized topological conduction bands (c). The f -electrons
are so localized that they have an almost zero kinetic
energy (∼ 0.1meV) but a strong on-site Coulomb repul-
sion that we compute to be ∼ 60meV. The c-electrons
carry the symmetry anomaly and have unbounded ki-
netic energies. The actual flat bands of the BM model
are from a hybridization (∼20meV) between the f - and
c-bands. The interacting Hamiltonian also couples the
f and c electrons through the presence of several types
of interactions. Using this model, the ground states
[1, 2, 44, 50, 53, 65, 68, 71, 77, 84–86, 114] and their
topologies can be understood in a simple, physical pic-
ture. The quasi-particle excitation bandwidth can even
be analytically determined.

Topological heavy fermion model — The single-valley
BM model has the symmetry of the magnetic space group
P6′2′2, generated by C3z, C2x, C2zT , and moiré trans-
lations. (See Refs. [41, 115] for this group and its ir-
reducible representations - irreps.) The energy bands in
the valley η = + of the BM model are shown in Fig. 1(b),
where the bands are labeled by their irreps. Refs. [41, 42]
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FIG. 1. Topological heavy fermion model. (a) A sketch of
the moiré unit cell of MATBG and its heavy fermion analog,
where the local moments and itinerant electrons are formed
by the effective f -orbitals at the AA-stacking regions and
topological conduction bands (c), respectively. (b) The band
structure of the BM model at the magic angle θ = 1.05◦,
where the moiré BZ and high symmetry momenta are illus-
trated in the upper inset panel. The overlaps between the
Bloch states and the trial WFs are represented by the red
circles. The density profile of the constructed maximally lo-
calized WFs (f -orbitals) is shown in the lower inset panel. (c)
Bands given by the topological heavy fermion model (black
lines) compared to the BM bands (blue crosses). The c- (blue)
and f -bands (red) in the decoupled limit, where γ = v′? = 0,
are shown in the inset. Orange dashed lines indicate evolution
of energy levels as f -c coupling is turned on.

showed that the irreps formed by the two flat bands, i.e.,
Γ1 ⊕ Γ2; M1 ⊕M2; K2K3, are not consistent with any
local orbitals (band representations [116]) and indicate
a fragile [117–120] topological obstruction to a two-band
lattice model. Here we resolve the fragile topology by in-
volving higher energy bands. Suppose we can “borrow”
a Γ3 irrep from higher (∼20meV) energy bands and use
it to replace the Γ1⊕Γ2 states; then the replaced irreps -
Γ3, M1⊕M2, K2K3 - are consistent with px±ipy orbitals
located at the triangular lattice. We hence introduce two
trial Gaussian-type Wannier functions (WFs) that trans-
form as px±ipy orbitals under the crystalline symmetries.
As indicated by the overlaps between the trial WFs and
the Bloch bands (Fig. 1(a)), the trial WFs are supported
by the flat band states at k away from ΓM and by the
lowest higher energy band states around ΓM . Feeding
the overlaps into the program Wannier90 [121–123], we
obtain the corresponding maximally localized WFs, den-
sity profile of which is shown in Fig. 1(b) [115]. (Similar
local states are also discussed using different methods in
Refs. [38, 112].) These WFs are extremely localized -
their nearest neighbor hoppings are about 0.1meV - and
span 96% percent of the flat bands.

To recover the irreps and topology of the middle two
bands, we have to take into account the remaining 4%
states, without which the localized electrons could not
form a superconductor. To do this, we define the projec-
tor into the WFs as P, the projector into the lowest six
bands (per spin valley) as I, and divide the low energy
BM Hamiltonian HBM into four parts: H(f) = PHBMP,
H(c) = QHBMQ, H(fc) = PHBMQ, H(cf) = H(fc)†,
where Q = I − P, H(c) is the remaining Hamiltonian,

and H(fc) + h.c. is the coupling between WFs and the
remaining states. As the couplings between WFs are ex-
tremely weak (∼0.1meV) we find H(f) ≈ 0. Since the
two states in P form Γ3 at ΓM , the four states in Q must
form Γ3 ⊕Γ1 ⊕Γ2 at ΓM due to the irrep counting. Due
to the crystalline and P symmetries, H(c) in the valley η
takes the form [115]

H(c,η)(k) =

(
02×2 v?(ηkxσ0 + ikyσz)

v?(ηkxσ0 − ikyσz) Mσx

)
(1)

to linear order of k, where the first two-by-two block
is spanned by the Γ3 states and the second two-by-two
block is spanned by the Γ1 ⊕ Γ2 states. The Γ1 and Γ2

states are split by the M term (blue bands in Fig. 1(c)),
while the Γ3 states form a quadratic touching at k = 0,
which is shown in Ref. [115] responsible to the symmetry
anomaly [104] jointly protected by C2zT and P . The
coupling H(fc) in the valley η has the form

H(fc,η)(k) =
(
γσ0 + v′?(ηkxσx + kyσy), 02×2

)
, (2)

where the second block is computed to be extremely small
and hence is omitted and written as 02×2. H(fc,η) will
gap H(c,η), and hence provides for both the single particle
gap and for the flat band topology of the BM model.
Using a set of usually adopt parameters for MATBG, we
find v? = −4.303eV·Å, M = 3.697meV, γ = −24.75meV,
v′? = 1.622eV · Å.

Since the WFs and the remaining “c” degrees of free-
dom have localized and plane-wave-like wave functions,
respectively, we make the analogy with local orbitals and
conduction bands in heavy fermion systems. We refer
to them as local f -orbitals and (topological) conduction
c-bands, respectively. We use fRαηs (α = 1, 2, η = ±,
s =↑, ↓) to represent the annihilation operator of the α-
th WF of the valley η and spin s at the moiré unit cell R.
We use ckaηs (a = 1, 2, 3, 4) to represent the annihilation
operator of the a-th conduction band basis of the valley η
and spin s at the moiré momentum k. The single-particle
Hamiltonian can be written as

Ĥ0 =
∑
|k|<Λc

∑
aa′ηs

H
(c,η)

aa′ (k)c†kaηscka′ηs +
1√
N

∑
|k|<Λc

R

∑
αaηs

(

eik·R−
|k|2λ2

2 H(fc,η)
αa (k)f†Rαηsckaηs + h.c.

)
, (3)

where Λc is the momentum cutoff for the c-electrons,
aM is the moiré lattice constant, N is the number of
moiré unit cell in the system, and λ, which is found to be
0.3375aM , is a damping factor proportional to the size
of WFs. We plot the band structure of Ĥ0 in Fig. 1(c),
where the splitting of the two Γ3 states is given by 2|γ|
and the bandwidth of the two flat bands is given by
2M ≈ 7.4meV. The spectrum of Ĥ0 matches very well
with the BM model (Fig. 1(a)) in the energy range [-
70meV, 70meV].

The U(4) symmetry — The projected model of
MATBG [1, 2, 4] is found to possess a U(4) symmetry
if the kinetic energy of the flat bands is omitted. In the
heavy fermion basis, this U(4) symmetry can be realized
by imposing the flat band condition, i.e., M = 0. (Note
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that 2|M | is the bandwidth of the flat bands.) The U(4)
moments of the f -electrons, Γ3 c-electrons, and Γ1 ⊕ Γ2

c-electrons are given by [115]

Σ̂(f,ξ)
µν (R) =

δξ,(−1)α−1η

2
Aµναηs,α′η′s′f

†
RαηsfRα′η′s′

Σ̂(c′,ξ)
µν (q) =

δξ,(−1)a−1η

2N
Aµνaηs,a′η′s′c

†
k+qaηscka′η′s′ , (a = 1, 2)

Σ̂(c′′,ξ)
µν (q) =

δξ,(−1)a−1η

2N
Bµνaηs,a′η′s′c

†
k+qaηscka′η′s′ , (a = 3, 4)

(4)

respectively, where repeated indices should be summed
over and Aµν , Bµν (µ, ν = 0, x, y, z) are eight-by-eight
matrices

Aµν ={σ0τ0ςν , σyτxςν , σyτyςν , σ0τzςν}
Bµν ={σ0τ0ςν ,−σyτxςν ,−σyτyςν , σ0τzςν} ,

(5)

with σ0,x,y,z, τ0,x,y,z, ς0,x,y,z being the Pauli or iden-
tity matrices for the orbital, valley, and spin degrees of
freedom, respectively. The ±1 valued index ξ, equal
to (−1)α−1η or (−1)a−1η in the moments, labels dif-
ferent fundamental representations of the U(4) group.

The global U(4) rotations are generated by Σ̂µν =∑
ξ=±1 Σ̂

(f,ξ)
µν + Σ̂

(c′,ξ)
µν + Σ̂

(c′′,ξ)
µν . Unlike the U(4) rota-

tions found in Refs. [1, 2, 4], which only commute the
projected Hamiltonian into the flat bands, the U(4) ro-
tations here commute with the full Hamiltonian. (Gen-
erators of the U(4) or U(4)×U(4) symmetry in the first
chiral limit [36, 102] is also given in Ref. [115].)

Interaction Hamiltonian — To obtain the interaction
Hamiltonian in the heavy fermion basis, we can first
express the density operator ρ(r) of the BM model in
terms of fRαηs and ckaηs, and then substitute it into the
Coulomb interaction, ρ(r)V (r − r′)ρ(r′). By evaluating
the Coulomb integrals, we obtain the interaction Hamil-
tonian resembling a periodic Anderson model with extra
f -c exchange interactions [115],

ĤI = ĤU1 + ĤJ + ĤU2 + ĤV + ĤW . (6)

ĤU1 = U1

2

∑
R : ρfR :: ρfR : are the on-site interactions

of f -electrons, where ρfR =
∑
αηs f

†
RαηsfRαηs is the f -

electrons density and the colon symbols represent the
normal ordered operator with respect to the normal state.

ĤJ = −J
∑
Rq

∑
µν

∑
ξ=±

e−iq·R : Σ̂(f,ξ)
µν (R) :: Σ̂(c′′,ξ)

µν (q) : (7)

is a ferromagnetic exchange coupling between U(4) mo-
ments of f -electrons and Γ1⊕Γ2 c-electrons. Using prac-
tical parameters for MATBG, we obtain U1 = 57.95meV
and J = 16.38meV. The other three terms in ĤI are:
HU2

- repulsion (∼ 2.3meV) between nearest neighbor f -
electrons, HV - repulsion (∼ 48meV) between c-electrons,
HW - repulsion (∼ 47meV) between c- and f -electrons.

As a widely adopted approximation in heavy fermion
materials, ĤU2

+ ĤV + ĤW can be decoupled in the
Hartree channel due to the delocalized and localized na-
tures of c- and f -electrons. Hence these terms only effec-
tively shift the band energies of f - and c-bands. Then,
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FIG. 2. The self-consistent HF bands upon the ground states
at the fillings ν = 0,−1,−2,−3. The color of the bands repre-
sent the contributing components, wherein yellow represents
the f -electron states and blue represents the c-electron states.

U1 - the on-site repulsion of the f -electrons - is by far
the largest energy scale of the problem - more than twice
the hybridization (γ) and three times the exchange (J).
In Hartree-Fock (HF) calculations U1 is found to be the
source of spontaneous symmetry-breakings.

Ground states — Since U1 is much larger than the
couplings (γ, J , v′?(ηkxσx + kyσy)) between f - and c-
electrons, a reasonable guess of the ground states would
be product states of f -multiplets and the (gapless point)
Fermi liquid state (|FS〉) of the half-filled c-electrons. We
call such product states “the parent states”. E.g., the
parent valley-polarized (VP) state at the charge neutral-
ity (ν = 0) is

|VPν=0
0 〉 =

∏
R

∏
α=1,2

∏
s=↑↓

f†R,α,+,s|FS〉 . (8)

The parent Kramers inter-valley-coherent (K-IVC) state
is a U(4)-rotation of |VPν=0

0 〉 along the τx-direction

|K-IVCν=0
0 〉 = e−i

π
2

Σ̂x0 |VPν=0
0 〉

=
∏
R

∏
s=↑↓

1

2
(f†R,1,+,s + f†R,2,−,s)(−f

†
R,1,−,s + f†R,2,+,s)|FS〉 .

(9)

Parent states at other integer fillings (ν = 0,±1,±2,±3)
can be similarly constructed [115]. They would be ground
states of the Hamiltonian if γ, J , v′? terms vanished;
hybridization of f - and c-electrons will develop, i.e.,
〈f†c〉 6= 0, otherwise. The determination of ground states
by self-consistent HF calculation with initial states given
by the parent states is given in Ref. [115]. The nu-
merically found HF ground states at the integer fillings
(Fig. 2) are fully consistent with those in Ref. [5].

The parent states are so good initial states for the HF
calculations that the one-shot HF is already qualitatively
same as the self-consistent HF (see Fig. 3). Thanks to
the simplicity of the heavy fermion model, the one-shot
energies can be analytically estimated and we are able
to derive two rules for the ground states [115]. First,
in the parent state, f -electrons at each site tend to be
symmetric under permutation of U(4) indices to save the
Coulomb energy (Hunds’ rule). Both Eqs. (8) and (9)
satisfy the first rule. Second, for U(4)-related states at a

given integer filling ν, the state that minimizes ĤM +ĤJ

is the ground state, where ĤM is the U(4)-breaking M
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FIG. 3. The one-shot HF bands of the ground states at the
fillings ν = 0,−1. The red solid bands are the quasi-particle
bands of the decoupled Hamiltonian, where γ = v′? = J = 0.
The horizontal and dispersive red bands are of the f - and c-
electrons, respectively. The touching point of the dispersive
red bands at ΓM is quadratic, while since M is small, it may
look like linear. The one-shot bands can be understood as a
result of hybridization between f - and c-electrons.

term in Ĥ0 (Eq. (1)). This energy can be estimated by
the lowest ν + 4 levels of the mean field Hamiltonian
H(Γ1⊕Γ2) spanned by the Γ1⊕Γ2 basis of the c-bands at
k = 0, which reads (up to constants)

H(Γ1⊕Γ2) = Mσxτ0ς0 −
J

2
(τzO

fT
τz + σzO

fT
σz) . (10)

Here O
f

αηs,α′η′s′ = 〈f†RαηsfRα′η′s′〉 −
1
2δαα′δηη′δss′ is the

density matrix of the local f -orbitals with homogeneity
assumed. We have assumed that, for all the integer fill-
ings, the eight lowest energy levels (closest to the gap) are
always contributed by the Γ1 ⊕ Γ2 c-band basis - which
are part of the flat bands - hence we only need to look at
the Γ1 ⊕ Γ2 subspace. This assumption is fully justified
by previous studies based on two-band projected Hamil-
tonian, where only Γ1 ⊕ Γ2 basis exists, and will become
clearer after we discuss the charge ±1 excitations.

We now apply the second rule to Eq. (8) and (9) to

determine the one-shot state of lowest energy. O
f

matri-
ces given by Eqs. (8) and (9) are 1

2σ0τzς0 and − 1
2σyτyς0,

respectively; the resulted lowest four levels of H(Γ1⊕Γ2)

are ±M −J/2 (each 2-fold) and −
√
M2 + J2/4 (4-fold),

respectively. It is direct to verify that the latter (K-IVC)
has a lower energy. Applying the two rules to parent
states at other fillings, we obtain consistent results with
the full numerical calculations in Refs. [5, 105]. We also
obtain an analytical expression for the Chern numbers of
ground states [115].

Charge ±1 excitations — As shown in Figs. 2 and 3
and in Refs. [2, 6, 7, 85, 86, 110], at k away from ΓM ,
the quasi-particle bands have a large gap (∼ U1) and are
relatively flat; at k around ΓM , the bands have signifi-
cant dip. Such features are found related to the topology
of the two flat-bands [6, 7] but have not yet been quanti-
tatively understood. The heavy fermion model provides
a natural explanation to these features. We first con-

sider the decoupled limit (γ = v′? = J = 0) at ν = 0,
where the f -electron bands are flat and have a (charge)
gap U1, and the c-electron bands are given by H(c,η)

(Fig. 3(a)). Tuning on γ, v′?, J then yields the one-shot
quasi-particle bands. At k = 0, γ gaps out the Γ3 c-
bands, and J further gaps out the Γ1 ⊕ Γ2 c-bands. As
the splitting of Γ1 − Γ2 is smaller than that of the Γ3,
the lowest excitations will carry Γ1,Γ2 representations,
matching Refs. [2, 6, 7] and, according to the discussion

after Eq. (10), equals to 2
√
M2 + J2/4 and |J − 2M | for

K-IVC and VP states, respectively. At k 6= 0, the v′?
term hybridizes the flat f -bands and dispersive c-bands.
For large k, where the c-bands have very high kinetic en-
ergies, the hybridization is relatively weak and the gap
is still approximately U1. Thus the shape of the quasi-
particle bands is explained, and its bandwidth is approx-
imately given by (U1 − J)/2 when M is small. As dis-
cussed in Ref. [115], the feature that the larger (∼ U1)
and smaller (∼ J) gaps are contributed by f - and c-
electrons, respectively, is reflected in the STM spectra
and Landau levels at different regions (AA or AB sites)
of MATBG.

At nonzero fillings, the quasi-particle bands can also be
understood as hybridized flat f -bands and dispersive c-
bands, except that the f - and c-bands may feel different
effective chemical potentials due to the density-density
interactions between them. For example, at ν = −1, the
upper branch of the f -bands is shifted to an energy close
to the quadratic touching of the c-bands (Fig. 3(b)) [115].
Thus one of the hybridized bands is extremely flat.

Discussion — The coexistence of quantum-dot-like be-
havior [21, 25] and superconductivity [9, 11, 12, 14, 15]
may now be understood - they come from two different
types (f and c) of carriers. In fact, inspired by the pomer-
anchuk effect experiments [33, 34] and strange metal be-
havior [19, 20], authors of Refs. [33, 34, 107] also conjec-
ture the possibility of coexistence of local momenta and
itinerant electrons. (The heavy fermion theory analog
may also exist in other twisted materials [124].) Our pa-
per derives and shows the exact mapping of MATBG to
such a heavy-fermion type model. As such, the machin-
ery of heavy fermions [125–139] can now be applied, for
the first time, to MATBG. We speculate that it will lead
to pairing [52, 54, 56–59, 66, 70, 78–80, 91, 94, 95, 108]
in nontrivial gap channels.
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fect in a moiré heterostructure,” Science 367, 900–903
(2019).

[19] Yuan Cao, Debanjan Chowdhury, Daniel Rodan-
Legrain, Oriol Rubies-Bigorda, Kenji Watanabe,
Takashi Taniguchi, T. Senthil, and Pablo Jarillo-
Herrero, “Strange metal in magic-angle graphene with
near planckian dissipation,” Phys. Rev. Lett. 124,
076801 (2020).

[20] Hryhoriy Polshyn, Matthew Yankowitz, Shaowen Chen,
Yuxuan Zhang, K. Watanabe, T. Taniguchi, Cory R.
Dean, and Andrea F. Young, “Large linear-in-
temperature resistivity in twisted bilayer graphene,”
Nature Physics 15, 1011–1016 (2019).

[21] Yonglong Xie, Biao Lian, Berthold Jäck, Xiaomeng Liu,
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moiré superlattices,” Physical Review B 99, 075127
(2019).

[62] Jianpeng Liu, Zhen Ma, Jinhua Gao, and Xi Dai,
“Quantum valley hall effect, orbital magnetism, and
anomalous hall effect in twisted multilayer graphene sys-
tems,” Physical Review X 9, 031021 (2019).

[63] Xiao-Chuan Wu, Chao-Ming Jian, and Cenke Xu,
“Coupled-wire description of the correlated physics in
twisted bilayer graphene,” Physical Review B 99 (2019),
10.1103/physrevb.99.161405.

[64] Alex Thomson, Shubhayu Chatterjee, Subir Sachdev,
and Mathias S. Scheurer, “Triangular antiferromag-
netism on the honeycomb lattice of twisted bilayer
graphene,” Physical Review B 98 (2018), 10.1103/phys-
revb.98.075109.

[65] John F Dodaro, Steven A Kivelson, Yoni Schattner,
Xiao-Qi Sun, and Chao Wang, “Phases of a phenomeno-
logical model of twisted bilayer graphene,” Physical Re-
view B 98, 075154 (2018).

[66] Jose Gonzalez and Tobias Stauber, “Kohn-luttinger su-
perconductivity in twisted bilayer graphene,” Physical
review letters 122, 026801 (2019).

[67] Noah FQ Yuan and Liang Fu, “Model for the metal-

insulator transition in graphene superlattices and be-
yond,” Physical Review B 98, 045103 (2018).

[68] Kangjun Seo, Valeri N. Kotov, and Bruno Uchoa, “Fer-
romagnetic mott state in twisted graphene bilayers at
the magic angle,” Phys. Rev. Lett. 122, 246402 (2019).

[69] Kasra Hejazi, Xiao Chen, and Leon Balents, “Hy-
brid wannier chern bands in magic angle twisted bi-
layer graphene and the quantized anomalous hall ef-
fect,” Phys. Rev. Research 3, 013242 (2021).

[70] Eslam Khalaf, Shubhayu Chatterjee, Nick Bultinck,
Michael P Zaletel, and Ashvin Vishwanath, “Charged
skyrmions and topological origin of superconductivity
in magic-angle graphene,” Science advances 7, eabf5299
(2021).

[71] Hoi Chun Po, Liujun Zou, Ashvin Vishwanath, and
T. Senthil, “Origin of Mott Insulating Behavior and Su-
perconductivity in Twisted Bilayer Graphene,” Physical
Review X 8, 031089 (2018).

[72] Fang Xie, Zhida Song, Biao Lian, and B. An-
drei Bernevig, “Topology-bounded superfluid weight in
twisted bilayer graphene,” Phys. Rev. Lett. 124, 167002
(2020).

[73] A. Julku, T. J. Peltonen, L. Liang, T. T. Heikkilä,
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strongly interacting Z2 flatbands: a toy model inspired
by twisted bilayer graphene,” SciPost Phys. Core 3, 15
(2020).

[93] Yixuan Huang, Pavan Hosur, and Hridis K. Pal,
“Quasi-flat-band physics in a two-leg ladder model and
its relation to magic-angle twisted bilayer graphene,”
Phys. Rev. B 102, 155429 (2020).

[94] Tongyun Huang, Lufeng Zhang, and Tianxing Ma,
“Antiferromagnetically ordered mott insulator and
d+id superconductivity in twisted bilayer graphene: a
quantum monte carlo study,” Science Bulletin 64, 310–
314 (2019).

[95] Huaiming Guo, Xingchuan Zhu, Shiping Feng, and
Richard T. Scalettar, “Pairing symmetry of interacting
fermions on a twisted bilayer graphene superlattice,”
Phys. Rev. B 97, 235453 (2018).

[96] Patrick J. Ledwith, Grigory Tarnopolsky, Eslam Kha-
laf, and Ashvin Vishwanath, “Fractional chern insu-
lator states in twisted bilayer graphene: An analytical
approach,” Phys. Rev. Research 2, 023237 (2020).

[97] Cécile Repellin, Zhihuan Dong, Ya-Hui Zhang, and
T. Senthil, “Ferromagnetism in narrow bands of moiré
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Tsirkin, Ma lgorzata Wierzbowska, Nicola Marzari,
David Vanderbilt, Ivo Souza, Arash A Mostofi, and
Jonathan R Yates, “Wannier90 as a community code:
new features and applications,” Journal of Physics:
Condensed Matter 32, 165902 (2020).

[124] Aline Ramires and Jose L. Lado, “Emulating heavy
fermions in twisted trilayer graphene,” Phys. Rev. Lett.
127, 026401 (2021).

[125] Qimiao Si and Frank Steglich, “Heavy fermions and
quantum phase transitions,” Science 329, 1161–1166
(2010).

[126] Philipp Gegenwart, Qimiao Si, and Frank Steglich,
“Quantum criticality in heavy-fermion metals,” nature
physics 4, 186–197 (2008).

[127] Piers Coleman, “New approach to the mixed-valence
problem,” Phys. Rev. B 29, 3035–3044 (1984).

[128] Maxim Dzero, Kai Sun, Victor Galitski, and Piers Cole-
man, “Topological kondo insulators,” Phys. Rev. Lett.
104, 106408 (2010).

[129] AM Tsvelik and PB Wiegmann, “Exact results in the
theory of magnetic alloys,” Advances in Physics 32,
453–713 (1983).

[130] Philipp Werner, Armin Comanac, Luca de’ Medici,
Matthias Troyer, and Andrew J. Millis, “Continuous-
time solver for quantum impurity models,” Phys. Rev.
Lett. 97, 076405 (2006).

[131] Feng Lu, JianZhou Zhao, Hongming Weng, Zhong Fang,

and Xi Dai, “Correlated topological insulators with
mixed valence,” Phys. Rev. Lett. 110, 096401 (2013).

[132] Hongming Weng, Jianzhou Zhao, Zhijun Wang, Zhong
Fang, and Xi Dai, “Topological crystalline kondo insu-
lator in mixed valence ytterbium borides,” Phys. Rev.
Lett. 112, 016403 (2014).

[133] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko,
O. Parcollet, and C. A. Marianetti, “Electronic struc-
ture calculations with dynamical mean-field theory,”
Rev. Mod. Phys. 78, 865–951 (2006).

[134] V. J. Emery and S. Kivelson, “Mapping of the two-
channel kondo problem to a resonant-level model,”
Phys. Rev. B 46, 10812–10817 (1992).

[135] Frederic Freyer, Jan Attig, SungBin Lee, Arun
Paramekanti, Simon Trebst, and Yong Baek Kim,
“Two-stage multipolar ordering in PrT2al20 kondo ma-
terials,” Phys. Rev. B 97, 115111 (2018).

[136] Akira Furusaki and Naoto Nagaosa, “Kondo effect in a
tomonaga-luttinger liquid,” Phys. Rev. Lett. 72, 892–
895 (1994).

[137] Carlos R. Cassanello and Eduardo Fradkin, “Kondo ef-
fect in flux phases,” Phys. Rev. B 53, 15079–15094
(1996).

[138] Ivar Martin, Yi Wan, and Philip Phillips, “Size de-
pendence in the disordered kondo problem,” Phys. Rev.
Lett. 78, 114–117 (1997).

[139] Sudip Chakravarty and Joseph Rudnick, “Dissipative
dynamics of a two-state system, the kondo problem, and
the inverse-square ising model,” Phys. Rev. Lett. 75,
501–504 (1995).

[140] Luis Elcoro, Benjamin J Wieder, Zhida Song, Yuanfeng
Xu, Barry Bradlyn, and B Andrei Bernevig, “Mag-
netic topological quantum chemistry,” arXiv preprint
arXiv:2010.00598 (2020).

[141] Yuanfeng Xu, Luis Elcoro, Zhi-Da Song, Benjamin J
Wieder, MG Vergniory, Nicolas Regnault, Yulin Chen,
Claudia Felser, and B Andrei Bernevig, “High-
throughput calculations of magnetic topological mate-
rials,” Nature 586, 702–707 (2020).

[142] Roland Winkler, Spin-orbit Coupling Effects in Two-
Dimensional Electron and Hole Systems (Springer Sci-
ence & Business Media, 2003).
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S1. Bistritzer-MacDonald model

Here we briefly review the Bistritzer-MacDonald (BM) model [10] of magic-angle twisted bilayer graphene
(MATBG). Readers may refer to the supplementary materials of Ref. [41] for more details.

A. Basis and single-particle Hamiltonian

As shown in Fig. S1(a), the low energy states around the Dirac points at the K momenta of the two graphene layers
form the moiré Brillouin zone (BZ) in the valley K. Similarly, the low energy states around the Dirac points at the K′

momenta of the two layers form another moiré BZ in the valley K′. Thus in the BM model there are two independent
sets of basis from the two valleys. We use the index η (= + for K and − for K′) to label the two graphene valleys. We
denote the basis as ck,Q,α,η,s, where where k is a momentum in the moiré Brillouin zone (BZ), Q takes values in the
lattice shown in Fig. S1(b), α = 1, 2 represents the graphene sublattice, η = ± represents the graphene valley, and
s =↑↓ is the spin index. There are two types of Q lattices: the blue lattice Q+ = {q2 + n1bM1 + n2bM2 | n1,2 ∈ Z}
and the red lattice Q− = {−q2 + n1bM1 + n2bM2 | n1,2 ∈ Z}, where bM1,bM2 are Moiré reciprocal lattice basis

bM1 = q2 − q1, bM2
= q3 − q1 . (S1)

For Q ∈ Q+, the basis is defined as

(Q ∈ Q+) c†k,Q,α,η,s =


1√
Ntot

∑
R∈top

ei(K++k−Q)·(R+tα)c†R,α,s if η = +

1√
Ntot

∑
R′∈bottom

ei(−K−+k−Q)·(R′+t′α)c†R′,α,s if η = −
, (S2)

and for Q ∈ Q−, the basis is defined as

(Q ∈ Q−) c†k,Q,α,η,s =


1√
Ntot

∑
R′∈bottom

ei(K−+k−Q)·(R′+t′α)c†R′,α,s if η = +

1√
Ntot

∑
R∈top

ei(−K++k−Q)·(R+tα)c†R,α,s if η = −
. (S3)

Here Ntot is the number of graphene unit cells in each layer, R and R′ indexes graphene lattices in the top and
bottom layers, respectively, tα and t′α are the sublattice vectors of the two layers, respectively, K+ and K− are the
K momentum of the top and bottom layers, respectively, and cR,α,s (cR′,α,s) is the fermion operator with spin s at
the atom site R+ tα (R′+ t′α). The Q+ (Q−) lattice is defined in such a way that ηK+ +k−Q (ηK−+k−Q) with
Q ∈ Q+ (Q ∈ Q−) is the Dirac point position ηK+ (ηK−) when k equals to the high symmetry point ηKM (ηK ′M )
of the moiré BZ, as sown in Fig. S1(b).

The BM model is given by

ĤBM =
∑
ηs

∑
k∈MBZ

∑
αα′

∑
Q,Q′

h
(η)
Qα,Q′α′(k)c†k,Q,α,η,sck,Q′,α′,η,s (S4)

where the single particle Hamiltonian reads

h
(+)
Qα,Q′α′(k) = vF (k−Q) · σδQ,Q′ +

3∑
j=1

[Tj ]αα′δQ,Q′±qj , h
(−)
Qα,Q′α′(k) = h

(+)∗
−Qα,−Q′α′(−k), (S5)

Tj = w0σ0 + w1σx cos
2π(j − 1)

3
+ w1σy sin

2π(j − 1)

3
. (S6)

Here qj are shown in Fig. S1, and w0 and w1 are the interlayer couplings in the AA-stacking and AB-stacking regions,

respectively. The length of qj is determined by the twist angle θ, i.e., |qj | = kθ = 2|K| sin θ
2 . In this work, we

adopt the parameters vF = 5.944eV · Å, |K| = 1.703Å−1, w1 = 110meV, θ = 1.05◦. The relation h
(−)
Qα,Q′α′(k) =

h
(+)∗
−Qα,−Q′α′(−k) is due to the time-reversal symmetry that transform the two valleys to each other. The single-

particle Hamiltonian (upon to a unitary transformation [41]) is periodic with respect to the reciprocal lattice vectors
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FIG. S1. The moiré BZ and the Q lattice. (a) The blue and red hexagons represent the BZ’s of the top and bottom graphene
layers, respectively. The blue and red dots represent the Diract points (K momentum) from the two layers. The vectors
q1,q2,q3 connecting the Dirac points of the two layers span the moiré BZ in the valley K (shaded with light yellow). Similarly,
the Dirac points at the K′ momentum form another moiré BZ in the valley K′ (shaded with light orange). (b) We denote the
blue and red Q lattices as Q+ and Q− respectively. In the BM model, the states in the valley K (K′) of the top layer and in
the valley K′ (K) of the bottom layer contribute to the lattice Q+ (Q−). (c) The unit cell in real space, where the maximal
Wyckoff positions 1a, 2c, 3f are marked by the black dots.

bM1 = q2 − q1 = kθ(
√

3
2 ,

3
2 ), bM2 = q3 − q1 = kθ(−

√
3

2 ,
3
2 ). The moiré BZ and high symmetry momenta are

defined in Fig. S1(b). The real space unit cell is generated by aM1 = 2π
3kθ

(
√

3, 1), aM2 = 2π
3kθ

(−
√

3, 1), which satisfy

aMi · bMj = 2πδij . Area of the moiré unit cell is given by Ω0 = aM1 × aM2 = 8π2

3
√

3k2θ
. Maximal Wyckoff positions

in the unit cell are shown in Fig. S1(c). The 1a and 2c positions correspond to the AA-stacking and AB-stacking
regions, respectively.

We plot the band structures in the valley η = + for different w0 in Fig. S2.
The fact that the band structure is labeled by k (in the moiré BZ) implies that k labels the eigenvalues of translation

operators of the moiré lattice. We hence define the translation operator TR as

TRc
†
k,Q,α,η,sT

−1
R = e−ik·Rc†k,Q,α,η,s , (S7)

where R = n1aM1 +n2aM2, with n1,2 ∈ Z, is a moiré lattice vector. One should not confuse TR with the time-reversal
symmetry (T ) defined in Section S1 B. We now verify Eq. (S7) at the commensurate twist angles, where aM1 and aM2

are integer linear combinations of the microscopic graphene lattice vectors a1,a2. TR can be defined as translation
acting on the atomic orbitals: R′ → R′ + R. Then there is

TRc
†
k,Q,α,η,sT

−1
R =

1√
Ntot

∑
R′∈l

ei(ηKl+k−Q)·(R′+tα)c†R′+R,α,s =
1√
Ntot

∑
R′∈l

e−i(ηKl+k−Q)·Rei(ηKl+k−Q)·(R′+tα)c†R′,α,s ,

(S8)

where l = η (−η) for Q ∈ Q+ (Q−). For commensurate angle, ηKl − Q is a moiré reciprocal lattice and hence
e−i(ηKl+k−Q)·R = e−ik·R. Then Eq. (S7) is justified at commensurate angles. We emphasize that Eq. (S7) is also
well-defined even at non-commensurate angles.

For later convenience, here we define our convention for Fourier transformation. Let N , Ω0, Ωtot = NΩ0 be the
number of moiré unit cells, area of each moiré unit cell, and the total area of the sample. Then, for k,k′ in the moiré
BZ and Q,Q′ ∈ Qlη with lη = + or −, integral over r leads to the momentum conservation

for Q,Q′ ∈ Qlη
ˆ
d2re(k−k′−Q+Q′)·r = Ωtotδkk′δQ,Q′ . (S9)

The completeness relation of the plane waves is

1

Ωtot

∑
k

∑
Q∈Qlη

ei(k−Q)·r = δ(r), for lη = ±. (S10)

We introduce a continuous real space basis for the BM model

c†l,α,η,s(r) =
1√
Ωtot

∑
k∈MBZ

∑
Q∈Qlη

e−i(k−Q)·rc†k,Q,α,η,s , (S11)
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FIG. S2. The band structure in the valley η = + of MATBG. In (a)-(f) the band structures with the inter-layer couplings
w0/w1=1, 0.9, 0.8, 0.7, 0.6, 0.5 are plotted. The red crossings are energy eigenvalues of the BM model, and the black lines

are bands of the effective model. The other parameters of the BM model are given by vF = 5.944eV · Å, |K| = 1.703Å−1,
w1 = 110meV, θ = 1.05◦. The parameters of the effective model for different w0/w1 are given in Table S4. We have set
v′′? = B = C = 0 for simplicity.

where Ωtot = NΩ0 is the total area of the sample in consideration, N is the number of Moiré unit cells, Ω0 is the area
of the Moiré unit cell, l = ± is the layer index. We can understand the continuous variable r as the coarse-grained
graphene lattice vector. The graphene sublattice (α) and valley (η) are now regarded as inner degrees of freedom. At

each r c†l,α,η,s(r) has sixteen components from two layers, two Graphene sublattice, two valleys, and two spins. Unlike

the usual real space basis, which just changes its position under a translation operation, c†l,α,η,s(r) also gains a phase

factor under translation. According to Eq. (S7), there is

TRc
†
l,α,η,s(r)T−1

R =
1√
Ωtot

∑
k∈MBZ

∑
Q∈Qlη

e−i(k−Q)·rTRc
†
k,Q,α,η,sT

−1
R =

1√
Ωtot

∑
k∈MBZ

∑
Q∈Qlη

e−i(k−Q)·re−ik·Rc†k,Q,α,η,s .

(S12)

For convenience, we define the momenta

∆Kl =

{
q2, l = +

−q3, l = −
. (S13)

Notice that η∆Kl −Q (Q ∈ Qηl) is a moiré reciprocal lattice and hence e−i(η∆Kl−Q)·R = 1. We hence have

TRc
†
l,α,η,s(r)T−1

R =
1√
Ωtot

∑
k∈MBZ

∑
Q∈Qlη

e−iη∆Kl·Re−i(k−Q)·(r+R)c†k,Q,α,η,s = e−iη∆Kl·Rc†l,α,η,s(r + R) . (S14)

One may remove the factor eiη∆Kl·R by redefining the basis as c†l,α,η,s(r)→ eiη∆Kl·rc†l,α,η,s(r). However, this redefining

will complicate the representation of crystalline symmetries (Section S1 B). In this work we will stick to the definition
Eq. (S11) of the real space basis.
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B. Discrete symmetries of the BM model

The single-particle Hamiltonian in each valley has the symmetry of the magnetic space group P6′2′2 (# 177.151
in the BNS setting), which is generated by C2zT , C3z, C2x and translation symmetries. Since the two valleys are
related by time-reversal symmetry T , the total system also has the C2z symmetry (product of C2zT and T ). The full
crystalline symmetries of the two valleys form the space group P622 (#177), which is generated by C6z, C2x, and
translation symmetries. We write the symmetry action on the fermion operators as

ĝc†k,Q,α,η,sĝ
−1 =

∑
Q′α′η′

c†gk,Q′,α′,η′,sDQ′α′η′,Qαη(g) . (S15)

The D matrices of the time-reversal symmetry and the single-valley symmetries are given by

DQ′α′η′,Qαη(T ) = δQ′,−Q[σ0]α′α[τx]η′η, DQ′α′η′,Qαη(C3z) = δQ′,C3zQ[ei
2π
3 σzτz ]α′η′,αη (S16)

DQ′α′η′,Qαη(C2x) = δQ′,C2xQ[σx]α′α[τ0]η′η, DQ′α′η′,Qαη(C2zT ) = δQ′,Q[σx]α′α[τ0]η′η, (S17)

where σx,y,z (σ0), τx,y,z (τ0) are Pauli (identity) matrices in the sublattice and valley spaces, and ζQ = ±1 for Q ∈ Q±.
Besides the crystalline symmetries, the BM model also has a unitary particle-hole symmetry P that anti-commutes

with the single-particle Hamiltonian. P transforms k to −k and the corresponding D matrix reads

DQ′α′η′,Qαη(P ) = ζQδQ′,−Q[σ0]α′α[τz]η′η . (S18)

(Unlike the P symmetry defined in Refs. [4–6], where P is valley-independent, here P is chosen have opposite signs
in the two valleys. The two definitions are equivalent because the Hamiltonian respects the valley-U(1) and one can
redefine the particle-hole symmetry as P → τzP .) In the first-quantized formalism the algebra between P and other
symmetries are given by

P 2 = −1, [P, T ] = 0, [P,C3z] = 0, {P,C2x} = 0, [P,C2zT ] = 0 . (S19)

The particle-hole symmetry will be broken if the θ-dependence of the single-layer Hamiltonian or quadratic terms in
k of the single-layer Hamiltonian are taken into account.

If, furthermore, w0 = 0, the model acquires an effective chiral symmetry C that anti-commute with the single-
particle Hamiltonian [36]. C is referred to as the first chiral symmetry in Refs. [4, 104]. C leaves k invariant and its
D matrix reads

DQ′α′η′,Qαη(C) = δQ′,Q[σz]α′α[τ0]η′η . (S20)

In the first-quantized formalism the algebra between C and other symmetries are given by

C2 = 1, [C, T ] = 0, [C,C3z] = 0, {C,C2x} = 0, {C,C2zT} = 0, [C,P ] = 0 . (S21)

In the end we derive the symmetry actions on the continuous real space basis. For unitary or anti-unitary operators,
there are

ĝc†l,α,η,s(r)ĝ−1 =
∑
l′α′η′

c†l′,α′,η′,s(gr)Dl′α′η′,lαη(g) . (S22)

Notice that Pr = −r. (P is an inversion-like operation that interchanges the two layers but leave the sublattice
invariant.) Using the D matrices in momentum space and the definition of cl,α,η,s(r) (Eq. (S11)), we can derive the
D matrices for the real space continuous basis

Dl′α′η′,lαη(T ) = [%0]l′l[σ0]α′α[τx]η′η, Dl′α′η′,lαη(C3z) = [%0]l′l[e
i 2π3 σzτz ]α′η′,αη , (S23)

Dl′α′η′,lαη(C2x) = [%x]l′l[σx]α′α[τ0]η′η, Dl′α′η′,lαη(C2zT ) = [%0]l′l[σx]α′α[τ0]η′η , (S24)

Dl′α′η′,lαη(P ) = [−i%y]l′,l[σ0]α′α[τ0]η′η, Dl′α′η′,lαη(C) = [%0]l′,l[σz]α′α[τ0]η′η . (S25)

Here σx,y,z (σ0), τx,y,z (τ0), %x,y,z (%0) are Pauli (identity) matrices in the space of sublattice, valley, and layer,
respectively. We emphasize that, unlike the momentum space basis where D(P ) is proportional to τz, the real space
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Γ1 Γ2 Γ3 M1 M2 K1 K2K3

E 1 1 2 E 1 1 E 1 2
2C3 1 1 -1 C′2 1 -1 C3 1 -1
3C′2 1 -1 0 C−1

3 1 -1

TABLE S1. Character table of irreps at high symmetry momenta in magnetic space group P6′2′2 (#177.151 in BNS settings).
For the little group of Γ, E, 2C3, and 3C′2 represent the conjugation classes generated from identity, C3z, and C2x, respectively.
Symbols for conjugate class at M and K are defined in similar ways.

basis has D proportional to τ0. Here we take the particle-hole symmetry as an example to show how the D matrices
are derived. By definition, there is

Pc†l,α,η,s(r)P−1 =
1√
Ωtot

∑
k∈MBZ

∑
Q∈Qlη

e−i(k−Q)·rPc†k,Q,α,η,sP
−1

=
1√
Ωtot

∑
k∈MBZ

∑
Q∈Qlη

e−i(k−Q)·rc†−k,−Q,α,η,s ηζQ (S26)

We can replace −Q by Q′ with Q′ ∈ Q−lη. Relabeling Q′ and k as Q and −k, respectively, we obtain

Pc†l,α,η,s(r)P−1 =
1√
Ωtot

∑
k∈MBZ

∑
Q∈Q−lη

e−i(k−Q)·(−r)c†k,Q,α,η,sηζ−Q (S27)

Notice that, according to Eqs. (S2) and (S3), for Q ∈ Q−lη, the state c†k,Q,α,η,s is in the layer −l, and the factor ηζ−Q
equals to l. We hence obtain

Pc†l,α,η,s(r)P−1 = lc†−l,α,η,s(−r) , (S28)

consistent with Eq. (S25).
For later convenience, we also derive the D matrices of C2zP for the momentum space basis and real space basis as

DQ′α′η′,Qαη(C2zP ) = −iζQδQ′,Q[σx]α′α[τy]η′η, Dl′α′η′,lαη(C2zP ) = [−i%y]l′,l[σx]α′α[τx]η′η , (S29)

respectively.

S2. The single-particle Hamiltonian of the topological heavy fermion model

A. Maximal localized Wannier functions for the local orbitals

We first summarize the representation analysis of the Wannier obstruction given in Ref. [41]. As proved in Ref. [41],
due to the particle-hole symmetry, the middle two bands in each valley must form the irreducible co-representations
(dubbed as irreps)

Γ1 ⊕ Γ2; M1 ⊕M2; K2K3 (S30)

of the magnetic space group P6′2′2 as long as they are gapped from higher and lower energy bands. One can find
the definitions of the irreps in Table S1 or using the Corepresentations toolkit on the Bilbao Crystallographic Server
[140, 141]. In Table S2 we tabulate all the elementary band representations (EBRs), i.e., the minimal local orbitals,
and their corresponding irreps in momentum space. One can also find the definition of EBRs using the MBANDREP
toolkit on the Bilbao Crystallographic Server [140, 141]. There are only six allowed two-band band representations,
i.e., 2[A1]a ↑ G, 2[A2]a ↑ G, [A1 ⊕ A2]a ↑ G, [E]a ↑ G, [A1]c ↑ G, and [A2]c ↑ G, while none of them has the irreps in
Eq. (S30). (The notation [ρ]w ↑ G represents the EBR of the magnetic space group G induced from the representation
ρ at the Wyckoff possible w.) Thus the middle two bands are not consistent with any local orbitals and must be
topological.

We now resolve the Wannier obstruction by adding higher energy bands in MATBG. Both the first “passive” bands
above the middle two bands and the first “passive” bands below the middle two bands form the degenerate irrep Γ3 at

https://www.cryst.ehu.es/cgi-bin/cryst/programs/corepresentations.pl
https://www.cryst.ehu.es/cgi-bin/cryst/programs/mbandrep.pl
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Wyckoff pos. 1a (000) 2c
(

1
3

2
3
0
)
,
(

2
3

1
3
0
)

3f ( 1
2
00), (0 1

2
0), ( 1

2
1
2
0)

Site sym. 6′22′, 32 32, 32 2′2′2, 2
EBR [A1]a ↑ G [A2]a ↑ G [E]a ↑ G [A1]c ↑ G [A2]c ↑ G [E]c ↑ G [A]f ↑ G [B]f ↑ G

Orbitals s pz px, py s pz px, py s pz
Γ (000) Γ1 Γ2 Γ3 2Γ1 2Γ2 2Γ3 Γ1 ⊕ Γ3 Γ2 ⊕ Γ3

K
(

1
3

1
3
0
)

K1 K1 K2K3 K2K3 K2K3 2K1 ⊕K2K3 K1 ⊕K2K3 K1 ⊕K2K3

M
(

1
2
00
)

M1 M2 M1 ⊕M2 2M1 2M2 2M1 ⊕ 2M2 2M1 ⊕M2 M1 ⊕ 2M2

TABLE S2. EBRs of the magnetic space group P6′2′2 (#177.151 in the BNS setting). In the first row are the symbols and
coordinates of Wyckoff positions. In the second row are the corresponding site symmetry groups (magnetic point groups) and
their unitary subgroups (point groups). In the third row are the names of EBRs. The notation [ρ]w ↑ G represents the EBR
of the magnetic space group G induced from the irrep ρ at the Wyckoff possible w. The orbitals that form the representation
[ρ]w are given in the fourth row. The fifth row to seventh row give the irreps at high symmetry momenta of each EBR.

the ΓM point. If we hybridize the middle two bands with these higher energy bands, we can extract two topologically
trivial bands that form the band representation (in terms of irreps)

[E]a ↑ G : Γ3; M1 ⊕M2; K2K3 (S31)

where [E]a is formed by a px-like orbital and a py-like orbital at the 1a position (triangular lattice). In the remaining
of this subsection we will discuss an explicit construction of the Wannier functions forming the representation [E]a. It
has large overlaps (Fig. S3) with the lowest two bands for k away from ΓM — in most area of the moiré BZ excluding
a small neighborhood of ΓM , the lowest two bands of MATBG are almost completely spanned by the constructed
Wannier functions. While at (or around) ΓM , the Wannier functions have zero (or small) overlap with the lowest two
bands of MATBG. Another set of basis, which form the representation Γ1⊕Γ2⊕Γ3 at ΓM , will be introduced around
ΓM . In Sections S2 B to S2 E we will write the single-particle Hamiltonian on the basis of the constructed Wannier
functions and the remaining low-energy bands, which together form the representation Γ1⊕Γ2⊕2Γ3 at the ΓM point.

For simplicity in this subsection we will use the first-quantized formalism. We define the basis

|k,Q, α, η, s〉 = c†k,Q,α,η,s|0〉 , (S32)

|r, l, α, η, s〉 = c†lαηs(r)|0〉 =
1√
Ωtot

∑
k∈MBZ

∑
Q∈Qlη

e−i(k−Q)·r|k,Q, α, η, s〉 . (S33)

We write the trial Wannier functions as

|W ′R,α=1,η,s〉 =
1

λ0

√
2π

∑
l

ˆ
d2r ei

π
4 lη−iη∆Kl·R−(r−R)2/(2λ2

0)|r, l, 1, η, s〉 (S34)

|W ′R,α=2,η,s〉 =
1

λ0

√
2π

∑
l

ˆ
d2r e−i

π
4 lη−iη∆Kl·R−(r−R)2/(2λ2

0)|r, l, 2, η, s〉 , (S35)

where λ0 represents the size of the Gaussian function and R takes value in the triangular lattice sites, such that they
form the representations

Df (T ) = σ0τx, Df (C3z) = ei
2π
3 σzτz , Df (C2x) = σxτ0, Df (C2zT ) = σxτ0,

Df (P ) = iσzτz, Df (C2zP ) = −iσyτy , (S36)

same as px±ipy at the 1a Wyckoff position (per spin per valley). Here σ0,x,y,z, τ0,x,y,z are the identity or Pauli matrices
in for the orbital (α = 1, 2) and valley (η = ±) degrees of freedom, respectively. Since the Wannier functions transform
diagonally (i.e., Df (P ) in Eq. (S36)) under the P symmetry and P flips the layer (Eq. (S25)), each Wannier function
should be a linear combination of states from the two layers. The phase factors e±i

π
4 lη in the Wannier functions

are introduced to fix the gauge of the representation matrices Df ’s. The phase factor e−iη∆Kl·R is required by the
translation symmetry (Eq. (S14)). One can verify that such defined trial Wannier functions satisfy

T∆R|W ′R,α,η,s〉 = |W ′R+∆R,α,η,s〉 , (S37)
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FIG. S3. Wannier functions for w0/w1 = 0.8. In (a) the sizes of the red dots represent the overlaps between the trial Wannier
functions and the Bloch states, i.e.,

∑
α |An,α(k)|2, for the bands εk,n with n = ±1,±2,±3. (b) and (c) are absolute values

of the two components w+β,1(r) (β = 1, 2) of the constructed maximally localized Wannier functions. The hexagons represent

the moiré unit cell. (d) The density of Wannier functions i.e.,
∑
lβ |w

(η)
lβ,α(r)|2, which does not depend on η, α. (e), (f), (g)

are |w+1,1(r)|, |w+2,1(r)|, and the density of the approximate Wannier functions of the Gaussian form (Eqs. (S53) and (S54)),

respectively. The used parameters for the BM model are vF = 5.944eV · Å, |∆K| = 1.703Å−1, w1 = 110meV, θ = 1.05◦.

under a translation of the moiré lattice ∆R. We emphasize that, for given Df (C3z), the sign of Df (P ) is not a
gauge choice. Since [C3z, P ] = 0, P and C3z can be diagonalized at the same time and the P -eigenvalues in each
C3z eigen-space are determined. For the trial Wannier functions, the P eigenvalue of the C3z eigenstates with the
eigenvalue ei

2π
3 (e−i

2π
3 ) is i (−i).

We can express the trial Wannier functions on the plane-wave basis as

|W ′R,α=1,η,s〉 =
1

λ0

√
2πΩtot

∑
l=±

∑
k∈MBZ

∑
Q∈Qlη

ˆ
d2r ei

π
4 lη−iη∆Kl·R−(r−R)2/(2λ2

0)−i(k−Q)·r|k,Q, 1, η, s〉

=

√
2πλ2

0

Ωtot

∑
l=±

∑
k∈MBZ

∑
Q∈Qlη

ei
π
4 lη−ik·R−

1
2λ

2
0(k−Q)2 |k,Q, 1, η, s〉 (S38)

|W ′R,α=2,η,s〉 =

√
2πλ2

0

Ωtot

∑
l=±

∑
k∈MBZ

∑
Q∈Qlη

e−i
π
4 lη−ik·R−

1
2λ

2
0(k−Q)2 |k,Q, 2, η, s〉 . (S39)

We denote the energy eigenstates of the continuous BM model as |ψk,n,η,s〉. The overlap matrix between the energy
eigenstates and the trial Wannier functions are

A
(η)
n,1(k) = 〈ψk,n,η,s|W ′0,1,η,s〉 =

√
2πλ2

0

Ωtot

∑
l=±

∑
Q∈Qlη

ei
π
4 lη−

1
2λ

2
0(k−Q)2〈ψk,n,η,s|k,Q, 1, η, s〉 , (S40)

A
(η)
n,2(k) = 〈ψk,n,η,s|W ′0,2,η,s〉 =

√
2πλ2

0

Ωtot

∑
l=±

∑
Q∈Qlη

e−i
π
4 lη−

1
2λ

2
0(k−Q)2〈ψk,n,η,s|k,Q, 2, η, s〉 . (S41)

We plot the
∑
α |An,α(k)|2 for each band εk,n (n = ±1,±2,±3) in Fig. S3(a). One can see that, as expected, at the

ΓM point, the overlap between the trial Wannier functions and the Γ1, Γ2 states in the middle two bands are zero.

We feed the overlap matrix A
(η)
n,α(k) (n = ±1,±2,±3, α = 1, 2, η = ±) into the machinery of Wannier90 [121–123]

to construct the maximally localized Wannier functions. We have set λ0 = 0.1aM in practical calculations, with aM
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being the moiré lattice constant. We use a 18×18 momentum mesh and the energy window [−80meV, 80meV] for the
disentanglement and Wannierization procedures. Wannier90 returns |WR,α,η,s〉 on the plane-wave basis |k,Q, β, η, s〉
as

|WR,α,η,s〉 =
1√
N

∑
l=±

∑
k∈MBZ

∑
β

∑
Q∈Qlη

|k,Q, β, η, s〉e−ik·Rṽ(η)
Qβ,α(k) (S42)

Here N is the number of Moiré unit cells. ṽ
(η)
Qβ,α(k) returned by Wannier90 is originally stored on the basis of the

Bloch wave functions of the energy bands. Only the lowest six energy bands are involved in the Wannier functions
because we have chosen the energy window [−80meV, 80meV] for the Wannierization, which only covers the lowest six

bands (Fig. S3(a)). We then transform ṽ
(η)
Qβ,α(k) onto the basis |k,Q, β, η, s〉. Since |r, l, β, η, s〉 gains a phase factor

e−iη∆Kl·R under the translation R (Eq. (S14)), we can write 〈r, l, β, η, s|WRαηs〉 as

〈r, l, β, η, s|WRαηs〉 = 〈r, l, β, η, s|TR|W0αηs〉 = e−iη∆Kl·R〈r−R, l, β, η, s|W0αηs〉 = e−iη∆Kl·Rw
(η)
lβ,α(r−R) (S43)

such that w
(η)
lβ,α(r−R) = 〈r−R, l, β, η, s|W0αηs〉 is a function of r−R. The real space shape of the Wannier states

can be calculated as

w
(η)
lβ,α(r−R) = eiη∆Kl·R〈r, l, β, η, s|WRαηs〉 =

1√
NΩtot

∑
k∈MBZ

∑
Q∈Qlη

ei(k−Q)·(r−R)ṽ
(η)
Qβ,α(k) . (S44)

Making use of Eqs. (S9) and (S10), we obtain the inverse transformation

ṽ
(η)
Qβ,α(k) =

1√
Ω0

ˆ
d2r w

(η)
lQ,ηβ,α

(r−R)e−i(k−Q)·(r−R) , (S45)

where lQ,η = ζQη is the layer the basis |k,Q, β, η, s〉 belonging to and Ω0 = Ωtot/N is the area of the moiré unit cell.
We now determine the independent components of the Wannier function. Due to the spin-SU(2) symmetry, the

real space wave functions w
(η)
lβ,α(r) do not depend on spin. Due to the time-reversal symmetry, the w

(η)
lβ,α(r) in the two

valleys are just complex conjugation of each other, i.e.,

w
(η)
lβ,α(r) = w

(−η)∗
lβ,α (r) . (S46)

Due to the P symmetry (r → −r), which has D(P ) = −i%yσ0τ0 for the continuous real space basis (Eq. (S25))
and Df (P ) = iσzτz for the Wannier functions (Eq. (S36)), the Wannier functions must satisfy the constraint∑
l′α′η′ Dlαη,l′α′η(P )w

(η)
l′α′η′,α(r) =

∑
α′ w

(η)
lαη,α′(−r)Df

ηα′,ηα(P ), i.e.,

w
(η)
−lβ,α(−r) = ilη(−1)αw

(η)
lβ,α(r) (S47)

Due to the C2zT symmetry, which has D(C2zT ) = %0σxτ0 for the continuous basis (Eq. (S24)) and Df (C2zT ) = σxτ0
for the Wannier functions (Eq. (S36)), the Wannier functions must satisfy the constraint

w
(η)
lβ,α(r) = w

(η)∗
lβ,α

(−r) (S48)

where α = 2, 1 for α = 1, 2. The above two conditions together imply a constraint (given by PC2zT ) that holds at
each point r

w
(η)
lβ,α(r) = −ilη(−1)αw

(η)∗
−lβ,α(r) . (S49)

Due to the above three independent constraints, only two of the sixteen components in the real space functions w
(η)
lβ,α(r)

are independent. (Notice that each constraint reduce to half the number independent components.) Without loss of

generality, we will focus on the two independent components w
(+)
+β,1(r) (β = 1, 2). We plot the absolute values of the

two components w
(+)
+β,1(r) (β = 1, 2) in Fig. S3(b), (c), respectively. Due to Eqs. (S46) and (S49), the densities of the

Wannier functions, i.e.,
∑
lβ |w

(η)
lβ,α(r)|2, do not depend on η and α. We plot the density of the Wannier functions in
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w0/w1 α1 α2 λ1 (aM ) λ2 (aM ) λ (aM )
1.0 0.7632 0.6461 0.1552 0.1731 0.2965
0.9 0.7882 0.6155 0.1671 0.1850 0.3029
0.8 0.8193 0.5734 0.1791 0.1910 0.3375
0.7 0.8531 0.5217 0.1970 0.1970 0.3792
0.6 0.8878 0.4603 0.2089 0.2029 0.4380
0.5 0.9208 0.3901 0.2268 0.2089 0.5330

TABLE S3. Parameters of Wannier functions for different w0/w1. α1,2 and λ1,2 are parameters for the analytical form
(Eqs. (S53) and (S54)) of the Wannier functions and they are fitted from the numerical Wannier functions. λ is the square

root of the spread of the numerical Wannier functions. The used parameters for the BM model are vF = 5.944eV · Å,
|∆K| = 1.703Å−1, w1 = 110meV, θ = 1.05◦.

Fig. S3(d). From the density plot we can see that the Wannier functions are very well localized. To characterize the
localization, we also calculate the square root of the spread of the Wannier functions, i.e.,

λ =

√∑
lβ

ˆ
d2r|w(η)

lβ,α(r)|2r2 . (S50)

λ does not depend on α and η according to Eqs. (S46) and (S49). As tabulated in Table S3, λ ranges from 0.2965aM to
0.5330aM for w0/w1 changing from 1.0 to 0.5, where aM is the lattice constant of moiré unit cell. The magnitude of the
hopping between the constructed Wannier functions at nearest neighbor sites, i.e., t0 = |〈WR,α,η,s|HBM|WR′,−α,η,s〉|
for RR′ being nearest neighbor pairs, is also extremely small. (〈WR,α,η,s|HBM|WR′,α,η,s〉 = 0 due to the crystalline
and P symmetries.) As shown in Table S4, the t0 ranges from 0.01512meV to 0.3027meV for w0/w1 changing from
1.0 to 0.5. In the rest of this work we will omit the nearest neighbor hoppings.

We find the Wannier functions shown in Fig. S3(b), (c) can be approximated by Gaussian functions of the form

w
(+)
+1,1(r) =

α1√
2

1√
πλ2

1

ei
π
4−r

2/(2λ2
1), w

(+)
+2,1(r) = − α2√

2

x+ iy

λ2
2

√
π
ei
π
4−r

2/(2λ2
2) . (S51)

Even though the Wannier states transform as px± ipy orbitals, which form the representation [E]a at the 1a position

(Tables S1 and S2), we see that the component w
(+)
+1,1(r) is s-orbital-like and the component w

(+)
+2,1(r) is (px + ipy)-

orbital-like. The reason is that the inner degrees of freedom, i.e., layer, sublattice, and valley, transform non-trivially
under the crystalline symmetries. For example, the layer, sublattice, and valley degrees of freedom transform under

C3z as D(C3z) = %0e
i 2π3 σzτz (Eq. (S23)), in order for the Wannier functions w

(+)
+β,1(r) to have the C3z eigenvalue

ei
2π
3 (Eq. (S36)), there must be ei

2π
3 [σz ]ββw

(+)
+β,1(C−1

3z r) = ei
2π
3 w

(+)
+β,1(r). The two components satisfy w

(+)
+1,1(C3zr) =

w
(+)
+1,1(r) and w

(+)
+2,1(C3zr) = ei

2π
3 w

(+)
+2,1(r), respectively. Thus they can be realized by the polynomials 1 (constant)

and x+ iy, respectively. The phase factor ei
π
4 is required by the symmetry C2xPC2zT = C2yPT , whose action action

on the continuous basis and representation on the Wannier states are D(C2yPT ) = %zσ0τ0 (Eqs. (S24) and (S25))

and Df (C2yPT ) = −iσzτz (Eq. (S36)), respectively. Given w
(+)
+1,1(r) ∝ e−r

2/(2λ2
1), w

(+)
+1,1(r) ∝ (x + iy)e−r

2/(2λ2
1), the

phases of the two components are constrained by the C2yPT symmetry as

w
(+)∗
+β,1(x,−y) = −iw(+)

+β,1(x, y) ⇒ w
(+)
+β,1(r) = ±eiπ4 |w(+)

+β,1(r)| . (S52)

However, the symmetry representation cannot fix the relative sign of the two components: Suppose w
(+)
+β,1(r) forms

the correct representation of C2yPT , then (−1)β−1w
(+)
+β,1(r) also forms the correct representation. Thus there are two

symmetry-allowed choices for the analytical expressions of w
(+)
+β,1(r). We have computed the overlaps between the two

choices and the numerical Wannier functions and pick the choice (Eq. (S51)) that gives the larger overlap. λ1 can be

fitted using the condition |w(+)
+1,1(λ1, 0)| = e−

1
2 |w(+)

+1,1(0)|, and λ2 can be fitted by the maximum of |w(+)
+2,1(xmax, 0)|,

where xmax =
√

2λ2. α1 and α2 are real coefficients satisfying α2
1 +α2

2 = 1. For w0/w1 = 0.8, we find λ1 = 0.1791aM ,
λ2 = 0.1850aM , α1 = 0.7882, α2 = 0.6155. These parameters for other w0/w1 values are tabulated in Table S3. Using
the constraints Eqs. (S46) to (S48), we obtain the other components as

w
(η)
l1,1(r) =

α1√
2

1√
πλ2

1

ei
π
4 lη−r

2/(2λ2
1), w

(η)
l2,1(r) = −l α2√

2

x+ iηy

λ2
2

√
π
ei
π
4 lη−r

2/(2λ2
2), (S53)
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w
(η)
l1,2(r) = l

α2√
2

x− iηy
λ2

2

√
π
e−i

π
4 lη−r

2/(2λ2
2), w

(η)
l2,2(r) =

α1√
2

1√
πλ2

1

e−i
π
4 lη−r

2/(2λ2
1) . (S54)

One can verify that the Wannier functions form the representations in Eq. (S36).
We introduce the creation operators for the Wannier states as

f†Rαηs =
∑
lβ

ˆ
d2r 〈r, l, β, s, η, s|WR,α,η,s〉c†l,β,η,s(r) =

∑
lβ

e−iη∆Kl·R
ˆ
d2r w

(η)
lβ,α(r−R)c†l,β,η,s(r) . (S55)

Under the translation T∆R the operator f†Rαηs transforms as

T∆Rf
†
RαηsT

−1
∆R = f†R+∆Rαηs , (S56)

which follows Eq. (S37) directly. Correspondingly, the momentum space operators can be defined as

f†kαηs =
1√
N

∑
R

eik·Rf†Rαηs =
∑
Qβ

c†k,Q,β,η,sṽ
(η)
Qβ,α(k) , (S57)

with ṽ
(η)
Qβ,α(k) from Eq. (S45). Since f†Rαηs creates the Wannier states, they follows the same representation (Eq. (S36))

under symmetry operations

ĝf†kαηsĝ
−1 =

∑
α′η′

f†gkα′η′sD
f
α′η′,αη(g), ĝf†Rαηsĝ

−1 =
∑
α′η′

f†gRα′η′sD
f
α′η′,αη(g), (S58)

with Df (g) given by Eq. (S36).

Hereafter, we refer to f†R,α,η,s as local orbitals. They transform as px ± ipy orbitals, which form the 2D irreducible

representation [E]a at the 1a position (Tables S1 and S2), under the crystalline symmetries.

B. The topological conduction bands

As discussed in the last subsection, in the BM model the six low energy states per valley per spin form the
representation Γ1⊕Γ2⊕ 2Γ3 around the ΓM point (Fig. S2), where Γ1⊕Γ2 are contributed by the middle two bands
and 2Γ3 are contributed by the higher energy bands. The Wannier functions (in each valley-spin sector) constructed
in the last subsection can span the middle two bands for momenta away from ΓM , where the overlap with the flat
bands is finite (Fig. S3(a)). At the ΓM point, the Wannier functions span a Γ3 representation. Thus, in order to
reproduce the correct band structure around the ΓM point, we add four additional degree of freedom that form the

representation Γ1⊕Γ2⊕Γ3 at ΓM . We denote the four states as c†k,a,η,s (a = 1, 2, 3, 4). Formally they can be written
as

c†k,a,η,s =
∑
Qβ

ũ
(η)
Qβ,a(k)c†k,Q,β,η,s , (S59)

where ũ
(η)
Qβ,a(k) is to be determined. As shown in next subsection, c†k,a,η,s has a huge kinetic energy for large k.

Therefore, in this work we will only consider c†k,a,η,s within the cutoff |k| < Λc. Now we determine the coefficients

ũ
(η)
Qβ,a(k). We define the projector to the six lowest bands in the two valleys as

P
(η)
Qα,Q′β(k) =

∑
n=±1,±2,±3

u
(η)
Qα,n(k)u

(η)∗
Q′β,n(k), (S60)

where u
(η)
Qα,n(k) is the eigenstate of the BM Hamiltonian (Eq. (S5)) for the |n|-th band above (n > 0) or below (n < 0)

the charge neutrality point. We then define the projector to the two Wannier functions of the local orbitals as

Q
(η)
Qα,Q′β(k) =

∑
α=1,2

ṽ
(η)
Qα,α(k)ṽ

(η)∗
Q′β,α(k) . (S61)

Since the two Wannier functions are constructed from the lowest six bands, there must be P (η)(k)Q(η)(k)P (η)(k) =
Q(η)(k). This is guaranteed by the definition of our Wannier functions: The Bloch states of the Wannier functions
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ṽ
(η)
Qα,α(k) are linear combinations of u

(η)
Qα,n(k) (n = ±1,±2,±3), as explained after Eq. (S42). The projector to the

four low-energy states in the remaining bands is given by P (η)(k)−Q(η)(k). The states ũ
(η)
Qβ,a(k) can be obtained as

eigenstates of P (η)(k)−Q(η)(k) with the eigenvalue 1.

We emphasize that even though we have formally introduced ũ
(η)
Qβ,a(k), in practical calculations, e.g., Section S2 C,

we will always approximate ũ
(η)
Qβ,a(k) by ũ

(η)
Qβ,a(0) for low energy states, as the c-electrons are only relevant for a small

k region around ΓM .

There is a gauge degree of freedom of ũ
(η)
Qβ,a(k). We fix the gauge by requiring the representation matrices under

the symmetry transformations

ĝc†k,aηsĝ
−1 =

∑
a′η′

c†gk,a′η′sD
c
a′η′,aη(g) (S62)

to be

Dc(T ) = σ0τx ⊕ σ0τx, Dc(C3z) = ei
2π
3 σzτz ⊕ σ0τ0, Dc(C2x) = σxτ0 ⊕ σxτ0, Dc(C2zT ) = σxτ0 ⊕ σxτ0 .

(S63)

such that the a = 1, 2 and a = 3, 4 states form the Γ3 and Γ1⊕Γ2 representations at k = 0, respectively. For example,
the C3z representation matrices of the Γ3 and Γ1 ⊕ Γ2 states are given by ei

2π
3 σzτz and σ0τ0, respectively. Since the

four states form three different representations at ΓM , the states ũ
(η)
Qβ,a(k) can be uniquely determined at k = 0.

However, for k 6= 0, there is no easy method to uniquely fix the gauge of the four states. Nevertheless, in practical

calculations, we only need ũ
(η)
Qβ,a(0) for the k·p expansion. Using the gauge fixed by Eq. (S63) and the algebra between

P and the other symmetries (Eq. (S19))

P 2 = −1, [P, T ] = [P,C3z] = [P,C2zT ] = 0, {P,C2x} = 0 , (S64)

we can further determine the representation of P . To satisfy P 2 = −1 and [P,C2zT ] = 0, the representation of P in
either the Γ3 or Γ1⊕Γ2 space must have the form ±iσzτ0,z. Representations involving τx,y are not considered because
P preserves the valley index. The considered representations, ±iσzτ0,z, already satisfy {P,C2x} = 0. To commute
with T , the only allowed form is ±iσzτz. Numerically, we find the representation of P (and C2zP for later use) as

Dc(P ) = (−iσzτz)⊕ (−iσzτz), Dc(C2zP ) = (iσyτy)⊕ (iσyτy) . (S65)

As explained after Eq. (S36), for fixed Dc(C3z), the sign of Dc(P ) is not a gauge choice. One may notice that the
first two-by-two block of Dc(P ), which spans the Γ3 irrep, has an opposite sign with Df (P ) of the local f -orbitals
(Eq. (S36)), which also span a Γ3 irrep. Now we explain that they have to have opposite signs. We denote the Γ3

irreps formed by the positive energy bands (n = 2, 3) and the negative energy bands (n = −2,−3) of the BM model
as Γ3+ and Γ3−, respectively. Γ3+ and Γ3− transform into each other under P . Thus, in the basis of Γ3+ and Γ3−, in
each eigen-subspace of C3z, the P operator is off-diagonal. To be explicit, we can write the representation matrices
of C3z and P (

ei
2π
3 σ0 0

0 e−i
2π
3 σ0

)
,

(
X 0
0 X ′

)
, (S66)

respectively. The basis is ordered as: the first component of Γ3+, the first component of Γ3−, the second component

of Γ3+, the second component of Γ3−, such that the first (second) two bases have the C3z eigenvalue ei
2π
3 (e−i

2π
3 ). X

and X ′ are off-diagonal such that P interchanges the two Γ3 representations. After we diagonalize the P operator,
the two P -eigenvalues in each eigen-subspace of C3z in each valley must sum to zero. Hence the sign of Dc(P ), which
spans a diagonalized Γ3, must be opposite to the sign of Df (P ), which spans the other Γ3.

Hereafter, we refer to c†k,a,η,s (a = 1, 2, 3, 4) as conduction bands.

C. Single-particle Hamiltonian of the topological conduction bands

In this subsection we use the first-quantized formalism for simplicity. We can divide the single-particle Hamiltonian
in the low energy space into four parts:

H(f,η)(k) = Q(η)(k)h(η)(k)Q(η)(k), H(c,η)(k) = (P (η)(k)−Q(η)(k))h(η)(k)(P (η)(k)−Q(η)(k)) , (S67)
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w0/w1 t0 γ M v? v′? v′′?
1.0 0.01512 4.086 4.727 -3.829 1.492 -0.01237
0.9 0.1099 -10.21 4.194 -4.089 1.579 -0.01680
0.8 0.1497 -24.75 3.697 -4.303 1.623 -0.03320
0.7 0.2276 -39.11 3.248 -4.483 1.624 -0.04012
0.6 0.2789 -52.91 2.854 -4.637 1.580 -0.04009
0.5 0.3027 -65.78 2.518 -4.774 1.483 -0.03509

Units meV eV · Å

TABLE S4. Parameters of the single-particle Hamiltonian of the topological heavy fermion model for different w0/w1. Since
v′′? is extremely small compared to other parameters, in all the single-particle and many-body calculations we have set v′′? = 0.
Parameters of the BM model used to obtain this table are vF = 5.944eV · Å, |K| = 1.703Å−1, w1 = 110meV, θ = 1.05◦.

H(fc,η)(k) = Q(η)(k)h(η)(k)(P (η)(k)−Q(η)(k)), H(cf,η)(k) = (P (η)(k)−Q(η)(k))h(η)(k)Q(η)(k) , (S68)

where h(η)(k) is the BM model (Eq. (S5)), P (η)(k) (Eq. (S60)) and Q(η)(k) (Eq. (S61)) are projectors to the lowest
six bands (per spin valley) and the Wannier functions, respectively. The first term is the single-particle Hamiltonian
of the local orbitals, which almost vanishes (∼ 0.15meV for w0/w1 = 0.8) as discussed in Section S2 A and shown in
Table S4. The second term is the Hamiltonian of the conduction bands. The third and fourth terms are the couplings
between the local orbitals and the conduction bands.

We consider the k·p expansion of the projected BM model H(c,η)(k) around k = 0 (a, a′ = 1 · · · 4)

H
(c,η)
aa′ (k) = 〈ũ(η,)

a (0)|h(η)(k)|ũ(η)
a′ (0)〉 . (S69)

We emphasize that the usual k·p expansion [142] is made on the basis ũ
(η)
Qβ,a(0) rather than ũ

(η)
Qβ,a(k). This basis

choice has two advantages: (i) It is exact if we keep an infinite number of bands (a = 1 · · ·∞), (ii) It has simple k-
dependence. We find that in our problem keeping four conduction bands is a good enough approximation. Hereafter,
we alway choose the Bloch states at k = 0 as the basis whenever a k·p expansion is needed. Since h(η)(k) has only
zeroth order and linear order terms in k, H(c,η)(k) also only has constant terms and linear terms in k. As proved in
the following paragraphs, to linear order terms of k the effective Hamiltonian under the gauge Eqs. (S63) and (S65)
has the form

H(c,+)(k) =

(
0 v?(kxσ0 + ikyσz)

v?(kxσ0 − ikyσz) Mσx

)
, (S70)

H(c,−)(k) = H(c,+)∗(−k) , (S71)

where the C3z eigenvalues of the four basis in the valley η = + are ei
2π
3 , e−i

2π
3 , 1, 1, respectively. The parameters for

different w0/w1 obtained from Eq. (S69) are tabulated in Table S4. Physical meaning of M is the splitting between
the Γ1 and Γ2 states.

We now derive the form of H(c,η) in the valley η = + to linear order of k. The effective Hamiltonian in the other
valley can be obtained through the time-reversal symmetry, i.e., H(c,−)(k) = H(c,+)∗(−k). For simplicity, in the
following we introduce an additional set of Pauli (identity) matrices ζ0,x,y,z to distinguish the Γ3 space (a = 1, 2) and
the Γ1 ⊕ Γ2 space (a = 3, 4). The a = 1, 2 and a = 3, 4 span the subspaces of ζz = 1 and ζz = −1, respectively. Due
to Eqs. (S63) and (S65), the symmetry operators in the valley η = + are given by

C3z = ei
2π
3 σz ⊕ σ0, C2x = ζ0σx, C2zT = ζ0σxK, P = −iζ0σz , (S72)

where ζ0σx ≡ σx ⊕ σx, ζ0σz ≡ σz ⊕ σz. We first look at the subspace Γ3. According to C2zT , only σ0,x,y terms are
allowed in the Hamiltonian. According to P , σ0 is odd in k while σx,y are even (constant). σ0 is invariant under
C3z, hence the coefficient before σ0 must be invariant under C3z. The lowest odd order polynomial satisfying this
condition is in third order of k. Thus the σ0 term vanishes to linear order of k. Since σx,y are not invariant under
C3z, their (constant) coefficients must vanish to linear order of k. (One may show that the lowest order coefficients
of σx,y terms are quadratic in k.)

We then look at the subspace Γ1 ⊕ Γ2. According to C2zT , only σ0,x,y terms are allowed. According to P , σ0

is odd in k while σx,y are even (constant) in k. σ0 is invariant under C3z, hence the coefficient before σ0 must be
invariant under C3z. The lowest odd order polynomial satisfying this condition is in third order of k. Thus the σ0

term vanishes to linear order of k. In the subspace Γ1⊕Γ2, both σx,y are invariant under C3z, hence they are allowed
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by C3z. However σy is forbidden by the C2x symmetry. Thus the Hamiltonian in the Γ1⊕Γ2 subspace must have the
form Mσx.

Thirdly we look at the coupling between Γ3 and Γ1⊕Γ2. We only need to consider the off-diagonal terms ζx,yσ0,x,y,z.
According to C2zT , only ζxσ0,x,y and ζyσz terms are allowed. According to P , the coefficients of ζxσx,y are even
(constant) in k while ζxσ0, ζyσz are odd in k. Since ζxσx,y are not invariant under C3z, their constant coefficients must

vanish. We then study the odd order terms ζxσ0, ζyσz. Under C3z they transform as C3zζxσ0C
−1
3z = ζxσ0 cos 2π

3 −
ζyσz sin 2π

3 , C3zζyσzσ0C
−1
3z = ζyσz cos 2π

3 + ζxσ0 sin 2π
3 . Thus the ζxσ0, ζyσz terms can be chosen as v?kxζxσ0 −

v?kyζyσz, which is also symmetric under C2x.

In summary, the effective Hamiltonian H(c,η) has the form in Eq. (S70).
In Ref. [104] the authors of the present work have shown that the single-particle Hamiltonian in each valley has a

symmetry anomaly of the C2zT and the particle-hole P symmetries. The anomaly is reflected as unavoidable 4n+ 2
(n ∈ N) Dirac cones at the Fermi-level. Since the local orbitals are topologically trivial, the anomaly must be reflected
in the band structure of the conduction bands, meaning that, if we turn off the coupling between local orbitals and
conduction bands, the conduction bands (given by Eq. (S70)) must carry the symmetry anomaly by itself and hence
be gapless. The spectrum of Eq. (S70) is given by

± M

2
±
√
M2

4
+ v2

?k
2 (S73)

which has a quadratic touching at k = 0. To relate the quadratic touching to the symmetry anomaly, we consider
adding a C3z-breaking but C2zT - and P -preserving term D into the Hamiltonian(

Dσx v?(kxσ0 + ikyσz)
v?(kxσ0 − ikyσz) Mσx

)
. (S74)

The quadratic touching is now split into two linear Dirac points at kx = ± 1
v?

√
DM , ky = 0 (kx = 0, ky = ± 1

v?

√
DM)

if DM > 0 (DM < 0). The two Dirac points have the same chirality because they are related by P [104]. Thus the
quadratic touching is topologically equivalent to two Dirac points with the same chirality. According to the theorem
proven in Ref. [104], the presence of 4n + 2 (here n = 0) Dirac points is an equivalent condition to the symmetry
anomaly.

D. Coupling between topological conduction bands and the local orbitals

We now consider the coupling between the conduction band states and the local orbitals

Ĥcf =
∑
ηs

∑
aα

∑
|k|<Λc

∑
R

〈kaηs|H|WRαηs〉c†kaηsfRαηs + h.c. =
∑
ηs

∑
aα

∑
|k|<Λc

∑
R

〈kaηs|H|W0αηs〉e−ik·Rc†kaηsfRαηs + h.c., (S75)

where |WRαηs〉 (α = 1, 2) and |kaηs〉 = c†k,a,η,s|0〉 (a = 1, 2, 3, 4) are the single particle states of the local orbitals

and the conduction bands, respectively, H is the BM Hamiltonian (Eq. (S5)), and Λc is the cutoff for the conduction
bands. Since the Wannier functions of the local orbitals are localized, the integral 〈kaηs|H|W0αηs〉 must decay
exponentially with k. However, the particular form of the decay is complicated due to two reasons. First, as discussed
in Section S2 A, the Wannier functions have two independent components (Eqs. (S53) and (S54)). Thus the overlap
between the conduction band states and the two components will decay differently. Second, each conduction band
state is not a simple plane-wave but a linear combination of plane-waves (Q-vectors) with different wave-vectors
(Eq. (S59)), hence the overlap for different plane-wave components will decay differently. However, the role played
by the decay is simply a truncation of the couplings between the local orbitals and high energy states. We claim that
the particular form of the truncation is not relevant in the low energy physics. Thus, for simplicity here we assume

that the overlap decays as e−|k|λ
2/2 with λ being the square root of the spread of the Wannier function (Eq. (S50)).

We hence parameterize the integral as

〈kaηs|H|W0αηs〉 =
1√
N
e−|k|

2λ2/2H(cf,η)
aα (k) . (S76)

Applying the Fourier transformation (Eq. (S57)) of the local orbitals, we can rewrite the coupling Hamiltonian as

Ĥcf =
∑
ηs

∑
aα

∑
|k|<Λc

e−|k|
2λ2/2H(cf,η)

aα (k)c†kaηsfkαηs + h.c. (S77)
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For small k, the factor e−|k|
2λ2/2 is negligible and we can obtain H

(cf,η)
aα (k) as the k·p Hamiltonian

H(cf,η)
aα (k) = 〈ũ(η)

a (0)|h(η)(k)|ṽ(η)
α (0)〉, (S78)

where h(η)(k) is the BM model (Eq. (S5)), |ṽ(η)
α (0)〉 are the Bloch state of the Wannier functions (Eq. (S42)), and

|ũ(η)
a (0)〉 are the Bloch states of the conduction bands (Eq. (S59)). As explained after Eq. (S69), we always choose

|ṽ(η)
α (0)〉 and |ũ(η)

a (0)〉 rather than |ṽ(η)
α (k)〉 and |ũ(η)

a (k)〉 as the basis for the k·p expansion. Since h(η)(k) only

has zeroth and linear order terms in k, H
(cf,η)
aα (k) also only has constant and linear terms. As proved in the next

paragraph, we find the coupling Hamiltonian has the form

H(cf,η) =

(
γσ0 + v′?(ηkxσx + kyσy)

v′′? (ηkxσx − kyσy)

)
. (S79)

The first two-by-two block is the coupling between the local orbitals (forming Γ3) and the Γ3 states of the conduction
bands and hence allows a γσ0 term, the second two-by-two block the coupling between the local orbitals and the
Γ1 ⊕ Γ2 states of the conduction bands and vanishes at k = 0. The Γ3 representation carries angular momenta
L = ±1 and the Γ1 ⊕ Γ2 representation carries the angular momentum L = 0. The above equation respects the
angular momentum conservation up to ∆L = 0 mod 3 because the system only has C3z symmetry. The parameters
obtained from Eq. (S78) are tabulated in Table S4. We find that v′′? is very small compared to other velocities. We
hence will omit this term.

Here we give one more justification for the choice of the damping factor e−|k|
2λ2/2. First, around k = 0, the damping

factor e−|k|
2λ2/2 ∼ 1 and works well because the H(cf,η)(k) matrix is by construction (Eq. (S78)) accurate at k = 0.

Second, at large k, the actual damping factor may be complicated due to the reasons given before Eq. (S76), but
the f − c coupling is weak compared to the energy separation of f - and c-bands. Thus, the actual form of damping
factor is not important. Our approximation should have at least captured the main feature of the damping behavior
- it assumes the Wannier function as a single exponential function and the conduction bands as monochromatic plane
waves, which are reasonable due to the localized and delocalized natures of f - and c-electrons. As will be discussed
in Section S2 E and shown in Fig. S2, the choice

Now we use the symmetry principle to derive the form of H(cf,+)(k). H(cf,−)(k) is given by H(cf,+)∗(k) due to the
time-reversal symmetry. We only keep zeroth and linear order terms in k. The symmetry operators on the single-
particle states of the conduction bands (c) are given in Eq. (S72). According to Eq. (S36), the symmetry operators
on the single-particle states of the local orbitals (f) are

C3z = ei
2π
3 σz , C2x = σx, C2zT = σxK, P = iσz . (S80)

We first look at the coupling between the Γ3 states (a = 1, 2) and the local orbitals. According to C2zT , only σ0,x,y

and iσz are allowed. According to P , the Hamiltonian satisfy (−iσz)H(cf,η)(−k)(iσz)
† = −H(cf,η)(k), where −iσz

and iσz are the representation matrix of P formed by the conduction bands and local orbitals, respectively. Thus
the σx,y terms must be odd in k and σ0, iσz terms must be even in k. The even order terms are constants to
first order of k, i.e., γσ0 + iγ′σz. γ respects both C3z and C2x symmetries. γ′ respects C3z but breaks C2x, hence
the γ′ term is forbidden. The two odd order terms σx,y transform under C3z as C3zσxC

−1
3z = σx cos 2π

3 + σy sin 2π
3 ,

C3zσyC
−1
3z = σy cos 2π

3 −σx sin 2π
3 , thus the odd terms can be chosen as v′?(kxσx+kyσy), which is also symmetric under

C2x. Thus the coupling between the Γ3 states in the QDP and the local orbitals takes the form γσ0 +v′?(kxσx+kyσy).
We then consider couplings between the Γ1 ⊕ Γ2 states (a = 3, 4) in the conduction bands and the local orbitals.
According to C2zT , only σ0,x,y and iσz are allowed. According to P , σx,y terms must be odd in k and σ0, iσz terms
must be even in k. The even order terms are constants to first order of k, however they break the C3z symmetry
as they couple states with angular momentum 0 to states with angular momenta ±1. The two odd order terms σx,y
transform under C3z as C3zσxC

−1
3z = σx cos 2π

3 − σy sin 2π
3 , C3zσyC

−1
3z = σy cos 2π

3 + σx sin 2π
3 , thus the odd terms can

be chosen as v′′? (kxσx − kyσy), which is also symmetric under C2x.

E. Summary of the single-particle Hamiltonian

According to the discussions in Sections S2 C and S2 D, we can summarize the total single-particle Hamiltonian as

Ĥ0 =
∑
ηs

∑
aa′

∑
|k|<Λc

(H
(c,η)
a,a′ (k)− µδaa′)c†kaηscka′ηs − µ

∑
ηs

∑
R

f†RαηsfRαηs

+
1√
N

∑
ηs

∑
|k|<Λc

∑
R

∑
αa

(
e−|k|

2λ2/2−ik·RH(cf,η)
aα (k)c†kaηsfRαηs + h.c.

)
. (S81)
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µ is the chemical potential, Λc is the cutoff of the momentum of the conduction bands, H
(c,η)
a,a′ (k) and H

(cf)
aα (k) are

given by

H(c,η)(k) =

(
02×2 v?(ηkxσ0 + ikyσz)

v?(ηkxσ0 − ikyσz) Mσx

)
, (S82)

H(cf,η) =

(
γσ0 + v′?(ηkxσx + kyσy)

02×2

)
, (S83)

respectively. The parameters in the single-particle Hamiltonian are given in Table S4.
In principle, the cutoff Λc should be a small quantity compared to the Moiré BZ. However, because the states at

large k’s have very high energies, we can formally extend Λc to infinity without changing the low energy physics. A
theoretical advantage of Λc →∞ is that the yielded band structure will become periodic over the moiré BZ. We label
the momentum for the conduction bands as k+G with k being in the moiré BZ and G moiré reciprocal lattice. Using
a larger Λc implies a larger lattice of G. In Fig. S2 we have plotted the band structures of Eq. (S81) using the cutoff

Λc = 5
√

3kθ.
As shown in Ref. [4], the anti-unitary single-particle symmetry PC2zT (anti-commuting with single-particle Hamil-

tonian) implies a unitary many-body charge-conjugation symmetry Pc that commutes with the Hamiltonian, i.e.,

Pcf†RαηsP
−1
c =

∑
α′η′

Df
α′η′,αη(PC2zT )fRα′η′s, Pcc†kaηsP

−1
c =

∑
a′η′

Dc
a′η′,aη(PC2zT )c−ka′η′s , (S84)

where

Df (C2zTP ) = −σyτz, Df (C2zTP ) = (σyτz)⊕ (σyτz) . (S85)

One can verify that Pc commutes with Ĥ0 in Eq. (S81).

F. The (first) chiral limit and the chiral U(4) symmetry

We find that when v′? = 0 the Hamiltonian (Eq. (S81)) anti-commute with the unitary chiral operator

Cf†kαηsC
−1 =

∑
α′η′

f†kα′η′sD
f
α′η′,aη(C), Cc†kaηsC

−1 =
∑
a′η′

c†ka′η′sD
c
a′η′,aη(C) (S86)

with

Df (C) = σzτ0, Dc(C) = (−σzτ0)⊕ (σzτ0) . (S87)

According to Eqs. (S36), (S63) and (S65), we find that C satisfies the algebra at the single-particle level

C2 = 1, [C, T ] = 0, [C,C3z] = 0, {C,C2x} = 0, {C,C2zT} = 0, [C,P ] = 0 , (S88)

which are same as the first chiral symmetry discussed in Section S1 B (Eq. (S21)) and in Refs. [4, 36, 102, 104].
Therefore, we identify C as the first chiral symmetry. The band structure after imposing this chiral symmetry is
shown in Fig. S4(b).

Refs. [1, 2, 4] have shown that the presence of chiral symmetry implies a so-called chiral non-flat U(4) symmetry
of the projected interaction Hamiltonian. (A similar U(4) symmetry was also found in Ref. [1].) Here we find
that C indeed implies a U(4) symmetry of the single-particle Hamiltonian by using the symmetry C2zPC. In next
paragraph we will show the chiral implied U(4) is consistent with the chiral non-flat U(4) discussed in Refs. [1, 2, 4].
In Section S3 F 2 we will show that the chiral U(4) symmetry is also an approximate symmetry of the interaction
Hamiltonian. Since the Hamiltonian anti-commutes with P and C, it must commute with the product PC as well as
C2zPC. As discussed in Section S1 B, C is local in real space, P transforms r to −r, hence C2zPC is also local in
real space. Its representation matrices are

Df (C2zPC) = σxτy, Dc(C2zPC) = (σxτy)⊕ (−σxτy). (S89)

We introduce the continuous symmetry generator

Θ̂y0 =
1

2

∑
k∈MBZ

∑
αα′ηη′s

[σxτy]αη,α′η′f
†
kαηsfkα′η′s +

1

2

∑
|k|<Λc

∑
aa′ηη′s

[(σxτy)⊕ (−σxτy)]aη,a′η′c
†
kaηscka′η′s , (S90)
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FIG. S4. Band structures in the first, third chiral or flat limits. (a) Band structure of the original topological heavy fermion
model (Eq. (S81)) at w0/w1 = 0.8. (b) Band structure in the first chiral symmetry, where v′? is imposed to zero. (c) Band
structure in the third chiral limit (flat limit), where M is imposed to zero. (d) Band structure in the flat limit in the absence of
the third chiral symmetry, where M is imposed to zero and a chiral breaking term A is taken into account. (See Section S2 H).
The other parameters are given in Table S4.

and it commutes with H0. Then we find that the Hamiltonian (Eq. (S81)) has the continuous symmetry

[e−iθΘ̂y0 , Ĥ0] = 0 . (S91)

Θ̂y0 together with the U(2)×U(2) symmetry form the U(4) symmetry group. The generators of the U(4) group can
be explicitly written as

Θ̂µν =
1

2

∑
ηη′

∑
ss′

 ∑
k∈MBZ

∑
αα′

Θ
(µν,f)
αηs,α′η′s′f

†
kαηsfkα′η′s′ +

∑
|k|<Λc

∑
aa′

Θ
(µν,c)
aηs,a′η′s′c

†
kaηscka′η′s′

 , (S92)

where µ, ν = 0, x, y, z and

Θ(0ν,f) = σ0τ0ςν , Θ(0ν,c) = (σ0τ0ςν)⊕ (σ0τ0ςν) , (S93)

Θ(xν,f) = σxτxςν , Θ(xν,c) = (σxτxςν)⊕ (−σxτxςν) , (S94)

Θ(yν,f) = σxτyςν , Θ(yν,c) = (σxτyςν)⊕ (−σxτyςν) , (S95)

Θ(zν,f) = σ0τzςν , Θ(zν,c) = (σ0τzςν)⊕ (σ0τzςν) . (S96)

Here σµ, τµ, ςµ are Pauli matrices for the orbital, valley, and spin degree of freedom, respectively. The first and second

eight-by-eight blocks in Θ(µν,c) are for the Γ3 orbitals (a = 1, 2) and the Γ1 ⊕ Γ2 (a = 3, 4), respectively.
In the end we explicitly show that the U(4) symmetry in this chiral limit is consistent with the (first) chiral non-flat

U(4) symmetry in Refs. [1, 2, 4]. In the Appendix B2 of Ref. [4], the sewing matrices of T , C2z, and P have been
fixed as k-independent matrices

B(T ) = σ0τx, B(C2z) = σ0τx, B(P ) = −iσyτz . (S97)

The generators of the (first) chiral non-flat U(4) symmetry in Ref. [4] in this gauge are

σ0τ0ςν , σ0τxςν , σ0τyςν , σ0τzςν , (ν = 0, x, y, z) , (S98)

where σµ, τµ, abd ςµ are Pauli matrices for the band, valley, and spin degrees of freedom, respectively. As shown
in Section S2 A and Fig. S3, in most area of the moiré BZ, the middle two bands are mainly contributed by the
local orbitals. Thus we expect that, for k 6= 0 where the overlap between local orbitals and the middle two bands
is finite, the U(4) generators on the local orbitals (after certain gauge transformation) should be same as those in
Eq. (S98). We apply the gauge transformation U = ei

π
4 σ0τze−i

π
4 σxτz to the local orbitals such that the transformed

representation matrices UDf (g)U† become same as Eq. (S97). (See Eq. (S36) for definition of Df (g)’s.) The U(4)
generators for the local orbitals in Eqs. (S93) to (S96) transform to

σ0τ0ςν , σ0τyςν , σ0τxςν , σ0τzςν , (ν = 0, x, y, z) . (S99)

which are indeed same as Eq. (S98). For k = 0, our local orbital basis (forming the representation Γ3) is different
from the basis in Ref. [4] (forming the representation Γ1 ⊕ Γ2), thus the above comparison is only valid for k 6= 0.
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G. The flat limit and the flat U(4) symmetry

Refs. [2, 4] discussed a flat limit where the kinetic energy of the flat middle two bands are discarded. A so-called
non-chiral flat U(4) symmetry emerges in this limit [2, 4]. We find that in the topological heavy fermion model we
can achieve an exact flat band if we set M = 0, i.e., the Γ1 − Γ2 splitting is set to zero. In the limit M = 0, the
Hamiltonian (Eq. (S81)) anti-commutes with the unitary chiral operator

Sf†kαηsS
−1 =

∑
α′η′

f†kα′η′sD
f
α′η′,aη(S), Sc†kaηsS

−1 =
∑
a′η′

c†ka′η′sD
c
a′η′,aη(S) (S100)

with

Df (S) = σ0τ0, Dc(S) = (−σ0τ0)⊕ (σ0τ0) . (S101)

Since S is different from the first and second chiral symmetries discussed in Ref. [4, 104], we refer to S as the third
chiral symmetry. The local orbitals and the a = 3, 4 conduction band basis have the chiral eigenvalue 1, whereas the
a = 1, 2 conduction band basis has the chiral eigenvalue −1. Since only hoppings between opposite chiral eigenvalues
are allowed (such that the Hamiltonian anti-commutes with S), the rank of the single-particle Hamiltonian at each
k (in a valley-spin sector) is at most 4. Therefore, in this limit there must be two exact flat bands at the zero
energy. Correspondingly, we also refer to this chiral limit as the flat limit. The band structure in this limit is given
in Fig. S4(c).

Similar to the first chiral limit, the third chiral limit also implies a U(4) symmetry of the single-particle Hamiltonian.
In Section S3 F 2 we will show that the flat U(4) symmetry is also an approximate symmetry of the interaction
Hamiltonian. Since the Hamiltonian anti-commutes with P and S, it must commute with the product PS as well as
C2zPS. S is local in real space, while P transforms r to −r, hence C2zPS is also local in real space. Its representation
matrices are

Df (C2zPS) = −iσyτy, Dc(C2zPS) = (−iσyτy)⊕ (iσyτy) . (S102)

We introduce the continuous symmetry generator

Σ̂y0 =
1

2

∑
k∈MBZ

∑
αα′ηη′s

[σyτy]αη,α′η′f
†
kαηsfkα′η′s +

1

2

∑
|k|<Λc

∑
aa′ηη′s

[(σyτy)⊕ (−σyτy)]aη,a′η′c
†
kaηscka′η′s , (S103)

and it commutes with Ĥ0. Then we find that the Hamiltonian (Eq. (S81)) has the continuous symmetry

[e−iθΣ̂y0 , Ĥ0] = 0 . (S104)

Similar to the case in the first chiral symmetry, the above rotation together with the U(2)×U(2) symmetry lead to a
U(4) symmetry group. The generators of the U(4) group can be explicitly written as

Σ̂µν =
1

2

∑
ηη′

∑
ss′

 ∑
k∈MBZ

∑
αα′

Σ
(µν,f)
αηs,α′η′s′f

†
kαηsfkα′η′s′ +

∑
|k|<Λc

∑
aa′

Σ
(µν,c)
aηs,a′η′s′c

†
kaηscka′η′s′

 , (S105)

where µ, ν = 0, x, y, z and

Σ(0ν,f) = σ0τ0ςν , Σ(0ν,c) = (σ0τ0ςν)⊕ (σ0τ0ςν) , (S106)

Σ(xν,f) = σyτxςν , Σ(xν,c) = (σyτxςν)⊕ (−σyτxςν) , (S107)

Σ(yν,f) = σyτyςν , Σ(yν,c) = (σyτyςν)⊕ (−σyτyςν) , (S108)

Σ(zν,f) = σ0τzςν , Σ(zν,c) = (σ0τzςν)⊕ (σ0τzςν) . (S109)

Here σµ, τµ, ςµ are Pauli matrices for the orbital, valley, and spin degree of freedom, respectively. The first and second

eight-by-eight blocks in Σ(µν,c) are for the orbitals a = 1, 2 and a = 3, 4, respectively.
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Now we explicitly show that the U(4) symmetry in the third chiral limit (flat limit) of our heavy fermion model is
consistent with the non-chiral flat U(4) symmetry in Ref. [2, 4], which commutes with the interaction Hamiltonian but
anti-commutes with the single-particle BM Hamiltonian. It is worth mentioning that our U(4) rotations, unlike the
ones in Ref. [4], commutes with both the interaction Hamiltonian (approximately) and the single-particle Hamiltonian
(if M = 0). In the Appendix B2 of Ref. [4], the sewing matrices of T , C2z, and P have been fixed as k-independent
matrices shown in Eq. (S97). The generators of the non-chiral flat U(4) symmetry in this gauge are

σ0τ0ςν , σyτxςν , σyτyςν , σ0τzςν , (ν = 0, x, y, z) , (S110)

where σµ, τµ, abd ςµ are Pauli matrices for the band, valley, and spin degrees of freedom, respectively. As shown
in Section S2 A and Fig. S3, in most area of the moiré BZ, the middle two bands are mainly contributed by the
local orbitals. Thus we expect that, for k 6= 0 where the overlap between local orbitals and the middle two bands
is finite, the U(4) generators on the local orbitals (after certain gauge transformation) should be same as those in
Eq. (S110). We apply the gauge transformation U = ei

π
4 σ0τze−i

π
4 σxτz to the local orbitals such that the transformed

representation matrices UDf (g)U† become same as Eq. (S97). (See Eq. (S36) for definition of Df (g)’s.) The U(4)
generators for the local orbitals in Eqs. (S106) to (S109) transform to

σ0τ0ςν , −σyτyςν , σyτxςν , σ0τzςν , (ν = 0, x, y, z) . (S111)

which generate the same U(4) rotations as Eq. (S110). For k = 0, our local orbital basis (forming the representation
Γ3) is different from the basis in Ref. [4] (forming the representation Γ1⊕Γ2), thus the above comparison is only valid
for k 6= 0.

As will be revealed by the numerical calculations in Section S4 B, our flat-U(4) symmetry is a better approximation
than our (first) chiral-U(4) symmetry. A heuristic argument is the following. The flat-U(4) breaking parameter M
only affects low energy single-particle states of H(c,η) (Eq. (S82)) because the M term is just a weak perturbation
for high energy states, while the chiral-U(4) breaking parameter v′? mainly affects high energy single-particle states
because it enters the Hamiltonian in the form of v′?kxσ0±iv′?kyσz. Roughly speaking, in the presence of v′? and M , low
energy components of the single-particle Hamiltonian do not commute with the flat-U(4) rotation, while high energy
components do not commute with the chiral-U(4) rotation. Therefore, the energy change after a chiral-U(4) rotation
will be larger than that after a flat-U(4) rotation, implying that the flat-U(4) symmetry is better approximation of
the Hamiltonian.

In the end of this section we split the flat-U(4) generators to the fundamental representations of the flat-U(4) group.
In Ref. [4], the fundamental basis is obtained by diagonalizing the Pauli matrix σy in the band basis that is fixed
by the sewing matrices in Eq. (S97). As discussed below Eq. (S110), for k 6= 0, the f -orbital basis is related to the
basis of Ref. [4] by the rotation U = ei

π
4 σ0τze−i

π
4 σxτz . Thus now the fundamental U(4) representations should be

obtained by diagonalizing U†σyU = −σzτz. In the following paragraph we prove that the eigenvalue ξ of σzτz indeed
labels fundamental U(4) representations. It is worth mentioning that the choice of fundamental U(4) representations
is not unique. For example, since all the U(4) rotations in Eqs. (S106) to (S109) commute with σy, we can also use
eigenvalues of σy in our heavy fermion basis to label fundamental representations. We choose ξ because (i) it has the
physical meaning of Chern number (Section S4 E) [4] and (ii) it simplifies the exchange interaction (Section S3 C).

First, the flat-U(4) operators are already block-diagonal: They do not mix the eight f -orbitals, eight Γ3 basis
of c-bands, and eight Γ1 ⊕ Γ2 basis of c-bands with each other. We need to further split each block into two
fundamental representations of the flat-U(4) group. We notice that the flat-U(4) generators either do not change the
α, η (a, η) indices of the f -electrons (c-electrons) or flip them at the same time. Therefore, the index ξ = (−1)α−1η
(ξ = (−1)a−1η) of f -electrons (c-electrons) is unchanged under the flat-U(4) rotations. (In general, ξ is not conserved

by Ĥ0. For example, the M and v′? terms in Eqs. (S82) and (S83) flip the ξ index.) Consequently, the four components
with the same ξ in each block form a fundamental representation of the flat-U(4) group. For later convenience, we
introduce the U(4) generator operators for fundamental representations separately

Σ̂(f,ξ)
µν =

1

2

∑
ηη′

∑
ss′

∑
k∈MBZ

∑
αα′

δξ,(−1)α−1ηδξ,(−1)α′−1η′Σ
(µν,f)
αηs,α′η′s′f

†
kαηsfkα′η′s′ , (S112)

Σ̂(c′,ξ)
µν =

1

2

∑
ηη′

∑
ss′

∑
|k|<Λc

∑
aa′=1,2

δξ,(−1)a−1ηδξ,(−1)a′−1η′Σ
(µν,c)
aηs,a′η′s′c

†
kaηscka′η′s′ , (S113)

Σ̂(c′′,ξ)
µν =

1

2

∑
ηη′

∑
ss′

∑
|k|<Λc

∑
aa′=3,4

δξ,(−1)a−1ηδξ,(−1)a′−1η′Σ
(µν,c)
aηs,a′η′s′c

†
kaηscka′η′s′ , (S114)

respectively. The total flat-U(4) generators are given by Σ̂µν =
∑
ξ

(
Σ̂

(f,ξ)
µν + Σ̂

(c′,ξ)
µν + Σ̂

(c′′,ξ)
µν

)
.
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H. Flat bands beyond the third chiral symmetry

Consider a system consisting of sublattices A and B, if only hoppings between A- and B-sublattices are allowed,
then the system has a chiral symmetry, eigenvalues of which are 1 and −1 for the two sublattices, respectively. Then
the Hamiltonian matrix H(k) satisfies

Hα,α′(k) = Hβ,β′(k) = 0 , (S115)

where α ∈ A, β ∈ B. We use LA and LB to represent the number of orbitals (per unit cell) in the A- and B-sublattices,
respectively. Without loss of generality, in the following we always label the sublattice with more (or equal number)
orbitals as A such that LA ≥ LB . Because the dimension of the Hamiltonian matrix H(k) is LA + LB and the rank
of the Hamiltonian is at most 2LB , which are contributed by LB nonzero columns Hα,β(k) and LB nonzero rows
Hβ,α(k) (α ∈ A, β ∈ B), H(k) will have at least LA − LB zero-energy flat bands if LA > LB . A recent study on flat
bands based on the so-called S-matrix [143] pointed out that, in many cases, breaking the chiral symmetry does not
necessarily destroy the flatness of flat bands. A general condition for the presence of flat bands and their topological
classifications are derived in Ref. [143]. Here we only focus on a simple situation, where intra-sublattice hoppings in
the smaller sublattice (B) are taken into account. Adding such hoppings do break the chiral symmetry but do not
change the rank of H(k) — with Hβ,β′(k) being nonzero, H(k) still has at most LB nonzero columns and LB nonzero
rows. Therefore, the flatness is robust against the hoppings within the smaller sublattice.

The above discussion explains the flat bands when we take into account certain chiral breaking terms in the
heavy fermion Hamiltonian. Following the symmetry argument in Section S2 C, we can add the quadratic term
A(k2

x − k2
y)σx − 2ηAkxkyσy to the a = 1, 2 block of Eq. (S82). This term commutes with S (Eq. (S100)) and hence

breaks the third chiral symmetry. However, it does not affect the flatness of the flat bands as long as M = 0, as shown
in Fig. S4(d), where A = −30meV/k2

θ , M = 0. Now we explain the flatness in the presence of A using the S-matrix
theory [143]. In Section S2 G we have shown that the eigenvalues of S are −1, +1, and +1 for the Γ3 conduction
band basis (a = 1, 2), Γ1⊕Γ2 conduction band basis (a = 3, 4), and the local orbitals, respectively. Before we add the
A term, only hoppings between bases with opposite S eigenvalues are present. We thus can label the Γ3 conduction
band basis (a = 1, 2) and the local orbitals as the A-sublattice, and the Γ1 ⊕ Γ2 conduction band basis (a = 3, 4) as
the B-sublattice. There is LA − LB = 2 and hence there will be two flat bands. Since the A term is nothing but the
hopping within the smaller (B) sublattice, according to the discussion in the last paragraph, the flatness of flat bands
are stable against A.

I. The U(4)×U(4) symmetry in chiral flat limit

As discussed in Refs. [2, 4], the two-band projected interaction Hamiltonian will have a U(4)×U(4) group when
both the chiral and flat limits are achieved. It should be emphasized that neither chiral-U(4) nor flat-U(4) is a factor
U(4) group of the total U(4)×U(4) group. In the heavy fermion basis, when both limits are achieved (M = v′? = 0),
the ξ index defined in Section S2 G, which equals (−1)α−1η and (−1)a−1η for f - and c-electrons, respectively, and

labels the fundamental flat-U(4) representations, is conserved in Ĥ0. Moreover, every bilinear term in Ĥ0 only involves

a single ξ flavor, implying that we can write Ĥ0 as Ĥ0 =
∑
ξ Ĥ

(ξ)
0 where Ĥ

(ξ)
0 only contains fermion operators of

the ξ flavor. Then, not only the total flat-U(4) generators Σ̂µν , but also the generators acting in each ξ flavor, i.e.,

Σ̂
(ξ)
µν = Σ̂

(f,ξ)
µν + Σ̂

(c′,ξ)
µν + Σ̂

(c′′,ξ)
µν (Eqs. (S112) to (S114)), commute with Ĥ0 because there is [Σ̂

(ξ)
µν , Ĥ

(ξ)
0 ] = 0 for the

two ξ’s separately. A generic rotation that is commuting with Ĥ0 can be parameterized as

exp

−i∑
µνξ

θ(ξ)
µν Σ̂(ξ)

µν

 , (S116)

where θ
(+)
µν can be different with θ

(−)
µν . Therefore, when M = v′? = 0, Ĥ0 has a U(4)×U(4) symmetry group with the

two factor U(4)’s generated by Σ̂
(+)
µν and Σ̂

(−)
µν , respectively.

Now we prove that, in general, when the single-particle or interaction Hamiltonian has both the chiral-U(4) and
flat-U(4) symmetry, it must at least have the SU(4)×SU(4) symmetry. Since δξ,(−1)a−1ηδξ,(−1)a′−1η′ , σyτx, σxτy enter

the coefficient matrices of Σ̂
(ξ)
xν , Σ̂xν , and Θ̂yν , respectively, and

δξ,(−1)a−1ηδξ,(−1)a′−1η′ [σyτx]αη,α′η′ =
1

2
[σyτx + ξσxτy] (S117)
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Ĥ0 Ĥ0(M = 0) Ĥ0(v′? = 0) Ĥ0(M = v′? = 0) ĤU + ĤV + ĤW + ĤJ + ĤJ̃ ĤK
Local Symmetry U(2)×U(2) flat-U(4) chiral-U(4) U(4)×U(4) U(4)×U(4) chiral-U(4)

TABLE S5. Summary of the local symmetries of the single-particle and interaction Hamiltonians. The single-particle Hamil-

tonian Ĥ0 is summarized in Section S2 E, and interaction Hamiltonians ĤX (X = U, V,W, J, J̃ ,K) are summarized in Sec-
tion S3 F 1.

we have

Σ̂(ξ)
xν =

1

2
Σ̂xν +

ξ

2
Θ̂yν . (S118)

Similarly, we have

Σ̂(ξ)
yν =

1

2
Σ̂yν +

ξ

2
Θ̂xν . (S119)

Therefore, when the Hamiltonian commutes with Σ̂µν and Θ̂µν separately, it must also commute with Σ̂
(ξ)
xν and Σ̂

(ξ)
yν for

ξ = ± separately, which generate a SU(4)×SU(4) group. To see if the Hamiltonian has a higher U(4)×U(4) symmetry,

one has to explicitly check if the Hamiltonian also commute Σ̂
(ξ)
00 for ξ = ± separately. Since the Hamiltonian must

respect charge-U(1), i.e., Σ̂
(+)
00 + Σ̂

(−)
00 , one only need to check if Σ̂

(+)
00 − Σ̂

(−)
00 , or equivalently the index ξ, is conserved

in the Hamiltonian. In summary, the Hamiltonian will at least have a SU(4)×SU(4) symmetry if it respects both
flat-U(4) and chiral-U(4) symmetries. Given the charge-U(1) is respected, the SU(4)×SU(4) group will be promoted

to U(4)×U(4) if the Hamiltonian further commutes with Σ̂
(+)
00 − Σ̂

(−)
00 .

Using the criterion derived in the above paragraph, we find that most terms in the interaction Hamiltonian also
has the U(4)×U(4) symmetry (Section S3 F 1). We summarize the local symmetries of all the single-particle and
interaction Hamiltonians in Table S5.

J. Fubini-Study metric and Berry’s curvature of the flat bands in the chiral flat limit

It has been shown that the flat (Chern) bands of the BM model in the chiral limit are analytically solvable [36].
Because the Chern band solutions are holomorphic functions of kx + iky (or kx − iky), there is a simple relation
between the Berry’s curvature Ω(k) and the Fubini-Study metric gij(k), i.e., , gij(k) = 1

2 |Ω(k)|δij [96], which further

leads to 4 det g(k) = |Ω(k)|2, also known as the ideal droplet condition. The ideal droplet condition together with the
flatness of Berry’s curvature, i.e., Ω(k) = const., lead to the GMP algebra of density operators [144–146] and hence
can give rise to fractional Chern insulator phases in spin and valley polarized MATBG [96, 98, 99, 109].

In this subsection we will show that in the chiral flat limit (v′? = M = 0) of our heavy fermion model the Chern
band states are also analytically solvable and are holomorphic functions of kx+ iky or kx− iky (up to a normalization
constant). Thus the ideal droplet condition of the flat band will be automatically satisfied. (It is worth noting
that this chiral limit is theoretically achieved by imposing v′? = M = 0. It shares the same symmetries as the
BM model in the chiral limit, where w0/w1 = 0. But the other parameters, e.g., M , v?, are not required to be
obtained at w0/w1 = 0.) According to Sections S2 F and S2 G, when both (first) chiral and flat limits are achieved
the single-particle Hamiltonian must commute with C · S, representation of which is given by

Df (C · S) = σzτ0, Dc(C · S) = σzτ0 ⊕ σzτ0 . (S120)

Therefore, we can block-diagonalize the Hamiltonian using the eigenvalues (ζ) of C · S. The total Hamiltonian in
momentum space can be rewritten as

Ĥ0 =
∑
ηs

∑
aa′=1,3

∑
|k|<Λc

H
(c,η,+)
a,a′ (k)c†kaηscka′ηs +

∑
ηs

∑
|k|<Λc

∑
a=1,3

(
e−|k|

2λ2/2H
(cf,η,+)
a1 (k)c†kaηsfk1ηs + h.c.

)
+
∑
ηs

∑
aa′=2,4

∑
|k|<Λc

H
(c,η,−)
a,a′ (k)c†kaηscka′ηs +

∑
ηs

∑
|k|<Λc

∑
a=2,4

(
e−|k|

2λ2/2H
(cf,η,−)
a2 (k)c†kaηsfk2ηs + h.c.

)
(S121)

where the two-by-two matrix H(c,η,ζ) and two H(cf,η,ζ) (two-by-one) are given by

H(c,η,ζ) = v?

(
0 ηkx + iζky

ηkx − iζky 0

)
, H(cf,η,ζ) =

(
γ
0

)
. (S122)
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The Hamiltonian in each ζ sector still anti-commutes with S and hence must have flat bands (Section S2 G). As
explained in Section S2 E, for the band structure to be periodic in MBZ, we can formally extend the cutoff of c-bands,
Λc, to infinity. Here we just assume Λc is much larger than the size of MBZ. One must be aware that, for a moire
reciprocal lattice G, there is ck+G,aηs 6= ck,aηs and fk+G,αηs = fk,αηs because the former is a continuous field while
the second is a lattice. Then the flat band solution is in the sector (ζ, η, s) can be written as

d†k,ζ=+,η,s =
1√
Nk

f†k,1,η,s +
1√
Nk

∑
G

|k+G|<Λc

γ/v?
η(kx +Gx) + i(ky +Gy)

c†k+G,3,η,s , (S123)

d†k,ζ=−,η,s =
1√
Nk

f†k,2,η,s +
1√
Nk

∑
G

|k+G|<Λc

γ/v?
η(kx +Gx)− i(ky +Gy)

c†k+G,4,η,s , (S124)

where

Nk = 1 +
∑
G

|k+G|<Λc

γ2/v2
?

|k + G|2
. (S125)

The states d†k,ζ,η,s are also eigenstate of the (first) chiral operator C with eigenvalues equal to ζ. Their Chern numbers
are computed to be ζ · η.

In order to calculate the quantum metric tensor, we rewrite the flat band wavefunction in the first-quantized
formalism. For simplicity, here we only focus on the ζ = +, η = +, ς =↑ sector and will omit the indices ζ, η, ς. There
is

|uk〉 =
1√
Nk

|ũk〉, |ũk〉 = |f1,k〉+
∑
G

|k+G|<Λc

γ/v?
(kx +Gx) + i(ky +Gy)

|c3,k + G〉 , (S126)

where |f1,k〉 and |c3,k+G〉 are f - (α = 1) and c-band basis (a = 3), respectively, and |ũk〉 is a holomorphic function
of kx + iky. The quantum metric can be written as a sum of four terms

gij(k) =〈∂kiuk|(1− |uk〉〈uk|)|∂kjuk〉

=
1

Nk
〈∂ki ũk|(1− |uk〉〈uk|)|∂kj ũk〉+

1√
Nk

(
∂ki

1√
Nk

)
〈ũk|(1− |uk〉〈uk|)|∂kj ũk〉

+
1√
Nk

(
∂kj

1√
Nk

)
〈∂ki ũk|(1− |uk〉〈uk|)|ũk〉+

(
∂ki

1√
Nk

)(
∂kj

1√
Nk

)
〈ũk|(1− |uk〉〈uk|)|ũk〉 . (S127)

Because (1− |uk〉〈uk|)|ũk〉 = 0, the last three terms in the above equation vanish. Hence we have

gij(k) =
1

Nk
〈∂ki ũ(k)|(1− |u(k)〉〈u(k)|)|∂kj ũ(k)〉 . (S128)

Since ũk is holomorphic in k = kx + iky, there are ∂kx ũk = ∂kũk, ∂ky ũk = i∂kũk, and the quantum metric must have
the form

gij(k) =

(
1 i
−i 1

)
f(k) (S129)

where f(k) = 〈∂ku(k)|(1 − |u(k)〉〈u(k)|)|∂ku(k)〉 is a real function of k. The Fubini-Study metric and Berry’s
curvature are given by gij(k) = Re[gij(k)] = f(k)δij and Ω(k) = 2Im[gxy(k)] = 2f(k), respectively, thus the ideal
droplet condition gij(k) = 1

2 |Ω(k)|δij is satisfied.

We then investigate the flatness of their Berry’s curvatures. We first consider the parameters v? = 1.623eV · Å,
γ = −24.75meV obtained at w0/w1 = 0.8 (Table S4). The corresponding Berry’s curvature is shown in Fig. S5(b).
We can see that it is not flat at all. Its deviation from perfect flatness can be estimated by the number

δC =

√ˆ
d2k

(2π)2

(
Ω(k)

2π
− C

)2

, (S130)
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FIG. S5. Berry’s curvatures of the flat Chern bands in the (first) chiral flat limit. (a) is an illustration of the moiré Brillouin zone
and high symmetry momenta. (b)-(d) are the Berry’s curvatures in the (first) chiral flat limit, where γ equals to -24.75meV,

-50meV, -100.8meV, respectively, and v′? = M = 0, v? = 1.623eV · Å. The values of the Berry’s curvature is normalized in the
convention where the area of moiré Brillouin zone is 4π2.

which is computed to be 2.723 for γ = −24.75meV. The actual chiral limit of the BM model, i.e., w0/w1 = 0, leads
to a larger gap (100.8meV) between the flat bands the lowest passive bands. That means in the actual chiral limit γ
should be γ = −100.8meV. For comparison, in Fig. S5(c) and (d) we present the distributions of Berry’s curvatures
given by γ = −50meV and γ = −100.8meV, respectively. It is clear that a larger |γ| gives a flatter Berry’s curvature.
The derivations from perfect flatness are 1.1585 and 0.2570 for γ = −50meV and γ = −100.8meV, respectively.

In summary, because of the holomorphic or anti-holomorphic property of the flat band wavefunction the ideal
droplet condition is automatically achieved in the chiral flat limit of our heavy fermion model, where v′? and M are
artificially imposed to zero. The relative flatness of the Berry’s curvature can also be reproduced by using parameters
fitting the actual BM model bands in the chiral limit. These lead to the GMP algebra of density operators. Given
that the Hamiltonian (Eq. (S121)) only involves kx + iky or kx − iky and is periodic in real space, the Jastrow type
wavefunctions for fractional Chern insulators of spin and valley polarized MATBG [96] should also be applicable to
our model.

S3. The interaction Hamiltonian and its symmetries

A. The projected density operator and Coulomb interaction

We can project the original basis onto the basis of the topological heavy fermion model as

c†k,Q,β,η,s ≈
∑
α

ṽ
(η)∗
Qβ,α(k)f†kαηs +

∑
a

ũ
(η)∗
Qβ,a(k)c†kaηs (S131)

Correspondingly, the projected real space basis (Eq. (S11)) can be written as

c†lβηs(r) ≈
∑
Rα

eiη∆Kl·Rw
(η)∗
lβ,α(r−R)f†Rαηs +

1√
Ωtot

∑
|k|<Λc

∑
a

∑
Q∈Qlη

e−i(k−Q)·rũ
(η)∗
Qβ,a(k)c†k,aηs , (S132)

where Λc is the cutoff for the conduction band basis. We emphasize that even though we formally introduce ũ
(η)∗
Qβ,a(k),

in practical calculations we will only use ũ
(η)∗
Qβ,a(0), as we did in the k·p expansion in Section S2 C. The phase factor

eiη∆Kl·R comes from the phase shift gained by the real space basis under translation, as explained around Eq. (S43).
We now can write the density operator as

ρ̂(r) =
∑
βlηs

c†lβηs(r)clβηs(r)

=
∑
βlηs

[ ∑
Rα
R′α′

eiη∆Kl·(R−R′)w
(η)∗
lβ,α(r−R)w

(η)

lβ,α′(r−R′)f†RαηsfR′α′ηs +
1

Ωtot

∑
|k|,|k′|<Λc

aa′

QQ′∈Qlη

e−i(k−Q−k′+Q′)·rũ
(η)∗
Qβ,a(k)ũ

(η)

Q′β,a′(k
′)c†kaηsck′a′ηs
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+
1√
Ωtot

∑
Rαa

∑
|k|<Λc
Q∈Qlη

(
w

(η)∗
lβ,α(r−R)ũ

(η)
Qβ,a(k)eiη∆Kl·R+i(k−Q)·rf†Rαηsckaηs + w

(η)
lβ,α(r−R)ũ

(η)∗
Qβ,a(k)e−iη∆Kl·R−i(k−Q)·rc†kaηsfRαηs

)]
(S133)

Since w
(η)
lβ,α(r −R) is a sharp Gaussian function centered at R, we can omit the overlap between Wannier functions

at different sites, i.e., w
(η)∗
lβ,α(r − R)w

(η)
lβ,α′(r − R′) for R 6= R′. From Eqs. (S53) and (S54) we find

∑
lβ w

(η)∗
lβ,α(r −

R)w
(η)
lβ,α′(r−R) is zero if α 6= α′. This property is guaranteed by the PC2zT symmetry, which implies the constraint

Eq. (S49) and hence∑
lβ

w
(η)∗
lβ,α(r−R)w

(η)
lβ,α(r−R) =

∑
lβ

ilη(−1)αw
(η)∗
−lβ,α(r−R)(−i)lη(−1)αw

(η)

−lβ,α(r−R)

=−
∑
lβ

w
(η)∗
−lβ,α(r−R)w

(η)

−lβ,α(r−R) = −
∑
lβ

w
(η)∗
lβ,α(r−R)w

(η)
lβ,α(r−R) = 0 . (S134)

We can understand this property as a consequence of the (single-particle) anti-unitary particle-hole symmetry P =
PC2zT . According to the representations in Eq. (S36), Df (P ) = iσzτz, D

f (C2zT ) = σxτ0, there is Df (P) = −σyτz.
Since P2 = −1 and |WR2ηs〉 = −iηP|WR1ηs〉 there must be 〈WR2ηs|O|WR1ηs〉 = 0 for any hermitian operator that
commutes with P (Kramers theorem). Eq. (S134) can be obtained if we choose O as the density operator at r.
According to the constraints Eqs. (S46) and (S49), the density of the Wannier functions

nf (r) =
∑
lβ

|w(η)
lβ,α(r)|2 (S135)

does not depend on α and η. Therefore, we can simplify the density operator as

ρ̂(r) =
∑
ηs

[∑
Rα

nf (r−R)f†RαηsfRαηs +
1

Ωtot

∑
lβaa′

∑
|k|,|k′|<Λc

∑
QQ′∈Qlη

e−i(k−Q−k′+Q′)·rũ
(η)∗
Qβ,a(k)ũ

(η)

Q′β,a′(k
′)c†kaηsck′a′ηs

+
1√
Ωtot

∑
lβ

Rαa

∑
|k|<Λc
Q∈Qlη

(
w

(η)∗
lβ,α(r−R)ũ

(η)
Qβ,a(k)eiη∆Kl·R+i(k−Q)·rf†Rαηsckaηs + w

(η)
lβ,α(r−R)ũ

(η)∗
Qβ,a(k)e−iη∆Kl·R−i(k−Q)·rc†kaηsfRαηs

)]
.

(S136)

We now consider the interaction Hamiltonian of the form

ĤI =
1

2

ˆ
d2r1d

2r2V (r1 − r2) : ρ̂(r1) :: ρ̂(r2) : (S137)

where V is the double-gate-screened Coulomb interaction (will be defined in next paragraph) and : ρ̂ := ρ̂−〈G0|ρ̂|G0〉
is the normal ordered density operator with respect to a state |G0〉 at charge neutrality point. We assume |G0〉 is
such a state that

〈G0|c†k,Q,α,η,sck′,Q′,α′,η′,s′ |G0〉 =
1

2
δkk′δQQ′δαα′δηη′δss′ . (S138)

One can verify

〈G0|f†RαηsfR′α′η′s′ |G0〉 =
1

2
δRR′δαα′δηη′δss′ , 〈G0|c†kaηsck′a′η′s′ |G0〉 =

1

2
δkk′δaa′δηη′δss′ , (S139)

〈G0|f†Rαηsck′a′η′s′ |G0〉 = 〈G0|c†kaηsfR′α′η′s′ |G0〉 = 0 . (S140)

Therefore, we can write the normal ordered density operator as

: ρ̂(r) :=
∑
ηs

[∑
Rα

nf (r−R) : f†RαηsfRαηs : +
1

Ωtot

∑
lβaa′

∑
|k|,|k′|<Λc
QQ′∈Qlη

e−i(k−Q−k′+Q′)·rũ
(η)∗
Qβ,a(k)ũ

(η)

Q′β,a′(k
′) : c†kaηsck′a′ηs :

+
1√
Ωtot

∑
lβ

Rαa

∑
|k|<Λc
Q∈Qlη

(
w

(η)∗
lβ,α(r−R)ũ

(η)
Qβ,a(k)eiη∆Kl·R+i(k−Q)·rf†Rαηsckaηs + w

(η)
lβ,α(r−R)ũ

(η)∗
Q′β,a′(k)e−iη∆Kl·R−i(k−Q)·rc†kaηsfRαηs

)]
.

(S141)
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where

: f†RαηsfRαηs := f†RαηsfRαηs −
1

2
, : c†kaηsck′a′ηs := c†kaηsck′a′ηs −

1

2
δaa′ , (S142)

: c†kηsfR′α′η′s′ := c†kηsfR′α′η′s′ , : fR′α′η′s′c
†
kηs := fR′α′η′s′c

†
kηs . (S143)

The double-gate-screened Coulomb interaction is given by

V (r) = Uξ

∞∑
n=−∞

(−1)n√
(r/ξ)2 + n2

(S144)

with ξ being distance between the two gates, Uξ = e2/(4πεξ), and ε ≈ 6 is the dielectric constant. For ξ = 10nm
there is Uξ = 24meV. For convenience we introduce the Fourier transformation of V (r) as

V (r) =

ˆ
d2q

(2π)2
V (q)e−iq·r, V (q) = πξ2Uξ ·

tanh(ξ|q|/2)

ξ|q|/2
. (S145)

For simplicity, we denote the four terms in Eq. (S141) as : ρff :, : ρcc :, : ρfc :, : ρcf :, respectively. Their explicit
forms are given by

: ρff :=
∑
ηs

∑
Rα

nf (r−R) : f†RαηsfRαηs : , (S146)

: ρcc :=
1

Ωtot

∑
ηs

∑
lβaa′

∑
|k|,|k′|<Λc
QQ′∈Qlη

e−i(k−Q−k
′+Q′)·rũ

(η)∗
Qβ,a(k)ũ

(η)
Q′β,a′(k

′) : c†kaηsck′a′ηs : , (S147)

: ρfc :=
1√
Ωtot

∑
ηs

∑
lβ

Rαa

∑
|k|<Λc
Q∈Qlη

w
(η)∗
lβ,α(r−R)ũ

(η)
Qβ,a(k)eiη∆Kl·R+i(k−Q)·rf†Rαηsckaηs, : ρcf := (: ρfc :)† . (S148)

There are four diagonal terms in the interaction:

1. The term : ρff (r1) : V (r1 − r2) : ρff (r2) : is a density-density interaction of the local f -orbitals. As will be
shown in Section S3 B, the on-site repulsion (U1) is the largest energy scale of the problem.

2. The term : ρcc(r1) : V (r1 − r2) : ρcc(r2) : is the density-density interaction of the conduction bands.

3. The term : ρfc(r1) : V (r1 − r2) : ρfc(r2) : creates two particles in the local orbitals and two holes in the
conduction bands. Exciting particles or holes in the local orbitals must overcome a large repulsion energy of the
f -electrons. Thus this term is a high energy process. We will omit this term in the Hartree-Fock calculation.

4. The term : ρcf (r1) : V (r1 − r2) : ρcf (r2) : creates two particles in the conduction bands and two holes in the
local orbitals.

There are also

(
4
2

)
= 6 off-diagonal terms in the interaction:

5. The term : ρff (r1) : V (r1− r2) : ρcc(r2) : +(↔) is the density-density interaction between the local orbitals and
the conduction bands. This term will effectively shift the energy of conduction bands if : ρff : 6= 0.

6. The term : ρff (r1) : V (r1 − r2) : ρfc(r2) : +(↔) creates two particles plus one hole in the local orbitals and
a hole in the conduction bands. As shown in Section S3 E, this term is guaranteed to be vanishing by the
symmetries.

7. The term : ρff (r1) : V (r1 − r2) : ρcf (r2) : +(↔) creates two holes plus a particle in the local orbitals and a
particle in the conduction bands. As the 6th term, this term is guaranteed to be vanishing by the symmetries.
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8. The term : ρcc(r1) : V (r1 − r2) : ρfc(r2) : +(↔) creates a particle in the local orbitals and two holes plus
one particle in the conduction bands. Exciting particles or holes in the local orbitals must overcome a large
repulsion energy of the f -electrons. Thus this term is a high energy process. This term is also weak because
the hybridization, i.e., 〈f†c〉, is small, as discussed in Section S4. We will omit this term in the Hartree-Fock
calculation.

9. The term : ρcc(r1) : V (r1−r2) : ρcf (r2) : +(↔) creates a hole in the local orbitals and two particles plus one hole
in the conduction bands. Exciting particles or holes in the local orbitals must overcome a large repulsion energy
of the f -electrons. Thus this term is a high energy process. This term is also weak because the hybridization,
i.e., 〈c†f〉, is small, as discussed in Section S4. We will omit this term in the Hartree-Fock calculation.

10. The term : ρfc(r1) : V (r1−r2) : ρcf (r2) : +(↔) is an exchange interaction between local orbitals and conduction
bands.

We will derive their explicit forms and calculate their interaction strengths in Sections S3 B to S3 E.

B. Density-density terms (the first and fifth terms)

1. The density-density terms of local orbitals (the first term)

We can write the density-density interaction of the local orbitals, i.e., the first term discussed in Section S3 A, as

ĤU =
1

2

ˆ
d2r1d

2r2V (r1 − r2) : ρ̂ff (r1) :: ρ̂ff (r2) :=
1

2

∑
RR′

∑
αηs

∑
α′η′s′

U(R−R′) : f†RαηsfRαηs :: f†R′α′η′s′fR′α′η′s′ : , (S149)

where

U(R) =

ˆ
d2r1d

2r2 V (r1 − r2 −R)nf (r1)nf (r2) . (S150)

We will not apply the above equation for practical calculation of U(R) because V (r) is divergent when r approaches
zero. Instead we calculate U(R) in momentum space. According to the transformation (Eq. (S44))

w
(η)
lβ,α(r) =

1√
NΩtot

∑
k

∑
Q∈Qlη

ei(η∆Kl+k−Q)·rṽ
(η)
Qβ,α(k) , (S151)

where Ωtot = NΩ0, we can express the density function (Eq. (S135)) as

nf (r) =
1

N2Ω0

∑
kk′

∑
lβ

∑
Q,Q′∈Qlη

ei(k−Q−k
′+Q′)·rṽ

(η)∗
Q′β,α(k′)ṽ

(η)
Qβ,α(k) . (S152)

We define the Fourier transformation of the density function as

nf (r) =
1

NΩ0

∑
q,G

nf (q + G)e−i(q+G)·r, nf (q + G) =
1

N

∑
k

∑
Qβ

ṽ
(η)∗
Q−Gβ,α(k + q)ṽ

(η)
Qβ,α(k) . (S153)

The function U(R) can be calculated as

U(R) =
1

N2Ω2
0

ˆ
d2r1d

2r2 V (r1 − r2 −R)
∑
qG

∑
q′G′

e−i(q+G)·r1−i(q′+G′)·r2nf (q + G)nf (q′ + G′)

=
1

N2Ω2
0

ˆ
d2r2

∑
qG

∑
q′G′

V (q + G)e−i(q+G+q′+G′)·r2−i(q+G)·Rnf (q + G)nf (q′ + G′)

=
1

NΩ0

∑
qG

V (q + G)e−iq·Rnf (q + G)nf (−q−G) . (S154)

For w0/w1 = 0.8, we find that the onsite, nearest neighbor, next-nearest neighbor, and third nearest neighbor
interactions are

U(0) = 57.95meV, U(aM1) = 2.157meV, U(aM1 − aM2) = 0.1144meV, U(2aM1) = 0.04145meV ,
(S155)
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w0/w1 U1 U2 W1 = W2 W3 = W4 J K
1.0 69.35 1.914 43.46 52.90 14.48 5.122
0.9 64.56 2.006 43.84 51.37 15.40 4.958
0.8 57.95 2.329 44.03 50.20 16.38 4.887
0.7 51.72 2.656 44.05 49.33 18.27 4.897
0.6 45.02 3.103 44.03 48.73 20.75 4.975
0.5 37.61 3.709 44.06 48.35 23.75 5.111

TABLE S6. Parameters of the interaction Hamiltonian. Parameters of the BM model used to obtain this table are vF =
5.944eV · Å, |∆K| = 1.703Å−1, w1 = 110meV, θ = 1.05◦. Parameters of the double-gate-screened interaction used to obtain
this table are Uξ = 24meV, ξ = 10nm.

respectively. We can see that the interaction decays quickly as R and the onsite term (U1 = U(0)) is much larger
than the other terms. In fact, we find that U1 is the largest energy scale in this problem. Thus the onsite interaction
will dominate the correlation physics. Nevertheless, the U(R) (R 6= 0) terms will contribute to a chemical potential
term (for the local orbitals) in the U1 →∞ limit. Suppose U1 has frozen the charge fluctuation of local orbitals, i.e.,

∀R,
∑
αηs〈f

†
RαηsfRαηs〉 = Nf is constant, then all terms in Eq. (S149) with R 6= R′ can be decoupled in the Hartree

channel as

1

2

∑
R6=R′

∑
αηs

∑
α′η′s′

U(R−R′) : f†RαηsfRαηs :: f†R′α′η′s′fR′α′η′s′ :

=
1

2

∑
R6=R′

∑
αηs

∑
α′η′s′

U(R−R′)
(

2〈: f†RαηsfRαηs :〉 : f†R′α′η′s′fR′α′η′s′ : −〈: f†RαηsfRαηs :〉〈: f†R′α′η′s′fR′α′η′s′ :〉
)

=

(Nf − 4)
∑
R′ 6=0

U(R′)

∑
R

∑
αηs

f†RαηsfRαηs + const. (S156)

In order to capture the physics of chemical potential shift in an as simple as possible model, we consider the approx-
imate Hamiltonian of the form

ĤU =
U1

2

∑
R

∑
αηs

∑
α′η′s′

: f†RαηsfRαηs :: f†Rα′η′s′fRα′η′s′ : +
U2

2

∑
〈RR′〉

∑
αηs

∑
α′η′s′

: f†RαηsfRαηs :: f†R′α′η′s′fR′α′η′s′ : , (S157)

where 〈RR′〉 only sums over nearest neighbor pairs on the triangular lattice. Rather than naively choosing U2 =
U(aM1), we choose U2 as such a value that it gives the same chemical potential shift as Eq. (S156). In other words,
we absorb all the chemical potential shift effects coming from the U(R) (R 6= 0) terms into the nearest neighbor
repulsion. U2 can be calculated as

U2 =
1

6

∑
R 6=0

U(R) =
1

6

(
−U1 +

1

Ω0

∑
G

V (G)nf (G)nf (−G)

)
. (S158)

For w0/w1 = 0.8 we find U2 = 2.329meV, which is only slightly larger than U(aM1).

2. The density-density terms between local orbitals and conduction bands (the fifth term)

Second we consider the interaction between local orbital density and conduction electron density

ĤW =
1

Ωtot

ˆ
d2r1d

2r2

∑
Rαη1s1

: f†Rαη1s1fRαη1s1 : nf (r1 −R)V (r1 − r2)
∑

|k|,|k′|<Λc

∑
η2s2aa′

∑
lβ

∑
Q,Q′∈Qlη2

× ũ(η2)∗
Qβ,a(k)ũ

(η2)

Q′β,a′(k
′)e−i(k−Q−k′+Q′)·r2 : c†kaη2s2ck′a′η2s2 : (S159)

Applying the transformation (Eq. (S145))

ˆ
d2r2V (r1 − r2)e−i(k−Q−k

′+Q′)·r2 = V (k−Q− k′ + Q′)e−i(k−Q−k
′+Q′)·r1 (S160)
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and the variable substitution r1 → r1 + R, we can rewrite ĤW as

ĤW =
1

Ωtot

ˆ
d2r1

∑
Rαη1s1

: f†Rαη1s1fRαη1s1 : nf (r1)
∑

|k|,|k′|<Λc

∑
η2s2aa′l

∑
Q,Q′∈Qlη2

e−i(k−Q−k′+Q′)·(r1+R)

× V (k−Q− k′ + Q′)ũ
(η2)∗
Qβ,a(k)ũ

(η2)

Q′β,a′(k
′) : c†kaη2s2ck′a′η2s2 : (S161)

We introduce the integral

X
(η2)
aa′ (k,k′) =

1

Ω0

ˆ
d2r nf (r)

∑
lβ

∑
Q,Q′∈Qlη2

V (k−Q− k′ + Q′)e−i(k−Q−k
′+Q′)·rũ

(η2)∗
Qβ,a(k)ũ

(η2)
Q′β,a′(k

′) (S162)

such that the interaction can be written as (ei(Q−Q
′)·R = 1)

ĤW =
1

N

∑
Rαη1s1

∑
|k|,|k′|<Λc

∑
η2s2aa′

X
(η2)
aa′ (k,k′)e−i(k−k

′)·R : f†Rαη1s1fRαη1s1 :: c†kaηss2ck′a′ηss2 : (S163)

The conduction bands have low energy states around k ≈ 0. For the low energy states we can approximate the

integral as X
(η2)
aa′ (k,k′) ≈ X(η2)

aa′ (0, 0)

X
(η2)
aa′ (0, 0) =

1

Ω0

ˆ
d2r1nf (r)

∑
lβ

∑
Q,Q′∈Qlη2

V (Q−Q′)ei(Q−Q
′)·rũ

(η2)∗
Qβ,a(0)ũ

(η2)
Q′β,a′(0)

=
1

Ω0

∑
lβ

∑
QG

nf (G)V (G)ũ
(η2)∗
Qβ,a(0)ũ

(η2)
Q−Gβ,a′(0) . (S164)

Here Q indexes all vectors in Q+ ⊕ Q− and G indexes reciprocal lattices. Under the crystalline symmetries the
function nf (G)V (G) forms an identity representation, thus the summation over Q,G, β is non-vanishing only if

ũ
(η2)∗
Qβ,a(0)ũ

(η2)
Q−Gβ,a′(0) also form an identity representation of the valley-preserving symmetries. To be concrete, because

nf (gG)V (gG) = nf (G)V (G) for any crystalline symmetry g that preserves the valley, we can rewrite the X matrix
as

X
(η2)
aa′ (0, 0) =

1

Ω0

∑
lβ

∑
QG

nf (gG)V (gG)ũ
(η2)∗
Qβ,a(0)ũ

(η2)
Q−Gβ,a′(0) , (S165)

Relabeling Q→ g−1Q, G→ g−1G, we obtain

X
(η2)
aa′ (0, 0) =

1

Ω0

∑
lβ

∑
QG

nf (G)V (G)ũ
(η2)∗
g−1Qβ,a(0)ũ

(η2)
g−1Q−g−1Gβ,a′(0) . (S166)

For simplicity, we denote the symmetry operator matrices in Eqs. (S16) and (S17) as DQαη,Q′α′η′(g) =

δQ,gQ′δηη′D
(η)

α,α′(g) for g that preserve the valley. Since D
(η)

α,α′(g)’s are unitary, i.e.,
∑
αD

(η)∗
α,β (g)D

(η)

α,β′(g) = δββ′ ,
there are ∑

βQ

ũ
(η2)∗
g−1Qβ,a(0)ũ

(η2)
g−1Q−g−1Gβ,a′(0) =

∑
ββ′Q

∑
α

D
(η2)∗
α,β (g)ũ

(η2)∗
g−1Qβ,a(0)D

(η2)

α,β′ ũ
(η2)
g−1Q−g−1Gβ′,a′(0) (S167)

Since the vectors ũ(η2) form irreducible representations given by Eq. (S63), i.e.,∑
β

D
(η2)

α,β′(g)ũ
(η2)
g−1Qβ′,a(0) =

∑
βQ′

DQαη2,Q′β′η2 ũ
(η2)
Q′β′,a(0) =

∑
b

ũ
(η2)
Qα,a′(0)D

(c)
bη2,aη2

(g) (S168)

there is ∑
βQ

ũ
(η2)∗
g−1Qβ,a(0)ũ

(η2)
g−1Q−g−1Gβ,a′(0) =

∑
bb′

∑
αQ

ũ
(η2)∗
Qα,b(0)D

(c)∗
bη2,aη2

(g)ũ
(η2)
Q−Gα,b′(0)D

(c)
b′η2,a′η2

(g) (S169)

Substituting this relation into Eq. (S166), we obtain

X
(η2)
aa′ (0, 0) =

∑
bb′

D
(c)∗
bη2,aη2

(g)X
(η2)
bb′ (0, 0)D

(c)
b′η2,a′η2

(g) . (S170)
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In other words, X commutes with all D(c)(g) for crystalline symmetries g that preserve the valley. These symmetries
are generated by g = C3z, C2x, C2zT . Since D(c)(g) consists of three different irreducible representations of the
crystalline symmetry, i.e., Γ3 ⊕ Γ1 ⊕ Γ2, X must take the following form in the Γ3 ⊕ Γ1 ⊕ Γ2 basis according to the
Schur’s lemma

X(η) =


W

(η)
1 0 0 0

0 W
(η)
1 0 0

0 0 W
(η)
3 W

′(η)
3

0 0 W
′(η)
3 W

(η)
3

 (S171)

The off diagonal term W
′(η)
3 is allowed by the crystalline symmetries because the third and fourth components are

mixed states of the Γ1 ⊕ Γ2 basis. To be concrete, in the Γ1 ⊕ Γ2 subspace in each valley η, C3z, C2z, and C2zT are

represented by σ0, σx, σxK (with K being complex conjugation), respectively, and hence W
(η)
3 σ0 +W

′(η)
3 σx commutes

with all of them. However, W
′(η)
3 is forbidden by the particle-hole symmetry P . Due to [X(η), D(c,η)(P )] = 0 and

D
(c,η)
aa′ (P ) = D

(c)
aη,a′η(g) = η[(−iσz)⊕ (−iσz)]aa′ , W ′(η)

3 must vanish and hence X(η) is diagonal. Since nf (r) is a real

function, there must be nf (Q−Q′) = n∗f (Q′−Q) and hence X
(η)
aa′(0, 0) is a hermitian matrix, implying that X

(η)
aa (0, 0)

are all real numbers. Due to the time-reversal symmetry, X
(η)
aa′(0, 0) does not depend on the η index. We hence write

the X matrix as X
(η)
aa′(0, 0) = Waδaa′ , where W1 = W2, W3 = W4. For w0/w1 = 0.8 we find W1 = 44.03meV and

W3 = 50.20meV. Values of Wa at other w0/w1 are tabulated in Table S6.
In summary, the density-density interaction between the local orbitals and the conduction bands can be written as

ĤW =
1

N

∑
Rαη1s1

∑
|k|,|k′|<Λc

∑
η2s2a

Wae
−i(k−k′)·R : f†Rαη1s1fRαη1s1 :: c†kaη2s2ck′aη2s2 : (S172)

3. Density-density interaction of the conduction bands (the second term)

We third consider the density-density interaction of the conduction bands

ĤV =
1

2Ω2
tot

∑
β1l1η1s1

∑
β2l2η2s2

∑
a1a′1a2a

′
2

∑
|k1|,|k′1|<Λc
Q1Q

′
1∈Ql1η1

∑
|k2|,|k′2|<Λc
Q2Q

′
2∈Ql2η2

ˆ
d2r1d

2r2V (r1 − r2)

× e−i(k1−Q1−k′1+Q′1)·r1 ũ
(η1)∗
Q1β1,a1

(k1)ũ
(η1)
Q′1β1,a′1

(k′1)e−i(k
′
2−Q

′
2−k2+Q2)·r2 ũ

(η2)∗
Q′2β2,a′2

(k′2)ũ
(η2)
Q2β2,a2

(k2)

× : c†k1a1η1s1
ck′1a′1η1s1 :: c†k′2a′2η2s2

ck2a2η2s2 : . (S173)

After integration over r1, there is

ĤV =
1

2Ω2
tot

∑
β1l1η1s1

∑
β2l2η2s2

∑
a1a′1a2a

′
2

∑
|k1|,|k′1|<Λc
Q1Q

′
1∈Ql1η1

∑
|k2|,|k′2|<Λc
Q2Q

′
2∈Ql2η2

ˆ
d2r2V (k′1 −Q′1 − k1 + Q1)

× e−i(k
′
2−Q

′
2−k2+Q2−k′1+Q′1+k1−Q1)·r2 ũ

(η1)∗
Q1β1,a1

(k1)ũ
(η1)
Q′1β1,a′1

(k′1)ũ
(η2)∗
Q′2β2,a′2

(k′2)ũ
(η2)
Q2β2,a2

(k2)

× : c†k1a1η1s1
ck′1a′1η1s1 :: c†k′2a′2η2s2

ck2a2η2s2 : . (S174)

Integration over r2 leads to the momentum conservation k′1−Q′1−k1 +Q1 = k′2−Q′2−k2 +Q2. Since −Q′1 +Q1 and
−Q′2 +Q2 are reciprocal lattices and k′1, k1, k2, k′2 are small momenta around ΓM , there must be k′1− k1 = k′2− k2

and −Q′1 + Q1 = −Q′2 + Q2 separately. We introduce the momentum q = k′1 − k1 = k′2 − k2, the reciprocal lattice
G = −Q′1 + Q1 = −Q′2 + Q2 and rewrite the interaction as

ĤV =
1

2Ω0N

∑
β1l1η1s1

∑
β2l2η2s2

∑
a1a
′
1a2a

′
2

∑
|k1|<Λc

Q1∈Ql1η1

∑
|k2|<Λc

Q2∈Ql2η2

∑
G

∑
q

|k1+q|,|k2+q|<Λc

V (q + G)

× ũ(η1)∗
Q1β1,a1

(k1)ũ
(η1)

Q1−Gβ1,a
′
1
(k1 + q)ũ

(η2)∗
Q2−Gβ2,a

′
2
(k2 + q)ũ

(η2)
Q2β2,a2

(k2) : c†k1a1η1s1
ck1+qa′1η1s1

:: c†
k2+qa′2η2s2

ck2a2η2s2 : .

(S175)
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We introduce the matrix

Xη1a1a′1,η2a2a
′
2
(k1,k2;q) =

1

Ω0

∑
G

V (q + G)〈ũ(η1)
a1 (k1)|ũ(η1)

a′1
(k1 + q + G)〉〈ũ(η2)

a′2
(k2 + q + G)|ũ(η2)

a2 (k2)〉 (S176)

such that the interaction can be simplified to

ĤV =
1

2N

∑
η1s1a1a′1

∑
η2s2a2a′2

∑
|k1|,|k2|<Λc

∑
q

|k1+q|,|k2+q|<Λc

Xη1a1a′1,η2a2a
′
2
(k1,k2;q)

× : c†k1a1η1s1
ck1+qa′1η1s1

:: c†k2+qa′2η2s2
ck2a2η2s2 : . (S177)

For low energy states around k = 0, we can approximate the X matrix by replacing ũ
(η)
a (k) with ũ

(η)
a (0)

Xη1a1a′1,η2a2a
′
2
(k1,k2;q) ≈ Xη1a1a′1,η2a2a

′
2
(0, 0;q) =

1

Ω0

∑
G

V (q + G)〈ũ(η1)
a1 (0)|ũ(η1)

a′1
(G)〉〈ũ(η2)

a′2
(G)|ũ(η2)

a2 (0)〉 . (S178)

We find that the summation over G is dominated by the G = 0 component. For example, the diagonal element
Xη111,η211(0, 0; 0) is found to be 49.22meV, and the G = 0 component is 1

Ω0
V (0) = 48.33meV. Therefore, it is

reasonable to keep only the G = 0 component. Then we can write ĤV as

ĤV =
1

2Ω0N

∑
η1s1a1

∑
η2s2a2

∑
|k1|,|k2|<Λc

∑
q

|k1+q|,|k2+q|<Λc

V (q) : c†k1a1η1s1
ck1+qa1η1s1 :: c†k2+qa2η2s2

ck2a2η2s2 : . (S179)

C. Exchange terms (the tenth term)

1. Constraints of the coupling matrix

Now we consider the : ρ̂fc : V : ρ̂cf : +(↔) interaction discussed in Section S3 A (the tenth term)

ĤJ =
1

2Ωtot

∑
β1l1η1s1
β2l2η2s2

∑
R1α1
R2α2

∑
a1a2

∑
|k1|<Λc

Q1∈Ql1η1

∑
|k2|<Λc

Q2∈Ql2η2

ˆ
d2r1d

2r2 V (r1 − r2)

× w(η1)∗
l1β1,α1

(r1 −R1)w
(η2)
l2β2,α2

(r2 −R2)ũ
(η1)
Q1β1,a1

(k1)eiη1∆Kl1 ·R1+i(k1−Q1)·r1 ũ
(η2)∗
Q2β2,a2

(k2)e−iη2∆Kl2 ·R2−i(k2−Q2)·r2

×
(
f†R1α1η1s1

ck1a1η1s1c
†
k2a2η2s2

fR2α2η2s2 + c†k2a2η2s2
fR2α2η2s2f

†
R1α1η1s1

ck1a1η1s1

)
(S180)

Now we argue that, since the Wannier functions are well localized, the R1 = R2 terms will be much stronger than the
R1 6= R2 terms. In Section S3 B we find that the terms

´
d2r1d

2r2 V (r1− r2)nf (r1−R1)nf (r2−R2) with R1 = R2

are about 30 times the terms with R1,R2 being nearest neighbors. Now nf (r −R) is replaced by w(r −R). Since

w(r − R) (∼
√
n(r−R)) has a similar profile as nf (r − R), the R1 = R2 terms will still be much stronger than

the R1 6= R2 terms. (We have also numerically verified this argument. We find that, for w0/w1 = 0.8, the largest
coupling for |R1 −R2| = 0 and |R1 −R2| = aM are about 16meV and 1meV, respectively.) Thus we can simplify
this term as

ĤJ =
1

2Ωtot

∑
β1l1η1s1
β2l2η2s2

∑
Rα1α2

∑
a1a2

∑
|k1|<Λc

Q1∈Ql1η1

∑
|k2|<Λc

Q2∈Ql2η2

ˆ
d2r1d

2r2 V (r1 − r2)

× w(η1)∗
l1β1,α1

(r1 −R)w
(η2)
l2β2,α2

(r2 −R)ei(η1∆Kl1−η2∆Kl2 )·Rũ
(η1)
Q1β1,a1

(k1)ei(k1−Q1)·r1 ũ
(η2)∗
Q2β2,a2

(k2)e−i(k2−Q2)·r2

×
(
f†Rα1η1s1

ck1a1η1s1c
†
k2a2η2s2

fRα2η2s2 + c†k2a2η2s2
fRα2η2s2f

†
Rα1η1s1

ck1a1η1s1

)
(S181)

Substituting the Fourier transformation of the interaction into the above equation, we obtain

ĤJ =
1

2Ωtot

∑
β1l1η1s1
β2l2η2s2

∑
Rα1α2

∑
a1a2

∑
|k1|<Λc

Q1∈Ql1η1

∑
|k2|<Λc

Q2∈Ql2η2

ˆ
d2r1d

2r2

ˆ
d2q

(2π)2
V (q)e−iq(r1−r2)

× w(η1)∗
l1β1,α1

(r1 −R)w
(η2)
l2β2,α2

(r2 −R)ei(η1∆Kl1−η2∆Kl2 )·Rũ
(η1)
Q1β1,a1

(k1)ei(k1−Q1)·r1 ũ
(η2)∗
Q2β2,a2

(k2)e−i(k2−Q2)·r2

×
(
f†Rα1η1s1

ck1a1η1s1c
†
k2a2η2s2

fRα2η2s2 + c†k2a2η2s2
fRα2η2s2f

†
Rα1η1s1

ck1a1η1s1

)
(S182)



31

According to Eq. (S45), we have

ˆ
d2r2w

(η2)
l2β2,α2

(r2 −R)e−i(k2−Q2−q)·r2 =
√

Ω0 e
−i(k2−Q2−q)·Rṽ

(η2)
Q2β2,α2

(k2 − q) . (S183)

ˆ
d2r1w

(η1)∗
l1β1,α1

(r1 −R)ei(k1−Q1−q)·r1 =
√

Ω0 e
i(k1−Q1−q)·Rṽ

(η1)∗
Q1β1,α1

(k1 − q) . (S184)

Therefore, we find

ĤJ =
1

2N

∑
β1l1η1s1
β2l2η2s2

∑
Rα1α2

∑
a1a2

∑
|k1|<Λc

Q1∈Ql1η1

∑
|k2|<Λc

Q2∈Ql2η2

ˆ
d2q

(2π)2
V (q)ṽ

(η1)∗
Q1β1,α1

(k1 − q)ũ
(η1)
Q1β1,a1

(k1)ũ
(η2)∗
Q2β2,a2

(k2)ṽ
(η2)
Q1β1,α2

(k2 − q)

×ei(η1∆Kl1+k1−Q1−η2∆Kl2−k2+Q2)·R
(
f†Rα1η1s1

ck1a1η1s1c
†
k2a2η2s2

fRα2η2s2 + c†k2a2η2s2
fRα2η2s2f

†
Rα1η1s1

ck1a1η1s1

)
(S185)

Since η1∆Kl1 − Q1 − η2∆Kl2 + Q2 is a reciprocal lattice vector of the Moire lattice, there is
ei(η1∆Kl1

−Q1−η2∆Kl2
+Q2)·R = 1 and hence

ĤJ =
1

2N

∑
η1s1η2s2

∑
Rα1α2

∑
a1a2

∑
|k1|,|k2|<Λc

ˆ
d2q

(2π)2
V (q)〈ṽ(η1)

α1
(k1 − q)|ũ(η1)

a1 (k1)〉〈ũ(η2)
a2 (k2)|ṽ(η2)

α2
(k2 − q)〉

× ei(k1−k2)·R
(
f†Rα1η1s1

ck1a1η1s1c
†
k2a2η2s2

fRα2η2s2 + c†k2a2η2s2
fRα2η2s2f

†
Rα1η1s1

ck1a1η1s1

)
(S186)

We define the matrix

Xη1α1a1,η2α2a2(k1,k2) =

ˆ
d2q

(2π)2
V (q)〈ṽ(η1)

α1
(k1 − q)|ũ(η1)

a1 (k1)〉〈ũ(η2)
a2 (k2)|ṽ(η2)

α2
(k2 − q)〉 (S187)

such that the interaction can be written as

ĤJ =
1

2N

∑
η1α1a1
η2α2a2

∑
R

∑
|k1|,|k2|<Λc

Xη1α1a1,η2α2a2(k1,k2)ei(k1−k2)·R

×
(
f†Rα1η1s1

ck1a1η1s1c
†
k2a2η2s2

fRα2η2s2 + c†k2a2η2s2
fRα2η2s2f

†
Rα1η1s1

ck1a1η1s1

)
. (S188)

Since the low energy physics only involves conduction band around k1,2 ≈ 0, we can approximate the interaction
matrix elements by those at k1 = k2 = 0, i.e.,

Jη1α1a1,η2α2a2 = Xη1α1a1,η2α2a2(0, 0) =

ˆ
d2q

(2π)2
V (q)〈ṽ(η1)

α1
(−q)|ũ(η1)

a1 (0)〉〈ũ(η2)
a2 (0)|ṽ(η2)

α2
(−q)〉 (S189)

We hence approximate ĤJ as

ĤJ =
1

2N

∑
η1α1a1
η2α2a2

∑
R

∑
|k1|,|k2|<Λc

Jη1α1a1,η2α2a2e
i(k1−k2)·R

×
(
f†Rα1η1s1

ck1a1η1s1c
†
k2a2η2s2

fRα2η2s2 + c†k2a2η2s2
fRα2η2s2f

†
Rα1η1s1

ck1a1η1s1

)
. (S190)

After rearranging the creation and annihilation operators, ĤJ can be rewritten as (up to a constant)

ĤJ =− 1

N

∑
η1α1a1
η2α2a2

∑
R

∑
|k1|,|k2|<Λc

Jη1α1a1,η2α2a2e
i(k1−k2)·R : f†Rα1η1s1

fRα2η2s2 :: c†k2a2η2s2
ck1a1η1s1 : , (S191)

where the normal ordered operators are given in Eq. (S142).
We now study the J matrix (Eq. (S189)). One may explicitly apply all the crystalline symmetries to J as we did

around Eq. (S166) to obtain the constraints satisfied by J . Here we adopt a simplified notation, we use |ũ(η)
a (k)〉 to

represent the vector ũ
(η)
Qα,a(k) and D(g)|ũ(η)

a (k)〉 to represent the vector obtained by acting D(g) (Eqs. (S16), (S17)
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and (S29)) on the vector |ũ(η)
a (k)〉. According to the C2zP representations formed by f - and c-electrons (Eqs. (S36)

and (S65)):

D
(f)
αη,α′η′(C2zP ) = −i[σy]αα′ [τy]ηη′ (S192)

D
(c)
aη,a′η′(C2zP ) = i[σy ⊕ σy]aa′ [τy]ηη′ (S193)

there are

D(C2zP )|ṽ(η)
α (k)〉 =

∑
βη′

|ṽ(η′)
β (k)〉D(f)

βη′,αη(C2zP ) = −eiπαeiπ2 η|ṽ(−η)
α (k)〉 , (S194)

D(C2zP )|ũ(η)
a (k)〉 =

∑
bη′

|ũ(η)
a (k)〉D(c)

bη′,aη(C2zP ) = eiπaei
π
2 η|ũ(−η)

a (k)〉, (S195)

where α = 2, 1 for α = 1, 2 and a = 2, 1, 4, 3 for a = 1, 2, 3, 4. Inserting D†(C2zP )D(C2zP ) = 1 into the inner products
in Eq. (S189), it follows that

Jη1α1a1,η2α2a2 = −eiπ(α2−a2)Jη1α1a1,−η2α2a2 = −eiπ(a1−α1)J−η1α1a1,η2α2a2 (S196)

Similarly, due to the C2x symmetry (Eqs. (S36) and (S63)), the J matrix satisfies

Jη1α1a1,η2α2a2 = Jη1α1a1,η2α2a2 , (S197)

due to the C2y (= C2xC2z) symmetry (Eqs. (S36) and (S63)), the J matrix satisfies

Jη1α1a1,η2α2a2 = J−η1α1a1,−η2α2a2 , (S198)

and due to the C3z symmetry (Eqs. (S36) and (S63)), the J matrix satisfies

Jη1α1a1,η2α2a2 = ζ∗η1α1
ζη1a1ζ

∗
η2a2ζη2α2

Jη1α1a1,η2α2a2 . (S199)

Here ζηα = D
(f)
αη,αη(C3z) and ζηa = D

(c)
aη,aη(C3z) are the C3z eigenvalues.

2. Leading order coupling

For w0/w1 = 0.8, we find that the largest matrix elements of J are 16.38meV and the second largest matrix
elements are 4.28meV. We will only keep the largest matrix elements for simplicity. Due to the constraints derived
above, we find the largest elements of J are given by

Jη13,η13 = Jη24,η24 = −Jη13,−η24 = −Jη24,−η13 = J . (S200)

where J is the value of the largest matrix element. The values of J for other w0/w1 are tabulated in Table S6. The
interaction Hamiltonian can be simplified as

ĤJ =− J

N

∑
Rαηs1s2

∑
|k1|,|k2|<Λc

ei(k1−k2)·R( : f†Rαηs1fRαηs2 :: c†k2,α+2,ηs2
ck1,α+2,ηs1 : −f†Rαηs1fR,α,−ηs2c

†
k2,α+2,−ηs2ck1,α+2,ηs1

)
.

(S201)

We can write ĤJ in a more compact form as

HJ = − J

2N

∑
Rs1s2

∑
αα′ηη′

∑
|k1|,|k2|<Λc

ei(k1−k2)·R(ηη′ + (−1)α+α′) : f†Rαηs1fRα′η′s2 :: c†k2,α′+2,η′s2
ck1,α+2,ηs1 : (S202)

In Section S2 G we have block-diagonalized the flat-U(4) generators (Eqs. (S112) to (S114)) such that each block

carries a fundamental U(4) representation. We find that ĤJ is nothing but the coupling between two fundamental
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flat-U(4) “spins”. We first define the fundamental flat-U(4) generators at each site (momentum) for f -electrons
(c-electrons) as

Σ̂(f,ξ)
µν (R) =

1

2

∑
ηη′

∑
ss′

∑
αα′

δξ,(−1)α−1ηδξ,(−1)α′−1η′Σ
(µν,f)
αηs,α′η′s′f

†
RαηsfRα′η′s′ , (S203)

Σ̂(c′,ξ)
µν (q) =

1

2N

∑
ηη′

∑
ss′

∑
|k|<Λc
|k+q|<Λc

∑
aa′=1,2

δξ,(−1)a−1ηδξ,(−1)a′−1η′Σ
(µν,c)
aηs,a′η′s′c

†
k+qαηsckα′η′s′ , (S204)

Σ̂(c′′,ξ)
µν (q) =

1

2N

∑
ηη′

∑
ss′

∑
|k|<Λc
|k+q|<Λc

∑
aa′=3,4

δξ,(−1)a−1ηδξ,(−1)a′−1η′Σ
(µν,c)
aηs,a′η′s′c

†
k+qαηsckα′η′s′ . (S205)

The Σ(µν,f) and Σ(µν,c) matrices are given in Eqs. (S106) to (S109). Eqs. (S112) to (S114) are related to the above

equations as Σ̂
(f,ξ)
µν =

∑
R Σ̂

(f,ξ)
µν (R), Σ̂

(c′,ξ)
µν = N Σ̂

(c′,ξ)
µν (q = 0), Σ̂

(c′′,ξ)
µν = N Σ̂

(c′′,ξ)
µν (q = 0). Now we consider the

product of flat-U(4) generators
∑
µνξ e

−iq·RΣ̂
(f,ξ)
µν (R)Σ̂

(c′′,ξ)
µν (q). Substituting the explicit forms of the Σ(µν,f) and

Σ(µν,c) matrices into the product and expanding the summation over µ, we obtain∑
µνξ

e−iq·RΣ̂(f,ξ)
µν (R)Σ̂(c′′,ξ)

µν (q)

=
1

4N

∑
ξ

∑
ν=0,x,y,z

′∑
ηα

′∑
η′,a=3,4

∑
s1s2s3s4

′∑
k

e−iq·R
(
f†R,α,η,s1 [ςν ]s1s2fR,α,ηs2c

†
k+q,a,η′,s3

[ςν ]s3s4ck,a,η′,s4

+
(
(−1)α+a − (−1)α+aηη′

)
f†R,α,−ηs1 [ςν ]s1s2fR,α,ηs2c

†
k+q,a,−η′,s3 [ςν ]s3s4ck,a,η′,s4

+ ηη′f†Rαηs1 [ςν ]s1s2fRαηs2c
†
k+qaη′s3

[ςν ]s3s4ckaη′s4

)
, (S206)

where
∑′
ηα sums over η, α satisfying ξ = (−1)α−1η,

∑′
η,a=3,4 sums over η, a satisfying ξ = (−1)a−1η, and

∑′
k sums

over k satisfying |k| < Λc, |k + q| < Λc. Due to the identity
∑
ν [ςν ]s1s2 [ςν ]s3s4 = 2δs1s4δs2s3 , there is∑

µνξ

e−iq·RΣ̂(f,ξ)
µν (R)Σ̂(c′′,ξ)

µν (q)

=
1

2N

∑
ξ

′∑
ηα

′∑
η′,a=3,4

∑
s1s2

′∑
k

e−iq·R
(
f†R,α,η,s1fR,α,ηs2c

†
k+q,a,η′,s2

ck,a,η′,s1 + ηη′f†Rαηs1fRαηs2c
†
k+qaη′s2

ckaη′s1

+
(
(−1)α+a − (−1)α+aηη′

)
f†R,α,−ηs1fR,α,ηs2c

†
k+q,a,−η′,s2ck,a,η′,s1

)
. (S207)

The first line after the equal sign vanishes unless η = η′, which, according to ξ = (−1)α−1η = (−1)a−1η, also implies
a = α+2. The second line after the equal sign vanishes unless η = −η′, which, according to ξ = (−1)α−1η = (−1)a−1η,
also implies a = α+ 2. Therefore, the above equation can be simplified to∑

µνξ

e−iq·RΣ̂(f,ξ)
µν (R)Σ̂(c′′,ξ)

µν (q)

=
1

N

∑
ξ

′∑
ηα

∑
s1s2

′∑
k

e−iq·R
(
f†R,α,η,s1fR,α,ηs2c

†
k+q,α+2,η,s2

ck,α+2,η,s1 −f†R,α,−ηs1fR,α,ηs2c
†
k+q,α+2,η,s2

ck,α+2,−η,s1

)
.

(S208)

The summation
∑
ξ

∑′
ηα can be equivalently replaced by

∑
ηα that has no restriction on ηα. Comparing it with ĤJ ,

we find ĤJ equals to

ĤJ = −J
∑
Rq

∑
µνξ

e−iq·R : Σ̂(f,ξ)
µν (R) :: Σ̂(c′′,ξ)

µν (q) : . (S209)
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3. Other coupling terms

For w0/w1 = 0.8, we find that the second largest and third largest matrix elements are given by

Jη14,η14 = Jη23,η23 = Jη14,−η23 = Jη14,−η13 = J ′ = 4.28meV , (S210)

and

Jη12,η23 = Jη14,η21 = Jη21,η14 = Jη23,η12

=Jη12,−η14 = Jη14,−η12 = Jη21,−η23 = Jη23,−η21 = −J ′′ = −1.17meV , (S211)

respectively. Following the calculation around Eq. (S206) in last subsubsection, we find that the J ′ term can be
rewritten as a ferro-magnetic coupling btween f -electrons and c-electrons

− J ′
∑
Rq

∑
µνξ

e−iq·R : Σ̂(f,ξ)
µν (R) :: Σ̂(c′′,−ξ)

µν (q) : . (S212)

Different with J , which couples U(4) moments of f - and c-electrons with the same ξ index, J ′ couples U(4) moments
f - and c-electrons with opposite ξ indices. The J ′ term respects the flat-U(4) symmetry because it is a product of
flat-U(4) moments, but it breaks the U(4)×U(4) symmetry.

The J ′′ term can be rewritten as

J ′′
1

N

∑
R

∑
|k1|,|k2|<Λc

∑
ss′η

ei(k1−k2)·R
(
f†Rη1sck1η2s + f†R−η2sck1−η1s

)(
c†k2η3s′fRη2s′ + c†k2−η4s′fR−η1s′

)
+ h.c. (S213)

J ′′ cannot be written as a product of flat-U(4) moments and it breaks the flat-U(4) symmetry. To see the symmetry

breaking, we consider to apply the valley rotation e−i
π
2 Σ̂x0 (Eq. (S105)). Using the explicit U(4) representations

defined in Eqs. (S106) to (S109), we find that the J ′′ term transforms to

→ −J ′′ 1

N

∑
R

∑
|k1|,|k2|<Λc

∑
ss′η

ei(k1−k2)·R
(
f†Rη1sck1η2s + f†R−η2sck1−η1s

)(
c†k2η3s′fRη2s′ + c†k2−η4s′fR−η1s′

)
+ h.c.

(S214)

Thus the J ′′ term is odd under e−i
π
2 Σ̂x0 . Since J ′′ = −1.17meV is small compared to other energy scales, e.g.,

U1 = 57.95meV, J = 16.38meV, flat-U(4) is still an approximate symmetry of the full interaction Hamiltonian.
It was shown in Ref. [4] that in the flat nonchiral limit the flat-U(4) is an exact symmetry of the projected

Coulomb Hamiltonian. But here we find that the flat-U(4) symmetry is broken by J ′′. The reason for this seemingly
contradiction is that the Γ3 states, which are absent in the projected Coulomb Hamiltonian, are added in the heavy
fermion model. Notice that the inter-valley rotation in Ref. [4] is generated by the unitary operator C2zP , while
the inter-valley rotation here is generated by C2zPS, where S is the third-chiral operator defined in Section S2 G.
S is needed in our model because otherwise the inter-valley rotation would not commute with the kinetic energy of
the dispersive c-bands. The representations of the two operators are given by Df (C2zP ) = −iσyτy, Dc(C2zP ) =
(iσyτy) ⊕ (iσyτy) and Df (C2zPS) = −iσyτy, Dc(C2zPS) = (−iσyτy) ⊕ (iσyτy), respectively, where the first and
second blocks of Dc act on Γ3 and Γ1 ⊕ Γ2 states, respectively. Since J and J ′ terms only involve f -electrons and
Γ1 ⊕ Γ2 c-electrons, on which C2zP and C2zPS actions are the same, the conclusion of Ref. [4] applies and hence J ,
J ′ terms respect the flat-U(4) symmetry. However the J ′′ term involves Γ3 c-electrons, on which C2zP and C2zPS
actions are different, hence the conclusion of Ref. [4] does not apply to J ′′.

D. Double hybridization terms (the third and fourth terms)

Here we determine the double hybridization terms, i.e., the third and fourth terms discussed in Section S3 A. We
first consider the : ρfc : V : ρfc : term

ĤJ̃+ =
1

2Ωtot

ˆ
d2r1d

2r2V (r1 − r2)
∑

β1l1η1s1
β2l2η2s2

∑
R1α1a1
R2α2a2

∑
|k1|<Λc
|k2|<Λc

∑
Q1∈Ql1η1
Q2∈Ql2η2

w
(η1)∗
l1β1,α1

(r1 −R1)ũ
(η1)
Q1β1,a1

(k1)eiη1∆Kl1
·R1ei(k1−Q1)·r1

× w(η2)∗
l2β2,α2

(r2 −R2)ũ
(η2)
Q2β2,a2

(k2)eiη2∆Kl2
·R2ei(k2−Q2)·r2f†R1α1η1s1

ck1a1η1s1f
†
R2α2η2s2

ck2a2η2s2 (S215)
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As explained at the beginning of Section S3 C, since the Wannier functions are sharp Gaussian functions and V (r1−r2)
decays quickly as |r1 − r2| grows, the largest contribution to the above equation should come from the R1 = R2

terms. Therefore, in the following we only focus on the R1 = R2 term. Substituting the Fourier transformation of
the interaction, we can rewrite the interaction as

ĤJ̃+ =
1

2Ωtot

ˆ
d2q

(2π)2

ˆ
d2r1d

2r2V (q)e−iq·(r1−r2)
∑

β1l1η1s1
β2l2η2s2

∑
Rα1α2
a1a2

∑
|k1|<Λc
|k2|<Λc

∑
Q1∈Ql1η1
Q2∈Ql2η2

w
(η1)∗
l1β1,α1

(r1 −R)ũ
(η1)
Q1β1,a1

(k1)ei(k1−Q1)·r1

× w(η2)∗
l2β2,α2

(r2 −R)ũ
(η2)
Q2β2,a2

(k2)ei(k2−Q2)·r2ei(η1∆Kl1+η2∆Kl2 )·Rf†Rα1η1s1
ck1a1η1s1f

†
Rα2η2s2

ck2a2η2s2 (S216)

According to Eq. (S45), there is

ˆ
d2r1w

(η1)∗
l1β1,α1

(r1 −R)ei(k1−Q1−q)·r1 =
√

Ω0 e
i(k1−Q1−q)·Rṽ

(η1)∗
Q1β1,α1

(k1 − q) . (S217)

Therefore, we have

ĤJ̃+ =
1

2N

ˆ
d2q

(2π)2
V (q)

∑
β1l1η1s1
β2l2η2s2

∑
Rα1α2
a1a2

∑
|k1|<Λc
|k2|<Λc

∑
Q1∈Ql1η1
Q2∈Ql2η2

ṽ
(η1)∗
Q1β1,α1

(k1 − q)ũ
(η1)
Q1β1,a1

(k1)ṽ
(η2)∗
Q2β2,α2

(k2 + q)ũ
(η2)
Q2β2,a2

(k2)

× ei(η1∆Kl1
+k1−Q1−q+η2∆Kl2

+k2−Q2+q)·Rf†Rα1η1s1
ck1a1η1s1f

†
Rα2η2s2

ck2a2η2s2 . (S218)

Since η1∆Kl1−Q1 +η2∆Kl2−Q2 is always a moiré reciprocal lattice, there must be ei(η1∆Kl1
−Q1+η2∆Kl2

−Q2)·R = 1.
We can further simplify the Hamiltonian as

ĤJ̃+ =
1

2N

ˆ
d2q

(2π)2
V (q)

∑
η1s1η2s2

∑
Rα1α2
a1a2

∑
|k1|<Λc
|k2|<Λc

〈ṽ(η1)
α1

(k1 − q)|ũ(η1)
a1 (k1)〉〈ṽ(η2)

α2
(k2 + q)|ũ(η2)

a2 (k2)〉

× ei(k1+k2)·Rf†Rα1η1s1
ck1a1η1s1f

†
Rα2η2s2

ck2a2η2s2 . (S219)

We define the matrix

Xη1α1a1,η2α2a2(k1,k2) =

ˆ
d2q

(2π)2
V (q)〈ṽ(η1)

α1
(k1 − q)|ũ(η1)

a1 (k1)〉〈ṽ(η2)
α2

(k2 + q)|ũ(η2)
a2 (k2)〉 (S220)

such that the interaction can be written as

ĤJ̃+ =
1

2N

∑
η1s1η2s2

∑
Rα1α2
a1a2

∑
|k1|<Λc
|k2|<Λc

Xη1α1a1,η2α2a2(k1,k2)ei(k1+k2)·Rf†Rα1η1s1
f†Rα2η2s2

ck2a2η2s2ck1a1η1s1 . (S221)

For low energy states around k = 0, we can approximate Xη1α1a1,η2α2a2(k1,k2) by Xη1α1a1,η2α2a2(0, 0) (dubbed as

J̃η1α1a1,η2α2a2)

J̃η1α1a1,η2α2a2 =

ˆ
d2q

(2π)2
V (q)〈ṽ(η1)

α1
(−q)|ũ(η1)

a1 (0)〉〈ṽ(η2)
α2

(q)|ũ(η2)
a2 (0)〉 (S222)

We find that, according to the time-reversal symmetry, the matrix elements of J̃ are same as those of J (Eq. (S189)).

The T symmetry (Eq. (S16)) and its representations (Eqs. (S36) and (S63)) imply ṽ
(η2)
Qβ,α2

(k) = ṽ
(−η2)∗
−Qβ,α2

(−k),

ũ
(η2)
Qβ,a2

(0) = ũ
(−η2)∗
−Qβ,a2(0) and hence

〈ṽ(η2)
α2

(q)|ũ(η2)
a2 (0)〉 = 〈ũ(−η2)

a2 (0)|ṽ(−η2)
α2

(−q)〉 . (S223)

Thus we have

J̃η1α1a1,η2α2a2 =

ˆ
d2q

(2π)2
V (q)〈ṽ(η1)

α1
(−q)|ũ(η1)

a1 (0)〉〈ũ(−η2)
a2 (0)|ṽ(−η2)

α2
(−q)〉 = Jη1α1a1,−η2α2a2 . (S224)
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Thus ĤJ̃+ can be written as

ĤJ̃+ =
1

2N

∑
η1s1η2s2

∑
Rα1α2
a1a2

∑
|k1|<Λc
|k2|<Λc

Jη1α1a1,η2α2a2e
i(k1+k2)·Rf†Rα1η1s1

f†Rα2η2s2
ck2a2η2s2ck1a1η1s1 . (S225)

According to Eq. (S200), the non-negligible matrix elements of J and J̃ are given by

Jη13,η13 = Jη24,η24 = −Jη13,−η24 = −Jη24,−η13 = J , (S226)

J̃η13,−η13 = J̃η24,−η24 = −J̃η13,η24 = −J̃η24,η13 = J . (S227)

The interaction Hamiltonian ĤJ̃+ can be explicitly written as

ĤJ̃+ =− J

2N

∑
ηs1s2

∑
Rα

∑
|k1|,|k2|<Λc

ei(k1+k2)·R
(
f†Rαηs1f

†
Rαηs2

ck2,α+2,ηs2ck1,α+2,ηs1 − f
†
Rαηs1

f†Rα,−η,s2ck2,α+2,−η,s2ck1,α+2,ηs1

)
.

(S228)

We can write ĤJ̃+ in a more compact form as

ĤJ̃+ = − J

4N

∑
Rs1s2

∑
αα′ηη′

∑
|k1|,|k2|<Λc

ei(k1+k2)·R(ηη′ − (−1)α+α′)f†Rαηs1f
†
Rα′η′s2

ck2,α′+2,η′s2ck1,α+2,ηs1 (S229)

The fourth term in Section S3 A, i.e., : ρcf : V : ρcf :, is just the hermitian conjugation of ĤJ̃+. Thus the total
double hybridization interaction is given by

ĤJ̃ = ĤJ̃+ + Ĥ†
J̃+

. (S230)

E. Density-hybridization terms (the sixth, seventh, eighth, and ninth terms)

1. Vanishing sixth and seventh terms

We now study the sixth and seventh terms discussed in Section S3 A. The sixth term (: ρ̂ff : V : ρ̂fc : +(↔)) has
the form

Ĥ67 =
1

2
√

Ωtot

ˆ
d2r1d

2r2V (r1 − r2)
∑

Rαη1s1

nf (r1 −R)
∑
|k|<Λc

∑
η2s2α′a

∑
lβ

∑
Q∈Qlη2

w
(η2)∗
lβ,α′ (r2 −R)ũ

(η2)
Qβ,a(k)ei(k−Q)·r2eiη2∆Kl·R

×
(

: f†Rαη1s1fRαη1s1 : f†Rα′η2s2ckaη2s2 + f†Rα′η2s2ckaη2s2 : f†Rαη1s1fRαη1s1 :
)
. (S231)

We have omitted the overlap of local orbitals at different sites. Changing the variables r1 → r1 +R, r2 → r2 +R, we
can rewrite the interaction as

Ĥ67 =
1

2
√

Ωtot

ˆ
d2r1d

2r2V (r1 − r2)
∑

Rαη1s1

nf (r1)
∑
|k|<Λc

∑
η2s2α′a

∑
lβ

∑
Q∈Qlη2

w
(η2)∗
lβ,α′ (r2)ũ

(η2)
Qβ,a(k)ei(k−Q)·r2eik·R

×
(

: f†Rαη1s1fRαη1s1 : f†Rα′η2s2ckaη2s2 + f†Rα′η2s2ckaη2s2 : f†Rαη1s1fRαη1s1 :
)
. (S232)

We have made use of the fact that η∆Kl −Q is a moiré reciprocal lattice and ei(η∆Kl−Q)·R = 1. We introduce the
matrix

X
(η2)
α′,a(k) =

1√
Ω0

ˆ
d2r1d

2r2V (r1 − r2)nf (r1)
∑
lβ

∑
Q∈Qlη2

w
(η2)∗
lβ,α′ (r2)ũ

(η2)
Qβ,a(k)ei(k−Q)·r2 (S233)

such that the interaction can be written as

Ĥ67 =
1

2
√
N

∑
Rαη1s1

∑
η2s2α′a

∑
|k|<Λc

X
(η2)

α′,a(k)eik·R
(

: f†Rαη1s1fRαη1s1 : f†Rα′η2s2ckaη2s2 + f†Rα′η2s2ckaη2s2 : f†Rαη1s1fRαη1s1 :
)
.

(S234)
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Since only the conduction states around k = 0 are relevant in the low energy physics, we will approximate X
(η2)
α′,a(k)

by X
(η2)
α′,a(0)

X
(η2)
α′,a(0) =

1√
Ω0

ˆ
d2r1d

2r2V (r1 − r2)nf (r1)
∑
lβ

∑
Q∈Qlη2

w
(η2)∗
lβ,α′ (r2)ũ

(η2)
Qβ,a(0)e−iQ·r2 . (S235)

Now we show that X
(η2)
α′,a(0) is guaranteed to be vanishing by symmetries. According to the C3z symmetry (Eqs. (S16)

and (S23)), there is

ei
2π
3 η2[σz ]ββw

(η2)
lβ,α′(r2) = w

(η2)
lβ,α′(C3zr2)ζfη2α, ei

2π
3 η2[σz ]ββ ũ

(η2)
Qβ,a(0) = ũ

(η2)
C3zQβ,a

(0)ζcη2a (S236)

with ζfηα and ζcηα being C3z eigenvalues given in Eq. (S36) and Eq. (S63), respectively, i.e.,

ζfη2α = ei
2π
3 η2[σz ]αα , ζcη2α =

{
ei

2π
3 η2[σz ]aa , a = 1, 2

1, a = 3, 4
. (S237)

Substituting this condition into Eq. (S235), we have

X
(η2)
α′,a(0) =ζf∗η2,α′ζ

c
η2,a

1√
Ω0

ˆ
d2r1d

2r2V (r1 − r2)nf (r1)
∑
lβ

∑
Q∈Qlη2

w
(η2)∗
lβ,α′ (C3zr2)ũ

(η2)
C3zQβ,a

(0)e−iQ·r2 (S238)

Changing the variables as r1 → C−1
3z r1, r2 → C−1

3z r2, Q→ C−1
3z Q, we have

X
(η2)

α′,a(0) =ζf∗η2,α′ζ
c
η2,a

1√
Ω0

ˆ
d2r1d

2r2V (C−1
3z r1 − C−1

3z r2)nf (C−1
3z r1)

∑
lβ

∑
Q∈Qlη2

w
(η2)∗
lβ,α′ (r2)ũ

(η2)
Qβ,a(0)e−iQ·r2 (S239)

Making use of V (C3zr) = V (r), nf (C3zr) = nf (r), we have

X
(η2)
α′,a(0) = ζf∗η2,α′ζ

c
η2,aX

(η2)
α′,a(0) . (S240)

Therefore, X
(η2)
α′,a(0) is zero if ζfη2,α′ 6= ζcη2,a. Due to the C3z eigenvalues the only possible nonzero matrix elements are

X
(η2)
1,1 (0) and X

(η2)
2,2 (0). The above symmetry analysis also applies for other symmetries, for example the particle-hole

symmetry P . As explained in the end of Section S2 B, the a = 1, 2 states have opposite P eigenvalues with the

α = 1, 2 states. Thus X
(η2)
1,1 (0) and X

(η2)
2,2 (0) are also guaranteed to be zero. Thus the matrix elements in Ĥ67 vanish

to zeroth order of k.
Since the seventh term discussed in Section S3 A is the hermitian conjugation of the sixth term, its matrix elements

also vanish to zeroth order of k. The sixth and seventh interaction terms will be non-vanishing if we include higher

order terms of k in the matrix elements, i.e., the k-dependence in ũ
(η)
Qα,a(k). But these matrix elements will be

small for low energy conduction band states around k = 0. We claim that these k-depend matrix elements in the
density-hybridization interaction are irrelevant in the low energy physics.

2. The eighth and ninth terms

We now study the eighth and ninth terms discussed in Section S3 A. They are weak because the hybridization, i.e.,
〈f†c〉 and 〈c†f〉, is small, as will be discussed in Section S4. The eighth term (: ρ̂cc : V : ρ̂fc : +(↔)) has the form

ĤK+ =
1

2Ω
3
2
tot

ˆ
d2r1d

2r2V (r1 − r2)
∑

β1l1η1s1

∑
|k1|,|k′1|<Λc

a1a
′
1

∑
Q1,Q

′
1∈Ql1η1

e−i(k1−Q1−k′1+Q′1)·r1 ũ
(η1)∗
Q1β1,a1

(k1)ũ
(η1)

Q′1β1,a
′
1
(k′1)

×
∑

β2l2η2s2

∑
Rα

∑
|k2|<Λc
a2

∑
Q2∈Ql2η2

w
(η2)∗
l2β2,α

(r2 −R)ũ
(η2)
Q2β2,a

(k2)ei(k2−Q2)·r2eiη2∆Kl2 ·R

×
(

: c†k1a1η1s1
ck′1a′1η1s1 : f†Rαη2s2ck2a2η2s2 + f†Rαη2s2ck2a2η2s2 : c†k1a1η1s1

ck′1a′1η1s1 :
)
. (S241)



38

Applying the Fourier transformation of V (r), we obtain

ĤK+ =
1

2Ω
3
2
tot

ˆ
d2r2

∑
β1l1η1s1

∑
|k1|,|k′1|<Λc

a1a
′
1

∑
Q1,Q

′
1∈Ql1η1

V (k1 −Q1 − k′1 + Q′1)ũ
(η1)∗
Q1β1,a1

(k1)ũ
(η1)

Q′1β1,a
′
1
(k′1)

×
∑

β2l2η2s2

∑
Rα

∑
|k2|<Λc
a2

∑
Q2∈Ql2η2

w
(η2)∗
l2β2,α

(r2 −R)ũ
(η2)
Q2β2,a

(k2)ei(k2−Q2−k1+Q1+k′1−Q′1)·r2eiη2∆Kl2 ·R

×
(

: c†k1a1η1s1
ck′1a′1η1s1 : f†Rαη2s2ck2a2η2s2 + f†Rαη2s2ck2a2η2s2 : c†k1a1η1s1

ck′1a′1η1s1 :
)
. (S242)

According to Eq. (S45), there are

ˆ
d2r2w

(η2)∗
l2β2,α

(r2 −R)ei(k2−Q2−k1+Q1+k′1−Q
′
1)·r2 =

=
√

Ω0 e
i(k2−Q2−k1+Q1+k′1−Q

′
1)·Rṽ

(η2)∗
Q2−Q1+Q′1β2,α

(k2 − k1 + k′1) . (S243)

Since η2∆Kl2 −Q2 + Q1 −Q′1 is a moiré reciprocal lattice, it must be that ei(η2∆Kl2
−Q2+Q1−Q′1)·R = 1. We hence

obtain

ĤK+ =
1

2N
3
2 Ω0

∑
β1l1η1s1

∑
|k1|,|k′1|<Λc

a1a
′
1

∑
Q1,Q

′
1∈Ql1η1

V (k1 −Q1 − k′1 + Q′1)ũ
(η1)∗
Q1β1,a1

(k1)ũ
(η1)

Q′1β1,a
′
1
(k′1)

×
∑

β2l2η2s2

∑
Rα

∑
|k2|<Λc
a2

∑
Q2∈Ql2η2

ṽ
(η2)∗
Q2−Q1+Q′1,β2;α

(k2 − k1 + k′1)ũ
(η2)
Q2β2,a

(k2)ei(k2−k1+k′1)·R

×
(

: c†k1a1η1s1
ck′1a′1η1s1 : f†Rαη2s2ck2a2η2s2 + f†Rαη2s2ck2a2η2s2 : c†k1a1η1s1

ck′1a′1η1s1 :
)
. (S244)

We define the matrix

Xη1a1a′1,η2αa2
(k1,k

′
1,k2) =

∑
l1β1l2β2

∑
Q1,Q′1∈Ql1η1

∑
Q2∈Ql2η2

V (k1 −Q1 − k′1 + Q′1)

× ũ(η1)∗
Q1β1,a1

(k1)ũ
(η1)
Q′1β1,a′1

(k′1)ṽ
(η2)∗
Q2−Q1+Q′1,β2;α(k2 − k1 + k′1)ũ

(η2)
Q2β2,a

(k2) (S245)

such that the interaction can be written as

ĤK+ =
1

2N
3
2 Ω0

∑
η1s1η2s2

∑
|k1|,|k′1|<Λc

a1a
′
1

∑
Rα

∑
|k2|<Λc
a2

ei(k2−k1+k′1)·RXη1a1a′1,η2αa2(k1,k
′
1,k2)

×
(

: c†k1a1η1s1
ck′1a′1η1s1 : f†Rαη2s2ck2a2η2s2 + f†Rαη2s2ck2a2η2s2 : c†k1a1η1s1

ck′1a′1η1s1 :
)
. (S246)

Since the conduction bands only have low energy states around k = 0, thus in the following we approximate
Xη1a1a′1,η2αa2

(k1,k
′
1,k2) by Xη1a1a′1,η2αa2

(0, 0, 0), dubbed as Kη1a1a′1,η2αa2

Kη1a1a′1,η2αa2 =
∑

l1β1l2β2

∑
Q1,Q

′
1∈Ql1η1

∑
Q2∈Ql2η2

V (−Q1 + Q′1)ũ
(η1)∗
Q1β1,a1

(0)ũ
(η1)

Q′1β1,a
′
1
(0)ṽ

(η2)∗
Q2−Q1+Q′1,β2;α

(0)ũ
(η2)
Q2β2,a

(0)

=
∑

l1β1l2β2

∑
Q1∈Ql1η1

∑
Q2∈Ql2η2

∑
G

V (G)ũ
(η1)∗
Q1β1,a1

(0)ũ
(η1)

Q1−G,β1;a′1
(0)ṽ

(η2)∗
Q2−G,β2;α(0)ũ

(η2)
Q2β2,a

(0)

=
∑
G

V (G)〈ũ(η1)
a1 (0)|ũ(η1)

a′1
(G)〉〈ṽ(η2)

α (G)|ũ(η2)
a2 (0)〉 . (S247)

The Hamiltonian ĤK+ can be written in a simple form

ĤK+ =
1

2N
3
2 Ω0

∑
η1s1η2s2

∑
a1a′1a2

∑
|k1|,|k′1|,|k2|<Λc

∑
Rα

ei(k2−k1+k′1)·RKη1a1a′1,η2αa2

×
(

: c†k1a1η1s1
ck′1a′1η1s1 : f†Rαη2s2ck2a2η2s2 + f†Rαη2s2ck2a2η2s2 : c†k1a1η1s1

ck′1a′1η1s1 :
)
. (S248)
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We now study the K matrix. According to the C2zP symmetry (Eqs. (S36) and (S65)), there are

C2zP |ṽ(η)
α (k)〉 = −eiπαeiπ2 η|ṽ(−η)

α (k)〉, C2zP |ũ(η)
a (k)〉 = eiπaei

π
2 η|ṽ(−η)

a (k)〉, (S249)

where α = 2, 1 for α = 1, 2 and a = 2, 1, 4, 3 for a = 1, 2, 3, 4. Then if follows that the K matrix satisfies

Kη1a1a′1,η2αa2 = eiπ(a′1−a1)K−η1a1a′1,η2αa2 = −eiπ(a2−α)Kη1a1a′1,−η2αa2 (S250)

Similarly, due to the C2x symmetry (Eqs. (S36) and (S63)), the K matrix satisfies

Kη1a1a′1,η2αa2 = Kη1a1a′1,η2αa2 . (S251)

Due to the C2zTP symmetry (Eqs. (S36) and (S65)), the K matrix satisfies

Kη1a1a′1,η2αa2 = (−1)a1+a′1Kη1a′1a1,η2αa2 . (S252)

Numerically we find that there is only one independent non-negligible matrix element

Kη114,η224 = Kη123,η213 = −Kη132,η224 = −Kη141,η213 = η1η2K , (S253)

where K = 4.887meV for w0/w1 = 0.8. The second largest matrix element is 0.82meV. One can verify that the K
matrix satisfies the constraints derived above. Therefore, we can write the Hamiltonian ĤK+ as

ĤK+ =
K

N
3
2 Ω0

∑
η1s1η2s2

∑
|k1|,|k′1|,|k2|<Λc

∑
Rα

ei(k2+k′1−k1)·Rη1η2

(
c†k1αη1s1

ck′1,α+2,η1s1f
†
Rαη2s2

ck2,α+2,η2s2

− f†Rαη2s2ck2,α+2,η2s2c
†
k1,α+2,η1s1

ck′1,α,η1s1

)
. (S254)

The ninth term discussed in Section S3 A, i.e., : ρ̂cc : V : ρ̂cf : +(↔), is just the hermitian conjugation of ĤK+.
Thus the total density-hybridization Hamiltonian is given by

ĤK = ĤK+ + Ĥ†K+ . (S255)

F. Summary of the interaction Hamiltonian and its symmetries

1. Summary of the interaction Hamiltonian

In summary, the interaction Hamiltonian is given by

ĤI = ĤU + ĤV + ĤW + ĤJ + ĤJ̃ + ĤK . (S256)

ĤU (Eq. (S157)) is the density-density interaction of the local orbitals

ĤU =
U1

2

∑
R

∑
αηs

∑
α′η′s′

: f†RαηsfRαηs :: f†Rα′η′s′fRα′η′s′ : +
U2

2

∑
〈RR′〉

∑
αηs

∑
α′η′s′

: f†RαηsfRαηs :: f†R′α′η′s′fR′α′η′s′ : , (S257)

where 〈RR′〉 indexes nearest neighbor pairs on the triangular lattice, U1 is the on-site repulsion interaction, and U2 is

the repulsion between nearest neighbors. ĤV (Eq. (S179)) is the density-density interaction of the conduction bands

ĤV =
1

2Ω0N

∑
η1s1a1

∑
η2s2a2

∑
|k1|,|k2|<Λc

∑
q

|k1+q|,|k2+q|<Λc

V (q) : c†k1a1η1s1
ck1+qa1η1s1 :: c†k2+qa2η2s2

ck2a2η2s2 : , (S258)

where V (q) (Eq. (S145)) is the Fourier transformation of the double-gate-screened Coulomb interaction. ĤW

(Eq. (S172)) is the density-density interaction between the local orbitals and the conduction bands

ĤW =
1

N

∑
Rαη1s1

∑
|k|,|k′|<Λc

∑
η2s2a

Wae
−i(k−k′)·R : f†Rαη1s1fRαη1s1 :: c†kaη2s2ck′aη2s2 : , (S259)
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where W1 = W2 and W3 = W4 due to symmetries. ĤJ (Eq. (S202)) is the exchange interaction between local orbitals
and the conduction bands

HJ = − J

2N

∑
Rs1s2

∑
αα′ηη′

∑
|k1|,|k2|<Λc

ei(k1−k2)·R(ηη′ + (−1)α+α′) : f†Rαηs1fRα′η′s2 :: c†k2,α′+2,η′s2
ck1,α+2,ηs1 : . (S260)

ĤJ can be equivalently written as ferromagnetic coupling between the flat-U(4) momenta (Eq. (S209))

ĤJ = −J
∑
µνξ

e−iq·RΣ̂(f,ξ)
µν (R)Σ̂(c′′,ξ)

µν (q) , (S261)

with the momenta given by Eqs. (S203) and (S205). ĤJ̃ = ĤJ̃+ + Ĥ†
J̃+

is the double-hybridization interaction, with

ĤJ̃+ (Eq. (S229)) given by

ĤJ̃+ = − J

4N

∑
Rs1s2

∑
αα′ηη′

∑
|k1|,|k2|<Λc

ei(k1+k2)·R(ηη′ − (−1)α+α′)f†Rαηs1f
†
Rα′η′s2

ck2,α′+2,η′s2ck1,α+2,ηs1 . (S262)

Notice that the coefficients J in ĤJ and ĤJ̃ are the same coefficient because the corresponding matrix elements are

related by T symmetry, as explained in Section S3 D. ĤK = ĤK+ + Ĥ†K+ is the density-hybridization interaction,

with ĤK+ (Eq. (S254)) given by

ĤK+ =
K

N
3
2 Ω0

∑
η1s1η2s2

∑
|k1|,|k′1|,|k2|<Λc

∑
Rα

ei(k2+k′1−k1)·Rη1η2

(
c†k1αη1s1

ck′1,α+2,η1s1f
†
Rαη2s2

ck2,α+2,η2s2

− f†Rαη2s2ck2,α+2,η2s2c
†
k1,α+2,η1s1

ck′1,α,η1s1

)
. (S263)

The parameters U1,2, W1,3, J , K for different w0/w1 are given in Table S6.

2. Symmetries of the interaction Hamiltonian

The continuous BM model (with interaction) has a U(2)×U(2) symmetry when valley is a good quantum number.
Thus the effective topological heavy fermion model must also have a U(2)×U(2) symmetry. As discussed in Sec-
tion S2 G, when M = 0, the presence of the C2zPS symmetry, where S is the third chiral symmetry, will enhance the
U(2)×U(2) symmetry to a U(4) symmetry, referred to as the flat U(4) symmetry. Recall that the Coulomb interaction
is given by (Eq. (S137))

1

2

ˆ
d2r1

ˆ
d2r2V (r1 − r2) : ρ̂(r1) :: ρ̂(r2) : (S264)

with : ρ̂(r1) : being the normal ordered projected density operator (Eq. (S141)). Since C2zP (Eqs. (S36) and (S65))

is a symmetry of the original model, : ρ̂(r) : and hence ĤI commute with C2zP . (In Ref. [4], it is C2zP that gives the
U(4) symmetry, provided that remote bands are projected out and the kinetic energy of the flat bands is neglected.)
Thus, in order for HI to have the flat-U(4) symmetry, we only need HI to commute with S defined in Eq. (S100). One

can easily verify that ĤU , ĤV , ĤW , ĤJ , ĤJ̃ commute with S whereas ĤK anti-commutes with S. Therefore, ĤU ,

ĤV , ĤW , ĤJ , ĤJ̃ respect the flat-U(4) symmetry while ĤK breaks the flat-U(4) symmetry. (The neglected terms J ′

and J ′′ discussed in Section S3 C 3 commute and anti-commute with S, respectively. Thus J ′ respects the flat-U(4)
symmetry whereas J ′′ breaks the flat-U(4) symmetries.) Since K (and J ′′) is small compared to other interaction
parameters (Table S6), flat-U(4) is still an approximate symmetry of the interaction Hamiltonian. (Including the
omitted small matrix elements in the interaction Hamiltonian and the k-dependence of these matrix elements may
yield more terms that break the flat-U(4). However, we claim these effects are weak in the low energy physics.)

For the same reason as the flat-U(4) symmetry, HI will have the chiral-U(4) symmetry as long as it commutes

with C defined in Eq. (S86). (The free part Ĥ0 anti-commute with C when v′? = 0.) One can easily verify that

ĤU , ĤV , ĤW , ĤJ , ĤJ̃ , and ĤK all commute with C. Therefore, the chiral-U(4) symmetry is an exact symmetry of
the interaction Hamiltonian summarized in Section S3 F 1. Since for nonzero w0/w1, the continuous model does not

really respect the first chiral symmetry, we expect that including the omitted small terms in ĤI will break the chiral
symmetry and hence the chiral-U(4). Nevertheless, chiral-U(4) can be thought as an approximate symmetry of ĤI .
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As discussed in Section S2 I, the presence of both flat-U(4) and chiral-U(4) implies an SU(4)×SU(4) symmetry.
Given that the charge-U(1) is respected, the SU(4)×SU(4) group will be promoted to U(4)×U(4) if the Hamiltonian

further conserves the index ξ (ξ = η(−1)α−1 for f -electrons and ξ = η(−1)a−1 for c-electrons). Since ĤU , ĤV ,

ĤW , ĤJ , ĤJ̃ all have both flat-U(4) and chiral-U(4) symmetries and ξ is repsected in all of them, they all have the

U(4)×U(4) symmetry. However, as discussed in the last two paragraphs ĤK only has the chiral-U(4) symmetry. In
Table S5 we summarize the local symmetries of all the single-particle and interaction Hamiltonian terms.

In Eq. (S84) we defined the charge-conjugation symmetry

Pcf†RαηsP
−1
c =

∑
α′η′

Df
α′η′,αη(PC2zT )fRα′η′s, Pcc†kaηsP

−1
c =

∑
a′η′

Dc
a′η′,aη(PC2zT )c−ka′η′s , (S265)

where

Df (C2zTP ) = −σyτz, Df (C2zTP ) = (σyτz)⊕ (σyτz) , (S266)

and showed that the single-particle Hamiltonian (Eq. (S81)) respects the charge conjugation symmetry. One can show
Pc : ρ̂(r) : P−1

c = − : ρ̂(r) :, which automatically implies that the Coulomb interaction of the form

1

2

ˆ
d2r1

ˆ
d2r2V (r1 − r2) : ρ̂(r1) :: ρ̂(r2) : (S267)

is invariant under the charge conjugation.

G. Failure of the strong coupling picture in the first chiral limit of the BM model (w0 = 0)

The first chiral limit discussed in Section S2 F is achieved by artificially enforcing v′? = 0 in the single-particle

Hamiltonian Ĥ0, which is obtained from the BM model with nonzero w0. In the actual chiral limit of the BM model,
where w0 = 0, the parameter v′? automatically vanishes. In this subsection we discuss the heavy fermion model in
this actual chiral limit (w0 = 0). We construct the maximally localized Wannier functions by the same procedure as
in Section S2 A. Since for w0 = 0 the Γ3 states have energies about ±100meV, the previously used Wannierization
energy window [−80meV, 80meV] now do not include the Γ3 states and hence do not support local Wannier functions.
We hence change the energy window to [−120meV, 120meV] and use all the same other parameters (given around
Eq. (S42)) for the Wannierization. The resulted Wannier functions still decay exponentially but are much less localized.
The on-site repulsion U1 of f -electrons becomes extremely small (< 1meV) while the hybridization γ between f - and
c-electrons becomes quite strong (∼100meV). The property U1 � γ does not change if we use a larger Wannierization
energy window, e.g., [−160meV, 160meV]. Therefore, in the actual first chiral limit, the strong coupling picture
(U1 > γ) is no longer valid, and the quantum-dot-like behaviors observed in STMs [21, 25] cannot be easily explained.

Nevertheless, from a theoretical perspective, as explained in Section S2 J, our model have the key geometric features
of the BM model in the chiral limit: The flat bands are analytically solvable, and they satisfy the ideal droplet condition
and have relatively flat Berry’s curvature.

S4. Correlated insulator states

A. Mean field Hamiltonian

ĤJ̃ will create two particles (or holes) in the local orbitals, which will cost an energy of the order U1. Since U1 is

the largest energy scale of the problem, ĤJ̃ is an high-energy process and will be omitted in the following. From a

mean field aspect, the energy contributed by the ĤJ̃ term is ∼ J |〈f†c〉|2. Since U1 is much larger than the coupling

between f - and c-electrons, 〈f†c〉 can be treated as a small quantity and its second order terms, e.g., J |〈f†c〉|2 can

be omitted. We will also omit ĤK for a similar reason. From the mean field aspect, the energy contributed by ĤK is

∼ K〈f†c〉〈c†c〉. According to Eq. (S254), the involved 〈c†c〉 is off-diagonal in the a-index, e.g., 〈c†kαηsck,α+2,ηs〉, which

must be small because only diagonal terms are non-vanishing in the normal state. Thus ∼ K〈f†c〉〈c†c〉 can also be
treated as a second order small quantity. Therefore, in the following we approximate the interaction Hamiltonian as
ĤI ≈ ĤU + ĤW + ĤV + ĤJ .

In the following we apply Hartree-Fock (HF) calculation to the remaining terms. Let us denote the variational slater

determinant state as |Ψ〉. |Ψ〉 is supposed to minimize the total energy 〈Ψ|Ĥ0 + ĤI |Ψ〉. To simplify the calculation,
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we rewrite the operator ĤI as ĤI =: ĤI : +ĤI,MF , where : ĤI : is the normal ordered operator of Ĥ with respect

to |Ψ〉 (not |G0〉) and ĤI,MF is defined as ĤI− : ĤI :. : ĤI : by definition will either annihilate |Ψ〉 or excite two

particles plus two holes upon |Ψ〉. Then it follows that 〈Ψ|Ĥ0 + ĤI |Ψ〉 = 〈Ψ|Ĥ0 + ĤI,MF |Ψ〉. Therefore, one only

need to minimize 〈Ψ|Ĥ0 + ĤI,MF |Ψ〉.
In this subsection we explicitly derive ĤI,MF . For simplicity, we assume that the ground state (|Ψ〉) preserves the

translation symmetry. For later convenience, we introduce the density matrices

Ofαηs,α′η′s′ = 〈Ψ|f†RαηsfRα′η′s′ |Ψ〉 =
1

N

∑
k∈MBZ

〈Ψ|f†kαηsfkα′η′s′ |Ψ〉 , (S268)

Ocaηs,a′η′s′ =
1

N

∑
|k|<Λc

(
〈Ψ|c†kaηscka′η′s′ |Ψ〉 −

1

2
δaa′δηη′δss′

)
(S269)

Ocfaη2s2,αη1s1 =
1√
N

∑
|k|<Λc

e−ik·R〈Ψ|c†kaη2s2fRαη1s1 |Ψ〉 . (S270)

We have defined Ocaηs,a′η′s′ as the expectation of the conduction band density operator with respect to the charge
neutrality point such that it will remain finite even we take the cutoff Λc to infinity. The filling of local orbitals and
conduction bands are given by

νf = Tr[Of ]− 4, νc = Tr[Oc] . (S271)

We also assume that there is no pairing in |Ψ〉. The total filling with respect to the charge neutrality point is given by
ν = νf + νc. For the normal state |G0〉 (defined in Section S3 A) at charge neutrality point, there is ν = νf = νc = 0.

We first decouple the density-density interactions of local orbitals, i.e., ĤU in Eq. (S256). To derive the mean field
Hamiltonian, we first divide the density-density interaction into constant, bilinear, and quartic terms as

ĤU =8NU1 + 48NU2 − (4U1 + 24U2)
∑
R

∑
αηs

f†RαηsfRαηs +
U1

2

∑
R

∑
αηs
βη′s′

f†RαηsfRαηsf
†
Rβη′s′fRβη′s′

+
U2

2

∑
〈RR′〉

∑
αηs
βη′s′

f†RαηsfRαηsf
†
R′βη′s′fR′βη′s′

=8NU1 + 48NU2 − (3.5U1 + 24U2)
∑
R

∑
αηs

f†RαηsfRαηs +
U1

2

∑
R

∑
αηs
βη′s′

f†Rαηsf
†
Rβη′s′fRβη′s′fRαηs

+
U2

2

∑
〈RR′〉

∑
αηs
βη′s′

f†Rαηsf
†
R′βη′s′fR′βη′s′fRαηs (S272)

The mean field Hamiltonian is obtained by projecting out the terms that create two particles and two holes upon the
ground state |Ψ〉. According to the Wick’s theorem we have

f†Rαηsf
†
Rβη′s′fRβη′s′fRαηs =: f†Rαηsf

†
Rβη′s′fRβη′s′fRαηs : +f†Rαηs : f†Rβη′s′fRβη′s′ : fRαηs+ : f†Rαηsf

†
Rβη′s′fRβη′s′fRαηs :

+ : f†Rαηsf
†
Rβη′s′fRβη′s′fRαηs : + : f†Rαηsf

†
Rβη′s′fRβη′s′fRαηs : + f†Rαηsf

†
Rβη′s′fRβη′s′fRαηs + f†Rαηsf

†
Rβη′s′fRβη′s′fRαηs

(S273)

Here : A : is the normal ordered form of A with respect to |Ψ〉 (not |G0〉 defined in Section S3 A). The first term will
either annihilate |Ψ〉 or excite two particle-hole pairs on top of |Ψ〉. We will omit the first term and approximate the
four fermion operator by bilinear terms and constant terms

f†Rαηsf
†
Rβη′s′fRβη′s′fRαηs ≈ f

†
Rαηsf

†
Rβη′s′fRβη′s′fRαηs + f†Rαηsf

†
Rβη′s′fRβη′s′fRαηs + f†Rαηsf

†
Rβη′s′fRβη′s′fRαηs

+f†Rαηsf
†
Rβη′s′fRβη′s′fRαηs − f†Rαηsf

†
Rβη′s′fRβη′s′fRαηs − f†Rαηsf

†
Rβη′s′fRβη′s′fRαηs . (S274)
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Similarly, there are

f†Rαηsf
†
R′βη′s′fR′βη′s′fRαηs ≈ f

†
Rαηsf

†
R′βη′s′fR′βη′s′fRαηs + f†Rαηsf

†
R′βη′s′fR′βη′s′fRαηs + f†Rαηsf

†
R′βη′s′fR′βη′s′fRαηs

+f†Rαηsf
†
R′βη′s′fR′βη′s′fRαηs − f†Rαηsf

†
R′βη′s′fR′βη′s′fRαηs − f†Rαηsf

†
R′βη′s′fR′βη′s′fRαηs . (S275)

Since the on-site repulsion U1 is the largest energy scale and dominates the correlation physics, we assume that only

on-site order parameters, i.e., 〈f†RαηsfRα′η′s′〉, are formed. Then we can write the approximate on-site and off-site
quartic terms as∑
αηs
βη′s′

f†Rαηsf
†
Rβη′s′fRβη′s′fRαηs ≈2

∑
αηs

Tr[Of ]f†RαηsfRαηs − 2
∑
αηs
βη′s′

f†Rβη′s′fRαηsO
f
αηs,βη′s′ − Tr[Of ]Tr[Of ] + Tr[OfOf ] (S276)

and ∑
αηs
βη′s′

f†Rαηsf
†
R′βη′s′fR′βη′s′fRαηs ≈

∑
βη′s′

Tr[Of ]f†R′βη′s′fR′βη′s′ +
∑
αηs

Tr[Of ]f†RαηsfRαηs − Tr[Of ]Tr[Of ] , (S277)

respectively. Substituting these equations into the interaction Hamiltonian ĤU , we obtain

ĤU ≈ ĤU,MF = HU − EU (S278)

with

HU =
∑
R

∑
αηs

(U1(νf + 0.5) + 6U2νf ) f†RαηsfRαηs − U1

∑
R

Ofαηs,βη′s′f
†
Rβη′s′fRαηs , (S279)

and

EU =
NU1

2

(
ν2
f + 8νf − Tr[OfOf ]

)
+ 3NU2(ν2

f + 8νf ). (S280)

Following the same logic as decoupling ĤU , one can decouple ĤW as

ĤW ≈
∑
|k|<Λc

∑
aηs

Waνf : c†kaηsckaηs : +
∑

Raαηs

Wa : f†RαηsfRαηs : νc,a −N
∑
a

Waνfνc,a

− 1√
N

∑
Rαη1s1

∑
|k|<Λc

∑
η2s2a

Wa

(
Ocfaη2s2,αη1s1e

ik·Rf†Rαη1s1ckaη2s2 + h.c.
)
−N

∑
aα

∑
η2η1s2s1

|Ocfaη2s2,αη1s1 |
2Wa , (S281)

where

νc,a =
∑
ηs

Ocaηs,aηs . (S282)

In the first term we have omitted the Umklapp scatterings, i.e., Waνf : c†k+Gaηsckaηs : for G 6= 0, because the state

c†k+Gaηs has a huge kinetic energy and the Umklapp scattering will be weak. We can further organize the terms as

ĤW ≈ ĤW,MF = HW − EW , (S283)

with

HW =
∑
|k|<Λc

∑
aηs

νfWac
†
kaηsckaηs +

∑
R

∑
αηs

νc,aWaf
†
RαηsfRαηs

− 1√
N

∑
Rαη1s1

∑
|k|<Λc

∑
η2s2a

Wa

(
Ocfaη2s2,αη1s1e

ik·Rf†Rαη1s1ckaη2s2 + h.c.
)

(S284)

EW = N
∑
a

(Waνfνc,a + 4Waνc,a) +
∑
a

∑
|k|<Λc

2Waνf −N
∑
aα

∑
η2η1s2s1

|Ocfaη2s2,αη1s1 |
2Wa . (S285)

We emphasize that the term
∑
|k|<Λc

2Waνf depends on the cutoff (Λc) of the conduction bands and diverges as

Λc → ∞. However, the total energy contributed by ĤW will converge as Λc → ∞ because the divergent part of∑
|k|<Λc

2Waνf will be canceled by the divergent part of the first term of HW .
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Then we decouple the exchange interaction ĤJ . Following the same method as for ĤU , ĤJ can be approximated
as

ĤJ ≈− J
∑

Rαηs1s2

: f†Rαηs1fRαηs2 : Ocα+2ηs2,α+2ηs1 − J
∑

αηs1s2

∑
|k|<Λc

(
Ofαηs1,αηs2 −

1

2
δs1s2

)
: c†kα+2ηs2

ckα+2ηs1 :

+NJ
∑

αηs1s2

(
Ofαηs1,αηs2 −

1

2
δs1s2

)
Ocα+2ηs2,α+2ηs1 + J

∑
αηs1s2

∑
|k|<Λc

Ofαηs1,α−ηs2c
†
k,α+2,−η,s2ck,α+2,η,s1

+ J
∑

αηs1s2

∑
R

f†Rαηs1fRα−ηs2O
c
α+2,−η,s2 ; α+2,η,s1 −NJ

∑
αηs1s2

Ofαηs1,α−ηs2O
c
α+2,−η,s2 ; α+2,η,s1

+
J√
N

∑
R

∑
|k|<Λc

∑
αηs1s2

(
eik·ROcfα+2ηs2,αηs2

f†Rαηs1ck,α+2,η,s1 + h.c.
)
−NJ

∑
αηs1s2

Ocfα+2ηs2,αηs2
Ocf∗α+2ηs1,αηs1

− J√
N

∑
R

∑
|k|<Λc

∑
αηs1s2

(
eik·ROcfα+2,−η,s2 ; α,−η,s2f

†
Rαηs1

ck,α+2,η,s1 + h.c.
)

+NJ
∑

αηs1s2

Ocfα+2,−η,s2 ; α,−η,s2O
cf∗
α+2ηs1,αηs1

.

(S286)

We can organize the terms as

ĤJ ≈ ĤJ,MF = HJ − EJ , (S287)

with

HJ =− J
∑

Rαηs1s2

f†Rαηs1fRαηs2O
c
α+2ηs2,α+2ηs1 − J

∑
αηs1s2

∑
|k|<Λc

(
Ofαηs1,αηs2 −

1

2
δs1s2

)
c†kα+2ηs2

ckα+2ηs1

+ J
∑

αηs1s2

∑
|k|<Λc

Ofαηs1,α−ηs2c
†
k,α+2,−η,s2ck,α+2,η,s1 + J

∑
αηs1s2

∑
R

f†Rαηs1fRα−ηs2O
c
α+2,−η,s2 ; α+2,η,s1

+
J√
N

∑
R

∑
|k|<Λc

∑
αηs1s2

(
eik·ROcfα+2ηs2,αηs2

f†Rαηs1ck,α+2,η,s1 + h.c.
)

− J√
N

∑
R

∑
|k|<Λc

∑
αηs1s2

(
eik·ROcfα+2,−η,s2 ; α,−η,s2f

†
Rαηs1

ck,α+2,η,s1 + h.c.
)
, (S288)

and

EJ =−NJ
∑

αηs1s2

Ofαηs1,αηs2O
c
α+2ηs2,α+2ηs1 − J

∑
αηs

∑
|k|<Λc

(
Ofαηs,αηs −

1

2

)
1

2
+NJ

∑
αηs1s2

Ofαηs1,α−ηs2O
c
α+2,−η,s2 ; α+2,η,s1

+NJ
∑

αηs1s2

Ocfα+2ηs2,αηs2
Ocf∗α+2ηs1,αηs1

−NJ
∑

αηs1s2

Ocfα+2,−η,s2 ; α,−η,s2O
cf∗
α+2ηs1,αηs1

. (S289)

The second term in EJ diverges as Λc →∞. However, the total energy contributed by ĤJ will converge as Λc →∞
because the divergent part of the second term in EJ will be canceled by the (divergent part of) second term of HJ .

We can equivalently write ĤJ in a more compact form as

ĤJ =− J

2

∑
R

∑
α1α2η1η2s1s2

(η1η2 + (−1)α1+α2)f†Rα1η1s1
fRα2η2s2O

c
α2+2η2s2,α1+2η1s1

− J

2

∑
|k|<Λc

∑
α1α2η1η2s1s2

(η1η2 + (−1)α1+α2)c†kα2+2,η2s2
ckα1+2,η1s1

(
Ofα1η1s1,α2η2s2 −

1

2
δα1α2

δη1η2δs1s2

)

+
J

2
√
N

∑
R

∑
|k|<Λc

∑
α1α2η1η2s1s2

eik·R(η1η2 + (−1)α1+α2)
(
Ocfα2+2η2s2,α2η2s2

f†Rα1η1s1
ckα1+2η1s1 + h.c.

)
. (S290)

In the end we decouple the Coulomb interaction of the conduction bands. Usually, it is the Fock term that leads
to symmetry breaking in the inner degrees of freedom. We claim that the symmetry breaking mainly come from the
on-site repulsion of the local orbitals and the interaction of conduction bands only renormalize the dispersion of the
conduction bands. Therefore, for simplicity, we will omit the Fock channel of this interaction. The Hartree-mean field
is

ĤV ≈ ĤV,MF = HV − EV , (S291)
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Fillings ν = 0 ν = −1
Phases VP K-IVC IVC VP K-IVC IVC VP + K-IVC

One-shot HF energy (meV) -698.645 -698.702 -694.888 -666.326 -666.359 -664.607 -666.360
SCF HF energy (meV) -704.019 -704.109 -700.616 -671.809 -671.857 -670.330 -671.860

Fillings ν = −2 ν = −3
Phases VP K-IVC IVC VP K-IVC

One-shot HF energy (meV) -575.492 -575.507 -574.528 -434.015 -434.015
SCF HF energy (meV) -578.975 -579.036 -578.203 -426.129 -426.113

TABLE S7. The one-shot and self-consistent HF energies of the correlated insulator phases at integer fillings. Since the energy
difference between flat-U(4) rotation related states are small (. 0.1meV) there may be strong order-parameter fluctuations at
finite temperatures.

with

HV =
V (0)

Ω0
νc
∑
ηsa

∑
|k|<Λc

c†kaηsckaηs (S292)

and

EV =
V (0)

2Ω0
Nν2

c +
V (0)

Ω0

∑
|k|<Λc

8νc . (S293)

HV only shifts the energy the conduction bands.
In summary, the mean field Hamiltonian of the interaction is given by

ĤI ≈ ĤI,MF = HU +HW +HV +HJ − EU − EW − EV − EJ . (S294)

B. Correlated insulator phases at the filling ν = 0

1. Numerical results

We consider the parent wave function of valley polarized (VP) state as

|VPν=0
0 〉 =

∏
R

f†R1+↑f
†
R1+↓f

†
R2+↑f

†
R2+↓|FS〉 . (S295)

Here |FS〉 is the Fermi sea state occupying the lower two bands (per spin per valley) of H(c,η)(k) (Eq. (S82)), i.e.,

|FS〉 =
∏
ηs

∏
n=1,2

∏
|k|<Λc

(∑
a

U (η)
a,nc

†
kaηs

)
|0〉 , (S296)

where U (η)
a,n (n = 1, 2, 3, 4) is the n-th eigenvector of H(c,η)(k). At k = 0, the second and third eigenstates are

degenerate, we should choose U (η)
a,2 (0) as the vector that smoothly connects to U (η)

a,2 (k→ 0). By definition, the yielded
Oc is diagonal in valley and spin indices

Ocaηs,a′η′s′ =
1

N

∑
|k|<Λc

(
〈FS|c†kaηsck′a′η′s′ |FS〉 − 1

2
δaa′δηη′δss′

)
=

1

N
δss′δηη′

∑
|k|<Λc

(( ∑
n=1,2

U (η)
a,n(k)U (η)∗

a′,n (k)

)
− 1

2
δaa′

)
.

(S297)

Given Ocaηs,a′η′s′ = δηη′δss′O
c
aηs,a′ηs, only the diagonal elements Ocaηs,aηs will enter the mean field Hamiltonian in

Eqs. (S284), (S290) and (S292). Now we show that all the diagonal elements are zero. Due to the particle-hole

symmetry P (Eq. (S65)), we can always pick the gauge (−1)a−1U (η)
a,n(k) = U (η)

a,5−n(−k). Using this condition and the

completeness
∑4
n=1 U

(η)
n (k)U (η)†

n (k) = I4×4, one can show that

Ocaηs,a′ηs + (−1)a+a′Ocaηs,a′ηs = 0 , (S298)
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FIG. S6. HF band structures of correlated insulator phases at ν = 0. (a), (b), (c) are the one-shot HF band structures of the
VP, K-IVC, and IVC phases, respectively. (d), (e), (f) are the self-consistent HF band structures of the VP, K-IVC, and IVC
phases, respectively. The color represents the composition of the energy bands, where yellow corresponds to the local orbitals
and blue corresponds to the conduction bands. We have chosen w0/w1 = 0.8 in the calculation. Other parameters of the
single-particle and interaction hamiltonians are given in Tables S4 and S6.

which implies Ocaηs,aηs = 0. Therefore, Oc does not enter the mean field Hamiltonian because it is valley-diagonal

and all its diagonal elements vanish. The density matrix Ocf (Eq. (S270)) given by the parent VP state also vanishes
because the state respects the particle numbers of local orbitals and conduction bands separately. The density
matrix Of (Eq. (S268)) given by the parent VP state is nonzero. We will discuss it in detail in next subsection.
Substituting these density matrices into the mean field equations, we can obtain the mean field approximation of the
total Hamiltonian as

Ĥ0 + ĤI ≈ Ĥ0 +HU +HW +HV +HJ − EU − EW − EV − EJ , (S299)

where HX and EX (X = U,W, V, J) are functions the density matrices (Section S4 A). We refer to the ground
state energy of the above mean field Hamiltonian as the “one-shot” HF energy (Table S7). The spectrum given by

Ĥ0 +
∑
X HX is referred to as the “one-shot” HF spectrum (Fig. S6(a)). The next step wave function, denoted as

|VPν=0
1 〉, occupies the one-shot bands to the filling of the charge neutrality point. One can then calculate the density

matrices of |VPν=0
1 〉 and generate a new mean field Hamiltonian. The hybridization Ocf given by |VPν=0

1 〉 is in general
nonzero. Repeating this process until the ground state converges, one achieve the self-consistent HF ground state,
whose energy is called the self-consistent HF energy. We denote the self-consistent wave function as |VPν=0

∞ 〉 The
(one-shot and self-consistent) HF energies and HF spectra of the VP state are summarized in Table S7 and Fig. S6,
respectively.

In the process of self-consistent iterations, the one-shot spectrum in Fig. S6(a) continuously changes to the self-
consistent spectrum in Fig. S6(d). Thus, the state |VPν=0

1 〉, which occupies the one-shot bands to the filling ν = 0,
is adiabatically connected to the self-consistent state |VPν=0

∞ 〉. However, the parent VP state |VPν=0
0 〉 may not

adiabatically connected to them because it occupies the local orbitals and conduction separately but not the quasi-
particle bands. A key difference between |VPν=0

1 〉 and |VPν=0
0 〉 is that Ocf given by |VPν=0

1 〉 is in general nonzero
while Ocf given by |VPν=0

0 〉 is zero. In this work, we refer to |VPν=0
0 〉, |VPν=0

1 〉, and |VPν=0
∞ 〉 as the parent VP,

one-shot VP, and self-consistent VP states, respectively.
The parent wave functions for the inter-valley-coherent (IVC) and Kramers inter-valley-coherent (K-IVC) states

are rotated from |VPν=0
0 〉 by the chiral-U(4) (Eq. (S92)) and flat-U(4) (Eq. (S105)) symmetries as

|IVCν=0
0 〉 = e−i

π
2

Θ̂x0 |VPν=0
0 〉 =

∏
R

1

4
(f†R1+↑ − if

†
R2−↑)(f

†
R1+↓ − if

†
R2−↓)(−if

†
R1−↑ + f†R2+↑)(−if

†
R1−↓ + f†R2+↓)|FS〉 , (S300)
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and

|K-IVCν=0
0 〉 = e−i

π
2

Σ̂x0 |VPν=0
0 〉 =

∏
R

1

4
(f†R1+↑ + f†R2−↑)(f

†
R1+↓ + f†R2−↓)(−f

†
R1−↑ + f†R2+↑)(−f

†
R1−↓ + f†R2+↓)|FS〉 , (S301)

respectively. One can verify that the parent IVC state respects the spinless time-reversal symmetry T (Eq. (S36))
whereas the parent K-IVC state breaks T . Substituting the parent wave functions into the HF loop, we obtain
the one-shot and self-consistent HF energies (Table S7). The one-shot IVC and K-IVC states, i.e., |IVCν=0

1 〉 and
|K-IVCν=0

1 〉, are obtained as Fock states occupying the corresponding one-shot HF bands to the filling ν = 0. The
one-shot K-IVC state has a lower energy.

As shown in Table S7, the energy difference of K-IVC and VP states is only of the order 0.1meV whereas the energy
difference between the IVC state and VP is of the order 3meV. Since K-IVC and IVC are rotated from VP by the
flat-U(4) and chiral-U(4), respectively, the result suggests that the flat-U(4) symmetry is a better approximation of

the considered Hamiltonian Ĥ0 +
∑
X ĤX (X = U,W, J, V ). This observation is consistent with the argument at the

end of Section S2 G.

2. Analytical analysis of the one-shot HF

The one-shot and self-consistent HF band structures of the VP, K-IVC, and IVC states at ν = 0 are summarized in
Fig. S6. We can see that the self-consistent band structures are very close to the one-shot HF band structures. Here
we study the one-shot spectra of the VP and K-IVC states around the charge neutrality point. We do not study the
IVC state here because it has a higher energy in the mean field. The density matrices given by |VPν=0

0 〉 are

Of = σ0(
τz + τ0

2
)ς0, Ocaηs,a′η′s′ = δηη′δss′O

c
aηs,a′ηs, Ocaηs,aηs = 0, Ocf = 0 . (S302)

Substituting these density matrices into the mean field equations around Eqs. (S279), (S284), (S290) and (S292), we
obtain the one-shot HF mean field and energies as

HU = −U1

2

∑
R

∑
αηs

ηf†RαηsfRαηs, HW = HV = 0, HJ = −J
2

∑
|k|<Λc

∑
αηs

ηc†kα+2ηsckα+2ηs (S303)

and

EU = −2NU1, EW = EV = EJ = 0 , (S304)

respectively. The low energy band structure can be described by the k·p expansion of Ĥ0 +HU +HJ

H
(MF)
VP (k) ≈

 0 v?(kxσ0τz + ikyσzτ0) γσ0τ0 + v′?(kxσxτz + kyσyτ0)
v?(kxσ0τz − ikyσzτ0) Mσxτ0 − J

2 σ0τz 0
γσ0τ0 + v′?(kxσxτz + kyσyτ0) 0 −U1

2 σ0τz

⊗ ς0 . (S305)

For large k (v?|k| � 1
2U1), the low energy bands are contributed by the local orbitals, which have the energies ±U1/2.

We can see this in Fig. S6 at large k. For k = 0, the energy eigenvalues are given by

±M ± J

2
, ±U1

4
±

√(
U1

4

)2

+ γ2 . (S306)

In Fig. S6(a), (d), the 24 energy levels closest to Fermi level from low to high are

− U1

4
−

√(
U1

4

)2

+ γ2 (4-fold),
U1

4
−

√(
U1

4

)2

+ γ2 (4-fold), −M − J

2
(2-fold), M − J

2
(2-fold), (S307)

−M +
J

2
(2-fold), M +

J

2
(2-fold), −U1

4
+

√(
U1

4

)2

+ γ2 (4-fold),
U1

4
+

√(
U1

4

)2

+ γ2 (4-fold) . (S308)

Notice that in Fig. S6(a), (d) every single band is spin degenerate.
The density matrices given by |K-IVCν=0

0 〉 are

Of =
1

2
σ0τ0ς0 −

1

2
σyτyς0, Ocaηs,a′η′s′ = δηη′δss′O

c
aηs,a′ηs, Ocaηs,aηs = 0, Ocf = 0 . (S309)
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According to the mean field equations in Section S4 A, the one-shot HF mean field and energies are

HU =
U1

2

∑
R

∑
αηα′η′s

f†Rαηs[σy]αα′ [τy]ηη′fRα′η′s, HW = HV = 0 , (S310)

HJ =− J

2

∑
|k|<Λc

∑
α1α2η1η2s1s2

(η1η2 + (−1)α1+α2)c†kα2+2,η2s2
ckα1+2,η1s1

(
Ofα1η1s1,α2η2s2 −

1

2
δα1α2

δη1η2δs1s2

)

=
J

4

∑
|k|<Λc

∑
α1α2η1η2s

(η1η2 + (−1)α1+α2)c†kα2+2,η2s
ckα1+2,η1s[σy]α1α2 [τy]η1η2

= −J
2

∑
|k|<Λc

∑
α1η1α2η2s

[σy]α1α2 [τy]η1η2c
†
kα2+2η′sckα1+2ηs , (S311)

and

EU = −2NU1, EW = EV = EJ = 0 . (S312)

Notice that the 1
2σ0τ0ς0 component in Of does not contribute to the mean field Hamiltonian because they are canceled

by the constant bilinear terms in Eqs. (S279) and (S290), respectively. The low energy band structure can be described

by the k·p expansion of Ĥ0 +HU +HJ .

H
(MF)
K-IVC(k) ≈

 0 v?(kxσ0τz + ikyσzτ0) γσ0τ0 + v′?(kxσxτz + kyσyτ0)
v?(kxσ0τz − ikyσzτ0) Mσxτ0 − J

2 σyτy 0
γσ0τ0 + v′?(kxσxτz + kyσyτ0) 0 U1

2 σyτy

⊗ ς0 . (S313)

For large k (v?|k| � 1
2U1), the low energy bands are contributed by the local orbitals, which have the energies ±U1/2.

We can see this in Fig. S6 at large k. For k = 0, the energy eigenvalues are given by

±
√
M2 +

J2

4
, ±U1

4
±

√(
U1

4

)2

+ γ2 , (S314)

where the levels U1

4 ±
√(

U1

4

)2
+ γ2 are same as those in the VP state. In Fig. S6(b), (e), the 24 energy levels closest

to Fermi level from low to high are

− U1

4
−

√(
U1

4

)2

+ γ2 (4-fold),
U1

4
−

√(
U1

4

)2

+ γ2 (4-fold), −
√
M2 +

J2

4
; (4-fold), (S315)

√
M2 +

J2

4
(4-fold), −U1

4
+

√(
U1

4

)2

+ γ2 (4-fold),
U1

4
+

√(
U1

4

)2

+ γ2 (4-fold) . (S316)

Notice that in Fig. S6(b), (e) every single band is spin degenerate.

C. General rules for the ground states

When M = 0, one can see that the energy levels at k = 0 of the VP (Eq. (S306)) and K-IVC (Eq. (S314)) states at
ν = 0 become the same. A symmetry reason is that, when M = 0, the flat-U(4) symmetry discussed in Section S2 G
is an exact symmetry of the considered Hamiltonian. Therefore, when M = 0, the VP and K-IVC states must have
the same energy and band structure because they are related by a flat-U(4) rotation. Nonzero M not only makes
a difference in the band structure but also lifts the energy degeneracy between the two states. Now we argue that
nonzero M stabilizes the K-IVC state. As shown in Eq. (S294), the total energy can be calculated as the interaction
energy, EU + EW + EJ + EV , subtracted from the quasi-particle energy, i.e.,

− EU − EW − EJ − EV + 〈Ψ|Ĥ0 +HU +HW +HJ +HV |Ψ〉 = −EU − EW − EJ − EV +
∑
k

∑
n∈occ

Ekn , (S317)
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where Ekn is the HF spectrum and n indexes occupied bands. Since the considered interaction Hamiltonian respects
the flat-U(4) symmetry, the VP and K-IVC states have the same interaction energy (Eqs. (S304) and (S312)). Thus,
the state having lower quasi-particle energy will have a lower total energy. Because the K-IVC state opens a larger
gap (2

√
M2 + J2/4) than the VP state (2|M − J/2|), the K-IVC state has the lower total energy.

We find that similar arguments apply to other fillings. Here we summarize two rules for the (translationally
invariant) ground states at the one-shot level. First, as argued at the end of Section S2 G and numerically confirmed
at the end of Section S4 B 1, the flat-U(4) symmetry is a better approximation (of the Hamiltonian) than the chiral-
U(4) symmetry. Heuristically, the wave function tends to be symmetric under permutation of flavor indices, e.g., the
four components {α, η, s} fixed ξ = η(−1)α−1 which labels the fundamental U(4) representations (Section S2 G), such
that the real space wave function has as many as nodes and hence the Coulomb interaction can be saved (Hund’s
rule). Thus, we summarize the first rule

1. When possible, two f -electrons tend to occupy one flavor of the flat-U(4) symmetry, e.g., f†R1ηsf
†
R2ηs, such that

the two f -electrons and their flat-U(4) rotations form a maximal weight representation of the flat-U(4) group.

The state f†R1ηsf
†
R2ηs and its flat-U(4) rotations form a degenerate U(4) multiplet if M = 0. The multiplet form the

irreducible representation [2]4. (Here [λ1, λ2 · · · ]4 is the Young tableau notation for SU(4) irreducible representations.)
Readers may refer to Ref. [5] for how the U(4) irreps are used to label the ground states of MATBG. We then need to
consider how nonzero M will split the U(4) multiplet and select the ground state. Because the considered interaction
Hamiltonian respects the flat-U(4) symmetry, states in the multiplet must have the same interaction energy. Thus, it
is the single-particle energy of the conduction bands that determines the ground state - the phase opening the largest
gap has the lowest energy. However, since there are many levels, i.e., 8 from local orbitals and 16 from conduction
bands, it is still not immediate to determine the gap at generic fillings. We now assume that the Γ3 states from the
local orbitals and the Γ3 states (a = 1, 2) from the conduction bands are all at high energies. This is a reasonable
assumption based on the BM model because previous studies [1, 2, 5] has obtained the ground states by projecting
the Hamiltonian into the topological flat bands, which only has the Γ1⊕Γ2 states (a = 3, 4). We have also confirmed
that the lowest (closest to the gap) energy levels are indeed contributed by the Γ1 ⊕ Γ2 (a = 3, 4) states for all the
integer fillings, in agreement with those in Refs. [2, 6, 7, 85, 86, 110]. Thus we only need to look at the gap formed by
the Γ1⊕Γ2 states (a = 3, 4). The effective Hamiltonian for the Γ1⊕Γ2 states (a = 3, 4) can be obtained by restricting

the a index of the one-shot mean field Hamiltonian Ĥ0 +HU +HW +HJ +HV (Eqs. (S81), (S279), (S284), (S290)
and (S292)) into the subspace spanned by ckaηs (a = 3, 4). It reads

H
(Γ1⊕Γ2)
aηs,a′η′s′(k = 0) =νfW3δaa′δηη′δss′ +M [σx]a−2,a′−2δηη′δss′ − Jδaa′δηη′

(
Ofa′−2,η′,s′ ; a−2,η,s −

1

2
δss′

)
+ Jδa,a′δ−η,η′O

f
a−2,−η,s′ ; a−2,η,s , (S318)

where a, a′ = 3, 4. We can equivalently write it in a more compact form as

H(Γ1⊕Γ2)(k = 0) = νfW3σ0τ0ς0 +Mσxτ0ς0 −
J

2
τz(O

fT − 1

2
σ0τ0ς0)τz −

J

2
σz(O

fT − 1

2
σ0τ0ς0)σz . (S319)

The second rule then follows

2. For a set of flat-U(4) rotation related states, the state minimizing the energy of Eq. (S319) is the ground state.

The onsite repulsion U1, and the couplings between local orbitals and conduction bands, i.e., the γ and v? terms
(Eq. (S83)), do not enter the second rule because they only affect states at higher energies contributed by the f -
orbitals and the Γ3 c-band basis but not the low energy states contributed by the Γ1 ⊕ Γ2 c-band basis, as exampled
in Section S4 B 2.

In the next subsection, we will apply the two rules to the ground states at other integer fillings.

D. Correlated insulator phases at the fillings ν = −1,−2,−3

1. Filling ν = −1

We consider the parent wave function of (fully) valley polarized (VP) and (partially) spin polarized state at ν = −1
as

|VPν=−1
0 〉 =

∏
R

f†R1+↑f
†
R1+↓f

†
R2+↑|FS〉 , (S320)
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FIG. S7. HF band structures of correlated insulator phases at ν = −1. (a), (b), (c), (d) are the one-shot HF band structures of
the VP, K-IVC, IVC, and mixed VP + K-IVC phases, respectively. (e), (f), (g), (h) are the self-consistent HF band structures
of the VP, K-IVC, IVC, and mixed VP + K-IVC phases, respectively. The color represents the composition of the energy bands,
where yellow corresponds to the local orbitals and blue corresponds to the conduction bands. We have chosen w0/w1 = 0.8 in
the calculation. Other parameters of the single-particle and interaction hamiltonians are given in Tables S4 and S6.

where |FS〉 is the Fermi sea state of the conduction bands at the charge neutrality point (Eq. (S296)). The parent
wave functions for the IVC and K-IVC states are rotated from |VPν=−1

0 〉 by the chiral-U(4) (Eq. (S92)) and flat-U(4)
(Eq. (S105)) symmetries as

|IVCν=−1
0 〉 = e−i

π
2

Θ̂x0 |VPν=−1
0 〉 =

∏
R

1

2
√

2
(f†R1+↑ − if

†
R2−↑)(f

†
R1+↓ − if

†
R2−↓)(−if

†
R1−↑ + f†R2+↑)|FS〉 , (S321)

and

|K-IVCν=−1
0 〉 = e−i

π
2

Σ̂x0 |VPν=−1
0 〉 =

∏
R

1

2
√

2
(f†R1+↑ + f†R2−↑)(f

†
R1+↓ + f†R2−↓)(−f

†
R1−↑ + f†R2+↑)|FS〉 , (S322)

respectively. Ref. [5] found that a mixed state of VP and K-IVC has the lowest energy at ν = −1. The parent wave
function of the mixed state can be written as

|VP+K-IVCν=−1
0 〉 =

∏
R

f†R1+↓e
−iπ

2
Σ̂x0f†R1+↑f

†
R2+↑e

iπ
2

Σ̂x0 |FS〉 =
∏
R

1

2
f†R1+↓(f

†
R1+↑ + f†R2−↑)(−f

†
R1−↑ + f†R2+↑)|FS〉 . (S323)

According to Ref. [5], the two states (f†R1+↑f
†
R2+↑) from the same valley-spin flavor are rotated to a K-IVC state,

whereas the state f†R1+↓ remains valley and spin polarized. Feeding the parent states into the HF loop, we obtain

the one-shot and self-consistent HF band structures (Fig. S7) and energies (Table S7). We find that the mixed state
indeed has the lowest energy.

All the one-shot states, i.e., |Xν=−1
1 〉 (X =VP, IVC, K-IVC, VP+K-IVC), and self-consistent states, i.e., |Xν=−1

∞ 〉,
are gapped Fock states occupying the HF bands (Fig. S7) up to the filling ν = −1. As will be explained in Section S4 E,
all these states have the Chern number C = 1. It is worth mentioning that the parent states |Xν=−1

0 〉, even though
lead to gapped one-shot states with nonzero Chern numbers, do not have Chern numbers because they occupy gapless
conduction bands plus a select number of local orbitals.

We now apply the two rules given in Section S4 C to discuss the one-shot ground states |Xν=−1
1 〉 (X =VP, IVC,

K-IVC, VP+K-IVC). VP, K-IVC and VP+K-IVC states satisfy the first rule, i.e., two f -electrons tend to occupy a

flavor flat-U(4) symmetry. Here the two f -electrons are f†R1+↑f
†
R2+↑ or its flat-U(4) partners. We need to compare

the quasi-particle energies of the three states to determine the ground states. The density matrices given by |VPν=−1
0 〉
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are

Of = σ0(
τz + τ0

2
)(
ς0 + ςz

2
) + (

σ0 + σz
2

)(
τ0 + τz

2
)(
ς0 − ςz

2
), Ocaηs,a′η′s′ = δηη′δss′O

c
aηs,a′ηs, Ocaηs,aηs = 0, Ocf = 0 .

(S324)

The density matrix Of is diagonal in spin. The two spin blocks of Of are

Of(s=↑) = σ0(
τz + τ0

2
), Of(s=↓) = (

σ0 + σz
2

)(
τ0 + τz

2
) . (S325)

Substituting Of(s) into Eq. (S319), we obtain the two spin blocks of H(Γ1⊕Γ2)(k = 0) as

H
(Γ1⊕Γ2,s=↑)
VP = −W3σ0τ0 +Mσxτ0 −

J

2
τz
σ0τz

2
τz −

J

2
σz
σ0τz

2
σz = −W3σ0τ0 +Mσxτ0 −

J

2
σ0τz , (S326)

and

H
(Γ1⊕Γ2,s=↓)
VP = −W3σ0τ0 +Mσxτ0 −

J

2
τzXτz −

J

2
σzXσz = −W3σ0τ0 +Mσxτ0 −

J

2
diag([1,−1,−1,−1]) , (S327)

respectively, where X = (σ0+σz
2 )( τ0+τz

2 ) − 1
2σ0τ0 = 1

2diag([1,−1,−1,−1]). Here the subscript “VP” indicates that
the corresponding density matrices are generated by the parent VP state. The lowest three levels at k = 0 of the VP
state are

−W3 −
√
M2 +

J2

4
, −W3 −M −

J

2
, −W3 +M − J

2
, (S328)

which come from the s =↓, η = +, s =↑, η = +, and s =↑, η = + flavors, respectively. (We have made use of
J/2 > M .)

Applying a flat-U(4) rotation e−i
π
2 Σ̂x0 to the order parameter, we obtain the order parameters of the K-IVC state

as

Of(s=↑) =
1

2
σ0τ0 −

1

2
σyτy, Of(s=↓) =

0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0

 . (S329)

Substituting Of(s) into Eq. (S319), we obtain the two spin blocks of H(Γ1⊕Γ2)(k = 0) as

H
(Γ1⊕Γ2,s=↑)
K−IVC = −W3σ0τ0 +Mσxτ0 −

J

2
σyτy, H

(Γ1⊕Γ2,s=↓)
K−IVC = −W3σ0τ0 +Mσxτ0 +

J

2

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 , (S330)

where the subscript “K-IVC” indicates that the corresponding density matrices are generated by the parent K-IVC

state. The lowest three levels at k = 0 of the K-IVC state are all −W3 −
√
M2 + J2

4 , where two come from the s =↑
flavor and one comes from the s =↓ flavor. Clearly, the K-IVC state has lower quasi-particle energy than the VP
state. In the end we consider the one-shot HF mean field Hamiltonian spanned by the Γ1 ⊕ Γ2 for the VP+K-IVC
state

H
(Γ1⊕Γ2,s=↑)
VP+K−IVC = −W3 +Mσxτ0 −

J

2
σyτy, H

(Γ1⊕Γ2,s=↓)
VP+K−IVC = −W3 +Mσxτ0 −

J

2
diag([1,−1,−1,−1]) , (S331)

where the subscript “VP+K-IVC” indicates that the corresponding density matrices are generated by the parent

mixed (VP+K-IVC) state. The lowest three levels at k = 0 of the VP+K-IVC state are also all −W3 −
√
M2 + J2

4 ,

which are same as those of the K-IVC state. Thus the rules in Section S4 C cannot tell us whether K-IVC or VP+K-
IVC has a lower energy. In fact, the one-shot and self-consistent HF energies of the two states are indeed very close
to each other (Table S7).

Taking into account the bands at k = 0 contributed by the Γ3 basis still cannot distinguish the energies of the
K-IVC and the VP+K-IVC states. Following a similar calculation as in Section S4 B 2, one will find that the energy
levels from the Γ3 basis are the same for both states. The energy difference must be contributed by the bands at
finite k.
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FIG. S8. HF band structures of correlated insulator phases at ν = −2. (a), (b), (c) are the one-shot HF band structures of
the VP, K-IVC, and IVC phases, respectively. (d), (e), (f) are the self-consistent HF band structures of the VP, K-IVC, and
IVC phases, respectively. The color represents the composition of the energy bands, where yellow corresponds to the local
orbitals and blue corresponds to the conduction bands. We have chosen w0/w1 = 0.8 in the calculation. Other parameters of
the single-particle and interaction hamiltonians are given in Tables S4 and S6.

As shown in Fig. S7, one-shot and self-consistent HF bands of all the different states at ν = −1 have a feature in
common: There is a set of flat bands above the zero energy. Such flat bands are also observed in one of our previous
studies [6] but have not been understood. (See the particle excitation spectra in Fig. 11 of Ref. [6].) We now can
explain the origin of the flatness through our topological heavy fermion model. We consider the k·p expansion of the
one-shot mean-field Hamiltonian. For simplicity, here we mainly focus on the VP state. Following the same procedure
we have done to obtain the one-shot mean field Hamiltonian at ν = 0 (Eq. (S305)), we obtain

H
(MF)
VP (k) ≈

 −W1σ0τ0ς0 v?(kxσ0τz + ikyσzτ0)ς0 γσ0τ0ς0 + v′?(kxσxτz + kyσyτ0)ς0
v?(kxσ0τz − ikyσzτ0)ς0 −W3σ0τ0ς0 +Mσxτ0ς0 − J

2
σ0τzς0 0

γσ0τ0ς0 + v′?(kxσxτz + kyσyτ0)ς0 0 −(U1 + 6U2)σ0τ0ς0 − U1(Of − 1
2
σ0τ0ς0)

 .

(S332)

The density matrix Of is given in Eq. (S324). Comparing it to the one-shot mean field Hamiltonian at ν = 0
(Eq. (S305)), there are three additional terms, i.e., −W1σ0τ0ς0, −W3σ0τ0ς0, and −(U1 + 6U2)σ0τ0ς0 in the three diag-
onal blocks. These three terms come from the Hartree channel terms νfW1, νfW3, νf (U1 + 6U2) of HW (Eq. (S284))

and HU (Eq. (S279)) and only shift the energies of the three blocks. Without the energy shift and the couplings (γ, v′?)
between c- and f -electrobs, the c-bands (the first two blocks) would have a quadratic touching at zero energy and the
f -levels (the third block) have energies ±U1/2, as illustrated by the red bands in Fig. 3(a) in the main text. Using
the parameters obtained at w0/w1 = 0.8 (Table S6), the average energy shift of the c-electron bands (the first two
blocks) is −(W1 +W3)/2 ≈ −47meV, and the energy shift of the f -electron bands is −(U1 + 6U2) ≈ −72meV. Thus,
the relative energy shift of f -electrons with respect to c-electrons is given by δE ≈ (−72 + 47)meV ≈ −25meV and
is approximately −U1/2 ≈ 29meV. That means, if we turn off the hybridizations, the upper branch of the f -electron
levels will be shifted to the quadratic touching point of the c-electrons, as shown by the red bands in Fig. 3(b) in
the main text. Turning on the hybridizations will gap out the quadratic touching point, then the upper branch of
f -electron bands form an isolated set of flat bands.
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2. Filling ν = −2

We consider the parent wave function of valley polarized (VP) state at ν = −2 as

|VPν=−2
0 〉 =

∏
R

f†R1+↑f
†
R2+↑|FS〉 , (S333)

where |FS〉 is the Fermi sea state of the conduction bands at the charge neutrality point (Eq. (S296)). The parent
wave functions for the IVC and K-IVC states are rotated from |VPν=−1

0 〉 by the chiral-U(4) (Eq. (S92)) and flat-U(4)
(Eq. (S105)) symmetries as

|IVCν=−2
0 〉 = e−i

π
2

Θ̂x0 |VPν=−1
0 〉 =

∏
R

1

2
(f†R1+↑ − if

†
R2−↑)(−if

†
R1−↑ + f†R2+↑)|FS〉 , (S334)

and

|K-IVCν=−2
0 〉 = e−i

π
2

Σ̂x0 |VPν=−1
0 〉 =

∏
R

1

2
(f†R1+↑ + f†R2−↑)(−f

†
R1−↑ + f†R2+↑)|FS〉 , (S335)

respectively. Feeding the parent states into the HF loops, we obtain the HF band structures and energies as shown
in Fig. S8 and Table S7, respectively. We find that the K-IVC state has the lowest energy.

We now apply the two rules given in Section S4 C to discuss the one-shot states, i.e., |Xν=−2
1 〉 (X =VP, IVC,

K-IVC), which are Fock states occupying the one-shot HF bands (Fig. S8) to the filling ν = −2. The VP and K-IVC
states satisfy the first rule, i.e., two f -electrons tend to occupy a flavor flat-U(4) symmetry. Here the two f -electrons

are f†R1+↑f
†
R2+↑ or its flat-U(4) partners. We need to compare the quasi-particle energies of the three states to

determine the ground states. The density matrices given by |VPν=−2
0 〉 are

Of = σ0(
τz + τ0

2
)(
ς0 + ςz

2
), Ocaηs,a′η′s′ = δηη′δss′O

c
aηs,a′ηs, Ocaηs,aηs = 0, Ocf = 0 . (S336)

According to Eq. (S319) and the density matrices, the one-shot HF mean field Hamiltonian spanned by the Γ1 ⊕ Γ2

states at k = 0, i.e., H(Γ1⊕Γ2), is diagonal in the spin index. The spin-up and down blocks are given by

H
(Γ1⊕Γ2,s=↑)
VP = −2W3σ0τ0 +Mσxτ0 −

J

2
σ0τz, H

(Γ1⊕Γ2,s=↓)
VP = −2W3σ0τ0 +Mσxτ0 +

J

2
σ0τ0 , (S337)

where the subscript “VP” indicates that the corresponding density matrices are generated by parent VP state. The
lowest two levels at k = 0 of the VP state are

− 2W3 −M −
J

2
, −2W3 +M − J

2
, (S338)

both of which come from the s =↑ flavor. (We have making use of J/2 > M .) Applying a flat-U(4) rotation e−i
π
2 Σ̂x0

to the order parameter, we obtain the one-shot HF mean field Hamiltonian spanned by the Γ1 ⊕ Γ2 (Eq. (S319)) for
the K-IVC state

H
(Γ1⊕Γ2,s=↑)
K−IVC = −2W3σ0τ0 +Mσxτ0 −

J

2
σyτy, H

(Γ1⊕Γ2,s=↓)
K−IVC = −2W3σ0τ0 +Mσxτ0 +

J

2
σ0τ0 , (S339)

where the subscript “K-IVC” indicates that the corresponding density matrices are generated by parent VP state.
The lowest two levels at k = 0 of the K-IVC state are

− 2W3 −
√
M2 +

J2

4
, −2W3 −

√
M2 +

J2

4
, (S340)

both of which come from the s =↑ flavor. Clearly, the K-IVC state, where the Mσxτ0 and J
2 σyτy terms in the spin-up

sector anti-commute with each other, has lower quasi-particle energy than the VP state, where the Mσxτ0 and J
2 σ0τz

terms in the spin-up sector commute with each other.

3. Filling ν = −3

We consider the parent wave function of valley polarized (VP) and spin polarized state at ν = −3 as

|VPν=−3
0 〉 =

∏
R

f†R1+↑|FS〉 , (S341)
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FIG. S9. HF band structures of correlated insulator phases at ν = −3. (a), (b) are the one-shot HF band structures of the VP
and K-IVC phases, respectively. (c), (d) are the self-consistent HF band structures of the VP and K-IVC phases, respectively.
The color represents the composition of the energy bands, where yellow corresponds to the local orbitals and blue corresponds to
the conduction bands. We have chosen w0/w1 = 0.8 in the calculation. Other parameters of the single-particle and interaction
hamiltonians are given in Tables S4 and S6.

where |FS〉 is the Fermi sea state of the conduction bands at the charge neutrality point. The parent wave functions
for the IVC and K-IVC states are rotated from |VPν=−3

0 〉 by the chiral-U(4) (Eq. (S92)) and flat-U(4) (Eq. (S105))
symmetries as

|IVCν=−3
0 〉 = e−i

π
2

Θ̂x0 |VPν=−3
0 〉 =

∏
R

1√
2

(f†R1+↑ − if
†
R2−↑)|FS〉 , (S342)

and

|K-IVCν=−3
0 〉 = e−i

π
2

Σ̂x0 |VPν=−3
0 〉 =

∏
R

1√
2

(f†R1+↑ + f†R2−↑)|FS〉 , (S343)

respectively. We can see that |IVCν=−3
0 〉 and |K-IVCν=−3

0 〉 are related by a valley-U(1) rotation, which adds the

factor i to the f -electron (f†R2−↑) in the valley η = −. (One should notice that, at the filling ν = −2, the K-IVC

(Eq. (S335)) and IVC (Eq. (S334)) parent states are not related by a valley-U(1) rotation. If one applies the same

rotation as above, one will obtain
∏

R
1
2 (f†R1+↑ + f†R2−↑)(f

†
R1−↑ + f†R2+↑)|FS〉, which is still different from the K-IVC

parent state (Eq. (S335)).) Thus the two states must have the same band structure and the same energy. Hence in
the following we will only discuss the VP and the K-IVC states. Feeding the parent states into the HF loops, we
obtain the HF band structures and energies as shown in Fig. S9 and Table S7, respectively. We find that the VP
state has the lowest energy.

All the one-shot states, i.e., |Xν=−3
1 〉 (X =VP, K-IVC), and self-consistent states, i.e., |Xν=−3

∞ 〉, are Fock states
occupying the HF bands (Fig. S7) up to the filling ν = −3. Even though they do not have indirect gaps, they do have
direct gaps at every momentum. Hence Chern numbers are still well defined for the direct gaps. As will be explained
in Section S4 E, all these states have the Chern number C = 1. It is worth mentioning that the parent states |Xν=−3

1 〉,
even though lead to one-shot states with nonzero Chern numbers, do not have Chern numbers because they occupy
gapless conduction bands plus one local orbital.

We now apply the two rules given in Section S4 C to discuss the ground states. We need to compare the quasi-particle
energies of the two states to determine the ground states. The density matrices given by |VPν=−3

0 〉 are

Of = (
σ0 + σz

2
)(
τz + τ0

2
)(
ς0 + ςz

2
), Ocaηs,a′η′s′ = δηη′δss′O

c
aηs,a′ηs, Ocaηs,aηs = 0, Ocf = 0 . (S344)

According to Eq. (S319) and the density matrices, the one-shot HF mean field Hamiltonian spanned by the Γ1 ⊕ Γ2

states at k = 0, i.e., H(Γ1⊕Γ2), is diagonal in the spin index. The spin-up and down blocks of Γ1⊕Γ2 states are given
by

H
(Γ1⊕Γ2,s=↑)
VP = −3W3 +Mτ0σx −

J

2
diag([1,−1,−1,−1]), H

(Γ1⊕Γ2,s=↓)
VP = −3W3 +Mσx +

J

2
σ0 , (S345)

where the subscript “VP” indicates that the input density matrices are generated by the parent VP state. The lowest
level at k = 0 of the VP state is

− 3W3 −
√
M2 +

J2

4
, (S346)
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which comes from the s =↑ flavor. Applying a flat-U(4) rotation e−i
π
2 Σ̂x0 to the order parameter, we obtain the

one-shot HF mean field Hamiltonian spanned by the Γ1 ⊕ Γ2 (Eq. (S319)) for the K-IVC state

H
(Γ1⊕Γ2,s=↑)
K−IVC = −2W3 +Mτ0σx +

J

2

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 , H
(Γ1⊕Γ2,s=↓)
K−IVC = −2W3 +Mσx +

J

2
σ0 , (S347)

where the subscript “K-IVC” indicates that the input density matrices are generated by the parent K-IVC state. The

lowest level at k = 0 of the K-IVC state is still −3W3−
√
M2 + J2

4 . Thus the second rule given in Section S4 C cannot

tell us which has lower energy. In fact, the one-shot and self-consistent HF energies of the two states are indeed very
close to each other (Table S7). As discussed in the end of Section S4 D 1, the energy difference between the two states
must be contributed by bands at finite k.

E. Chern numbers of the ground states

We first consider the Chern numbers of the insulator ground states at the filling ν = 0. Since the Chern numbers are
stable against perturbations, we can simplify the problem by (i) looking at the one-shot mean-field Hamiltonian instead
of the self-consistent mean-field Hamiltonian and (ii) deforming the one-shot mean-field Hamiltonian adiabatically. As
shown in previous subsections, flat-U(4) is a good approximation of the Hamiltonian. Tuning M to zero, which makes
flat-U(4) an exact symmetry of the considered Hamiltonian, will not close the gap of the one-shot VP (2|M − J/2|),
gap of one-shot K-IVC (2

√
M2 + J2/4), and gaps of their U(4) partner states, provided that M < J/2. Therefore,

the VP and K-IVC states must have the same Chern number since they are related by flat-U(4) rotation. We rewrite
the kp expansion of the one-shot mean-field Hamiltonian for the VP state (Eq. (S305)) as

H
(MF)
VP (k) =

(
A(k) S(k)
S†(k) B

)
⊗ ς0 (S348)

with

A(k) =

(
0 v?(kxτzσ0 + ikyτ0σz)

v?(kxτzσ0 − ikyτ0σz) Mτ0σx − J
2 τzσ0

)
, S(k) =

(
γσ0τ0 + v′?(kxσxτz + kyσyτ0)

0

)
, (S349)

B = −U1

2 σ0τz. Since U1 is large, we can integrate out the f -orbital levels to derive a four-by-four Hamiltonian to
describe the low energy bands around k = 0. Applying a second order perturbation theory, or a Schrieffer-Wolf
transformation that decouples f - and c-electrons, we obtain

H
(eff)
VP (k) ≈ A(k) + S(k)B−1S†(k) =

(
2γ2

U1
τzσ0 +

4γv′?
U1

(kxτ0σx + kyτzσy) v?(kxτzσ0 + ikyτ0σz)

v?(kxτzσ0 − ikyτ0σz) Mτ0σx − J
2 τzσ0

)
⊗ ς0 . (S350)

Since the “integrated out” f -orbitals are topologically trivial, there should be no worry about missing topological
bands at higher energies. Without closing the gap, we can continuously change the parameters as 2γ2/U → m,
v′? → 0, M → 0, J/2→ −m with m > 0 such that the Hamiltonian becomes

mζzτzσ0 + v?kxζxτzσ0 − v?kyζyτ0σz . (S351)

Here ζx,y,z are Pauli matrices introduced for the Γ3 (ζz = 1) and the Γ1 ⊕ Γ2 (ζz = −1) subspaces. We can view this
Hamiltonian as four independent gapped Dirac points in the eigenspaces of τz and σz. To be concrete, we use η = ±1
and (−1)α−1 (α = 1, 2) to represent the eigenvalues of τz and σz, respectively. Then the Dirac Hamiltonian can be
written as

mηζz + v?kxηζx − v?ky(−1)α−1ζy. (S352)

The Chern number contributed by each Dirac point is given by − 1
2η · η · (−1)α−1 = − 1

2 (−1)α−1. The total Chern
number is hence zero.

We then consider the Chern numbers of the insulator states at other fillings. We can simplify the problem by
deforming the one-shot mean-field Hamiltonian adiabatically in the sense that the direct gap at each k does not close.
We first let M → 0 to recover the flat-U(4) symmetry. The states do not close their gaps (2|J/2−M | or

√
M2 + J2/4)
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in this process because M is small compared to J/2. Thus all the phases related by flat-U(4) rotations must have the
same topology. For a set of flat-U(4) related states, we only need to calculate the Chern number of the simplest one
of them, i.e., the valley, spin, and orbital polarized state. We hence consider the parent wave function

|trial〉 =
∏
R

∏
αηs

(f†Rαηs)
nαηs |FS〉 , (S353)

where nαηs = 1 or 0 are the occupation numbers of the α-th (α = 1, 2) f -orbitals in the valley η (= ±) and spin s
(=↑↓) sector. The density matrix and filling of local orbitals are given by

Ofαηs,α′η′s′ = δα,α′δη,η′δs,s′nαηs, νf = −4 +
∑
αηs

nαηs, νc = 0 . (S354)

The k·p expansion of the one-shot mean-field Hamiltonian (from Eqs. (S81), (S279), (S284), (S290) and (S292)) for
the parent state reads

H(MF)(k) ≈

 νfW1 v?(kxσ0τz + ikyσzτ0)ς0 γσ0τ0 + v′?(kxσxτz + kyσyτ0)ς0
v?(kxσ0τz − ikyσzτ0)ς0 νfW3 +Mσxτ0ς0 − J(Of − 1

2
σ0τ0ς0) 0

γσ0τ0ς0 + v′?(kxσxτz + kyσyτ0)ς0 0 νf (U1 + 6U2)− U1(Of − 1
2
σ0τ0ς0)

 .

(S355)

We further deform the Hamiltonian H(MF)(k) adiabatically to simplify the problem. First, we can continuously turn
off the νfW1, νfW3, νfW1(U1 + 6U2) terms without changing the direct gap at k = 0. A simple argument to justify
this process is the following. As mentioned in Section S4 C, for all the fillings the first block (Γ3 representation from
conduction bands) and the third block (Γ3 representation from local orbitals) are at high energies and the levels closest
to the gap are always from the second block (Γ1⊕Γ2 representation from the conduction bands), i.e., νfW3±M±J/2.
In the process of turning off the three terms, the first block and the third block continue to be at high energies and
do not enter the low energy physics around k = 0. This is confirmed by the calculated levels in in the following
(Eqs. (S357) and (S358)). Second, we tune v′? → 0, M → 0, which is also adiabatic. The deformed Hamiltonian is
diagonal in the sublattice (σz), valley (τz), and spin (ςz) indices, i.e.,

H(MF,α,η,s)(k) ≈

 0 v?(ηkx + i(−1)α−1ky) γ
v?(ηkx − i(−1)α−1ky) −J(nαηs − 1

2 ) 0
γ 0 −U1(nαηs − 1

2 )

 . (S356)

For nαηs = 1, given |U1

4 ±
√
γ2 + U2

1 /4| > J/2, the energy levels from low to high are

− U1

4
−
√
γ2 +

U2
1

16
, −J

2
, −U1

4
+

√
γ2 +

U2
1

16
. (S357)

For nαηs = 0, the energy levels from low to high are

U1

4
−
√
γ2 +

U2
1

16
,

J

2
,

U1

4
+

√
γ2 +

U2
1

16
. (S358)

We can choose the chemical potential at zero: For nαηs = 1, the −U1

4 −
√
γ2 +

U2
1

16 and −J/2 levels are occupied, while

−U1

4 +

√
γ2 +

U2
1

16 is empty; For nαηs = 0, the U1

4 −
√
γ2 +

U2
1

16 level is occupied, while the J/2 and U1

4 +

√
γ2 +

U2
1

16

levels are empty. The total number of occupied levels (subtracting 12 contributed by c-electrons) equals to νf . Now
we integrate out the third block (local orbitals), as we did in Eq. (S350), to derive an effective Dirac Hamiltonian.
For nαηs = 1, there is

H(eff,α,η,s)(k) ≈

(
2γ2

U1
v?(kxησ0 + i(−1)α−1kyτ0)

v?(kxησ0 − i(−1)α−1ky) −J2

)
. (S359)

Tuning 2γ2

U1
→ m, J2 → −m (m > 0), the above Hamiltonian is adiabatically deformed to mξz+v?ηkxξx−v?(−1)α−1ξy.

Hence the contributed Chern number by this Hamiltonian is − 1
2η(−1)α−1. For nαηs = 0, there is

H(eff,α,η,s)(k) ≈

(
− 2γ2

U1
v?(kxησ0 + i(−1)α−1kyτ0)

v?(kxησ0 − i(−1)α−1ky) +J
2

)
. (S360)
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Tuning 2γ2

U1
→ m, J

2 → −m (m > 0), the above Hamiltonian is adiabatically deformed to −mξz + v?ηkxξx −
v?(−1)α−1ξy. Hence the contributed Chern number by this Hamiltonian is 1

2η(−1)α−1. Therefore, for the parent
state of the form Eq. (S353), the total Chern number contributed by the nαηs = 1 and nαηs = 0 flavors is given by

C =
∑
αηs

(
−1

2
η(−1)α−1nαηs +

1

2
η(−1)α−1(1− nαηs)

)
= −

∑
αηs

η(−1)α−1nαηs . (S361)

According to the C3z representation matrix of the f -orbitals, Df (C3z) = e
2π
3 τzσz (Eq. (S36)), the factor η(−1)α−1 is

nothing but the angular momentum of the corresponding f -orbital.
Substituting Eq. (S361) into the VP states at the fillings ν = 0,−1,−2,−3, we find their Chern numbers as

Cν=0 = 0, Cν=−1 = −1, Cν=−2 = 0, Cν=−3 = −1 . (S362)

The flat-U(4) related K-IVC and VP+K-IVC states have the same Chern numbers. These results are same as Ref. [5].

S5. More discussions

Insights for the heavy fermion physics from experiments — Our model fits precisely with the experimental
facts of Ref. [34] which writes “The correlated state features an unusual combination of seemingly contradictory
properties, some associated with itinerant electrons - such as the absence of a thermodynamic gap, metallicity and a
Dirac-like compressibility - and others associated with localized moments, such as a large entropy and its disappearance
under a magnetic field.”

Charge-2 excitations — As an example of the improved understanding of the MATBG physics through our
model, as shown in Ref. [6], there is a high-energy “flat-band” charge-2 collective mode upon the ground state at
ν = 0 (see Fig. 4 of Ref. [6]). Since its energy is about 120meV ∼ 2U1, it is likely that the charge-2 collective mode
is just an excitation of two f -electrons at the same site.

Position-dependence of STM spectrum and Landau level quantization — One key feature of our heavy
fermion model is that the quasi-particle excitation has a minimal band gap at the ΓM point, and the corresponding
wavefunctions are contributed by c-electrons. This feature should be reflected in position dependence of the spectrum:
At an AA-stacking site, the local spectrum (density of states) is mainly contributed by f -electrons and hence should
have strong weight at the large gap (∼ U) states but less weight at the minimal gap (∼ J) states. On the contrary,
at an AB-stacking site, where c-electron dominates, the local spectrum should have more weight at the minimal gap
(∼ J) states. In addition, since c-electrons are more delocalized, their response to magnetic field will be much more
significant than that of f -electrons. As a result, the Landau level (LL) quantization in the presence of a magnetic
field should be easier to be observed at AB-stacking sites.

The position-dependences of local spectrum (density of states) and LLs have been seen in STM experiments, e.g.,
Refs. [25, 28]. Comparing Fig. 1c and Extended Fig. 2a of Ref. [28] one can see that, in the same sample, when the
large gap (∼ U) is well developed, there are additional peaks inside the large gap (∼ U) at AB-stacking sites but
none at AA-stacking sites. This phenomenon is consistent with the above analysis. Ref. [28] also found that LLs at
AA-stacking sites are harder to resolve than those at AB-stacking sites, which are also consistent the analysis above.
Comparing Fig. 1c and Fig. 3a of Ref. [25], one can see the same behavior: Spectrum at AB-stacking sites have
additional peaks inside the large gap (∼ U). (But Fig. 1c and Fig. 3a of Ref. [25] are from two samples. We did not
find spectra at both AA and AB sites of the same sample in Ref. [25].)

The quasi-particle spectra shown in Fig. 2 of the main text also explain the Landau fans observed in transport
experiments [29–32]. Around integer fillings ν ≥ 0 (ν ≤ 0), the quasi-particles (quasi-holes) are contributed by
c-electrons and will form Landau levels in the presence of magnetic field, while quasi-holes (quasi-particles) are
contributed by f-electrons and will form Landau levels. Therefore, Landau fans are observed at ν = n+δ (ν = −n−δ)
for n = 0, 1, 2, 3 and 0 < δ � 1.

Ground states at fillings ν = ±3 — Transport experiments [11, 12] observed resistivity peaks at the fillings
ν = ±3, suggesting existence of strongly correlated phases. Then, STM [27, 28] and transport [29–32] experiments
found that a finite magnetic field can stabilize a correlated Chern insulator phase with Chern numbers ν = ±1 at
ν = ±3. These experiments suggest that the Chern insulator phase is at least a metastable state slightly above the
actual ground state.

A perturbation [5] and an ED calculation [105] by some of the authors found that the ground states at ν = ±3
would be correlated Chern insulator with Chern number ±1 if the so-called flat-metric-condition is imposed to the
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model. These results are also consistent analysis in Ref. [2]. However, with realistic parameters, there is no indirect
gap between the quasi-hole and electron bands - even though there is a direct gap at each momentum [6]. Thus, with
realistic parameters, the correlated Chern insulator phase becomes unstable [6]. The gapless spectrum obtained in
the current work Fig. S9 is fully consistent with the results in Refs. [6, 105].

DMRG studies [75, 76] found that, using realistic parameters, gapless C2zT -symmetric nematic or gapped C2zT -
symmetric stripe states may have lower energies than the Chern insulator states at ν = ±3. They may provide an
explaination to the absence of Chern insulator at zero magnetic field. We leave HF calculations of such states for
future studies.
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