
ar
X

iv
:1

70
9.

02
78

9v
1

 [
qu

an
t-

ph
]

 8
 S

ep
 2

01
7

Magic State Distillation at Intermediate Size

Jeongwan Haah,1 Matthew B. Hastings,2, 1 D. Poulin,3 and D. Wecker1

1Quantum Architectures and Computation Group,

Microsoft Research, Redmond, WA 98052, USA

2Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA

3Département de Physique & Institut Quantique,

Université de Sherbrooke, Quebec, Canada

Recently [1] we proposed a family of magic state distillation protocols that obtains asymp-

totic performance that is conjectured to be optimal. This family depends upon several codes,

called “inner codes” and “outer codes.” In Ref. 1, some small examples of these codes were

given as well as an analysis of codes in the asymptotic limit. Here, we analyze such proto-

cols in an intermediate size regime, using hundreds to thousands of qubits. We use BCH

inner codes [2], combined with various outer codes. We extend the protocols of Ref. 1 by

adding error correction in some cases. We present a variety of protocols in various input

error regimes; in many cases these protocols require significantly fewer input magic states to

obtain a given output error than previous protocols.

I. INTRODUCTION

One widely-considered approach to building a fault tolerant quantum computer begins by imple-

menting Clifford operations in a fault tolerant fashion, either using stabilizer codes [3, 4] or using

Majorana fermions [5]. To obtain a universal quantum computer, it is necessary to supplement

these operations with some non-Clifford operation. A common approach is to use distillation of

so-called magic states, and inject them into quantum circuits. In this method, many copies of a

noisy magic state are passed into a Clifford circuit, to create a smaller number of high quality

magic states [6–8]. The most common is to consider magic states that allow one to implement

π/4-rotations (T -gates) by state injection, but other methods are also considered.

Many distillation protocols have been considered [6, 8–10]. Recently, a family of protocols [1]

was suggested, where the number of input noisy magic states is conjectured to be asymptotically

optimal (γ → 1 in the notation of [10]) with a relatively small space requirement. The space

overhead is important because some of the most efficient previously known protocols require over-

whelmingly large numbers of qubits; we discuss this more quantitatively in Table V below, giving

space requirements for some protocols based on concatenation of small distance codes, in some

http://arxiv.org/abs/1709.02789v1

2

cases requiring in excess of 108 qubits.

Ref. [1] in fact is not a single protocol but rather a recipe for building protocols. It takes

as ingredients several error correcting codes, called inner codes and outer codes, and from them

defines a protocol. In that paper, the asymptotic performance γ → 1 is achieved by combining

various randomized and graph theoretic constructions to show the existence of code families with

the desired asymptotic properties. That paper also gave some small examples of the protocol using

fewer than 30 qubits, but these examples have notably worse performance than the asymptotic

limit in terms of input T count.

Thus, that paper [1] left open an important question: How well can this family of protocols

do in an intermediate regime, using hundreds to thousands of qubits? In this paper, we begin

to consider this question. We present specific choices of inner and outer code which are useful in

that regime. We also present several tricks, which are useful to increase the performance of these

protocols, including concatenating with other protocols at various stages and error correction.

We will give generalities to analyze the error rate of these distillation protocols after setting

up notation and convention in Section II. The goal is not to prove a rigorous theorem of the form

“the output error rate in this protocol is less than . . . for input error rate . . .” Rather, the goal

is to enumerate all error patterns at leading and next-to-leading order which give rise to logical

errors. In later sections, we use this leading order enumeration to analyze specific protocols. We

emphasize that the reader should be familiar with [1] to understand this paper.

II. BACKGROUND AND CONVENTION

We use the T -gate (π/4-rotation) T = e−iπY/8 and employ a stochastic error model in which

each T -gate has a Y error with some probability ǫin. We assume that the errors are independent

between different T -gates. Without loss of generality, by a standard Clifford twirling argument, we

can assume that each π/4 rotation and undistilled magic state suffers from independent Y errors

with probability ǫ. We refer to this error model as the “stochastic error model”.

Given a protocol and given an input error rate ǫ = ǫin, we define nout to be the average number

of output magic states. In the basic family, the protocol either succeeds (and produces nout output

magic states) or fails (and produces no output magic states) so that nout is equal to the success

probability times nout. In the generalizations of the basic family, we will in some cases discard

some but not all of the magic states and output a number of magic states intermediate between 0

and nout. In all of our protocols, the number of output magic states will always be at most nout.

3

We define ǫout to be the probability that at least one of the output magic states has an error.

Note that if a protocol produces no output magic states (for example, if a protocol in the basic

family fails), then by definition there are no output magic states with an error. We define ǫout by

ǫout =
ǫout
nout

. (1)

This quantity ǫout is the relevant measure of the output error rate if one uses a distillation

protocol to produce T -gates to be used in a quantum algorithm with the following two properties.

First, the algorithm uses ntot
T total T -gates, with ntot

T ≫ nout. Second, no further error correction

is used so that we are not willing to tolerate an error in any of the T -gates used. Then, because of

the first property, the number of times we need to call the distillation protocol is roughly ntot
T /nout

and so the probability of an error in one or more output T -gates is roughly ǫoutn
tot
T /nout = ǫoutntot

T

in the case that ǫoutntot
T ≪ 1.

A final relevant quantity for a protocol is nT , the average number of (approximate) T -gates

used by the protocol (this includes both T -gates used inside an inner code, i.e., those T -gates used

in performing a check of the outer code, as well as input magic states, where the input magic

states refer to the nout approximate magic states which one produces at the start of the protocol).

In general, the number of T -gates used by a protocol is a random variable which is why we must

average: for example, in the basic family, if one detects an error partway through the protocol,

one terminates without consuming any more T -gates, so that the number of T -gates used in that

family is upper bounded by the number used if no errors occur. For error corrected families, it is

possible for more T -gates to be consumed if errors occur.

Let ncheck denote the number of checks of the outer code. Thus, for the basic family, the

maximum number of T -gates used is nout + 2ncheckninner.

We will estimate nout, nT , and ǫout for the various families. We do this by computing lower

bounds on nout and upper bounds on nT , and by expanding ǫout in a series in ǫin and computing

upper bounds on the leading and next-to-leading order coefficients.

We do these estimates by enumerating “error patterns,” where an error pattern refers to a

particular choice of which input T -gates have an error. We will upper bound the number of error

patterns which lead to an output magic state error and which have leading or next-to-leading

weight. Then, the leading order coefficient in ǫout is equal to the number of error patterns with

leading order weight and the next-to-leading order coefficient is upper bounded by the number

of error patterns with next-to-leading order weight. To see why this gives only an upper bound,

imagine a simple toy model in which there are 3 input T -gates and an error in one or more T -gates

4

causes an output error. Then, the probability of an output error is 1−(1−ǫin)
3 = 3ǫin−3ǫin

2+ǫin
3.

However, there are 3 error patterns with weight 1 and 3 error patterns with weight 2 so that the

enumeration correctly gives the leading order coefficient (3 = 3) but only upper bounds the next-

to-leading order coefficient (−3 ≤ 3). The reason for the discrepancy is simply that one ignores the

factors of 1 − ǫin for the probability of no error on an input T -gate. Later, we will more carefully

considers these factors of 1− ǫin to determine the next-to-leading order coefficient in ǫout.

Finally, let us remark that while we have used ǫin above to denote the input error probability,

this error probability might not be the actual error probability of some physical gates. Instead,

one might wish to concatenate protocols, first reducing the error rate using some simple distillation

protocol, and then using one of the protocols here. The reason is that some of the protocols here

use a larger number of T -gates and so in order to have a reasonable chance of success it is necessary

for the input error rate to be not too large. When we give specific numbers later, we will pick

ǫin = 10−3 in almost all cases, but one should assume that this number may be the result of the

output of some other simple distillation protocol. For example, a single round of the Meier-Eastin-

Knill protocol [9] (called “MEK” below) will produce an output error rate slightly smaller than

10−3 from an input error rate of 10−2.

In fact, in some cases, we will prefer to use the output of one distillation protocol to produce the

input magic states and use the output of another distillation protocol to produce the approximate

T -gates used inside an inner code. To analyze this situation, we need to give each error pattern

two distinct weights: we say that an error pattern has weight (a, b) if it has a input errors and b

errors inside T -gates. We generalize the notion of an input error rate to define two types of input

error rate; let ǫinput be the error probability on the input magic states and let ǫcheck be the error

probability on the T -gates inside the inner code. When we give specific numbers later, we will set

ǫcheck = ǫin = 10−3, but in some cases we will assume that additional concatenation is employed so

that ǫinput ≪ ǫcheck; in this case, we will take for simplicity ǫinput = 9× 10−6 as this is roughly the

error after the MEK protocol is applied to an input error of 10−3.

When expanding in both ǫcheck, ǫinput, we will describe a term as being at order ǫin
k to indicate

that the total power in ǫcheck, ǫinput is equal to k.

Let the leading order patterns have weight d. We let ca,b denote the number of error patterns

with weight (a, b) that lead to an output error so that

ǫout ≤
∑

a+b=d

ca,bǫ
a
inputǫ

b
check +

∑

a+b=d+1

ca,bǫ
a
inputǫ

b
check +O(ǫin

d+2). (2)

Hence, the inner and outer codes must both have distance ≥ d. In addition, any k qubit error in

5

the outer code, for k < d, must violate at least

⌈

d− k

2

⌉

checks of the outer code. We refer to these assumptions as the “distance and sensitivity bounds”.

We consider normal inner codes throughout, on which the transversal Hadamard is the simultaneous

logical Hadamard on all logical qubits.

We use the term “inner code syndrome” to refer to a measurement of an inner code stabilizer

that shows an error (i.e., a nontrivial nontrivial inner syndrome) and “outer code syndrome” to

refer to a measurement of an outer code check that shows an error (nontrivial outer syndrome). We

use the term “incorrect outer code measurement” to indicate a measurement of the outer code that

differs from the correct value even though no inner code syndrome occurs; this requires at least 2

errors inside the inner code. To measure an outer code check, the measurement is implemented

using an inner code, and the outer code check is read by measuring an ancilla bit; if a stabilizer

measurement of the inner code shows an error, we ignore the value of the ancilla bit. That is, the

outer code measurement is only meaningful if there is no inner code syndrome.

We use a set notation to define checks of the outer code, saying q ∈ C to indicate that a qubit

q is in a check C. That is, an outer code check measures the eigenvalue of
⊗

q∈C Hq where Hq is

the Hadamard operator on qubit q.

We define a bipartite graph, called the Tanner graph, where one set of vertices corresponds to

checks and the other set corresponds to qubits, such that a qubit is in a check if there is an edge

between the corresponding vertices. This graph will be useful in applying graph-theoretical ideas

to the analysis of the outer code.

III. BASIC FAMILY

In this section, we consider a family of protocols that is defined in Ref. [1] with the outer

code having nout qubits. A protocol in this family is defined by a weakly self-dual CSS code

[[ninner, kinner, d]] (inner code), which is used to implement controlled H⊗kinner, and a parity check

matrix (outer code), which specifies which and when input magic states are tested. We call this

family the basic family.

The other families below will be generalizations of the basic family by employing error correction,

rather than mere detection. These generalizations will have a higher output error rate, but they

will be more likely to suceed in producing an output magic state; in the basic family, if an inner

6

code stabilizer measurement shows an error or an outer code check shows and error, the protocol is

terminated, giving a failure with no output magic states, while in the generalizations we sometimes

attempt to correct errors.

Some of our estimates in the enumeration will be conservative, in that they will upper bound

the number of error patterns which lead to an output error. This is partly done for generality of

the results. We will comment on this later when it becomes important.

A. Output count

In any of the families of protocols that we consider, including the basic family in particular, if

there are no input T -gate errors, then the protocol succeeds and output nout magic states. Hence,

nout ≥ nout(1− ǫinput)
nout(1− ǫcheck)

2ncheckninner. (3)

Since there are some error patterns with nonzero weight that do not cause an inner code or outer

code syndrome, Eq. (3) indeed is only a lower bound. However, for the basic family, Eq. (3) is

quite accurate; the families considered later will include error correction that increases nout.

The quantity nT is upper bounded by the number of T -gates used if no errors occur. Let ncheck

denote the number of check operators in the outer code; thus, ncheck is equal to the number of

times that one encodes qubits into the inner code. Let ninner denote the number of physical qubits

in the inner code. Hence,

nT ≤ nout + 2ncheckninner. (4)

This number is only an upper bound, because if we terminate the protocol partway through,

no further T -gates will be consumed. Suppose, for example, that we execute the inner code checks

sequentially and if a single inner code check fails, then no further checks are executed (this will

not always apply since in some cases we may choose to execute checks in parallel). Suppose also

that 2ninnerǫcheck ≪ 1. Then, the most likely way in which an inner code syndrome can occur is

for there to be a single error inside the inner code. The probability that no inner code syndromes

occur in the first j checks is roughly (1− 2ninnerǫcheck)
j . Then,

nT . nout + 2ninner

ncheck−1
∑

j=0

(1− 2ninnerǫcheck)
j. (5)

This estimate itself is still an overestimate as it does not include the possibility of terminating the

protocol early due to outer code syndromes.

7

B. Error Patterns With a Logical Error

We now enumerate error patterns such that some logical error occurs in an inner code.

Let clog(w) denote the number of nontrivial logical operators of the inner code with weight w,

where these logical operators are products of Pauli Y operators. Hence, clog(w) = 0 for w < d.

One possible error pattern leading to an output error is that in some inner code, errors in T -gates

produce a nontrivial logical operator. The numbers of such patterns of weights d and d + 1 are

bounded by

ncheck2
dclog(d) , ncheck2

d+1clog(d+ 1),

respectively.

The factors of 2d and 2d+1 arise for the following reason: clog(w) is the number of logical error

operators of weight w in the inner code. Each such operator is a product of Pauli Y operators on

certain physical qubits of the inner code. Hence, we can produce such a logical error by errors in

the T -gates on those qubits. However, there are two T -gates acting on each physical qubit of the

inner code. This gives the factor of 2w.

Note that for some such error patterns, we may encounter an outer code syndrome. This

possibility of an outer code syndrome will reduce the number of error patterns which lead to an

output error. For example, consider an error pattern P in which all of the errors occur on the first

T -gate in the pair of T -gates on a qubit. This error pattern is equivalent to applying some logical

operator L and then measuring the outer code check given that that logical operator is applied. If

there is an outer code syndrome for this check, then no output error occurs. On the other hand,

modify pattern P to define a new pattern P ′ in which one of the errors in P is moved from the first

T -gate in a pair to the second T -gate in a pair. Then, this error pattern is equivalent to applying

logical operator L followed by incorrectly measuring the given outer code check. Hence, if pattern

P does not lead to an outer code syndrome, then pattern P ′ will. For this reason, the number of

patterns that lead to an output error is only half that given above:

ncheck2
d−1clog(d) , ncheck2

dclog(d+ 1),

respectively.

In fact, these numbers are overestimates of the number of patterns producing an output error.

Suppose that no T -gates have an error, except for some number of T -gates inside an inner code

leading to a logical error. Suppose this inner code was used to implement some outer code check C.

8

Thus, after this particular step, at least one of the qubits checked by the outer code check C has an

error. If every qubit q ∈ C is subsequently checked by at least one outer code check C ′ such that C ′

does not contain any other qubit q′ 6= q with q′ ∈ C (i.e., ∀q ∈ C ∃C ′ subsequent to C : C ∩C ′ =

{q}), then some outer code check C ′ will detect an error up to subleading terms in ǫcheck (with

probability O(ǫ2check), the outer code check C ′ detects no error even if there is one). So, let nlonely

denote the number of “lonely checks”; these are measurements C of the outer code which do

not obey the property that every qubit q ∈ C is subsequently checked by some check C ′ such that

C ′ contains only one qubits from C. So, the number of such pattern of weights d and d + 1 are

bounded by

nlonely2
d−1clog(d) , nlonely2

dclog(d+ 1), (6)

respectively.

Another possible pattern to consider is that in some inner code there are exactly d errors which

produce a logical error and that there is exactly one other T -gate error. The total weight of this

error pattern is d+1. Let us first emphasize that error patterns of this nature do indeed exist such

that no inner code syndrome or outer code syndrome occurs. For example, an erroneous input

magic state (one error) that is to be checked gets corrected by a logical error from some inner

code (d errors). However, while this error pattern leads to no inner code syndrome or outer code

syndrome, it also does not lead to an output magic state error.

So, we next consider whether there are any error patterns of weight d+1 which include an inner

code logical error of weight d during implementation of an outer code check C and include one

other T -gate error E, which overall produces an output error. We claim that if the first check on

each qubit is not a lonely check, then no such pattern exists. The T -gate error E must be in one of

the input magic states, say on q; otherwise, it will lead to an inner code syndrome. If q is checked

by some check C ′ before q is checked by C, or if q is not in C, then at leading order in ǫcheck, the

check C ′ will give an outer code syndrome. Hence, the first check on q must be C. However, since

C is not lonely by assumption, some subsequent check must give an error.

C. Error Patterns With No Logical Error

Having enumerated error patterns where some logical error occurs in an inner code, we now

consider error patterns where no logical error occurs. Thus, the output state is the same as the

input state, and the only way an output error can occur is for some number of input states to be

9

incorrect and then for some number of outer code checks to be measured incorrectly. Let cout(u, v)

denote the number of bit patterns on nout bits with Hamming weight u that violate v checks of

the outer code. By assumption,

u+ 2v < d =⇒ cout(u, v) = 0. (7)

Then, for a > 0 and b even, the number of T -gate error patterns of weight (a, b) with no inner

code logical error and with no inner code syndrome or outer code syndrome and with an output

magic state error is equal to

b/2
∑

j=0

cout(a, j)
∑

fi>0
fiodd∑j

i=1
fi=b/2

j
∏

i=1

(

ninner

fi

)

(8)

The combinatorial factor arises because each incorrect outer code measurement can be due to an

odd number of pairs of T -gate errors on any of the ninner different qubits in that inner code.

D. Summary

Combining the above results, we find that:

Lemma 1. Let ca,b be the number of error patterns that lead to an output error where a is the

number of input errors, and b the number of errors inside the inner codes. Let cout(u, v) be the

number of input error patterns of weight u that violate v checks of the outer code. Let clog(w) be

the number of Y -logical operators of weight w of the inner code. Using the basic protocol, assuming

that the codes obey the distance and sensitivity bounds and that the first check on each qubit q is

not a lonely check, we have for a+ b = d or a+ b = d+ 1

c0,b ≤ nlonely2
b−1clog(b) (a = 0) (9)

ca,b =

b/2
∑

j=0

cout(a, j)
∑

fi>0
fi odd

∑j

i=1
fi=b/2

j
∏

i=1

(

ninner

fi

)

(a > 0). (10)

When a+ b ≤ 6 the second formula becomes

ca,b = ninner
b/2cout(a, b/2). (11)

10

IV. INNER CODE CORRECTED FAMILY

We now discuss a modification to the basic family to increase the probability that the protocol

succeeds. This modification involves error correcting the inner code. We define an integer called

the “order” of the error correction; the order 0 inner code corrected family will be the same as

the basic family. As before, we will assume that the outer code obeys the distance and sensitivity

properties and we will assume that the first check on any qubit is not a lonely check.

The order m inner code corrected family modifies the basic protocol as follows. Whenever we

perform an outer code check, we use the following algorithm (some of the terms in this algorithm

are explained below):

1. Measure the outer code check using the inner code. If no inner code syndrome occurs but

an outer code syndrome occurs, terminate the protocol. If no inner code syndrome occurs

and no outer code syndrome occurs, continue the protocol; i.e., we are done with measuring

this outer code check and we proceed to the next one. When done measuring all checks, go

to step 3. Otherwise, if an inner code syndrome occurs, go to step 2.

2. If the observed error syndrome for the inner code can be produced by an error pattern

of weight w ≤ m then error correct (see below) and repeat step 1. If the observed error

syndrome cannot be produced by an error pattern of weight w ≤ m, terminate the protocol.

3. When the protocol is done, we discard any qubits that might be “lower quality,” as explained

below, before outputting the other qubits. Hence, the number of magic states produced may

be smaller than nout.

Note that steps 1, 2 can be repeated an arbitrary number of times for a given check.

Applying error correction, can be performed as follows. The decoding circuit of the inner code

is some Clifford operator, as is the encoding circuit that is the inverse of the decoding circuit. The

decoding circuit maps ninner physical qubits to kinner logical qubits and ninner−kinner ancilla qubits.

Measuring the inner code stabilizers of a state is accomplished by measuring these ancillas. To error

correct, identify, by classical computation, a product of Y on the inner code of minimum weight

that matches the observed syndrome, compute the affected logical qubits, and then apply Y on

those affected logical qubits. This is slightly different from usual error correction where syndrome

extraction and correction are performed without a decoding circuit, but the procedure here is more

efficient for our purpose because a nontrivial syndrome is not too frequent and a different set of

logical qubits will be subsequently encoded into a different outer code check.

11

The concept of “lower quality” at the end of the protocol is as follows. We say that a qubit

q is lower quality if q belongs to an outer code check C such that when C is measured, an inner

code syndrome occurs that is corrected (i.e, case 2 occurs one or more times when measuring C)

and if there is no other check C ′ after C such that C ′∩C = {q}, a singleton. Note that this means

C must be a lonely check. Generally, error correction can lower the fidelity of the output state

because an error pattern of weight d − 1 may be confused with a weight 1 error. By discarding

lower quality qubits, we eliminate this possibility that a qubit is contaminated by error correction

as the qubit is tested once more after the error correction. This allows us to maintain the order of

reduction in error at d, even with error correction of order m = 1.

At a higher order of error correction, it is necessary to broaden the class of “lower quality”

qubits. In this modification, we say that a qubit q is lower quality if q ∈ C for some outer code

check C such that when C is measured, an inner code syndrome occurs that is corrected (i.e., case

2 occurs one or more times when measuring that check) and if there is at most one other check C ′

after C such that C ′ ∩ C = {q}. We call a protocol “conservative” if this broadened class of lower

quality qubits are discarded. The conservative protocol should be used when error correction of

order m = 2 is employed. Unless otherwise specified, we do not use the conservative protocol.

We will assume throughout that m ≤ 2. It will become clear at the end of the next subsection

why there is little reason to consider protocols with m ≥ 3. We also assume that the inner code

has a distance d ≥ 5. Note that this means that 2(d−m) > d.

A. Estimates for nout and nT

To estimate nout, note first that the probability that none of the input magic states has an error

is equal to (1 − ǫinput)
nout . Assume that none of the input magic states has an error. For each

measurement of an outer code check, one of several possibilities can occur:

A. No T -gate errors occur. This happens with probability (1− ǫcheck)
2ninner .

B. An inner code syndrome occurs and this error can be corrected by an error pattern of weight

w ≤ m. This occurs with probability at most 2ninnerǫcheck + O(ǫ2check) for m = 1 and

2ninnerǫcheck + 4ninner
2ǫ2check + O(ǫ3check) for m = 2. To see this, note that a single T -gate

error can occur in any of 2ninner locations, and such an error pattern occurs with probability

2ninnerǫcheck(1 − ǫcheck)
2ninner−1 ≤ 2ninnerǫcheck. A pair of T -gate errors can each occur in

any of 2ninner locations so that the probability is at most
(

2ninner

2

)

ǫ2check(1− ǫcheck)
2ninner−2 ≤

12

4ninner
2ǫ2check. In fact, the probability is slightly smaller than this because if the two T -gate

errors occur on the same qubit, then no inner code syndrome occurs, but an outer code

measurement error occurs.

C. An outer code measurement error occurs due to an incorrect outer code measurement. This

happens with probability at most ninnerǫ
2
check +O(ǫ4check).

D. An inner code syndrome occurs that cannot be corrected by an error pattern of weight w ≤ m.

This occurs with probability at most (2ninner)
m+1ǫm+1

check/(m+ 1)! +O(ǫm+2
check).

E. A logical error occurs in the inner code with no inner code syndrome. This occurs with

probability O(ǫdcheck).

In case A, the measurement of the inner code is done. In case B, we repeat the measurement.

In cases C and D, we terminate the protocol. In case E, we do not immediately terminate the

protocol, but it may be terminated subsequently.

As a lower bound on the probability that the protocol does not terminate, let us assume that

case E does not occur. We have a Markov chain each time we measure a check: With probability

Psucc ≡ (1− ǫcheck)
2ninner ,

no error occurs, and we are done with the measurement and proceed to the next measurement.

With probability

Prepeat ≡

2ninnerǫcheck +O(ǫ2check) if m = 1,

2ninnerǫcheck + 4ninner
2ǫ2check +O(ǫ3check) if m = 2,

we repeat the measurement. With probability at most

Pfail ≡ ninnerǫ
2
check + (2ninner)

m+1ǫm+1
check/(m+ 1)! +O(ǫm+2

check),

the protocol is terminated with failure.

Thus, one can straightforwardly calculate that the probability that we proceed to the next

measurement is Psucc/(Psucc + Pfail), while the probability that the protocol is terminated with

failure on any given measurement is Pfail/(Psucc+Pfail). Hence, the probability that the protocol

succeeds is lower bounded by

(1− ǫinput)
nout

(Psucc

Psucc + Pfail

)ncheck

. (12)

13

Given that the protocol succeeds, the expected number of qubits that are lower quality can be

bounded as follows. For each lonely check, the probability that case B occurs is Prepeat. Hence,

the average number of qubits that are lower quality is at most nlonelyPrepeatkinner, and so

nout ≥
(

nout − nlonelyPrepeatkin

)

(1− ǫinput)
nout

(Psucc

Psucc + Pfail

)ncheck

. (13)

Now we can see why there is little reason to consider m ≥ 3. The probability of failing due to

an error pattern with weight w > m (i.e., case D above) is O(ǫm+1
check). As we increase m, we reduce

the probability of failing due to such an error pattern. However, the probability of failing due to

an outer code measurement failure (case C above) is of order ǫ2check. So, once we have sufficiently

large m that the probability of case C is much larger than that of case D, there is little reason to

consider larger m. At m = 1, case C and case D are both at the same order in ǫcheck but case D

has a much larger prefactor, so there is some reason to consider m = 2. At m = 2, case D is higher

order in ǫcheck than case C and so there is little reason to consider m ≥ 3.

Finally, the average number of times that we repeat a measurement is 1+Prepeat+P 2
repeat+· · · =

1/(1 − Prepeat). Hence,

nT ≤ nout +
2ninnerncheck

1− Prepeat
. (14)

In fact, following similar reasoning as lead to Eq. (5), we can reduce this estimate for nT if we

terminate the protocol as soon as an error is detected. In this case, we find that

nT ≤ nout +
2ninner

1− Prepeat

ncheck−1
∑

j=0

(Psucc

Psucc + Pfail

)j
(15)

B. Estimates for ǫout

We now estimate ǫout. We will enumerate three different types of error patterns, depending on

whether case B (error correction) or a logical error occurs. We will assume that every qubit q is in

at least two checks of the outer code; this is necessary to obtain fifth or higher order reduction in

error. Also, we only consider “4-cycle free” outer codes where no pair of checks C,C ′ share more

than one qubit; i.e., |C ∩ C ′| ≤ 1 for any distinct checks C,C ′ (we call these 4-cycle free because

it implies that the Tanner graph has no 4-cycles).

There are three cases to consider: (i) No inner code syndrome (c0a,b), (ii) some inner code

syndrome that get removed by error correction (c1a,b), and (iii) some inner code syndrome that

becomes a logical error by error correction (cloga,b). Then, c will be the sum of c0, c1, clog.

14

1. Logical error without inner code syndrome

First, let us consider error patterns in which no inner code syndrome occurs; cases A, C, E

occur only. In this case, we can use the analysis that led to Lemma 1 to show that the number of

error patterns with total weight w = d or w = d+ 1 leading to an output error is bounded by

c00,b ≤ nlonely2
w−1clog(w) (no input T -state error), (16)

c0a,b = ninner
b/2cout(a, b/2) (error on a > 0 input T -states), (17)

for a+ b = d ≤ 6 or a+ b = d+ 1 ≤ 6.

2. Error patterns with Inner Code Error But No Logical Error from Correction

We now consider the case that there is an inner code syndrome, i.e., case B occurs at least once.

In this subsubsection, we analyze the case that no logical error occurs due to our correction, while

in the next subsubsection we consider the case of a logical error due to correction.

Suppose that a weight 1 error occurs inside the inner code of a check C, which is corrected

without logical error. All such error patterns of total weight d+ 1 leading to an output error can

be constructed in the following way: consider an error pattern P of total weight d that leads to an

output error. Let C be any check. Define a new pattern P ′ where P ′ has the same error pattern as

P except that when one first measures check C, first a single T -gate error occurs inside the inner

code, then one corrects this error, and then one continues as in error pattern P . These patterns

P ′ are the patterns that we consider in this subsubsection.

First consider the case that that P has a logical error on check C. If C is lonely, the affected

logical qubit will be discarded, and if C is not lonely, the logical error will be detected, so this

pattern does not lead to an output error. Thus, there are no such patterns of total weight d + 1

giving an output error.

Now consider other choices of P and C, so that P does not have a logical error on check C. For a

given pattern P , there are either 2ncheckninner or 2(ncheck−1)ninner ways to construct such a pattern

(there are 2ninner places to insert weight 1 error inside a check, and there are ncheck checks, though

the check C cannot be on a check where P has a logical error so there may be only ncheck − 1 such

checks). The sum of such patterns may be much larger than other terms of total weight d+1 due

to the large factor 2ncheckninner, but its contribution to the output error probability is not too large.

Recall that when we compute the probability of an output error, this probability is not obtained

15

simply by
∑

a,b ǫ
a
inputǫ

b
checkca,b but rather one must also include the probability that other gates do

not have an error. For example, in the basic protocol (where the total number of T -gates is gixed),

we must instead compute
∑

a,b ǫ
a
input(1 − ǫinput)

nout−aǫbcheck(1 − ǫcheck)
2ninnerncheck−bca,b. When we

include this probability that other gates do not have an error, our error probability at order ǫin
d is

indeed given by
∑

a+b=d ǫ
a
inputǫ

b
checkca,b, but our error probability at order ǫin

d+1 is given by

∑

a+b=d+1

ǫainputǫ
b
checkca,b −

∑

a+b=d

ǫainputǫ
b+1
check(2ninnerncheck − b)ca,b. (18)

This term −
∑

a+b=d ǫ
a
inputǫ

b+1
check(2ninnerncheck−b)ca,b will largely cancel a term c1a,b = c0a,b−12ncheckninner

up to terms −
∑

a+b=d ǫ
a
inputǫ

b
checkbca,b. Thus, while the series expansion for the total number of

errors of a given weight has this large prefactor ncheckninner at order d + 1 which may, in many

cases, make the order d + 1 term comparable to the order d term, the series expansion for the

output error probability has these terms largely cancel at order d + 1. One may indeed show a

formal cancellation of these terms at higher orders; however since our goal in this paper is not a

formal proof of the error probability, but rather we are content with an accurate estimate, we will

simply estimate the error probability at order d, d + 1 and use this cancellation at that order.

3. Error patterns with Inner Code Error leading to a Logical Error by Correction

Now suppose a logical error occurs after error correction in some check C. Hence, an error

pattern of weight at least d − m occurred inside that inner code such that after applying an

additional weight error correction of weight at most m, a logical operator of weight at least d was

produced. Note that if the error pattern, including errors both inside the inner code measuring C

and other errors elsewhere, has weight at most d, then such a logical error can occur only once as

2(d −m) > d. Even if we also wish to consider error patterns with weight at most d+ 1, then so

long as 2(d−m) > d+ 1, such a logical error can also occur only once. Let us restrict then to the

case where such a logical error can occur only once.

It will be easier to give bounds on the number of error patterns which can cause an output error

for specific outer codes, rather than general bounds, so let us first describe the general procedure

and then give a few bounds which hold in generality. The general procedure is to consider all input

states to the outer code, with some given number of errors with total weight win, then consider all

places at which a logical error can occur. Such a logical error requires at least d − m additional

errors and one must sum over the different locations in which they occur. Then, for each such

place where a logical error can occur, one must consider all possible states of the qubits after the

16

logical error (i.e., they are in some initial state before the check and some state after). One must

then count the number of violated checks; each violated check requires an additional two errors

but gives an additional prefactor equal to ninner describing the number of places these errors can

occur. The total number of violated checks due to input errors, logical error, and measurement

errors, must be at most d or d+ 1.

This general procedure includes a sum over error patterns inside the inner code leading to a

logical error. The number of error patterns leading to a given logical error can be computed for

any given inner code. As an upper bound, the number of error patterns leading to given logical

error is upper bounded by the number of error patterns leading to an arbitrary logical error. The

number of weight d − 2 errors in a check C that lead to a logical error after error correction in

the case m = 2 can be estimated as follows. We have defined clog(d) as the number of nontrivial

logical operators of weight d. Each error pattern of weight d− 2 that leads to an error after error

correction is given by removing 2 errors from such a logical operator. Hence, there are at most

2d−2

(

d

2

)

clog(d)

such patterns. Similarly, the number of weight d− 1 errors that lead to a logical error is bounded

by

2d−1dclog(d).

We now give some general results on this summation.

Suppose there was no error on qubits of a check C before we measure C, but after we measure

C, a qubit q ∈ C becomes erroneous. Any qubit q which is not lower quality will be in at least one

more check C ′ which shares exactly one qubit (namely, q) with C. If all other qubits in C ′ have

no error, then in order for no outer error to occur when measuring C ′, there must be an incorrect

outer code measurement. Then, for m = 1 there are no such error patterns with total weight d,

but the number of such error patterns of total weight d+1 is bounded by dclog(d)ninnernonce, where

nonce is the number of possible checks C such that only one check C ′ after C will be violated for

some logical error in C. For m = 2, the number of such error patterns of total weight d is bounded

by
(d
2

)

clog(d)ninnernonce, and that of total weight d + 1 is bounded by dclog(d)ninnernonce. If we

use the conservative protocol, qubits that are not lower quality must be in at least two more such

checks C ′, and so there are not such error patterns of total weight d or d+ 1.

Suppose instead that there were some errors in qubits in C before the error correction in C,

but after the error correction, none of the qubits in C have an error. So, the result of the error

17

corrections was to turn a state with an error on one or more qubits in C into a state with no errors

on qubits in C. We claim that in this case, there are no error patterns of weight d or d+1 leading

to an output error, even for m = 2, whenever the outer code is 4-cycle free. For an output error

to occur, there must have been an error on at least one input qubit q′ with q′ 6∈ C. This error is

in addition to an error on q ∈ C before the error correction in C. The logical error in C needs at

least d − 2 errors (or d − 1 if m = 1). So, to have an error of total weight d or d + 1, we are left

with at most 1 more position to put an error on. Since we are assuming at least two checks per

qubit, some check on q′ must have an incorrect outer code measurement, which requires at least

two more erroneous T gates, and hence the total weight of error would exceed d+ 1.

Suppose instead that there are errors in qubits in C both before and after the logical error. We

will now show that in this case also, there are no error patterns of weight d or d+ 1 leading to an

output logical error, even for m = 2. By the analysis of the above paragraph, for a 4-cycle free

outer code we can assume that the qubits in the complement of C do not have an error if the total

error pattern has weight d or d+ 1. If two qubits in C have an input error, then, in order for the

total error pattern to have weight d or d+ 1, d− 2 or d− 1 T gates in C must be erroneous, and

then there is no room for incorrect outer code measurements to occur. But then, the qubits in

C will be lower quality and discarded. If only one qubit in C has an input error, then no error

correction (case B) should be performed (by the preceding argument), and a logical error of weight

d should occur. Since any qubit is in at least two checks, a check either before or after C must

reject the input.

To summarize, enumerating error patterns involving logical errors, we find

cloga,b = 0 where a+ b = d, (19)

clog0,d+1 ≤ 2d−1dclog(d)ninnernonce (m = 1),

while

clog0,d ≤ 2d−2

(

d

2

)

clog(d)ninnernonce, (20)

clog0,d+1 ≤ 2d−1dclog(d)ninnernonce (m = 2),

where nonce is the number of possible checks C such that only one check C ′ after C will be violated

for some logical error in C.

Note that the bound is an overestimate, and in some cases the identified source of error in this

subsection may be eliminated completely by a choice of logical operators. Indeed, if, under a certain

choice, any logical operator of weight d always affects two or more logical qubits in a check that

18

is not lonely, then such an error pattern requires two or more incorrect outer code measurements.

Thus, whenever possible, it is better to choose logical operators of earlier checks such that small

weight logical operators act on many logical qubits.

V. FURTHER VARIANTS

A. Inner and Outer Code Corrected Family

A final generalization that one might consider is a family using both inner and outer code

error correction. Thus, one might perform inner code error correction as before, but if some outer

code syndrome occurs, one attempts to either error correct, or one discards certain states rather

than terminating the protocol. We will not consider this possibility further in this paper, beyond

mentioning that it is possible. The reason is as follows: the primary goal to consider outer code

error correction is to reduce the probability of terminating the protocol if there is an outer code

syndrome due to an input magic state error. (Terminating the protocol due to the case where there

is no input magic state error but there is an incorrect outer code measurement is much less likely.)

By using concatenation to reduce ǫinput ≪ ǫcheck, we can make this probability quite small. For

the families of protocols that we consider, the quantity nout is fairly small compared to the total

number of T -gates nT , so that there is little cost in doing this additional concatenation. However,

for even larger protocols it may be worth considering outer code error correction.

B. Partial Restart

A further modification of the protocol is what we call a “partial restart.” Suppose that in

some protocol, we start by measuring some checks C1, C2, . . . , Ck for some k, such that Ci∩Cj = ∅

for 1 ≤ i < j ≤ k. The protocol will involve later measuring additional checks; we are simply

describing a set of checks that can be measured in parallel at the start of the protocol. (The grid

code below gives an example of such a protocol, where all the “vertical” checks can be measured

in parallel before all other checks; concatenated codes provide another familiar example of this, in

that when a low-level block in a concatenated code fails, only that block is discarded). Suppose

that one or more of the checks gives an outer code syndrome. The protocol explained above then

involves terminating the protocol with failure, discarding all qubits and restarting. However, in

fact it is only necessary to discard and re-measure the qubits in the checks that have an outer

code syndrome. That is, if check C1 gives an outer code syndrome, but none of the others do, we

19

can re-prepare approximate magic states for the qubits in check C1, re-measure C1, and continue

without re-preparing and re-measuring the qubits in the other checks. We analyze this in more

detail later on specific cases.

VI. GRID CODE

The grid code is a family of outer codes where input magic states are laid on a square (or

hypercubic) lattice points. These have a relatively small nout compared to some other codes that

we consider.

A. Simple grid and pipelining

Consider a simple hypercubic lattice, whose linear dimensions are k1, k2, . . . , kD, on which input

magic states are placed and tested. Thus, nout = k1k2 · · · kD. There will be checks along coordinate

axes: The first round of checks consists of measurements on sets of k1 qubits using an [[n1, k1, d1]]

inner code. There are k2k3 · · · kD such measurements. On the next round, with an [[n2, k2, d2]]

inner code, there are k1k3k4 · · · kD measurements on sets of k2 qubits. There are D rounds of checks

in total. In this subsection we calculate the order d of reduction in error without error correction,

and we are not concerned with sucess probability of the protocol. The result is in Table I. Note that

this simple grid code as a classical code has distance 2D; however, due to the sensitivity condition

the order of reduction in error for distillation purposes is d = 2D+1 for D ≥ 3 if inner codes have

sufficiently high code distances. Jones [11] used this outer code, but it appears that he only used

the fact that the order of reduction in error is at least 2D.

For D ≥ 3, if all the inner codes have encoding rate close to 1, then the distillation protocol

consumes 2D T -gates and 1 T -state per output magic state with the order of error reduction being

2D + 1. Therefore, for odd d ≥ 7 the simple grid code can be used in place of the outer codes

defined by a biregular bipartite graph of large girth of Ref. [1]. Note that the girth of the Tanner

graph of the present simple grid code is at most 8 regardless of D.

The calculation of order of reduction in error is inductive in the dimension of the grid. The

base case is given by a one-dimensional grid, and the induction step by a two-dimensional grid.

We begin with the base case. Suppose k1 input magic states have independent error rate δ0.

We apply a single H-measurement routine using an inner code with parameters [[n1, k1, d1]]. Upon

20

successful measurement outcomes, the output magic states will have overall error rate

O(δ20 + δ0ǫ
2 + ǫd1). (21)

The first term is due to the parity condition imposed by the outer measurement, the second term

is due to an incorrect outer code measurement, and the last term is due to logical errors from the

inner code. It is of course important here that all error sources are independent.

Remark that if we decompose the output state µout into the parity sectors Π± of H⊗k1 , the

contribution δ2 is from the even sector, whereas δǫ2 is from the odd sector. The contribution ǫd

due to logical errors may present in the both sectors. Let us keep track of errors depending on the

parity.

δ′0 = δ0

δ′′0 = 0

δ′1 = ‖Π−µoutΠ−‖1 = O(δ0ǫ
2 + ǫd1) (22)

δ′′1 = ‖Π+µoutΠ+ − µideal‖1 = O(δ20 + ǫd1)

where the single prime denotes the error rate on the odd parity sector, and the double prime on

even sector. Cross terms Π±µoutΠ∓ are zero under the stochastic error model. Even under a

general error model, they become zero after postselection on outer measurement outcomes.

The next step (the induction step) is to consider a k1-by-k2 two-dimensional grid where each

vertical column of k1 qubits is independent and is from previous H-measurement routines. (k1

may not be equal to k2.) As we keep track of error probabilities depending on the parity sector, in

this induction step we do not make any assumption on the magnitude of δ′1 compared to δ′′1 . We

will apply H-measurement routines for each row by an [[n2, k2, d2]] inner code. Assume for the

moment that no H-measurements on the rows make a logical error. Then, the output after the

row measurements has the same parity as the input state.

Grid dimension D Order of error reduction d Condition

1 2 d1 ≥ 2

2 4 d1 ≥ 2, d2 ≥ 4

D ≥ 3 2D + 1 dj ≥ 2j + 1 for all j = 1, . . . , D

TABLE I. Order of reduction in error for the D-dimensional simple grid outer code. The resulting order of

error reduction in magic states is the best possible because when D = 1 the outer code has code distance 2,

when D = 2 the outer code has code distance 4, and when D ≥ 3 there are D checks for a single qubit.

21

Case 1 — The global parity of errors is even: There are two subcases. (i) No row measurement

makes an incorrect outer code measurement. In this case, the parity of error on each row must

be even. It is the most likely that only two rows are faulty, which must have the same number of

faulty qubits. Hence, this has probability of order δ′′21 + δ′21 . (ii) Some row measurement makes an

incorrect outer code measurement. Since this is associated with an odd parity row, there must be

at least two odd parity rows to make global parity even. Then it is the most likely to have two

errors in a single column, or two columns of odd parity. The probability in this case is of order

δ′21 ǫ
4 + δ′′1ǫ

4.

Case 2 — The global parity of errors is odd: It is most likely that there is a single column

of errors. Then, some row measurement has to make an incorrect outer code measurement. The

probability in this case is of order δ′1ǫ
2.

A logical error from the [[n2, k2, d2]] inner code can be introduced by any of the row measure-

ments regardless of whether there exists a faulty row. Thus, a logical error increases the error

probability in all cases by O(ǫd2).

In sum, we see that the error rate for the odd sector is δ′2 = O(δ′1ǫ
2 + δ′′1ǫ

4 + ǫd2), and that for

the even sector is δ′′2 = O(δ′′21 + δ′21 + δ′′1ǫ
4 + ǫd2). Regarding each column as a hyperplane of a

hypercube, we obtain recursive relations of the error probabilities:

δ′j+1 = O(δ′jǫ
2 + δ′′j ǫ

4 + ǫdj+1),

δ′′j+1 = O(δ′′2j + δ′2j + δ′′j ǫ
4 + ǫdj+1) j ≥ 0. (23)

Solving them, we arrive at Table I.

B. Examples and variants

Here and below in this section we consider specific examples. The performance of the examples

below is summarized in Table IV. For comparison, we include Table V for protocols prior to our

work. We will use an inner code with kinner logical qubits. We take kinner odd throughout. For

definiteness, later we consider the inner codes listed in Table II. The numbers are from direct

enumerating. (We observed that there are several different codes with the same ninner, kinner, d but

different clog(d).)

The logical operators of the inner codes in Table II, though not shown, are chosen such that

those of weight equal to the code distance d act on two or more logical qubits. More specifically

we choose a magic basis ℓ(1), . . . , ℓ(kinner) of S⊥/S in regards to the self-orthogonal subspace S [1]

22

[[ninner, kinner, d]] Stabilizer generator polynomial clog(d)

[[31, 21, 3]] (x31 + 1)/(x5 + x2 + 1) 155

[[31, 11, 5]] (x31 + 1)/(x10 + x7 + x5 + x4 + x2 + x+ 1) 186

[[63, 45, 4]] (x63 + 1)/(x9 + x7 + x6 + x+ 1) 1260

[[63, 39, 5]] (x63 + 1)/(x12 + x9 + x7 + x5 + x3 + x+ 1) 1890

[[63, 27, 7]] (x63 + 1)/(x18 + x15 + x13 + x11 + x9 + x5 + x4 + x+ 1) 3411

TABLE II. Inner codes. These are quantum BCH codes [2]. The stabilizer group is generated by tensor

products of X operators and their Hadamard conjugates, specified by a classical cyclic code generated by

the given generator polynomial. (For example, the coefficient of the first polynomial in the table is a binary

vector in the code space of length 31, and any cyclic permutation is also in the code space.) Since the

code length is odd, all presented codes are normal, and there is a choice of logical operators such that the

transversal Hadamard is a logical Hadamard on every logical qubit. The last column is the number of

nontrivial Y -logical operators of weight equal to the code distance. By random search, we observed that

there exists a logical operator basis such that a logical error of weight d always affects two or more logical

qubits.

such that

ℓ(a) · ℓ(b) =

1 if a = b,

0 otherwise,

|ℓ(a) + s| > d ∀s ∈ S.

The second condition may not always be satisfied, but for the inner codes in Table II we randomly

chose a basis of logical operators, turned it into magic basis, and observed that there were cases

where the conditions were satisfied. This eliminates, at order d and d + 1, error patterns where

d− 1 errors in a check becomes a logical error due to error correction which results in the output

error by one subsequent incorrect outer code measurement.

We take nout = kinner
2 and we imagine the qubits as laid out in a two dimensional grid, with

each qubit being labelled by a pair (x, y) with x, y ∈ {0, . . . , kinner − 1}.

There will actually be three different families of grid codes that we consider, depending on

the checks that we take. In the first family, the checks will consist of all verticals followed by

all horizontals. Thus, there are kinner vertical checks, Cvert
x , for x ∈ {0, . . . , kinner − 1}, with

Cvert
x = {(x, y)|y ∈ {0, . . . , kinner−1}} and kinner horizontal checks, C

hor
y , for y ∈ {0, . . . , kinner−1},

with Chor
y = {(x, y)|x ∈ {0, . . . , kinner − 1}}. In the second family, these vertical and horizontal

checks are followed by diagonal checks, Cց
z = {(x, y)|x + y = z mod kinner}. In the third family,

23

we then follow those diagonal checks by additional diagonal checks, Cր
z = {(x, y)|x − y = z

mod kinner}.

All of these families of codes are 4-cycle free. The grid code families differ in one important

way from codes that we will consider later. The codes have distances d = 4, 6, 8 for the three

families respectively. However, if one considers error patterns in which a single input qubit has an

error and then several incorrect outer code measurements occur so that no outer code syndromes

occur, these error patterns require weights 5, 7, 9 respectively. From one point of view this seems

inefficient: By taking an even distance for the outer code, the error reduction is only at order d = 4

in the first family, for example, even though each qubit is in two checks. However, the weight

5, 7, 9 error patterns involving a single qubit input error followed by several incorrect outer code

measurements come with a large prefactor noutninner
2, noutninner

3, noutninner
4 for the three different

families, respectively, while the weight 4, 6, 8 error patterns which lead to an output error have

a much smaller prefactor, and so in certain input error regimes, the two different types of error

patterns give comparable contributions to ǫout.

C. Vertical

The simplest grid code has a single check on kinner input T -states. This outer code has distance

2. The analysis of this simple grid code implies that the output error probability is O(ǫ2input +

ǫinputǫ
2
check + ǫdcheck). Thus, if the inner code for the check has distance 4 and if we take ǫinput =

O(ǫin
2), but ǫcheck = ǫin, then the output error probability becomes quartic in ǫin.

1. MEK ⇒ [[63, 45, 4]]

For example, we can take an inner code [[63, 45, 4]], and can use the MEK protocol for the input

T state. Then, ǫinput = 9×10−6 and ǫcheck = 10−3. We may employ error correction of order m = 1

for the inner code, but since the single check is lonely, whenever an inner code syndrome occurs,

the output will be discarded. So, we are using the basic protocol. The acceptance probability is

(1− ǫinput)
kinner(1− ǫin)

2ninner ≈ 0.88, so nout ≈ 4.0× 101.

The number of error patterns of the input states of weight 2 that lead to outpur error is
(45
2

)

= 990, contributing 8.0 × 10−8 to the output error probability. A single input error may be

undetected due to incorrect outer code measurement, the number of which is kinnerninner = 2835,

contributing 2.6 × 10−8. The contribution from the logical errors is 1.0 × 10−8. Thus, ǫout ≈

24

1.6 × 10−7, or ǫout ≈ 2.9 × 10−9. Taking the cost of the MEK protocol into account, we have

nT = 5kinner + 2ninner = 351, or nT /nout ≈ 8.9.

D. Vertical and Horizontal

This family of outer codes has distance 4. The weight 4 error patterns which lead to no violated

checks are all of the form of errors on the corners of a rectangle: There are four integers, x1, x2, y1, y2

with 0 ≤ x1 < x2 ≤ kinner − 1 and 0 ≤ y1 < y2 ≤ kinner − 1, and the four errors occur on qubits

(x1, y1), (x1, y2), (x2, y1), (x2, y2). Thus, there are
(kinner

2

)2
different such error patterns.

1. [[31, 11, 5]]↓ ⇒ [[31, 11, 5]]→

Taking a [[31, 11, 5]] inner code, we have nout = 121, ncheck = 22, and nlonely = 11. Taking

ǫin = 10−3, noutǫin ≪ 1, we take ǫcheck = ǫinput = ǫin. We use an inner code corrected family with

m = 1 so that Pfail = 2.0 × 10−3 and Psucc = 0.94. Hence, the protocol does not terminate with

probability 0.85. So, nout & 96, nT . 1.5×103, and nT /nout ≈ 16. The number of error patterns of

weight 4 leading to an output error is
(11
2

)2
= 3025. Thus, the error probability taking into account

these terms is 3025× ǫin
4 = 3.0× 10−9. On the other hand, the number of error patterns of weight

5 leading to an output error due to a single input error and two incorrect outer code measurements

is equal to nout × ninner
2 = 1.2 × 105 and the contribution of these to the output error probability

is noutninner
2ǫinǫ

4
check = 1.2 × 10−10. All other error sources are negligible in comparison and so

ǫout ≈ 3.1 × 10−9, or ǫout ≈ 3.2× 10−11.

2. [[31, 21, 3]]↓ ⇒ [[31, 11, 5]]→

One can also consider pipelining. In this case, we will use two different inner codes, a [[31, 21, 3]]

inner code on the vertical checks followed by a [[31, 11, 5]] inner code on the horizontal checks. The

qubits are laid out in a rectangular two-dimensional grid. We have now nout = 231. The values

of Pfail = 2.0 × 10−3 and Psucc = 0.94 are the same as above, but nlonely = 21, so nout ≈ 161

and nT . 2.3 × 103, or nT /nout ≈ 14. The number of error patterns of weight 4 leading to an

output error is
(

11
2

)(

21
2

)

= 11550. Thus, the error probability taking into account these terms is

≈ 1.2× 10−8. The number of error patterns of weight 5 leading to an output error due to a single

input error and two incorrect outer code measurements is equal to 231× 312 and the contribution

of these to the output error probability is ≈ 2.2 × 10−10. All other error sources are negligible;

25

errors due to a logical error when measuring the vertical checks followed by an incorrect outer

code measurement on the horizontal checks (this has total weight 5 since the vertical codes have

distance 3) has contribution of 2.1× 10−10, and errors due to a logical error when error correcting

the vertical checks followed by one incorrect outer code measurement on the horizontal checks does

not exist due to our choice of logical operators (this would have total weight 4).

For the rest of the paper, we consider only square grid codes, rather than rectangular, unless

otherwise mentioned.

3. MEK ⇒ [[31, 11, 5]]↓ ⇒ [[31, 11, 5]]→

Taking the [[31, 11, 5]] inner code for both vertical and horizontal checks, but taking ǫcheck =

ǫin = 10−3 and ǫinput = 9 × 10−6, we find the probability that the protocol does not terminate

becomes 0.95. The error patterns with a single input error and two incorrect outer code mea-

surements contribute ≈ 1.0 × 10−12 to the output error probability, while error patterns with a

logical error contribute ≈ 3.3× 10−11 to the output error probability, with all other contributions

negligible so that ǫout ≈ 2.8×10−13. We have nout & 1.1×102. In the checks we consume 1.4×103

T -gates, and the MEK protocol to have ǫinput = 9× 10−6 consumes 5 T -gates per T -state input to

the vertical checks. Overall, with the MEK protocol included, nT /nout ≈ 19.

4. MEK ⇒ [[31, 11, 5]]↓ ⇒ [[31, 11, 5]]→MEK

We now further modify the protocol: For the vertical checks, we will use an error of 10−3, while

for the input magic states and the horizontal checks we will use 9× 10−6. The idea is that for the

vertical checks, which are done first, one may tolerate a higher T -gate error, since any logical error

that is produced will likely be caught by the horizontal checks. The dominant error pattern is a

single input error, followed by two incorrect outer code measurements; there are noutninner
2 such

error patterns contributing an error ≈ 8.5 × 10−17, with the next most significant error pattern

being four input errors contributing ≈ 2.0× 10−17 so one finds that ǫout ≈ 1.0× 10−16. The repeat

probability for horizontal checks is negligibly small (5.6× 10−4), whereas that of vertical checks is

6.2 × 10−2. Hence we find that nout ≈ 1.2 × 102 and ǫout ≈ 8.9 × 10−19. Assuming success, the

number of input magic states with error 10−3 is 62 ·11 = 682, while the number with error 9×10−6

is 682 + 121 = 803. Taking the cost of MEK protocol (and the repetition and failure probability)

into account, 4.7 × 103 magic states with error 10−3 are consumed on average. Per output, this is

26

≈ 40 input T ’s.

5. [[63, 39, 5]]↓ ⇒ [[63, 39, 5]]→ with ǫin = 9× 10−6

Now we consider a [[63, 39, 5]] inner code. We have nout = 1521 and ncheck = 78. We take

ǫinput = ǫcheck = 9 × 10−6. We use an inner code corrected protocol with m = 1, though a

basic protocol without error correction performs similarly. We find that nout ≈ 1.5 × 103 and

nT ≈ nout + 2ninnerncheck/(1 − Prepeat) ≈ 1.1 × 104. Thus, nT /nout ≈ 7.4. There is a factor of 5

overhead in T count to distill the input gates with error 9× 10−6 from gates with error 10−3, so it

requires ≈ 37 input magic states with error 10−3. The number of error patterns of weight 4 leading

to an output error is
(39
2

)2
= 5.5×105. Thus, the error probability taking into account these terms

is
(

39
2

)

ǫin
4 ≈ 3.6× 10−15, so ǫout ≈ 2.4× 10−18. All other error sources are negligible in comparison.

6. MEK ⇒ [[63, 39, 5]]↓ ⇒ [[63, 39, 5]]→MEK

As before with the [[31, 11, 5]] inner code, we can modify the protocol where we use raw T

gates in the first round of checks (vertical) ǫcheck = 10−3, but in the input T -states and the second

round of checks (horizontal) we use distilled T -gates at error rate 9×10−6 from the MEK protocol.

This reduces the number of raw T states required. We perform all vertical checks in parallel,

and only if they succeed do we perform the horizontal checks. For the vertical checks, we have

Pfail = 8.0 × 10−3 and Psucc = 0.88 with Psucc/(Psucc + Pfail) = 0.991. There are 39 vertical

checks, with 0.99139 = 0.70. Thus, nout ≈ 1521 ∗ 0.70 ≈ 1.1 × 103, where we have neglected the

probability of error correction in the horizontal checks since it is negligibly small. The output error

contribution from quadruples of input T -state error is 3.6 × 10−15, which is now comparable with

the contribution of 4.4 × 10−15 from error patterns of weight 5 where a single input T -state error

(weight 1) is combined with two incorrect outer code measurements (weight 4). Logical errors are

negligible in comparison. Hence, ǫout ≈ 7.6× 10−18. Taking the cost of the MEK protocol and the

repeat and failure probabilities, we find nT ≈ 2.9× 104 and nout ≈ 1.1× 103, or nT/nout ≈ 28.

E. Vertical, Horizontal, and One Diagonal

The second family of outer codes has distance 6. The weight 6 error patterns which lead to

no violated checks are all of the following form. There are three integers x, y, l and the six errors

occur on distinct qubits (x − l, y − l), (x, y − l), (x − l, y), (x + l, y), (x, y + l), (x + l, y + l). This

27

error pattern corresponds to taking two squares which share a corner, and including all qubits at

the corners of the squares except for the shared corner. There are in total kinner
2(kinner−1)/2 such

patterns.

1. MEK ⇒ [[63, 27, 7]]↓ ⇒ [[63, 27, 7]]→ ⇒ [[63, 27, 7]]ց

Taking a [[63, 27, 7]] inner code, we have nout = 729 and ncheck = 81. If we take ǫcheck = ǫinput =

ǫin = 10−3, we have (1 − ǫin)
nout = 0.482. Since this number starts to become small, it is worth

instead taking ǫcheck = 10−3 and ǫinput = 9× 10−6 so (1− ǫinput)
nout = 0.994. While this increases

the number of physical T -gates required if one gets the given ǫinput by a quadratic distillation

protocol, it is compensated by the increased success probability.

For an inner code corrected family with m = 1, we have Pfail = ninnerǫ
2
check + 2ninner

2ǫ2check +

O(ǫ3check) ≈ 0.008, Psucc = (1−ǫcheck)
2ninner ≈ 0.882, Prepeat = 2ninnerǫcheck ≈ 0.126 so Psucc/(Psucc+

Pfail) = 0.991.

First consider the measurement of vertical checks. We repeat each vertical measurement until

it succeeds, only reinitializing the qubits in that check. With probability p1 = Psucc/(Psucc +

Pfail) = 0.991, we succeed in measuring this check without an outer code syndrome or inner code

syndrome that we cannot correct. With probability 1 − p1, we must reinitialize and remeasure

the qubits on the check. For each vertical check, it requires 27 input magic states and on average

2ninner/(1−Prepeat) ≈ 144 T -gates. Repeating each check until we succeed, it requires 27/p1 ≈ 27.2

input magic states and 144/p1 ≈ 145 T -gates per vertical line.

After measuring the vertical checks, we then measure horizontal and diagonal checks. The

method that uses the fewest T -gates is to measure these checks sequentially, terminating if any

fail. However, since this requires a fairly large time overhead compared to a parallel method, we

instead measure all horizontal checks in parallel, and then if all succeed, we measure all diagonal

checks in parallel; if any horizontal checks fail, we do not measure the diagonal checks.

The probability of success on all horizontal and diagonal checks is ≈ p
2ncheck/3
1 = 0.614. Thus,

the average number of output magic states is nout ≈ (729 − nlonelyPrepeatkinner)p
2ncheck/3
1 ≈ 391

The average number of used input magic states at error rate 9 × 10−6 is ≈ 736. The average

number of T -gates used is ≈ 145 × 27 for the vertical checks and ≈ 144 × 27 for the horizontal or

diagonal checks. The probability that all horizontal checks succeed is p
ncheck/3
1 ≈ 0.784, and, with

this probability, we then measure all diagonal checks. Thus, the total number of T -gates used is

145 · 27 + 144 · 27 + 0.784 × 144 · 27 = 1.1× 104, in addition to the ≈ 5 · 736 input magic states at

28

10−3 error rate. Hence, the total T -gate/state count is 1.5× 104, or nT /nout ≈ 37.

The number of error patterns of weight 6 leading to an output error is kinner
2(kinner−1)/2 = 9477.

These lead to a negligible contribution to the output error due to the much smaller ǫinput. On the

other hand, the number of error patterns of weight 7 leading to an output error due to a single input

error and three incorrect outer code measurements is nout×ninner
3 = 1.8×108 and the contribution

of these to the output error probability is ≈ 1.6 × 10−15. The number of error patterns of weight

7 due to an inner code logical error leading to an output error is 26 · nlonelyclog(d) = 5.9× 106 and

these lead to a contribution to the output error probability of 5.9× 10−15. All other error sources

are negligible in comparison and so ǫout . 7.5× 10−15, or ǫout ≈ 1.9× 10−17.

2. [[63, 27, 7]]↓ ⇒ [[63, 27, 7]]→ ⇒ [[63, 27, 7]]ց with ǫin = 9× 10−6.

As before, nout = 729, ncheck = 81, and nlonely = 27, and we use m = 1 error correction for inner

codes. At error rate ǫcheck = ǫinput = ǫin = 9 × 10−6, we have Psucc = 0.999, Pfail = 6.5 × 10−7,

and Prepeat = 1.1 × 10−3, so the acceptance probability is 0.993, even without considering partial

restart. (The acceptance probability using the basic protocol without inner code correction is

(1 − ǫin)
nout+2ninnerncheck = 0.906.) Using the combinatorial factors we computed above for error

patterns that lead to output errors, we see that the contribution from errors of weight 6 on the input

T states is 5.0×10−27, that of weight 7 from single input errors combined with three incorrect outer

code measurements is 8.7× 10−28, and that from the logical errors in lonely checks is 2.8× 10−29.

so ǫout ≈ 5.9× 10−27.

Discarding lower quality qubits, we have nout ≈ 7.2 × 102, and the number of T -states/gates

consumed is 1.1× 104 at error rate 9× 10−6. Hence, nT /nout ≈ 15, or ≈ 75 including the T -count

of initial distillation by the MEK protocol. We have ǫout ≈ 8.2 × 10−30.

F. Vertical, Horizontal, and Both Diagonals

The grid code with a vertical, horizontal, and both diagonal checks gives us an outer code

with distance 8. However, in order to suppress other errors at a comparable order, we need an

inner code with distance 9. One possible candidate code is a [[73, 19, 9]] inner code. However, this

consumes a large number of T -gates and the success probability becomes quite small at input error

rates around 10−3 unless we use an unacceptable amount of error correction. It may be worth

considering this code for other error rates but we do not discuss it further here.

29

VII. GRAPH OUTER CODES

A. d = 5

The sensitivity requires that each qubit should be in at least two checks. Hence, we consider

graphs where a qubit corresponds to an edge, and a check corresponds to a vertex of degree kinner,

with a qubit q in some check C if the corresponding edge is attached to the corresponding vertex.

Thus each qubit is in two checks. The outer code’s distance is the girth of this graph. The Petersen

graph code [1] is an example of this for distance 5.

The literature gives several examples of small graphs with fixed degree and girth 5. For degree

7, the smallest graph with girth 5 is known to be the Hoffman-Singleton graph [12]. This graph

has 50 vertices and 50 ∗ 7/2 = 175 edges. For degree 9, the smallest graph with girth 5 that we

could find in the literature [13, 14] has 96 vertices and 96 ∗ 9/2 = 432 edges. For degree 11, the

smallest we could find [13, 14] has 156 vertices and 156 ∗ 11/2 = 858 edges.

The Hoffman-Singleton graph has 1260 5-cycles, while the degree 9 graph has 8960 5-cycles,

and the degree 11 graph has 24336 5-cycles.

These graph codes can be used with inner codes such that kinner − degree is a nonnegative even

number. These codes differ from the grid code above, in that the outer code distance 5 is the

same as the order at which errors occur due to a single input error followed by incorrect outer

code measurements of every check involving that input magic state (i.e., also 5). Thus, these codes

allow fifth order reduction for the given kinner with a smaller nT than any other code that we know.

However, we do not analyze these codes with specific numbers because it appears that in many

practical regimes the grid codes will give better performance (at sufficiently small input error these

graph codes may become superior).

B. d = 7

For d = 7, we consider a family of outer codes which slightly generalize those in Ref. 1. In

Lemma 9 of that reference, it was shown that for any kinner, for any odd distance d ≥ 5, for

sufficiently large nout, one can obtain an outer code with the distance and sensitivity properties so

that every qubit is in exactly (d− 1)/2 checks. For the case d = 7, this requires that each qubit be

in 3 checks. Here, we consider how to do this with as small nout as possible; in some cases, we do

this by slightly increasing the number of checks so that some small fraction of qubits are in more

than (d− 1)/2 checks.

30

We choose the Tanner graph to be such that all checks to have degree kinner and all qubits to

have degree 3. We now show that any such Tanner graph with girth 6 or more (i.e., the code is

4-cycle free) and which defines a code with distance 7 or more will give an outer code that obeys

the distance and sensitivity bounds. First, any single input error will violate 3 checks, since every

bit is in three checks. Any pair of input errors on qubits q1, q2 must violate at least 4 checks (since

each qubit is in 3 checks, and the code is 4-cycle free, there is at most one check containing both

q1, q2). Any three input errors on qubits q1, q2, q3 must also violate at least 3 checks (there is at

most one check containing q1, q2 and at most one check containing q2, q3 and at most one check

containing q1, q3). Any four input errors on qubits q1, q2, q3, q4 must violate at least 2 checks (the

number of violated checks must be even since there are an even number of input errors, and by the

distance assumption, there is no pattern on four qubits that violates no checks). By the distance

assumption, any five or six input errors must violate at least one check.

We performed a numerical search for graphs with the needed girth which defined a code with

the needed distance as follows: We chose an integer α and searched an outer code with αkinner

qubits and 3α checks. The search was an iterative randomized procedure. We initialized the graph

by taking α copies of the complete bipartite graph on kinner qubits and 3 checks. This initial graph

has girth 4. We then performed an iterative random search to find a graph with girth 6 or larger;

this search proceeded by first finding a 4-cycle, then choosing an edge (q, C) between a qubit q

and an edge C in that 4-cycle, then choosing another random edge (q′, C ′) and replacing the pair

(q, C) and (q′, C ′) with (q, C ′) and (q′, C). This procedure was repeated until the graph had girth

6 or larger. Then, an additional random update was performed; this update also replaced pairs

of edges (q, C) and (q′, C ′) with (q, C ′) and (q′, C); in this case, the pairs were chosen randomly

subject to the constraint that no 4-cycle is created. After a large number of such steps, we tested

whether the resulting code had distance 7; this test was done by searching for an error pattern of

weight 6 or less that does not violate an outer code check; some tricks were done to speed this

search (for example, if a qubit q has an error, and if q is in checks C1, C2, C3 then there must be

qubits q1 ∈ C1, q2 ∈ C2, q3 ∈ C3 with q1, q2, q3 6= q such that q1, q2, q3 all have errors).

For kinner = 5, 7, 9, 11, 13, for α = kinner+1, we were able to find graphs with girth 6 by random

search. Note that there exist graphs with girth 6 with m = kinner (the grid code with horizontal,

vertical, and one diagonal is an example of such), but we did not find them. However, we did not

find graphs with both girth 6 and distance 7 until a larger α. These graphs give concrete examples

of outer codes which obey the distance and sensitivity bounds.

We also found outer codes which obey the distance and sensitivity bounds with nout = αkinner

31

qubits for smaller values of m by taking more checks. We did this as follows: We first found

graphs of girth 6 or more as described above and then did a large number of random updates of

these graphs keeping girth ≥ 6. Then, if the resulting code had distance 5 or 6, we tried to find

whether one could add a small number of checks to that code to obtain a code with distance 7.

The resulting code then obeys the distance and sensitivity bounds.

The results of these searches are shown in Table III. Thus, these codes allow seventh order

reduction in error with a smaller nT for the given kinner than any other code that we know. However,

as in the case of graph codes, we do not analyze them further.

kinner α α with added checks

5 7

7 13 10

9 19 14

11 33 20

13 45 29

TABLE III. Outer codes M such that 2|Me|+ |e| ≥ 7 found in randomized search. For given degree equal

to kinner, the second column labelled α shows the minimum α at which we found a constant degree Tanner

graph giving a code obeying the distance and sensitivity bounds. (These have the optimal number of checks

per output at 7th order of reduction in error.) The third column α with added checks shows the minimum

α giving a code obeying the weight and sensitivity bounds where we add one or two checks to a constant

degree Tanner graph. In any case, nout = αkinner.

[1] J. Haah, M. B. Hastings, D. Poulin, and D. Wecker, “Magic state distillation with low space overhead

and optimal asymptotic input count,” .

[2] Markus Grassl and Thomas Beth, “Quantum bch codes,” in Proceedings X. International Symposium

on Theoretical Electrical Engineering, Magdeburg (1999) pp. 207–212, quant-ph/9910060.

[3] Daniel Gottesman, “A class of quantum error-correcting codes saturating the quantum hamming

bound,” Phys. Rev. A 54, 1862 (1996), quant-ph/9604038.

[4] A. R. Calderbank, E. M Rains, P. W. Shor, and N. J. A. Sloane, “Quantum error correction and

orthogonal geometry,” Phys. Rev. Lett. 78, 405–408 (1997), quant-ph/9605005.

[5] Torsten Karzig, Christina Knapp, Roman M Lutchyn, Parsa Bonderson, Matthew B Hastings, Chetan

Nayak, Jason Alicea, Karsten Flensberg, Stephan Plugge, Yuval Oreg, et al., “Scalable designs for

quasiparticle-poisoning-protected topological quantum computation with majorana zero modes,” Phys-

ical Review B 95, 235305 (2017).

http://arxiv.org/abs/quant-ph/9910060
http://dx.doi.org/10.1103/PhysRevA.54.1862
http://arxiv.org/abs/quant-ph/9604038
http://dx.doi.org/10.1103/PhysRevLett.78.405
http://arxiv.org/abs/quant-ph/9605005

32

Protocol nout nout ǫout nT /nout

MEK ⇒ [[63, 45, 4]] 45 4.0× 101 2.9× 10−9 8.9

[[31, 11, 5]]↓ ⇒ [[31, 11, 5]]→ 121 9.6× 101 3.2× 10−11 16

[[31, 21, 3]]↓ ⇒ [[31, 11, 5]]→ 231 1.6× 102 7.5× 10−11 14

MEK ⇒ [[31, 11, 5]]↓ ⇒ [[31, 11, 5]]→ 121 1.1× 102 2.8× 10−13 19

MEK ⇒ [[31, 11, 5]]↓ ⇒ [[31, 11, 5]]→MEK 121 1.2× 102 8.9× 10−19 40

MEK ×
(

[[63, 39, 5]]↓ ⇒ [[63, 39, 5]]→
)

1521 1.5× 103 2.4× 10−18 37

MEK ⇒ [[63, 39, 5]]↓ ⇒ [[63, 39, 5]]→MEK 1521 1.1× 103 7.6× 10−18 28

MEK ⇒ [[63, 27, 7]]↓	 ⇒ [[63, 27, 7]]→ ⇒ [[63, 27, 7]]ց 729 3.9× 102 1.9× 10−17 37

MEK ×
(

[[63, 27, 7]]↓ ⇒ [[63, 27, 7]]→ ⇒ [[63, 27, 7]]ց
)

729 7.2× 102 8.2× 10−30 75

TABLE IV. Output Error of protocols using a grid outer code, where qubits are placed on a two-dimensional

grid, assuming ǫin = 10−3 and perfect Clifford operations. Order m = 1 error correction for inner codes

is used. “MEK ⇒” means that the input magic states are from the MEK (10-to-2) protocol [9], whereas

“MEK×” means that all T -states/gates are from the MEK protocol. The subscript MEK means that

the T -gates in those checks are from the MEK protocol. The column nT /nout includes T cost of the MEK

protocol. The subscript 	 means that a column is started over until success. The superscript arrows indicate

the direction of the checks. nout is generally larger than nout, because failure probability is nonzero and

lower quality outputs are discarded. The space requirement is c nout (noiseless) qubits where 1 ≤ c < 4.

Protocol nout ǫoutmarginal nT /nout (Space cost)

6-22-54 7128 1.0× 10−13 47 (3.3× 105)

⋆ 15-5 2 1.1× 10−14 76 (1.5× 102)

5-34-46 3128 9.8× 10−15 52 (1.6× 105)

5-5-54 216 8.7× 10−17 80 (1.7× 104)

⋆ 5-5-5 8 4.8× 10−18 126 (1.0× 103)

22-46-54-54 2950922(≈ 3× 106) 8.1× 10−19 115 (3.1× 108)

⋆ 15-15 1 1.5× 10−21 228 (2.3× 102)

TABLE V. Costs of protocols using concatenations of triorthogonal (3k+8)-to-k protocol (BH) [10] denoted

by an even number k, MEK [9] denoted by “5”, and the 15-qubit code (BK) [15] denoted by “15”, starting

with ǫin = 10−3 input T -states. T -counts are rounded from the first decimal place. The space cost is the

number of qubits required to run the protocol, ensuring the independence of the magic states to the next

round of protocol; for example, in “6-22-54”, (3 · 6 + 8)(3 · 22 + 8)(3 · 54 + 8) = 3.3 × 105 initial T -states

are needed. We assumed MEK protocol’s 10 T states are occupying 10 qubits. The protocols are chosen

according to the lowest T -count given a target marginal output error rate using BH with k ≤ 54, MEK,

and BK. Those with ⋆ are similarly chosen, but using only MEK and BK. All error rates are computed by

marginal error probability at each stage, so the actual error rate might be lower; see [10] for more detail.

33

[6] E. Knill, “Fault-tolerant postselected quantum computation: Schemes,” (2004), quant-ph/0402171v1.

[7] E. Knill, “Fault-tolerant postselected quantum computation: Threshold analysis,” (2004),

quant-ph/0404104v1.

[8] Sergei Bravyi and Alexei Kitaev, “Universal quantum computation with ideal Clifford gates and noisy

ancillas,” Phys. Rev. A 71, 022316 (2005), quant-ph/0403025.

[9] Adam M. Meier, Bryan Eastin, and Emanuel Knill, “Magic-state distillation with the four-qubit code,”

Quant. Inf. Comp. 13, 195 (2013), 1204.4221.

[10] Sergey Bravyi and Jeongwan Haah, “Magic state distillation with low overhead,”

Phys. Rev. A 86, 052329 (2012), 1209.2426.

[11] Cody Jones, “Multilevel distillation of magic states for quantum computing,”

Phys. Rev. A 87, 042305 (2013), 1210.3388v2.

[12] Alan J Hoffman and Robert R Singleton, “On moore graphs with diameters 2 and 3,” IBM Journal of

Research and Development 4, 497–504 (1960).

[13] Leif K Jørgensen, “Girth 5 graphs from relative difference sets,” Discrete mathematics 293, 177–184

(2005).

[14] Adjacency matrices for the graphs online at http://people.math.aau.dk/~leif/research/girth5/.

[15] Sergei Bravyi and Alexei Kitaev, “Universal quantum computation with ideal Clifford gates and noisy

ancillas,” Phys. Rev. A 71, 022316 (2005), quant-ph/0403025.

http://arxiv.org/abs/quant-ph/0402171v1
http://arxiv.org/abs/quant-ph/0404104v1
http://dx.doi.org/10.1103/PhysRevA.71.022316
http://arxiv.org/abs/quant-ph/0403025
http://www.rintonpress.com/xxqic13/qic-13-34/0195-0209.pdf
http://arxiv.org/abs/1204.4221
http://dx.doi.org/ 10.1103/PhysRevA.86.052329
http://arxiv.org/abs/1209.2426
http://dx.doi.org/ 10.1103/PhysRevA.87.042305
http://arxiv.org/abs/1210.3388v2
http://people.math.aau.dk/~leif/research/girth5/
http://dx.doi.org/10.1103/PhysRevA.71.022316
http://arxiv.org/abs/quant-ph/0403025

	Magic State Distillation at Intermediate Size
	Abstract
	I Introduction
	II Background and convention
	III Basic Family
	A Output count
	B Error Patterns With a Logical Error
	C Error Patterns With No Logical Error
	D Summary

	IV Inner Code Corrected Family
	A Estimates for nout and nT
	B Estimates for out
	1 Logical error without inner code syndrome
	2 Error patterns with Inner Code Error But No Logical Error from Correction
	3 Error patterns with Inner Code Error leading to a Logical Error by Correction

	V Further variants
	A Inner and Outer Code Corrected Family
	B Partial Restart

	VI Grid Code
	A Simple grid and pipelining
	B Examples and variants
	C Vertical
	1 MEK [[63,45,4]]

	D Vertical and Horizontal
	1 [[31,11,5]]"3223379 [[31,11,5]]
	2 [[31,21,3]]"3223379 [[31,11,5]]
	3 MEK [[31,11,5]]"3223379 [[31,11,5]]
	4 MEK [[31,11,5]]"3223379 [[31,11,5]]MEK
	5 [[63,39,5]]"3223379 [[63,39,5]] with in= 910-6
	6 MEK [[63,39,5]]"3223379 [[63,39,5]]MEK

	E Vertical, Horizontal, and One Diagonal
	1 MEK [[63,27,7]]"3223379 [[63,27,7]][[63,27,7]]
	2 [[63,27,7]]"3223379 [[63,27,7]][[63,27,7]] with in= 9 10-6.

	F Vertical, Horizontal, and Both Diagonals

	VII Graph Outer Codes
	A d=5
	B d=7

	 References

