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Magic number colloidal clusters as minimum free
energy structures
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Clusters in systems as diverse as metal atoms, virus proteins, noble gases, and nucleons have

properties that depend sensitively on the number of constituent particles. Certain numbers

are termed ‘magic’ because they grant the system with closed shells and exceptional stability.

To this point, magic number clusters have been exclusively found with attractive interactions

as present between atoms. Here we show that magic number clusters exist in a confined soft

matter system with negligible interactions. Colloidal particles in an emulsion droplet spon-

taneously organize into a series of clusters with precisely defined shell structures. Crucially,

free energy calculations demonstrate that colloidal clusters with magic numbers possess

higher thermodynamic stability than those off magic numbers. A complex kinetic pathway is

responsible for the efficiency of this system in finding its minimum free energy configuration.

Targeting similar magic number states is a strategy towards unique configurations in finite

self-organizing systems across the scales.
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T
he structure of particle clusters is strongly affected by
geometric constraints. This first became apparent in the
study of atomic nuclei. Nucleons preferentially arrange

into shells, which lead to the identification of the series of
numbers that permit closed shells as magic numbers1,2. Devia-
tions from a pure statistical distribution of cluster sizes are also
observed in the mass spectrum of small noble gas and metal
clusters3,4. Clusters with atom numbers that follow magic num-
bers show enhanced stability as a result of the maximized num-
bers of neighbors5–7. This tendency provides a driving force to
form clusters with closed, concentric shells, including the well-
known Mackay icosahedra8. Atomic clusters therefore often
possess complex geometries that differ from the typical face-
centered cubic (FCC) bulk crystal structure9,10.

Whereas the appearance and structure of atomic clusters are
commonly explained by potential energy minimization, especially at
low temperature11, the formation of colloidal clusters is typically
governed by several factors. Colloids are initially stabilized against
aggregation, which prevents them from aggregating in solution12,13.
However, colloids can self-assemble into clusters by increasing short-
range attraction14–17 or by applying geometric confinements18–26.
Phenomena that contribute to the development of colloidal clusters
during a confined self-assembly process include the interaction of soft
ligand shells27, the presence of depletants17, capillary forces acting on
particles during the drying process19, and entropy maximization28.
The latter case is comparably easy to control in the experiment
because it only requires weakly interacting colloids, which are
described well via the simple hard sphere model29,30. Temperature as
the control variable for atomic cluster formation is then replaced by
the packing fraction of the hard spheres31–35.

Small numbers of nanoparticles and colloids pack into defined
clusters with a wide variety of symmetries17,36–38. With increas-
ing particle number, entropy maximization has been identified as
the driving force favoring the formation of icosahedral symmetry
of spherical colloidal clusters28,39. In such confined systems, the
interface boundary acts as a source for heterogeneous nuclea-
tion40 of crystalline patches41 that subsequently expands towards
the cluster center28. If the number of particles within the con-
fining element is further increased, the effect of confinement is
continuously reduced until, from a system size of approximately
100,000 particles, bulk crystal structures with FCC symmetry are
retained28. Despite these general insights, the detailed structure of
a large colloidal cluster formed from a discrete number of col-
loidal particles remains unknown. While the dominant occur-
rence of atomic clusters with magic numbers in mass spectra3,4

suggests self-adjustment in their sizes during formation by
addition or removal of atoms to reach magic numbers under
appropriate circumstances, the number of particles in a colloidal
cluster remains fixed in confinement, which allows experiments
to explore clusters of arbitrary sizes. This raises the fundamental
question of whether some colloidal cluster sizes are thermo-
dynamically preferred over others.

Here, we demonstrate that the magic number phenomenon
known from atomic clusters extends to the colloidal realm. We report
a discrete family of icosahedral clusters spanning a large range of
particle numbers and propose a geometric model based on the
Mackay and anti-Mackay clusters to accurately describe all observed
cluster structures. Simulations and high-precision free energy calcu-
lations reproduce and explain the experimental observation.

Results
Fabrication of colloidal clusters. We study the system size-
dependent colloidal cluster formation in monodispersed droplets
of an aqueous dispersion of polystyrene (PS) colloidal particles
with different concentrations in a continuous oil phase produced

by microfluidics (Supplementary Figure 1). The PS colloidal par-
ticles are 244 nm in diameter and stabilized by carboxylate surface
groups introduced as comonomers in the synthesis by surfactant-
free emulsion polymerization. Over the course of water evapora-
tion, the volume fraction of the colloidal particles gradually
increases towards a solidified colloidal cluster. Four cluster
morphologies prevail (Fig. 1a–d). With the fastest evaporation,
buckled clusters form as the droplet interface moves faster than
colloidal particles can consolidate (Fig. 1a, Supplementary Fig-
ure 2). When the evaporation rate is lowered, spherical clusters
dominate (Fig. 1b). Spherical clusters exhibit a uniformly curved
surface with only weak crystalline order and are the morphology
most frequently reported in the literature18,42–45. Partial icosahe-
dral clusters with incompletely developed five-fold symmetry axes
at the surface (Fig. 1c) form with further decreasing evaporation
rate. Very slow evaporation provides sufficient time for the col-
loidal particles to arrange into icosahedral clusters (Fig. 1d), which
are characterized by a fully developed pattern of five-fold axes at
the surface. The uniformity of the colloidal clusters (Fig. 1e, f)
enables us to statistically evaluate the evaporation rate-dependent
cluster formation: the fraction of icosahedral clusters increases up
to 75% as evaporation is slowed down (Fig. 1g). Similarly, at the
lowest evaporation rate, the dominant species of the observed
clusters evolve from buckled to spherical to icosahedral symmetry
with increasing assembly time (Fig. 1h, Supplementary Figure 3).

Geometric model of magic number colloidal clusters. Well-
formed icosahedral clusters are characterized by distinct surface
features. The surface is tiled with rectangles and truncated tri-
angles, which alternate around five-fold axes. Together, these
structural elements form a closed shell spanning the cluster’s
surface (Fig. 2a). In analogy to atomic clusters with complete
outer shells3,4, we term such clusters as magic number colloidal
clusters (MCCs). To rationalize the appearance of MCCs, we
recall that 12 identical spheres readily arrange into an icosahe-
dron around a central sphere. Subsequent Mackay shells can be
added concentrically8. Figure 2b exemplarily shows a 10-shell
Mackay icosahedron as the starting point for a model to describe
the MCC structure. It consists of 20 slightly deformed tetrahedra
with FCC structure sharing a central sphere, each twinned with
three neighboring tetrahedra. We expand the Mackay core by
adding anti-Mackay shells46–50 that consist of 20 additional tet-
rahedra over the icosahedron faces, filling their gaps with 30
tetrahedra over the icosahedron edges, and finishing the con-
struction with 60 tetrahedra over the icosahedron vertices. The
resulting Pentakis dodecahedron model51 maintains icosahedral
symmetry and consists of 130 twinned tetrahedra. Finally, we
apply spherical truncation to remove spheres in the model whose
distances to the center is larger than the truncation radius. This
mimics the effect of confinement of the confined colloids, which
are forced into a spherical shape by the geometry of the emulsion
droplet.

Although complex at first glance, MCCs are determined by
only two parameters: the number of shells of the Mackay core m
and the number of anti-Mackay shells a, which is controlled by
the truncation radius (Fig. 2c). We introduce a notation to classify
the MCCs as (m+ a)a types, specifying the total number of shells,
m+ a, and the number of anti-Mackay shells a. The distinct
surface patterns of the MCCs are directly correlated with their
crystal structure and can be used to deduce the number of
Mackay and anti-Mackay shells. From the model, we identify that
the rectangular surface features are the characteristic structural
element associated with the anti-Mackay shells (Fig. 2b). They
result from truncation of the 20 twinned tetrahedra added to the
facets of the icosahedral structure and the additional 90
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tetrahedra filling the open voids of the model structure. In the
absence of an anti-Mackay shell, a single line of colloids marks
the facet of the icosahedron. A single anti-Mackay shell produces
a rectangle with a width of two particles, two anti-Mackay shells a
width of three particles (as in the example structure) and so on.
An equation of the relationship between surface and interior shell
structure is given in Supplementary Figure 4. Python code to
generate MCC models following the procedure in Fig. 2b is
included in Supplementary Information. By comparison with the
model, we can now identify the MCC in Fig. 2a as of 122 type, i.e.,
consisting of 10 Mackay and 2 anti-Mackay shells.

The geometry of the Pentakis dodecahedron necessitates deforma-
tion on all tetrahedral grains in the model (Fig. 2d). Grains in the
Mackay core and over anti-Mackay faces are identical and least
deformed, grains over anti-Mackay edges and vertices are more
deformed. The deformation analysis of our model suggests particles
along the width of the rectangles in the cluster surface are separated
by 1.13 times their diameter, compared to those along the length of
the rectangle by 1.05, which can be observed experimentally (Fig. 2a,
Supplementary Figures 5, 8). It also suggests extra particles are prone
to accumulate in the vertices regions where tetrahedral grains have
the highest degree of deformation. Our model extends the well-
established Mackay icosahedron52 to a new sphere packing model
into a Pentakis dodecahedron, which may help the understanding of
binary clusters where slightly larger component resides in more
deformed regions51,53,54. Note that the icosahedral order of the
model and MCCs originates from multi-twinned tetrahedral grains
with a deformed FCC crystal structure, which bears no direct
connection to quasicrystals.

Electron tomographic confirmation of the model. We employ
electron tomography of a 72 type MCC to resolve its three-
dimensional structure. The cluster structure and model agree
quantitatively, as seen by the similarity of bright field scanning

transmission electron microscopy (STEM) images and the semi-
transparent model images in projections along the symmetry axes
(Fig. 3a–c, f–h). This agreement confirms that the MCC indeed is
crystalline and that the cluster type deduced from the surface
pattern is consistent with its internal structure. The recorded tilt
series underlines the icosahedral nature of the cluster. During
rotation, views along two-, three-, and five-fold symmetry axes
gradually transition from one to another (Supplementary
Movie 1, Supplementary Movie 2). In the tomographic recon-
struction of the data, characteristic surface features (Fig. 3d, i,
Supplementary Figure 5) and details of the interior (Fig. 3e, j,
Supplementary Movie 3) coincide between experiment and
model. In the cross-section of the reconstructed cluster, two tri-
angles of 21 hexagonally closed-packed particles sharing a single
particle at the center can be clearly distinguished (Fig. 3e, j).
These particles form the triangular faces of two tetrahedra in a
five-shell Mackay icosahedron. Four particles at the surface
belong to the second anti-Mackay shell (indicated by a green
line), which enables us to identify the cluster as a 72 type (Sup-
plementary Figure 6).

Library of MCCs. From the analysis of hundreds of clusters of
size ranging from 100 to 10,000 colloidal particles, we generate a
library of experimentally observed MCCs (Fig. 4, Supplementary
Figure 7). All these clusters exhibit complete, well-defined outer
shells and can be assigned a magic number cluster type of the form
(m+ a)a, deduced from their surface features. In all cases,
experimental observation and model coincide. The model predicts
that the number of colloids per cluster follows the approximate
relationship N ¼ 10

3
mþ að Þ3 derived for Mackay clusters8. Fur-

thermore, the number of colloidal particles per cluster decreases
from type (m+ a)a to type (m+ a)a+1, i.e., when a Mackay shell
converts to an anti-Mackay shell (Fig. 4j–l), as a result of lower
local density in anti-Mackay shells. Figure 4m summarizes all
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Fig. 1 Colloidal clusters from confined self-assembly in water-in-oil emulsion droplets. Four distinct cluster morphologies with increasing degree of ordering

are observed: a buckled clusters partially collapse upon evaporation into non-spherical shape; b spherical clusters exhibit only local order; c partial

icosahedral clusters show one or more five-fold symmetry axes and incomplete faceting (dotted blue boxes); d icosahedral clusters have well-defined

facets, edges, and vertices and complete icosahedral symmetry. e, f Low-magnification scanning electron microscopy (SEM) images highlight the

uniformity in size and structure of the prepared clusters. Spherical and icosahedral clusters dominate in the limit of fast (e) and slow (f) evaporation,

respectively. g, h Statistical evaluation of the observed morphologies as a function of the evaporation rate (g) and as an evolution over time for the slowest

evaporation rate (h) showing the progression from spherical to icosahedral (Ih). Scale bars, 2 µm
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Fig. 3 Electron microscopy tomography confirmation of model. a–c Scanning transmission electron microscopy (STEM) bright-field images of a magic

number colloidal cluster viewing along two-fold, five-fold, and three-fold axes, characteristic for icosahedral symmetry. Two staggered 10-spike rings in the

center along the five-fold axis are clearly seen in (b). d STEM tomography reconstruction provides a three-dimensional visualization of characteristic

surface features of triangles with four particles at side, rectangles of three and four particles at width and length, and pentagon with three particles at side

(indicated in blue). e Cross-sectional views through the reconstruction at the central plane reveals the characteristic internal structure. A section of the

Mackay core is marked by two blue triangles. The vertex region is marked by its characteristic pentagon. The second anti-Mackay shell is indicated by a

green line segment. Scale bars, 1 µm. f–j The experimental images show excellent agreement with 72 MCC type model reconstructions using semi-

transparent spheres mimicking the STEM imaging process (f–h), external (i) and cross-sectional views (j)
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Fig. 2 Model of magic number colloidal clusters. a SEM image of a magic number colloidal cluster (MCC). The surface is tiled with 5 × 3 rectangles (along

two-fold symmetry axes, “2f”), truncated triangles (“3f”), and concentric rings around five-fold axes (“5f”). Scale bar, 2 µm. b Model of a MCC. A Mackay

icosahedron core is expanded by adding twinned tetrahedral grains over the core icosahedral faces, edges, and vertices, forming anti-Mackay shells. The

outer geometry of the complete model is a Pentakis dodecahedron. The effect of droplet confinement is mimicked by applying spherical truncation to

remove some spheres in the model. The resulting structure accurately reproduces the experimentally observed MCC in (a). c Building block of the model

with 10 Mackay and 2 anti-Mackay shells. MCCs are denoted as of (m+ a)a type, where m is the number of Mackay shells and a the number of anti-

Mackay shells. d Tetrahedral grains in the different parts of the model with marked scale factors compared to a perfect FCC grain. All grains deviate from

regular tetrahedra as a consequence of strains in the icosahedral structure. Grains in anti-Mackay edges and vertices are deformed more strongly

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07600-4

4 NATURE COMMUNICATIONS |          (2018) 9:5259 | DOI: 10.1038/s41467-018-07600-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


observations of MCCs in the experiment (Supplementary Fig-
ure 7) and simulation (Supplementary Figure 8, see below). The
number of anti-Mackay shells increases with cluster size as a result
of the improved sphericity but is limited by a <m/2.

Formation and kinetic of MCCs from simulation. To reveal
details of the formation mechanism, we study MCC formation
with computer simulations in two steps, as a confocal study to
track all particle positions in-situ is difficult due to small particle
size and fast diffusion. In the first step (“self-assembly”), colloids
in a shrinking droplet during evaporation are modeled as hard

spheres in spherical confinement with decreasing radius using
event-driven molecular dynamics (EDMD) simulation (see
Methods). This computational approach follows recent work28

and ignores hydrodynamic interactions, which affect crystal-
lization speed55,56 and colloidal aggregation far from
equilibrium57,58 but are expected to have a weak influence on the
equilibrium cluster structure and near-equilibrium structure
formation. We record the equations of state for six system sizes
(Fig. 5a, b) and generally observe a sudden pressure drop indi-
cative of a first-order transition from a disordered fluid to an
ordered cluster. The second step (“quenching”) uses numerical
relaxation59 to mimic the capillary forces that consolidate the
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colloidal cluster in the final stage of droplet drying where the
droplet interface no longer remains spherical due to loss of water
volume60. In this step, all spheres in the structure obtained from
the first step are assigned a Morse pair potential and let to relax
into local energy minimum structure. The Morse potential was
chosen due to its tunable range and form of interaction. It is
important to note that capillary forces and attractive interactions
in the quenching step are not essential for the crystallization of
hard spheres in confinement. They occur only after the actual
self-assembly process and merely push the particles into their
final facetted structure but do not change neighbors.

Combining the two steps, the simulations reproduce the
transformation from spherical clusters to icosahedral clusters
observed in the experiment (Fig. 5c–f). Quenching the ordered
clusters of Fig. 5a demonstrates a high propensity for the
development of surface features characteristic for MCCs (Sup-
plementary Figures 9-11). However, this ordering process
depends sensitively on cluster size. The hysteresis loop becomes
wider and pressure in the ordered cluster lower for one cluster
size (N= 1905 in Fig. 5b) than slightly smaller and larger cluster
sizes (N= 1774 and N= 2166), suggesting size-dependent
thermodynamic stability. This will be further elaborated below.

We investigate the kinetics of cluster formation during the
assembly process. Particle displacements are recorded over time
during EDMD when the packing fraction is increased from 0.48
(fluid phase) to 0.55 (solid phase) and subsequently decreased
(Supplementary Figure 12). Due to the presence of hysteresis, the
fluid and solid phase occur at the same packing fraction ϕ= 0.51
during the compression stage and the expansion stage, respec-
tively. In both cases, particles form concentric shells with
occasional migration between neighboring shells. To reveal how
kinetics varies throughout the cluster, we measure mean square
displacement separately for particles starting in different shells. In
the fluid phase (Fig. 5g, top), particles near the center diffuse
significantly more than particles near the surface, which appear to
be hindered in their mobility by the confining wall. In contrast, in
the icosahedral cluster (Fig. 5g, bottom), particles in outer shells
show an increased mobility while particles in the interior are
nearly arrested. This abrupt change in the kinetics is key for
understanding MCC formation and highlights the importance of
the outermost shells for the ordering process. Crystalline patches
develop early in the outer shells and rapidly grow towards the
interior28,41,61. Importantly, particles near the surface effectively
retain mobility through the phase transition. This mobility is
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necessary to heal surface defects efficiently and helps forming
anti-Mackay surface shells.

Thermodynamic stability of MCCs. The predominant formation
of closed-shell clusters poses the fundamental question if MCCs
are thermodynamically favored. In the absence of particle inter-
actions, we determine free energies of clusters with between 100
and 8000 hard spheres by calculating entropy using the Einstein
crystal method. As an important modification of the conventional
Einstein crystal method, we include swap moves to sample dif-
fusion efficiently near the ordering transition62 and subtract the
bulk contribution (see Methods and Supplementary Figure 13).
The calculated free energy shows a series of distinct minima as
the cluster size is varied (Fig. 5h). This demonstrates that icosa-
hedral order is not only favored over FCC for hard spheres in
confinement28 but is realized as thermodynamically stable MCCs
with highly defined shell structures (Supplementary Figure 14a).
Our analysis reveals that the depth of the free energy wells per
particle ranges from 0.6 kBT for MCCs with 3 shells to 0.018 kBT
for MCCs with 12 shells. The absolute free energy gain for
forming a complete shell is constant in the order of 100 kBT and
increases with packing fraction (Supplementary Figure 14b–e). In
both experiments and simulations, we observe more anti-Mackay
shells as colloidal clusters increases in size (Fig. 4m).

Discussion
The closed-shell magic number cluster structure requires particles
to efficiently utilize space in spherical confinement to maximize
entropy, particularly in the vicinity of the curved confinement.
Icosahedral symmetry is favored over FCC28 because the highly
facetted closed-shell structure formed by the latter (Wulff shape
between octahedron and cube) creates large mismatch and gaps
between facets and the spherical confinement. The icosahedral
arrangement reduces this mismatch via more but smaller facets,
improving local dense packing near the curved interface63. Our
simulations reveal that there is always a preference for a certain
anti-Mackay and Mackay clusters type. The introduction of a few
anti-Mackay shells makes the cluster more spherical and compact
compared to the truncated Mackay icosahedron (Supplementary
Figures 15, 16). This means that the anti-Mackay shells provide
means for the cluster to more closely follow the geometry of the
confinement and thus use the available space more efficiently.
Because the packing in Mackay and anti-Mackay shells differs,
both types of shells accommodate different number of particles.
Therefore, we speculate that the confined system can adopt dif-
ferent Mackay/anti-Mackay combinations to find the optimal
closed-shell magic number arrangements for a given specific
number of particles.

The broadened minima in Fig. 5h indicates that magic number
clusters can tolerate small deviations in particle numbers. We
rationalize this observation from the geometric model. MCCs can
adapt different combinations of Mackay and anti-Mackay shells,
given a fixed number of total shells, which allows variation in
cluster size while maintaining complete shells as detailed above
(Fig. 4). Furthermore, we observe a tendency to allocate disorder
in the vertex regions (Supplementary Figure 17). Our model
predicts that the tetrahedral grains in these regions deviate most
strongly from regular FCC packing (Fig. 2d). Therefore, the gain
in entropy upon crystallization is lowest in these regions and
additional particles can thus be accommodated in the vertex parts
with the lowest energy penalties. Additionally, the vertex regions
show a corrugated surface termination, which naturally leaves
room to accommodate some excess particles. Indeed, magic
numbers observed in the simulations are slightly higher than
magic numbers acquired from geometric modeling, and the

surplus increases as cluster size increases. When clusters are off-
magic number, their free energy is increased. The number of
particles forming such clusters is incommensurate with a closed-
shell packing with the icosahedral order, producing structural
defects in the cluster. These defects lower the entropy of the
system by constraining the vibrational degrees of freedom of
individual particles29,63.

The existence of MCCs reported in this work has similarities to
other clustering processes, such as micelles64, fullerene assem-
blies65, protein aggregates66, supramolecules of ionic liquids67,
inorganic clusters68, and natural framboidal pyrite69,70. Just like
these natural self-organization processes, MCC formation is
efficient in solving the high-dimensional optimization problem of
finding a global free energy minimum. Our combined experi-
mental and simulation data suggests that heterogeneous nuclea-
tion and subsequent restoration of mobility near the confinement
interface, reminiscent of a lubrication layer, is essential for the
high structure quality of MCCs. Similar design principles may be
applied to hierarchical structures of bimetallic nanoparticles53,
molecular self-assembly71, and plasmonic nanocluster forma-
tion72. It remains to be investigated if MCCs can undertake
structural transition towards other symmetries as observed in
atomic clusters73, and if magic number effect exists in other finite
soft matter systems when the shape38,74, length scale75, or rigidity
of confinement76 is varied.

Methods
Particle synthesis. Styrene, acrylic acid, and ammonium peroxodisulfate were
purchased from Sigma Aldrich and used as received. PS colloidal particles were
synthesized by using acrylic acid as comonomer and ammonium peroxodisulfate as
an initiator in surfactant-free emulsion polymerization following literature
protocols77.

Microfluidics device fabrication. Microfluidic devices were produced by soft
lithography as described in literature45. A silicon wafer was spin-coated with
negative photoresist SU-8, and patterned by UV light through a photomask.
Polydimethylsiloxane (Sylgard 184 PDMS from Dow Corning) was mixed with the
curing agent (10:1 ratio) and later poured onto the silicon wafer. Vacuum was
applied to degas. The PDMS was cured in the oven at 85 °C overnight. PDMS
molds were carefully peeled off and punched with a 0.75 mm diameter biopsy
punch to create inlets and outlets. The structured PDMS bonded to a clean glass
slide after treatment with oxygen plasma for 18 s at 30W power. The channels were
flooded with Aquapel (PPG Industries) to avoid wetting of water droplets. The
device was put in the oven at 85 °C for 1 h for final cleaning.

Colloidal cluster assembly. Monodisperse 244 nm PS particles of 1 wt% were
suspended in water and loaded into 1 mL syringes (BD disposable syringes). 0.1 wt
% perfluoropolypropyleneglycol-block-polyethyleneglycol-block-per-fluor-
opolypropyleneglycol surfactant was dissolved in perfluorinated carbon oil (3M
Novec Engineering Fluid HFE 7500) PE/2 tubings (0.38 mm/1.09 mm) connect
syringes to the microfluidics45. Syringe pumps (Cronus) controlled the flow rate of
water and the oil phase (50 and 200 μL/h, respectively). Emulsion droplets were
collected in 1.5 mL glass vials and sealed with stretched parafilm (Sigma Aldrich) at
the opening. Small holes were punched with a 0.4 mm needle (Henke Sass Wolf)
into the parafilm to control the speed of evaporation from the vials. Vials were kept
in the oven (85 °C), room (25 °C), and fridge (5 °C) for water evaporation.

Identification of cluster morphologies. Oil droplets containing colloidal clusters
were drop-casted on a silicon wafer for surface pattern examination via scanning
electron microscopy (Zeiss Gemini Ultra 50 SEM). As colloidal clusters are ran-
domly deposited on the wafer and are viewed only at the surface from one direction
in the SEM, we adopt the following classification scheme. Colloidal clusters without
spherical shape were classified as buckled clusters. Clusters with spherical shape
and hexagonally close packed surface patterning and with grain boundary scars
were classified as spherical clusters. We consider complete local five-fold axes as
alternating rings with five complete rectangles and five complete triangles (of
possibly varying sizes) at the surface. Those missing any or having under-
developed rectangles or triangles are termed incomplete. Only three five-fold axes
are visible from one side at most. Clusters with at least one complete local five-fold
axis or three incomplete five-fold axes were classified as complete icosahedral
clusters. Clusters with one or two local five-fold axes were classified as partially
icosahedral clusters. More than 120 colloidal clusters were examined and classified
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for each histogram (Fig. 1g, h and Supplementary Figure 1) to achieve statistical
significance.

Electron tomography measurement. Colloidal clusters dispersed in oil phase
were drop-casted directly onto a standard (200 mesh) Lacey carbon copper grid
and dried overnight. The grid was mounted in the SEM (FEI Helios NanoLab 660)
to identify a suitable structure, orientation, and cluster size for the three-
dimensional (3D) analysis. A MCC with a size of 2.8 µm containing about 1200
colloidal particles was selected. The grid with the selected cluster was mounted
onto the ultrathin single-tilt tomography holder (Fischione model 2020) and
transferred to the transmission electron microscope. STEM tomography was per-
formed using a dual probe- and image-side aberration-corrected FEI Titan3 Themis
60-300 transmission electron microscope at an acceleration voltage of 300 kV in
high-angle annular dark field (HAADF) STEM imaging mode at a camera length of
91 mm. The semi-convergence angle of the STEM probe (microprobe STEM) was
reduced to 0.44 mrad to increase the depth of field (DOF) to image all parts of the
sample completely in focus throughout the entire tilt series acquisition procedure78.
The diffraction-limited resolution for the adapted semi-convergence angle was 2.7
nm at a respective DOF of 7.6 µm. The large sample size led to a strong decrease of
resolution due to broadening of the STEM probe (multiple elastic scattering)79,
which resulted in an estimated HAADF STEM probe diameter of about 90–120 nm
at the bottom surface of the sample in regions with highest projected mass-
thickness. The tilt series was acquired using FEI Tomography 4.0 software in a tilt
angle range from −76° to 62° with 1° tilt increment, continuous and linear tilting
scheme, enabling autofocus and tracking before the acquisition. In order to prevent
morphological changes, e.g., shrinkage, of the sample during the electron tomo-
graphic tilt series acquisition, a low beam current of 50 pA was applied and the
sample was illuminated for 10 min before performing the measurement.

Electron tomography data analysis. Tilt series alignment was performed using
FEI Inspect 3D software (cross-correlation technique). The tomogram was
reconstructed with the simultaneous iterative reconstruction technique (SIRT)80

over 50 iterations using FEI Inspect 3D software. Reconstructed volumes were
visualized with VSG Avizo 8.1 for FEI systems software. A median filter minimized
background noise, and a global threshold value was applied to segment the particles
from the pore space.

Model generation. Clusters were generated by choosing the positions of identical
spheres according to geometric construction rules. All models correspond to one or
multiple domains with perfect, sheared, or otherwise deformed FCC crystal
structure. Deformations were chosen to maximize symmetry and packing fraction.
MCCs were constructed in five steps by placing 130 tetrahedral grains, each with
(m+ 1)(m+ 2)(m+ 3)/6 spheres (Mackay core with m shells). Multiple tetrahedra
share spheres at vertices, edges, and faces. The first step follows Mackay8 by placing
20 tetrahedral grains around a common vertex with the constraint that spheres in
each shell touch spheres in the previous shell. In step two, 20 identical tetrahedra
were placed over the faces such that the top shells of the Mackay icosahedron acted
as mirror planes. In the third step, the gaps were filled by connecting existing
vertices. These tetrahedra were slightly more deformed than the previous ones. In
the fourth step, vertex regions were filled with pentagonal bipyramids made from
five tetrahedral grains such that symmetry was preserved. These tetrahedra had the
largest deformation. In the fifth step, all spheres outside of a central sphere with
truncation radius Rcut were removed. Clusters with FCC structure for the free
energy calculations in Fig. 5h were generated by applying only the truncation step
to a single FCC grain. The model generation was implemented in a Python code.

Cluster type classification. MCC type for clusters assembled in experiment or
simulation was identified by evaluating the characteristic rectangular features
(width a+ 1, height l+ 1) and truncated triangle features (edge lengths (m−l−
a)/2+ 1 and l+ 1) with an integer l that describes the amount of vertex truncation.
Vertex truncation varies from cluster to cluster (Supplementary Figure 17)
broadening the minima in Fig. 5h.

Self-assembly simulation. EDMD in NVT mode was implemented in C++ for
hard spheres with diameter σ and mass m representing colloids. This ansatz builds
upon the recent finding28 that attraction or softness between colloids is not
required for icosahedral ordering in emulsion droplets. Collisions of a system
consisting of N hard spheres were organized in memory using a tree data structure
as priority queue with O(1) complexity81. Collisions were handled in a stable
fashion82 such that overlaps that occurred temporarily after compression steps
were removed immediately. Spherical confinement was implemented as a hard
spherical wall of radius R at packing fraction ϕ ¼ N σ=2Rð Þ3 . Dimensionless units
were employed for time t*= t/τ with τ= σ(m/kBT)

1/2 and pressure83

P� ¼ Pπσ3

6kBT
¼ ϕ 1þ

ffiffi

π
p

3
1

Nt�tot
Npc þ Nwc

ffiffi

2
p

� �� �

; ð1Þ

where Npc is the total number of particle–particle collisions and NWC the total

number of wall collisions over time ttot*. Evaporation of the solvent was mimicked
by incrementing the packing fraction from ϕ= 0.48 to ϕ= 0.55 in steps of 0.001.
At each step, a simulation over a duration of Δt*= 500 was performed, which
proofed sufficient for robust and reliable icosahedral ordering. Expansion from ϕ
= 0.55 to ϕ= 0.48 using the same parameters tested for the presence of hysteresis
(Fig. 5a, b). Mean square displacement was calculated by temporal averaging after
equilibrium had been reached. Particles are assigned to shells according to their
starting positions during the measurement and freely mobile throughout the whole
cluster.

Numerical quenching. The fast inertial relaxation engine (FIRE)59 implemented in
HOOMD-blue84,85 mimicked capillary forces that consolidate colloidal clusters in
the final stage of droplet drying. A force tolerance per particle of 10−2 and an
energy tolerance of 7 × 10−7 was used. Hard sphere interaction was replaced with a
Morse potential

V rð Þ ¼ D0 e�2α r�r0ð Þ � 2e�α r�r0ð Þ� �

ð2Þ

with parameters r0= σ, D0= 1, a=/σ. Confinement was disabled during
quenching.

Visualization. Spheres in MCCs generated by the geometric model were
colored in shades of blue according to the construction step when the sphere
was added. Spheres in colloidal clusters obtained from numerical quenching
were colored in shades of green according to the number of nearest neighbors
(first peak of the radial distribution function) to highlight surface features.

Free energy calculation. Absolute free energy of a colloidal cluster at packing
fraction ϕ was calculated with the Einstein crystal method86 applied to hard
spheres in hard spherical confinement implemented in a Monte Carlo simulation
using harmonic springs, V(r)= λ(r− r0)

2. Spring anchor points {r0} were chosen
after minimizing the appearance of near-contacts between spheres via rapid
compression of the colloidal cluster to high density and re-expansion to ϕ. The
spring constant λ was increased logarithmically in discrete steps over the range 10
−5 to 105. Particle swap moves62 sped up diffusion processes. At each step for λ the
averaging was performed long enough for relaxation. The calculation for Fig. 5h
was repeated five times and averaged to decrease numerical error. Spheres were
assigned to a shell s in a cluster of S shells by distance to the center via s= [(R− r)
(S− 0.5)/R]. The average shell thickness in the packing fractions simulated with
EDMD was 0.95σ. Absolute free energy values were reported after subtracting the
bulk contribution F0(N,ϕ). Starting points for the free energy calculation are
equilibrated simulation snapshots and constructed ideal FCC, Mackay, and anti-
Mackay cluster. We are aware that the constructed clusters are not equilibrated. For
this reason, the free energies are only upper limits in the case of the constructed
clusters.

Free energy bulk contribution. The entropy of a finite system of N hard spheres in
the FCC crystal structure was expressed using free volume theory87,

SFCC N;ϕð Þ
NkB

¼ s0 þ log Nð Þ þ f log
ϕmax

ϕ � 1
� �

ð3Þ

with the FCC jamming limit (maximal packing fraction) ϕmax ¼ π=
ffiffiffiffiffi

18
p

and the
effective number of degrees of freedom per particle f= 3. The constant s0 was
obtained from a fit to EDMD simulations of hard spheres with periodic boundaries
as s0= 12.57 (Supplementary Figure 13). The bulk contribution to the free energy
of colloidal clusters was F0(N,ϕ)=−TSFCC(N,ϕc), where the packing fraction
ϕc(σc)=N(σ/Dc)

3 was calculated with a confinement sphere diameter

Dc ¼ 2Rc ¼ σ N
ϕ

� �1
3�D0

ð4Þ

that was corrected empirically by subtracting a constant D0 in order to take into
account the effect of confinement. In Fig. 5h and Supplementary Figure 14a, we
chose D0/σ= 0.4. In Supplementary Figure 14b–d, we chose D0/σ= 0.436, 0.486,
0.520 for ϕ= 0.52, 0.55, 0.57, respectively. The effect of confinement increased with
packing fraction.

Data availability
Data generated during the current study are available from the corresponding
authors on reasonable request. A Python 3 code “generateMCC.py” that generates
MCC models following the procedure in Fig. 2b using the XYZ file format is
included as Supplementary Information. Custom EDMD simulation code used in
the current study is available from the corresponding authors on reasonable
request.
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