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Abstract. Quantum magic squares were recently introduced as a ‘mag-
ical’ combination of quantum measurements. In contrast to quantum
measurements, they cannot be purified (i.e. dilated to a quantum per-
mutation matrix)—only the so-called semiclassical ones can. Purifying
establishes a relation to an ideal world of fundamental theoretical and
practical importance; the opposite of purifying is described by the ma-
trix convex hull. In this work, we prove that semiclassical magic squares
can be purified to quantum Latin squares, which are ‘magical’ combina-
tions of orthonormal bases. Conversely, we prove that the matrix con-
vex hull of quantum Latin squares is larger than the semiclassical ones.
This tension is resolved by our third result: We prove that the quantum
Latin squares that are semiclassical are precisely those constructed from
a classical Latin square. Our work sheds light on the internal structure
of quantum magic squares, on how this is affected by the matrix con-
vex hull, and, more generally, on the nature of the ‘magical’ composition
rule, both at the semiclassical and quantum level.

1. Introduction

Magic squares have fascinated mathematicians and non-mathematicians
for more than 2000 years. They are defined as square matrices filled with
nonnegative numbers, so that the entries in each row and column (and
sometimes also the diagonal) sum to the same number (the so-called magic
constant of the square). If the magic constant is one (and there is no condi-
tion on the diagonal), they are sometimes called doubly stochastic matrices.
We will use the notions of magic square and doubly stochastic matrix in-
terchangeably in this work.

A quantum version of magic squares has been introduced in [6] (see also
[7] for an invitation to this work), where the entries are no longer nonneg-
ative numbers, but positive semidefinite matrices, and every row and col-
umn of the quantum magic square sums to the identity matrix. That is, rows
and columns form a positive operator valued measure (POVM), which is a
description of a quantum measurement. In other words: if we consider the
POVMs defined by the rows, they can be combined into a quantum magic
square only if the first elements of every POVM also define a POVM (i.e.
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2 MAGIC SQUARES: LATIN, SEMICLASSICAL AND QUANTUM

the first column), and similarly with the second elements, and so on, until
the last elements. This is the ‘magical’ combination which, to the best of
our knowledge, does not correspond to any physical composition (although
see the considerations in the Outlook). Some features of this composition
rule are that only POVMs with the same number of outcomes can be com-
posed into a quantum magic square, and that the order of outcomes in ev-
ery POVM matters. Note that the definition of a quantum magic square is
not a construction but a condition—having positive semidefinite elements
that sum to the identity along every row and column. This work, together
with others, attempts to characterise some aspects of the set of matrices
satisfying this condition.

Now, about 300 years ago Latin squares were introduced, among others
to help construct magic squares. A Latin square is an n × n-matrix filled
with the numbers 1, . . . ,n such that each number appears exactly once in
each row and column. A special case of Latin squares of size 9 are known
as Sudokus, for which there are additional constraints. Latin squares have
several applications in mathematics, for example in the design of experi-
ments [1] and as multiplication tables of quasigroups [20]. Clearly, every
Latin square is a non-normalized magic square.

There are several quantum generalisations of Latin squares. On the one
hand, a quantum version of Sudokus has recently been proposed in [15].
On the other hand, a quantum version of Latin squares was introduced in
[14], where instead of numbers as entries in the Latin square, (pure) quan-
tum states are used. In a quantum Latin square, every entry is a unit vec-
tor from C

n such that every row and column forms an orthonormal basis.
In [14] it is shown that the so-called quantum shift-and-multiply method
can be used to construct unitary error bases from quantum Latin squares.
Unitary error bases are special bases of the set of complex matrices of size
n×n, which are widely used in quantum information theory [11], the most
famous example being the Pauli matrices.

In this work, we study quantum Latin squares and quantum magic squares
from a unified perspective, and examine their relations. We prove the fol-
lowing:

(1) Every semiclassical magic square can be purified to a quantum Latin
square. Equivalently, the matrix convex hull of several sets of semi-
classical Latin squares is the set of semiclassical magic squares (The-
orem 14).

(2) The matrix convex hull of all quantum Latin squares is larger than
the set of semiclassical magic squares. This follows from the ex-
istence of non-semiclassical quantum Latin squares of even sizes
larger than 2 (Theorem 15).

(3) The quantum Latin squares that arise directly from a classical Latin
square are precisely the semiclassical ones (Theorem 11).
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From a mathematical perspective, our work provides new insights into
quantum magic squares by leveraging free convexity, and is part of an on-
going effort to establish synergies between free semialgebraic geometry and
quantum information, see e.g. [7, 3, 10, 2, 4].

From a conceptual perspective, we characterise quantum magic squares
by studying their relation to the ideal world, as the latter admits—presumably—
a simpler description. (See [5] for related conceptual considerations). While
in theoretical physics the ideal world typically involves an infinity (the
thermodynamic limit, zero temperature, ground states, etc), this is not the
case with regard to the description of quantum states, precisely because of
the purification theorem, which expresses the relation to the ideal world
as a relation between the parts and the whole, where this whole is finite
(if the parts are finite). By virtue of this theorem, quantum states, quan-
tum measurements and quantum channels can be purified, that is to say,
related to their respective ideal quantities (pure states, projective measure-
ments and unitary maps) of finite dimension (assuming we start from a
finite dimension). Mathematically, these purifications follow from Stine-
spring’s dilation theorem, which says that every completely positive map
is a multiplicative map followed by a contraction; the multiplicative maps
are easy to characterise and here play the role of the ideal map, whereas
the contraction plays the opposite role to the purification. In short, puri-
fying corresponds to relating to the ideal world, whereas taking the matrix
convex hull corresponds to a compression to our (non-idealised, imperfect)
world.

The purification theorem applies to every row and column of the quan-
tum magic square, i.e. it establishes relations to the ideal world for every
such ‘one dimensional’ array of objects. This work investigates the nature
of the purification in ‘two dimensions’, namely we study which quantum
magic squares can be purified, i.e. admit a purification that applies to all
rows and columns simultaneously.

Other works related to this study include the quantum generalisations
of magic squares proposed in [13], and the quantum permutation matrices
considered in [12]. The recent resolution of Euler’s officers problem in the
quantum case involves the construction of a special quantum magic square
[17].

This paper is structured as follows. In Section 2 we present quantum
Latin and magic squares, in Section 3 we prove our main results, and in
Section 4 we conclude and provide an outlook.

2. Setting the stage

Throughout this work, Matn(S) denotes the set of n × n-matrices with
entries from the set S. Given a matrix A ∈Matn(C), A∗ denotes the complex
conjugate of A, and we denote by Hern(C) = {A ∈ Matn(C) | A∗ = A} the
real vector space of complex Hermitian n × n matrices. A > 0 denotes that
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the Hermitian matrix A is positive semidefinite, and the convex cone of all
positive semidefinite matrices is denoted by Psdn(C). The identity matrix
of size s is denoted by Is.

We will first revisit quantum magic squares and friends (Section 2.1),
then define and explain the matrix convex hull (Section 2.2), and finally
consider quantum Latin squares (Section 2.3).

2.1. Quantum magic squares and friends. Let us start by reviewing some
basic definitions and results on quantum magic squares from [6].

First recall that a positive operator valued measure (POVM) is a set of pos-
itive semidefinite matrices A1, . . . ,An ∈ Psds(C) such that

∑n
i=1Ai = Is. If

every Ai is a projection, i.e. A2
i = Ai = A∗i , then the POVM is called a projec-

tive valued measure (PVM).
A quantum magic square is an n × n grid where every cell contains an

s × s positive semidefinite matrix such that every row and column sums
to the identity. For this reason we refer to n as the external size and to s
as the internal size. A quantum permutation matrix is a quantum magic
square where every element Aij is a projection, and in a commuting quan-
tum permutation matrix we additionally require that AijAk` = Ak`Aij for
all i, j,k,` ∈ {1, . . . ,n}.
Definition 1 (Quantum magic squares and friends). Given exterior size n
and interior size s,

(1) A quantum magic square is a matrix A ∈ Matn(Hers(C)) such that
every row and column of A forms a POVM;

(2) A quantum permutation matrix is a quantum magic square where ev-
ery row and column forms a PVM;

(3) A commuting quantum permutation matrix is a quantum permuta-
tion matrix where all entries commute.

Fixing the interior size to 1 results in the classical matrices we are ac-
quainted with. Specifically, quantum magic squares of interior size 1 are
precisely the doubly stochastic matrices. Moreover, quantum permutation
matrices of interior size 1 are the permutation matrices, since the only pro-
jectors in C are 0 and 1, and the magic square condition ensures that there
is exactly one 1 entry per row and column.

Quantum magic squares with exterior size 1 and 2 are also very simple:

Remark 2 (Exterior size 1 and 2). For exterior size n = 1, the only possible
quantum magic square is A = (Is). For n = 2 all quantum magic squares
have the form (

A Is −A
Is −A A

)
=

(
1 0
0 1

)
⊗A+

(
0 1
1 0

)
⊗ (Is −A),

where A ∈ Psds(C) is such that also Is −A is positive semidefinite.

Note that a quantum permutation matrix is a quantum representation
[8] of the hypergraph obtained by considering a n × n grid and defining
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Figure 1. A quantum permutation matrix is a quantum rep-
resentation of the hypergraph shown here for n = 4.

a hyperedge for every row and column, as shown in Fig. 1. The interior
size of the quantum permutation matrix is precisely the dimension of the
Hilbert space in [8, Definition 7].

We now turn to semiclassical magic squares, which were introduced in
[6]. In Section 3 we will shed light on this notion from a broader perspec-
tive. We denote the permutation group on n elements by Sn.

Definition 3 (Semiclassical). A ∈ Matn(Hers(C)) is a semiclassical magic
square if there exists a POVM {Qπ}π∈Sn such that

(1) A =
∑
π∈Sn

Pπ ⊗Qπ,

where Pπ ∈ Matn(C) is the permutation matrix corresponding to permutation
π.

A semiclassical magic square is a quantum magic square, as one can eas-
ily verify.

Semiclassical magic squares are clearly not classical, because they con-
tain positive semidefinite matrices as its entries, but other than that they
are essentially classical, as they contain positive semidefinite matrices

Q1, . . . ,Qn!

permuted through all inner positions. Specifically, in a semiclassical magic
square, the elements of a single POVM {Qπ} are summed and arranged ac-
cording to the permutation matrices Pπ, so as to form a quantum magic
square. In this sense semiclassical magic square provide a constructive
‘magical’ combination of POVMs stemming from a single, ‘primary’ POVM.

Now, every magic square (a.k.a. doubly stochastic matrix) is semiclassical—
this is precisely the content of Birkhoff–von Neumann’s Theorem. More-
over, every quantum magic square of exterior size n = 1,2 is semiclassical—
this follows from Remark 2.

Let us now consider the union over all internal sizes of the set of quan-
tum magic squares and their friends. This union is natural in the context
of free semialgebraic geometry.
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Definition 4 (Sets of quantum magic squares and friends). We denote the
set of

(1) Quantum magic squares by

M(n)
s B

A ∈Matn(Psds(C)) |
∑
i

Aij =
∑
j

Aij = Is

;

(2) Quantum permutation matrices by

P(n)
s B

{
A ∈M(n)

s | A2
ij = Aij = A∗ij for every i, j

}
;

(3) Commuting quantum permutation matrices by

C(n)
s B

{
A ∈ P(n)

s | AijAk` = Ak`Aij for every i, j,k,`
}
;

(4) Semiclassical magic squares by

S(n)
s B

{
A ∈M(n)

s | A is semiclassical
}
;

and the union over all internal sizes, respectively, by

M(n) B
⋃
s∈N

M(n)
s , P(n) B

⋃
s∈N

P(n)
s , C(n) B

⋃
s∈N

C(n)
s , S(n) B

⋃
s∈N

S(n)
s .

Note that, by definition,

C(n) ⊆ P(n) ⊆M(n).

In addition, for exterior size n = 1,2,3, the commuting requirement makes
no difference, i.e.

C(n) = P(n).

For n = 1,2, this follows from Remark 2, and the case n = 3 can be found in
[12]. On the other hand, for n > 4, these two sets are different,

C(n)
( P(n),

as can be seen by taking block diagonal sums of quantum permutation ma-
trices. In addition, in [6] it is shown that commuting quantum permutation
matrices are semiclassical,

C(n) ⊆ S(n).

2.2. The matrix convex hull. We now consider a dimension-free notion of
convexity, called matrix convexity, often used in free semialgebraic geome-
try and operator algebra, see for example [9, 16]. The matrix convex hull
plays a central role in this work, and the idea is the following (see Fig. 2).
We are given a subset of matrices of external size n and internal size s,

Rs ⊆Matn(Hers(C))
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Figure 2. The idea of matrix convexity. The external size
n remains fixed (in this depiction, n = 4), whereas matrix
convexity expresses a relation between all internal sizes s.
Specifically, the sets Rs at different internal level must be
closed under contractions, which are transformations of the
internal matrices with

∑
i V
∗
i ·Vi where

∑
i V
∗
i Vi = I .

for every s, and we consider

R =
⋃
s∈N

Rs.

We want to characterise what it means for R to be matrix convex. Intu-
itively, it means that it is closed under a certain notion of contractions,
which we will now explain step by step.

Within a given level s, we consider a set of matrices A(1), . . . ,A(r) ∈ Rs of
internal size s and external size n. We then consider the k,` entry of each
of these matrices, and contract them as

A
(1)
k` , . . . ,A

(r)
k` 7→

r∑
i=1

V ∗i A
(i)
k`Vi

where the Vis are square matrices of size s (i.e. the same size as A(i)
k` , which

is the internal size of A), which satisfy
r∑
i=1

V ∗i Vi = Is.

The latter condition guarantees that the Vis behave like probabilities in the
matrix case, since if s = 1, we recover the usual notion of convexity. Matrix
convexity requires that, for a given level s, for any setA(1), . . . ,A(r) ∈ Rs (with
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any r), the result of contracting with any such Vis is still in Rs,

r∑
i=1

V ∗i A
(i)Vi B

 r∑
i=1

V ∗i A
(i)
k,`Vi

n
k,`=1

∈ Rs.

Note that the contraction is applied to every cell (labeled k,`) separately.
Additionally, we can communicate different internal levels s. This is

achieved by letting Vi be rectangular matrices. Namely, if R is matrix con-
vex, for any levels s and t, and for any matrices

Vi ∈Mats,t(C) for i = 1, . . . r with
∑
i

V ∗i Vi = It

it must hold that
r∑
i=1

V ∗i A
(i)Vi ∈ Rt .

In words, we can contract the matrices of a given level s to a smaller or a
larger level t, and not leave R.

Finally, in the most general case, the initial matrices can be taken from
different levels, A(i) ∈ Rsi (with i running from 1 to an arbitrary r), and we
take the corresponding matrices Vi to match this initial size si and result in
size t, Vi ∈Matsi ,t(C).

Note that the external size of the matrices n is fixed through these oper-
ations. It is only the internal size of the matrices s that is asked to satisfy
these closure properties; specifically, every cell of the external n×n matrix
is asked to satisfy these conditions.

Definition 5 (Matrix convex).
(1) Let

R =
⋃
s∈N

Rs where Rs ⊆Matn(Hers(C)).

R is matrix convex if for all r, si , t > 1, for all A(i) ∈ Rsi , and for all
Vi ∈Matsi ,t(C) with i = 1, . . . , r and

∑
i V
∗
i Vi = It, it holds that

r∑
i=1

V ∗i A
(i)Vi ∈ Rt .

(2) For any set R, its matrix convex hull, denoted mconv(R), is the small-
est matrix convex superset of R, i.e. the intersection of all its matrix
convex supersets.

The matrix convex hull can thus be understood as a ‘free’ version of the
convex hull. Here free can either mean free of the dimension, or free of the
commutation relation—both apply.

One of the main results from [6] states that the matrix convex hull of
the quantum permutation matrices is smaller than the set quantum magic
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squares,

(2) mconv(P(n)) (M(n) for all n > 3.

This is seen as a failure of a matrix version of the Birkoff–von Neumann
theorem, since for internal size s = 1 the convex hull of the set of permu-
tation matrices equals the set of doubly stochastic matrices. (2) thus says
that the characterisation of larger interior sizes is more difficult; at least,
quantum magic squares cannot be characterised as the matrix convex hull
of quantum permutation matrices.

On the other hand, the matrix convex hull of the classical (i.e. usual)
permutation matrices is precisely the set of semiclassical magic squares
[6],

(3) mconv(P(n)
1 ) = S(n).

In other words, the semiclassical magic squares (elements A in (1)) are pre-
cisely what we need to add to the usual permutation matrices so that the set
is matrix convex. In this sense, semiclassical magic squares are a free con-
vex promotion of classical permutation matrices—this is yet another way
in which they are semiclassical.

Overall, we have

mconv(C(n)) = mconv(P(n)
1 ) = S(n)

because C(n) is contained in S(n) and contains P(n)
1 .

2.3. Quantum Latin squares. We now turn our attention to (quantum)
Latin squares. A Latin square is a square where each number from {1, . . .n}
appears exactly once in each row and column—it is like a solved Sudoku
without the condition on the smaller squares. A Latin square is also a par-
ticular kind of (unnormalised) magic square, as in the latter, the numbers
need not be taken from a given set. Formally, L ∈Matn({1, . . . ,n}) is a Latin
square if each number from {1, . . . ,n} appears exactly once in each row and
each column of L.

Quantum Latin squares are defined in [14]; let us now review their defi-
nition.

Definition 6 (Quantum Latin squares). L ∈ Matn(Cn) is a quantum Latin
square if every row and column of L forms an orthonormal basis of Cn.

Example 7 (Easy quantum Latin square). The easiest way to construct a
quantum Latin square is to take a Latin square and an orthonormal basis
of the correct size, and to arrange the basis according to the indices in the
Latin square. For example, given the 4× 4 Latin square

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1



10 MAGIC SQUARES: LATIN, SEMICLASSICAL AND QUANTUM

and an orthonormal basis v1, . . . , v4 ∈ C4, we obtain the following quantum
Latin square:

v1 v2 v3 v4
v2 v4 v1 v3
v3 v1 v4 v2
v4 v3 v2 v1

There are more quantum Latin squares than the easy ones, as this exam-
ple from [14] shows:

v1 v2 v3 v4
1√
2

(v2 − v3) 1√
5

(iv1 + 2v4) 1√
5

(2v1 + iv4) 1√
2

(v2 + v3)
1√
2

(v2 + v3) 1√
5

(2v1 + iv4) 1√
5

(iv1 + 2v4) 1√
2

(v2 − v3)

v4 v3 v2 v1

Here v1, . . . , v4 ∈ Cn is again a fixed orthonormal basis. In this square, four
different orthonormal bases can be found in the rows and columns.

3. From quantum Latin squares to quantum magic squares

In this section we investigate the relation between quantum Latin squares
and quantum magic squares. We first explain how quantum Latin squares
can be understood as quantum magic squares (Section 3.1), show that the
easy quantum Latin squares are precisely the semiclassical ones (Section 3.2),
study quantum Latin squares and friends (Section 3.3), as well as these sets
under the matrix convex hull (Section 3.4).

3.1. Quantum Latin squares as quantum magic squares. We start by not-
ing that quantum Latin squares are essentially equivalent to rank one quan-
tum magic squares.

Observation 8. Let V = (vij )
n
i,j=1 ∈ Matn(Cn) be a quantum Latin square.

Then (
vijv

∗
ij

)n
i,j=1
∈Matn(Hern(C))

is a quantum magic square. Conversely, given a quantum magic square A =
(Aij )

n
i,j=1 ∈Matn(Hern(C)) with rank(Aij ) = 1 for all i, j, there exist aij ∈ Cn

such that Aij = aija∗ij and

(aij )
n
i,j=1 ∈Matn(Cn)

is a quantum Latin square.

Let us formalize this now, together with another way to construct quan-
tum magic squares.

Definition 9 (Rank one quantum magic squares). (i) The set of quantum
magic squares of exterior size n and interior size s, where each entry matrix has
rank one, is denoted by

Rs B {A ∈M
(n)
s | rank(Aij ) = 1 for all i, j}.
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and RB
⋃
s∈NRs.

(ii) The set of quantum Latin squares that arise from an easy quantum Latin
square as in Example 7 and applying Observation 8 is denoted by

Ln :=
{(
vLijv

∗
Lij

)n
i,j=1
|L classical Latin square of size n,

v1, . . . , vn ∈Cn orthonormal basis}.

The set R(n)
n is in one-to-one correspondence with the set of quantum

Latin squares of size n (up to a phase in the orthonormal bases, of course),

as shown in Observation 8. For s > n the set R(n)
s is empty, since less than s

matrices of rank 1 cannot sum up to the identity matrix Is.

Every element from R(n)
n is a quantum permutation matrix, since for a

unit vector v ∈ Cn, vv∗ is an orthogonal projection. For R(n)
s with s < n this

is not the case, as the following example shows:
1
2e1e

∗
1

1
2e1e

∗
1 e2e

∗
2

e2e
∗
2

1
2e1e

∗
1

1
2e1e

∗
1

1
2e1e

∗
1 e2e

∗
2

1
2e1e

∗
1

∈ R(3)
2

Here e1, e2 ∈C2 is an orthonormal basis.

Remark 10. We have seen that

Ln ⊆ R(n)
n ⊆ P(n)

n ⊆M(n)
n ,

and
Ln ⊆ C(n)

n

because for two orthonormal vectors v,w, their associated rank 1 projectors
commute.

3.2. Easy quantum Latin square are semiclassical. Our first main result
shows that Ln is precisely the set of quantum Latin squares that are semi-
classical:

Theorem 11. Ln = R(n)
n ∩S

(n)
n .

Proof. First note that any element from Ln is semiclassical, since Ln ⊆ C(n)
n ⊆

S(n)
n . Since Ln ⊆ R(n)

n too, this proves that the left hand side is included in
the right hand side.

For the other inclusion, let A =
∑
π∈Sn Pπ ⊗Qπ be a semiclassical magic

square of interior and exterior size n such that each entry has rank 1. Hence
every Qπ has rank at most one, and thus the sum of two such Qπ has rank
at most one if and only if they are linearly dependent. Now consider

Πij B {π ∈ Sn | (Pπ)i,j = 1} = {π ∈ Sn | π(j) = i}.
For π,π̃ ∈ Πij the above arguments imply that Qπ and Qπ̃ are linearly de-
pendent, so

(4) dim(span{Qπ | π ∈Πij}) = 1 for all i, j
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Note that Aij , 0 for all i, j, because each Aij is rank one and otherwise the
corresponding row or column of A could not sum up to In.

Now for every i ∈ {1, . . . ,n} choose a πi ∈ Πi1 with Qπi , 0. By a simi-
lar rank argument as above, we see that Ai1 < span{Aj1}, and hence Qπi <
span{Qπj } for i , j. In view of (4) this implies that each Πk` contains at
most one of the πi . So we have found permutations π1, . . . ,πn ∈ Sn that are
completely disjoint, in the sense that no two of them coincide on some in-
put `. But then for each k,` there must be some i with πi(`) = k. Hence
each Πk` contains precisely one of the πi .

We now claim that Qπ = 0 for π ∈ Sn \ {π1, ...,πn}. For ` = π(1) we have
π ∈ Π`1, and since π , π` there exists some j , 1 with π(j) , π`(j). So
π ∈Ππ(j)j and π` <Ππ(j)j , and by the above considerations we find an i , `
with πi ∈Ππ(j)j . This implies

Qπ ∈ span{Qπ` } ∩ span{Qπi } = {0},

as claimed.
Altogether we have shown A =

∑n
i=1 Pπi ⊗Qπi , and the Qπi are all rank

1 squares, i.e. Qπi = qiq
∗
i for certain qi ∈ C

n. Observation 8 implies that
q1, . . . , qn form an orthonormal basis, and thatA is the quantum Latin square
constructed from this orthonormal basis and the classical Latin square

n∑
j=1

j Pπj .

�

3.3. Quantum Latin squares and friends. Instead of taking an orthonor-
mal basis to construct an easy quantum Latin square, we can take a POVM
or a PVM, and arrange its elements according to a classical Latin square of
size n, similarly to Example 7. These result in a certain type of quantum
magic squares, where there is a single POVM (or PVM) that is placed in a

permuted way in every row and column. We denote them POVML(n)
s and

PVML(n)
s , respectively.

Definition 12 (Quantum Latin squares and friends). We define

POVML(n)
s :=

{(
PLij

)n
i,j=1
| P1, . . . , Pn ∈Hers(C) POVM, L Latin square

}
PVML(n)

s :=
{(
PLij

)n
i,j=1
| P1, . . . , Pn ∈Hers(C) PVM, L Latin square

}
as well as

POVML(n) B
⋃
s∈N

POVML(n)
s , PVML(n) B

⋃
s∈N

PVML(n)
s .

Proposition 13. POVML(n) ⊆ S(n) and PVML(n) ⊆ C(n) ∩ POVML(n).



MAGIC SQUARES: LATIN, SEMICLASSICAL AND QUANTUM 13

Proof. Let A ∈ POVML(n)
s be generated by the POVM Q1, . . . ,Qn ∈ Hers(C)

and the Latin square L. We define permutation matrices P1, . . . , Pn by setting
for all i,k,` ∈ {1, . . .n}:

(Pi)k,` =

1 if Lk` = i
0 else.

Then clearly

A =
n∑
i=1

Pi ⊗Qi ,

which shows that A is semiclassical and proves the first inclusion. The
second inclusion is obvious, since projectors from one PVM always com-
mute. �

The inclusions observed so far are shown in Figure 3.

M(n)

S(n)

::

P(n)

bb

POVML(n)

88

C(n)

cc ==

R(n)
n

aa

PVML(n)

ff ;;

Ln

dd

==

Figure 3. Inclusions between sets of quantum magic
squares, where A → B denotes A ⊆ B. That easy quan-
tum Latin squares are PVM Latin squares, which are POVM
Latin squares, Ln ⊆ PVML(n) ⊆ POVML(n), is the case by
definition, and POVML(n) ⊆ C(n) by Proposition 13. That
commuting quantum permutation matrices are quantum
permutation matrices, which are quantum magic squares,
C(n) ⊆ P(n) ⊆ M(n), is true by definition. That quantum Latin
squares are rank one, which are quantum permutation ma-

trices, Ln ⊆ R(n)
n ⊆ P(n)

n , is stated in Remark 10. Finally,
C(n) ⊆ S(n) ⊆ M(n) was shown in [6], and POVML(n) ⊆ S(n) by
Proposition 13.
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3.4. Taking the matrix convex hull. Let us now examine the matrix con-
vex hulls of some quantum magic squares.

Theorem 14.

S(n) = mconv(C(n)) = mconv(POVML(n)) = mconv(PVML(n)) = mconv(Ln).

Proof. In view of the inclusions of Fig. 3 and Eq. (3) it suffices to prove that

P(n)
1 ⊆ mconv(Ln). So let P ∈ P(n)

1 be a permutation matrix, and denote by
L the classical Latin square obtained from P by replacing its zero entries
with numbers 2, . . .n suitably. Let v1, . . . ,vn be an orthonormal basis of Cn,
and let A ∈ Ln be the easy quantum Latin square constructed from L and
this basis. Then P = v∗1Av1 ∈mconv(Ln), which finishes the proof. �

This shows that the left hand side of Fig. 3 simplifies greatly after taking
the matrix convex hull. Let us now consider what happens to the right
hand side of Fig. 3 under the matrix convex hull.

First note that from Ln ⊆ R(n)
n we immediately obtain

mconv(Ln) ⊆mconv(R(n)
n ).

Theorem 15. For even n > 4 we have mconv(Ln) ( mconv(R(n)
n ), and in par-

ticular Ln ( R(n)
n , i.e. there exist quantum Latin squares which are not semiclas-

sical.

Proof. Write n = 2m, let L be a classical Latin square of size m, and let
v1, . . . , vm ∈Cm,w1, . . . ,wm ∈Cm be two orthonormal bases such that

v1v
∗
1w1w

∗
1 , w1w

∗
1v1v

∗
1.

Let A,B ∈ Lm be the quantum magic squares generated by L and these two
bases, respectively. The following block matrix is a quantum permutation
matrix of size n:

A⊕BB
(
A 0
0 B

)
∈ P(n).

For example, for n = 4 and L =
(

1 2
2 1

)
, this is the matrix

v1v
∗
1 v2v

∗
2 0 0

v2v
∗
2 v1v

∗
1 0 0

0 0 w1w
∗
1 w2w

∗
2

0 0 w2w
∗
2 w1w

∗
1

.
By our choice of bases we have that A⊕B < C(n), and the proof of [6, Corol-
lary 15] shows that A⊕B < S(n).

Now we claim that A⊕B ∈mconv(R(n)
n ). To see this, let

ι : Cm→C
n : v 7→

(
v
0

)
.



MAGIC SQUARES: LATIN, SEMICLASSICAL AND QUANTUM 15

M(n)

mconv(P(n))

OO

mconv(R(n)
n )

OO

S(n) = mconv(Ln)

OO

Figure 4. Inclusions between the matrix convex hulls (com-
pare with Fig. 3). S(n) = mconv(Ln) is shown in Theorem 14,

and its inclusion in mconv(R(n)
n ) is strict for even n > 4 by

Theorem 15. The inclusion of mconv(P(n)) in M(n) is strict
for all n > 3, as proven in [6]. We do not know if the inclu-

sion mconv(R(n)
n ) ⊆mconv(P(n)) is strict.

Then ι(v1), . . . , ι(vm) and ι(w1), . . . , ι(wm) are orthonormal systems in C
n,which

are both extended to an orthonormal basis by the standard basis vectors
em+1, . . . , en. Now let ι(A) be the matrix constructed from ι(v1), . . . , ι(vm) and
L as in Definition 9 (i) (except that ι(v1), . . . , ι(vm) only form half of an or-
thonormal basis here). In the same way we construct ι(B) from ι(w1), . . . , ι(wm)
and L, as well as E from em+1, . . . en and L. We then obtain

C =
(
ι(A) E
E ι(B)

)
∈ R(n)

n ,

since each row and each column contains the rank one squares of an or-
thonormal basis of Cn. For n = 4 this looks like

ι(v1)ι(v1)∗ ι(v2)ι(v2)∗ e3e
∗
3 e4e

∗
4

ι(v2)ι(v2)∗ ι(v1)ι(v1)∗ e4e
∗
4 e3e

∗
3

e3e
∗
3 e4e

∗
4 ι(w1)ι(w1)∗ ι(w2)ι(w2)∗

e4e
∗
4 e3e

∗
3 ι(w2)ι(w2)∗ ι(w1)ι(w1)∗

.
For V =

(
Im
0

)
∈Matn,m(C) we have V ∗V = Im and

V ∗CV = A⊕B ∈mconv(R(n)
n ),

which proves the claim. �

It follows that, after taking matrix convex hulls, the diagram from Fig. 3
simplifies to Fig. 4.
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Figure 5. The quantum hypergraph corresponding to a
quantum magic cube. Nodes and hypergraphs behind the
top layer are now shown.

Remark 16. We thank David E. Roberson for bringing to our attention the

following fact. The statement Ln ( R(n)
n holds for all n ≥ 4, not only the even

ones as proven in Theorem 15. This follows from [18, Theorem 4.6], which
shows that for each n there are n! quantum Latin squares of which at most
n(n−1) have commuting entries. This implies that for every n ≥ 4 there are
quantum Latin squares not in C(n) and thus neither in Ln.

4. Conclusions and Outlook

In this work, we have proven three results concerning the structure of
the special types of quantum magic squares. First, every semiclassical
magic square can be purified to a quantum Latin square; equivalently, the
matrix convex hull of several sets of Latin squares is the set of semiclassical
magic squares (Theorem 14). Second, the matrix convex hull of all quan-
tum Latin squares is larger than the set of semiclassical magic squares; this
follows from the existence of non-semiclassical quantum Latin squares of
even sizes larger than 2 (Theorem 15). And third, the easy quantum Latin
squares (i.e. those that arise from a classical Latin square) are precisely the
semiclassical ones (Theorem 11).

It would be interesting to define and characterise quantum magic cubes,
as well as the three ‘dimensional’ version of their friends. Quantum per-
mutation cubes would be represented by the hypergraph of Fig. 5. Not ev-
ery magic cube can be expressed as a convex combination of permutation
cubes, i.e. the analogue of Birkhoff–von Neumann theorem fails. Perhaps a
quantum version of a magic cube could recover a behaviour of this type.

Quantum magic squares can be seen as ‘magical’ combinations of quan-
tum measurements, and this work and others investigate when this com-
bination can be purified, as well as other properties. Positive semidefinite
matrices are intimately related to completely positive maps by the Choi–
Jamiołkowski isomorphism (given a bipartite structure of the former). Yet,
we do not know if any of the investigations on quantum magic squares has
any consequences for ‘magical’ combinations of completely positive maps.

Finally, it would be very interesting to establish a correspondence be-
tween (quantum) magic squares and the study of contextuality [19], and
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to understand matrix convex hulls of classical magic squares as epistemic
restrictions of classical theories.
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[11] Klappenecker, A., and Rötteler, M. Unitary error bases: Constructions, equivalence,

and applications. In International Symposium on Applied Algebra, Algebraic Algorithms,
and Error-Correcting Codes (2003), Springer, p. 139.

[12] Lupini, M., Mančinska, L., and Roberson, D. E. Nonlocal Games and Quantum Per-
mutation Groups. J. Funct. Anal. 279 (2020), 108592.

[13] Mendl, C. B., and Wolf, M. M. Unital Quantum Channels – Convex Structure and
Revivals of Birkhoff’s Theorem. Comm. Math. Phys. 289 (2009), 1057.

[14] Musto, B., and Vicary, J. Quantum Latin squares and unitary error bases. Quantum
Inf. Comput. 16 (2016), 1318.

[15] Nechita, I., and Pillet, J. SudoQ – a quantum variant of the popular game.
arXiv:2005.10862 (2020).

[16] Paulsen, V. Completely bounded maps and operator algebras. Cambridge University
Press, 2002.

[17] Rather, S. A., Burchardt, A., Bruzda, W., Rajchel-Mieldzioć, G., Lakshminarayan,
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