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Magma genesis and transport link mantle convection with surface

volcanism and hence with the long-term chemical and morphological

evolution of the Earth’s crust. Modeling the dynamics of magma^

mantle interaction in tectonic settings remains a challenge, however,

because of the complexity of multi-component thermodynamics and

melt segregation in a permeable, compactible, and actively deforming

mantle matrix. Here I describe a flexible approach to formulating the

thermochemistry of such models based on the Enthalpy Method, a

technique commonly used in simulations of alloy solidification.This

approach allows for melting and freezing based on a familiar binary

phase diagram, consistent with conservation of energy and two-phase

compaction and flow. I present an extension of the Enthalpy Method

to more than two thermodynamic components. Simulation of a one-

dimensional upwelling and melting column provides a benchmark for

the method.Two-dimensional simulations of the melting region that

feeds magma to a rapidly spreading mid-ocean ridge demonstrate the

utility of the Enthalpy Method. These calculations provide a new

estimate of the efficiency of magmatic focusing along the base of the

oceanic lithosphere. Modeled focusing efficiency varies with mantle

permeability and resistance to compaction.To yield 5^7 km of oceanic

crust with �20% melting of a homogeneous, sub-ridge mantle, a

focusing efficiency of greater than 70% is required. This, in turn,

suggests that matrix permeability and bulk viscosity are at the high

end of previously estimated values.

KEY WORDS: mantle; simulation; PETSc; compaction;

thermodynamics

I NTRODUCTION

The convective dynamics of the mantle exert a primary

yet incompletely understood influence on the surface

environment of the Earth. Mantle convection is linked to

the physical and chemical characteristics of the planet’s

surface by magma genesis and transport. This connection

affects the evolution of hotspot chains, explosive volcanoes

found above subduction zones, and tectonic seams of the

ocean floor, as well as the existence and composition

of continents. Understanding the transport of magma

through the subsurface is an essential component in our

knowledge of the Earth system.

Much previous work has focused on solid-state, creeping

convection of the whole mantle (e.g. Schubert et al., 2001)

and the origins of plate tectonics (e.g. Tackley, 2000).

Relatively less attention has focused on the interaction of

fluid magma with the permeable, crystalline mantle in the

partially molten zones beneath volcanoes. McKenzie

(1984) and subsequent studies (see references below) have

derived general equations that aim to describe the conser-

vation of mass, momentum and energy in such settings.

Solutions to these equations, plus some treatment of melt-

ing, freezing and geochemical transport, can be used to

make predictions that are testable using geophysical and

geochemical data. The set of predictions that can be made

using any formulation of the governing equations depends

on the choice of complexities included in the model.

Observations of mid-ocean ridges (MORs) pose a set of

fundamental problems in magmatic transport. Of particu-

lar interest here is the observed uniformity of crustal thick-

ness (5^7 km) for ridge full-spreading rates above 2 cm/yr.

This feature of MORs was demonstrated and modeled by

Bown & White (1994). Those researchers showed that crus-

tal thickness can be modeled by decompression melting of
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a mantle with a potential temperature between 1280 and

13208C, assuming instantaneous, complete melt extraction.

A higher mantle potential temperature would result in a

larger melt production rate and would require less efficient

extraction, although geochemical constraints on the degree

of melting indicate that the potential temperature cannot

be significantly higher than 13508C. This reasoning sug-

gests that melt extraction is uniformly efficient for all ocea-

nic spreading ridges.

Beneath MORs, magma is produced over a volume of

mantle that can extend to more than 100 km on either side

of the ridge axis (Forsyth et al., 1998); efficient melt extrac-

tion requires that this magma be focused laterally toward

the ridge axis. The mechanics of magmatic focusing at

mid-ocean ridges remains incompletely understood [for a

review see Kelemen et al. (1997)]. Models include flow

focusing as a result of anisotropic permeability (Phipps

Morgan, 1987; Daines & Kohlstedt, 1997; Katz et al., 2006),

pressure effects caused by mantle corner flow (Phipps

Morgan,1987; Spiegelman &McKenzie,1987) and channe-

lized flow along the base of the sloping thermal boundary

layer in a high-porosity ‘decompaction channel’ (Sparks &

Parmentier, 1991; Spiegelman, 1993c). Of these, the last

remains a promising explanation for high-efficiency focus-

ing, although it has not been thoroughly investigated.

Sparks & Parmentier (1991) used a semi-analytical analysis

of the problem to derive an estimate of focusing efficiency

as a function of mantle permeability and magma viscosity.

Spiegelman (1993c) developed two-dimensional (2D), iso-

viscous, numerical simulations of a fixed sloping boundary

with a prescribed freezing rate. The work showed that the

efficiency of focusing depends on the ratio of the crystalli-

zation-region thickness to the local compaction length. In

particular, deflection of flow into the decompaction chan-

nel occurs only if the crystallizing boundary layer is sharp

relative to the compaction length. Ghods & Arkani-

Hamed (2000) performed 2D numerical simulations of

melting, freezing and magmatic transport at a MOR to

better constrain the efficiency of focusing in a ridge setting.

Their estimates of efficiency were lower than those of

Sparks & Parmentier (1991) and those presented here.

More recently, observations of the Oman ophiolite were

interpreted by Rabinowicz & Ceuleneer (2005) in terms

of the presence of a decompaction layer. That work also

described numerical simulations but did not report the effi-

ciency of focusing. The question of the efficiency of mag-

matic focusing by flow along a sloping decompaction

layer thus remains unresolved.

It is the purpose of the present paper to reconsider this

problem with the introduction of a new model that incor-

porates a flexible approach to handling the chemical ther-

modynamics of magma dynamics simulations. Model

complexity is limited to that necessary to address the phe-

nomenon in question. Melting and freezing are required,

as are melt segregation and matrix compaction

(Spiegelman,1993c).To establish a consistent ridge thermal

structure and melting budget, solution of a conservation

equation for energy is also required. This equation should

account for heat transport by the solid and fluid, latent

heat of melting or freezing, thermal diffusion, and adia-

batic temperature changes (Bown & White, 1994). To

account for the compositional dependence of mantle melt-

ing in the simplest possible way, the system should include

at least two thermochemical components such that the

melting point of a parcel of solid is at least univariant (at

a given pressure). Furthermore, the pressure dependence of

the solidus and liquidus is important for calculating the

distribution of melting (Asimow et al., 1997). Finally, to

properly calculate the compaction length, a physically con-

sistent bulk-viscosity formulation must be considered

(Schmelling, 2000; Bercovici et al., 2001). The approach

used in the present work combines the magma dynamics

formulation of Katz et al. (2007) and the Enthalpy

Method (Alexiades & Solomon, 1993). The latter has been

frequently used in simulations of solidification of binary

alloys (e.g. Oertling & Watts, 2004; Katz & Worster,

2008). This approach accommodates the minimum set of

requirements for the problem of magmatic focusing as

defined by Sparks & Parmentier (1991); it can be extended

in a straightforward manner to more complex constitutive

relations and thermodynamic systems. It is described in

detail below.

The present work builds on that of previous researchers

by incorporating thermodynamic and fluid-mechanical

complexity into a 2D, tectonic-scale model. Past work on

applications of magma dynamics theory has typically con-

sidered a simplified mechanical system with more detailed

thermochemistry, or vice versa. Details of thermody-

namics and melting have typically been included in

1D ‘melting column’ models. Ribe (1985a) considered a

two-component system in thermodynamic equilibrium

prescribed by a phase diagram (full solid solution and

eutectic). Asimow & Stopler (1999) extended this theory

to account for a multi-component system with variations

in density and partial specific entropy of multiple phases,

using MELTS (Ghioroso, 1994; Ghiorso & Sack, 1995) to

resolve the thermodynamic quantities. Other melting

column models, by S› ra¤ mek et al. (2007) and Hewitt &

Fowler (2008), have considered only a single thermody-

namic component and have instead focused on deriving

analytical solutions to expose the relevant fluid mechanical

processes. Hewitt & Fowler (2008) considered a column

capped by a cold boundary that yielded a lithospheric

boundary layer and magmatic under-plating beneath it.

The present model adopts a level of thermodynamic

complexity equivalent to that of Ribe (1985a) but is most

closely associated with previous tectonic-scale 2D and 3D

simulations of MORs. Most of these, however, have
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neglected compaction stresses so as to reduce the momen-

tum relation for the solid to the familiar incompressible

Stokes’ equation. Spiegelman & McKenzie (1987) consid-

ered 2D, constant viscosity, constant porosity models

of ridges and arcs to investigate fluid focusing caused

by dynamic pressure gradients. Scott & Stevenson (1989)

neglected compaction stresses but allowed for variable

viscosity in 2D numerical models of melt flow beneath

ridges. This was extended to three dimensions and

was augmented with wet melting by Choblet &

Parmentier (2001). Compaction stresses were accounted

for by Sparks & Parmentier (1991) in a study of melt focus-

ing by buoyant flow along the base of the impermeable

lithosphere at ridges. Spiegelman (1993c, 1996) included

compaction stresses in numerical models and investigated

the consequences of active, buoyancy-driven upwelling on

melting and melt migration. These studies used a simple

melting parameterization in which the melting rate is

directly proportional to the upwelling rate and neglected

freezing entirely. Ghods & Arkani-Hamed (2000) extended

previous models by incorporating temperature-dependent

melting or freezing and conservation of energy.

The present model follows most closely from Ghods &

Arkani-Hamed (2001). It is a 2D solution of the equations

expressing conservation of mass, momentum and energy in

the mid-ocean ridge setting. It consistently accounts for

melting and freezing using a binary phase diagramça

familiar and transparent thermodynamic parameteriza-

tion. It incorporates compaction stresses and employs a

physically consistent bulk viscosity formulation that has a

singularity for zero porosity (Batchelor, 1967; Schmelling,

2000; Bercovici et al., 2001; Hewitt & Fowler, 2008;

Simpson, 2008).

Reactive and mechanical localization instabilities are

absent from the simulations presented here. Localization

caused by matrix deformation and porosity-dependent visc-

osity was first noted in a linear stability analysis by

Stevenson (1989). It has been the subject of both experimen-

tal (e.g.Holtzman et al.,2003) andtheoretical investigations.

Richardson (1998) considered the effects of magmatic buoy-

ancy and Hall & Parmentier (2000) investigated the effects

of water on the instability. Spiegelman (2003) performed a

stability analysis for simple-shear deformation of a partially

molten aggregate with a Newtonian viscosity. This analysis

was extended by Katz et al. (2006) to model non-Newtonian

viscosity. Magmatic localization as a result of fluid^matrix

reactions was considered by Aharonov et al. (1995), who

showed that uniformporous flowupa sufficiently stronggra-

dient in solubility would localize into a channelized porosity

structure. Spiegelman et al. (2001) presented numerical

simulations of reactive, channelized flows with pressure-

dependent solubility.Temperature-dependent reactive melt-

ing was modeled by Katz (2005) in the context of simplified

models of subduction zones.

Questions regarding the formation and behaviour of

high-permeability channels beneath mid-ocean ridges

have important implications for our understanding of

magmatic transport. For example, if excesses of 226Ra rela-

tive to 230Th observed in young ridge lavas (e.g. Sims et al.,

2002; Stracke et al., 2006) originate by fractionation of ura-

nium-series elements in the garnet stability field and are

preserved until eruption at the ridge, then magma ascent

rates must be high and residual porosity low (McKenzie,

1985). Jull et al. (2002) has shown that rapid, equilibrium

melt extraction through high-porosity channels may be

sufficient to explain thorium excesses that originate at

depths of garnet stability. In this model, radium excesses

are generated in the low-porosity inter-channel regions

that feed the channels at shallow depths [see also Elliott

& Spiegelman (2003)]. If radium excesses are generated

by chromatographic effects (without channelization)

(Spiegelman & Elliott, 1993) then the constraint on trans-

port rate is relaxed somewhat, although residual porosity

in the mantle must still be of the order of the elemental

distribution coefficients. Saal & van Orman (2004) pro-

posed an alternative theory in which radium excesses are

generated within the magma chamber itself.

In seeking to present a simple exposition of magma

dynamics with the Enthalpy Method, I have avoided the

conditions that give rise to magmatic localization instabil-

ities. In particular, for the purposes of the present study,

the shear viscosity is taken as constant, independent of

porosity, to avoid the possibility of mechanical instability.

Furthermore, although the pressure and temperature

dependence of solubility in the binary phase diagram sug-

gest the possibility of reactive localization, compositional

perturbations required to nucleate reactive instabilities

have been suppressed. Modification of these attributes

may allow for the investigation of mechanical and reactive

localization processes leading to channelization of mag-

matic flux in the ridge melting region using a modified ver-

sion of the same simulation code that was used for this

study.

The present study concentrates on an exposition and

benchmark of magma dynamics simulations using the

Enthalpy Method, as well as a prediction of the efficiency

of melt focusing by buoyant magmatic flow along the base

of the lithospheric thermal boundary layer. I explore the

sensitivity of focusing efficiency to the magnitude of per-

meability and bulk viscosity. Given the uncertainty in

these parameters, simulations predict a wide range of pos-

sible focusing efficiency (see below).

The paper is organized as follows. The next section

introduces the relevant theory and equations. The section

about solutions to the equations briefly describes the

numerical approach taken here and reports on results

from 1D and 2D simulations. The following sections pro-

vide a discussion of the results and some conclusions.
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Three appendices detail the derivation of the conservation

of enthalpy equation, non-dimensionalization of the gov-

erning equations and an extension of the Enthalpy

Method to systems with more than two thermochemical

components.

MODEL FORMULAT ION

The model consists of a set of coupled partial differential

equations (PDEs) to describe the essential features of the

magma^mantle system, allowing for consistent melting

and freezing, segregation of melt from the crystalline

mantle matrix, shear and compactive deformation of the

matrix, and transport of energy by both fluid and matrix

phases.To assemble the appropriate PDEs, I adopt the con-

tinuum theory of McKenzie (1984) and develop an

approach to the thermodynamics of magma transport

based on the Enthalpy Method.

The Enthalpy Method allows the calculation of melting

and freezing rates based entirely on an equilibrium phase

diagram (Alexiades & Solomon, 1993). It has been com-

monly used to model solidification problems concerning

the formation of a mushy layer (e.g. Oertling & Watts,

2004; Katz & Worster, 2008). Using the Enthalpy

Method, the partial differential equation describing the

evolution of porosity (the volume fraction of fluid present

in a representative volume element of the domain) is

replaced with a closure condition between the local bulk

enthalpy and bulk composition. This closure condition is

derived from the prescribed phase diagram that spans all

the relevant thermodynamic components. This approach

has several advantages over other melting models. First, it

prevents the occurrence of negative porosity values that

can appear in numerical solutions of the PDE governing

the evolution of porosity. Second, it avoids the need for

opaque melting parameterizations. Finally, it reduces the

number of coupled equations that must be solved by elim-

inating the PDE for porosity evolution. The disadvantage

of the Enthalpy Method, as it is described here, is that it

requires the assumption of thermodynamic equilibrium

throughout the domain. Fortunately, its use does not pre-

clude the addition of auxiliary calculations of disequilib-

rium geochemical transport of trace elements and

radiogenic nucleides (e.g. Spiegelman, 1996).

The assumption of thermodynamic equilibrium is valid

if reactions toward equilibrium are sufficiently fast. In par-

ticular, the mantle^melt system should be in equilibrium if

the length-scale over which melt equilibrates with the

mantle is of the order of the continuum scale (a few tens

of grain diameters). Because the crystals are mostly com-

posed of fusible material (i.e. major elements), reaction is

limited by the rate of diffusion of major elements into the

melt, away from the crystal^melt interfaces. Aharonov

et al. (1995) analyzed this system for a broad range of rea-

sonable parameter values and estimated an equilibration

length that is between �ngstro« ms and meters. Assuming

mantle grains are no larger than a few centimeters in dia-

meter puts an upper bound on the continuum scale for

magma dynamics of about 1m, a good match with the

maximum equilibration length-scale from Aharonov et al.

(1995). Hence it is plausible that the mantle can be

described by a model with local thermochemical equilib-

rium, at least for major elements.

Using that approach, the thermodynamic quantity that

must be explicitly conserved is the gravity-compensated

enthalpy (Ramberg, 1971). In a unit volume containing

both fluid and matrix phases, the magnitude of this quan-

tity is given by rh� r g � x, where r is the density, h is the

enthalpy per unit mass, g is the gravitational acceleration

vector, x is the position vector, and overbars represent

volume-averaged bulk quantities (i.e. for some quantity Q

with different values for the fluid and matrix phases,

Q ¼ fQ f þ ð1� fÞQ m). The first term, rh, represents

the volumetric enthalpy and the second term, � g � x,

represents the potential energy; kinetic energy is neglected

because the Reynolds number for both phases is much less

than unity. For what follows, it will be useful to define the

volumetric bulk enthalpy, H ¼ rh.

Fluid mechanics
Coupled partial differential equations describing the

motion of magma in the convecting mantle have been

derived by several workers (Ahern & Turcotte, 1979;

McKenzie, 1984; Fowler, 1985; Ribe, 1985b; Scott &

Stevenson, 1986). A useful review has been provided by

Stevenson & Scott (1991). Bercovici et al. (2001) derived a

more general version describing two symmetric, immisci-

ble fluids. However it was shown by Bercovici & Ricard

(2003) that in the case relevant to magma dynamics of a

fluid with viscosity that is much smaller that the matrix

viscosity (and neglecting surface tension and damage),

the general equations reduce to the set derived by

McKenzie (1984). Here, the formalism of McKenzie

(1984) is used for consistency with past work.

The equations describing conservation of mass for the

fluid and matrix phases, respectively, are

@rff

@t
þ r � rffvf

h i

¼ � ð1Þ

@rmð1� fÞ

@t
þ r � rmð1� fÞvm

� �

¼ �� ð2Þ

where f is the porosity, vf and vm are the fluid and matrix

velocities, and � is the rate of mass transfer from the fluid

to the solid phase (the melting rate).

The balance of forces in the fluid phase takes the form of

a modified Darcy’s law,

fðvf � vmÞ ¼ �
K

�
rPf � rf g
h i

ð3Þ
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where K is the permeability, m is the fluid viscosity, and Pf

is the fluid pressure. For the matrix phase, the balance of

forces is a modified Stokes’ law,

rPf ¼ r � � rvm þ rvTm
� �

þ r � �
2

3
�

� �

r � vm

� �

þ �rg

ð4Þ

where � and � are the shear and bulk viscosity of the

aggregate, and the superscript T indicates the matrix

transpose. The basic properties of these equations have

been previously studied by many workers including

Barcilon & Lovera (1989) and Spiegelman (1993a, 1993b).

Katz et al. (2007) described a reformulation of the equa-

tions that is convenient for implicit numerical solution;

this form is given below in equations (17)^(21).

It is worth stressing that the formulation of McKenzie

(1984) does take intoaccount thepressure differencebetween

fluid andmatrix phases as the driving force for compaction.

The stress tensor of the matrix phase, �m
ij , was given

by equations. (A14) and (A15) of McKenzie (1984) as

�m
ij ¼ �Pf �ij þ ��ij

@vmk
@xk

þ �
@vmi
@xj

þ
@vmj

@xi
�
2

3
�ij

@vmk
@xk

� �

ð5Þ

where �ij is the identity matrix, subscripts represent compo-

nent indicies into vectors and matricies, and the Einstein

summation convention of repeated indicies applies. As

usual, the dynamic pressure of the solid is defined as

Pm ¼ �
1

3
Trð�m

ij Þ ¼ Pf � �
@vmk
@xk

ð6Þ

where Tr denotes the trace operator. Equation (6) can be

rearranged to give the familiar and physically reasonable

equation for the pressure difference between phases

Pf � Pm ¼ �r � vm.

Energy and composition
Energy is conserved for an arbitrary Eulerian volume V

containing, in general, both fluid and solid phases.

Changes in the total energy within the volume can be

related to fluxes of energy across its boundary @V. This rela-

tion is given by

d

dt

Z

V

H � �rg � x dV ¼�

Z

@V

rhv� rvg � x� �krT
� �

� n̂ dS

ð7Þ

where x is the coordinate vector, k is the phase-averaged

thermal conductivity, T represents temperature, and n̂ is

an outward pointing unit vector normal to the volume

boundary. Terms on the right hand side represent fluxes as

a result of advection of enthalpy, advection of potential

energy, and diffusion of sensible heat respectively. For

clarity of interpretation, viscous dissipation, radiogenic

heat production and other irreversible processes have

been neglected in writing equation (7). These contributions

have been considered by other workers (e.g. McKenzie,

1984; Bercovici & Ricard, 2003; S› ra¤ mek et al., 2007) and

may be included in future work.

The differential form of the conservation of energy equa-

tion is derived from (7) in Appendix A. This derivation is

based on assumptions of thermal equilibrium everywhere

within the domain as well as constant, phase-independent

material properties (density, specific heat, thermal expan-

sivity and thermal conductivity). The result is

@H

@t
þ rcp expð�agz=cPÞr � �vT ¼ rLr�

ð1� fÞvm þ k expð�agz=cPÞr
2T

ð8Þ

where cp is the specific heat, � is the thermal expansivity, z

is a coordinate representing depth, T ¼ T exp ð��gz=cPÞ

is the potential temperature, k is the thermal diffusivity

and g is the magnitude of the gravity vector. Equation (8)

states that changes in the volumetric bulk enthalpy are due

to advection of sensible heat, advection of latent heat and

thermal diffusion. The contribution of potential energy is

accounted for implicitly through the use of potential tem-

perature (see Appendix A). As ag=cP � 1, the exponential

coefficients in equation (8) could be linearized. However,

this would neither clarify the interpretation of the equa-

tion nor speed the numerical solution and so the exponen-

tials are left unchanged.

Application of the Enthalpy Method requires that we

know both the bulk enthalpy H and the bulk composition

C everywhere within the domain. For simplicity, we limit

the composition to two thermodynamic components. In

that limit, and with rf ¼ rm ¼ r, the conservation of

bulk composition is governed by the single equation

@C

@t
þr � fvfCf þ r � ð1� fÞvmCm ¼ Dr � frCf ð9Þ

where Cf and Cm are the mass concentrations of the less

fusible component in the fluid and matrix phases respec-

tively, and D is the chemical diffusivity or dispersivity

(see Appendix A). This equation states that changes in the

bulk composition are due to advection by the fluid and

matrix, as well as by diffusion within the fluid phase.

Equations (8) and (9) constrain the bulk enthalpy and

composition. However, their solution requires knowledge

of four other variables, f,T, Cf and Cm. These are provided

by the Enthalpy Method, which allows for the derivation

of a set of algebraic closure conditions that relate these

four unknowns to bulk enthalpy and composition, as

detailed in the following subsection.

The Enthalpy Method
The Enthalpy Method is based on the prescription of ther-

modynamic equilibrium everywhere in the domain. This

condition, quantified by a phase diagram, provides closure

conditions for porosity, temperature, and the two phase
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compositions in equations (8) and (9) as a function of pres-

sure or depth. For a two-component system, the simplest

phase diagrams are the binary phase loop, which applies

in the case of total solid solution of the thermodynamic

components, and the eutectic phase diagram. Ribe

(1985a) has incorporated both of these diagrams in calcula-

tions of 1D melting columns. Here I consider only the

phase loop, shown in Fig. 1. This a vast simplification of

the full thermodynamic system; however, it has long been

known that mantle melting is not eutectic-like; a continu-

ous variation of the solidus and liquidus with extent of

melting is a more reasonable model (Asimow et al., 1997).

The details of the phase diagram shown in Fig. 1 are ad

hocçthey are chosen for mathematical convenience and

for consistency with an idealized conception of mantle

melting. A more rigorous treatment would use thermody-

namic laws and measurements to constrain the shape of

the liquidus and solidus. For the present purposes, such an

approach is not required because leading-order features of

the overall system are insensitive to these details.

At each Eulerian grid cell in the domain, the energy

available for partition between sensible and latent heat is

given by the value of the bulk enthalpy, H ¼ rh.

Neglecting small changes to the pressure within the cell as

a result of fluid dynamics (i.e. assuming dP � 0), the total

differential (A5) can be integrated to give the enthalpy per

unit mass for the matrix hm and fluid hf phases as

hm ¼ h0 þ cPðT � T0Þ ð10Þ

hf ¼ h0 þ cPðT � T0Þ þ L ð11Þ

where h0 is a reference enthalpy at the reference tempera-

ture T0, L is the latent heat of the fluid, and T is the tem-

perature. h0 is assigned to be zero at the minimum melting

temperature T0 over all possible compositions. As above,

the specific heat cp has been taken as constant and equal

between phases.

From equations (10) and (11) the bulk volumetric

enthalpy can be constructed as

H ¼ frLþ rcPðT � T 0Þ: ð12Þ

Unlike Asimow et al. (1997), I neglect variations in the par-

tial specific entropy of the fluid and matrix and assume a

constant latent heat of fusion. Experiments on basalt by

Bouhifd et al. (2007) over temperatures relevant to mantle

melting have shown that @L=@T � 375 J/kg/K.This means

that a 100 degree change in temperature changes L by

approximately 9% from the value used here (seeTable 1).

Three additional equations are needed to solve for f,T,

Cf and Cm; these are given by the definition of bulk com-

position and the phase diagram as

C ¼ fCf þ ð1� fÞCm ð13Þ

Cm ¼ fSðT ;PlÞ ð14Þ

Cf ¼ fLðT ;PlÞ: ð15Þ

Pl is the lithostatic pressure, a good approximation of the

total pressure at any point within the domain. Equation

(13) defines the bulk composition C, equations (14) and (13)

are parameterizations of the solidus and liquidus surfaces

in Fig. 1 (see figure caption for details). Combining equa-

tions (12)^(15) gives an equation for porosity,

ffL
H � frL

rcP
þ T0; P

� �

þ

ð1� fÞfS
H � frL

rcP
þ T0; P

� �

� C ¼ 0:

ð16Þ

In general, equation (16) must be solved numerically for f

given values of H and C. The solution can then be used in

equations (12)^(15) to obtain the other three required vari-

ables, T, Cf and Cm.

Although I have used the binary phase loop here, this

formulation is easily adapted to other binary phase dia-

grams. For example, the binary eutectic system was

adopted by Katz & Worster (2008). Appendix C gener-

alizes the Enthalpy Method to N thermochemical compo-

nents, although it is clearly more difficult to construct

functions describing the liquidus and solidus surfaces in

this case.

Nondimensional system
Physical considerations of compaction of a two-phase

medium suggest that the bulk viscosity � must approach

infinity as porosity tends toward zero (Batchelor, 1967;

Schmelling, 2000; Bercovici et al., 2001; Hewitt & Fowler,

2008; Simpson, 2008). This introduces a singularity in

equation (4). Rearranging the equations to put � into the

denominator facilitates the handling of this singularity. To

accomplish this, I adopt the pressure decomposition

described by Katz et al. (2007) and in Appendix B. This

allows the system of fluid mechanical equations to be

Pressure Concentration

T
e
m

p
e
ra

tu
re

00
1

p0 T0

T1

T0+ p0/γ

T1+ p0/γ 

Fig. 1. A binary, pressure-dependent, phase diagram for a two-
component where system. The functions used to generate this figure
can be written as TS(Cm, P)¼T0þ�T ð0:5C3

mÞ þ 0:5CmÞPl=� and TL

(Cf, P)¼T0þ�T ð0:5C3
f � 1:5C2

f Þ þ 2Cf ÞPl/g, where �T ¼T1�T0,
Pl is the lithostatic presure, and g is the Clapeyron slope. It should be
noted that these functions are the inverse of fs and fl from equations
(14) and (15).
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reduced to incompressible Stokes’ flow when and where the

porosity goes to zero.

Nondimensionalization of the governing equations is

described in Appendix B. The system of equations can be

written in terms of nondimensional variables as

r � vm ¼
P

	
ð17Þ

� r � KrP þ
P

	
¼ r � K rP þ ĝ

� �

ð18Þ

rP ¼ r � � rvm þ rvTm
� �

� fĝ ð19Þ

@tH þ eAzr � �v
 ¼ Sr � ð1� fÞvm þ Pe�1
T
eAzr2
 ð20Þ

@tC þ r � fvfCf þ r � ð1� fÞvmCm ¼ Pe�1
C r � frCf ð21Þ

where P is the compaction pressure (known in rock

mechanics as the excess pressure), P is the ‘dynamic’ pres-

sure, 	 ¼ ð� � 2�=3Þ is the viscous resistance to compac-

tion, ĝ is a unit vector in the direction of gravity, @t is a

partial derivative with respect to time, and 
 is the nondi-

mensional temperature as defined in Appendix B. The

adiabatic parameter A ¼ ��g=cP is the proportional

change in temperature as a result of adiabatic decompres-

sion over the compaction length. The Stefan number

S ¼ L=ðcP�T Þ fixes the importance of latent heat relative

to sensible heat in controlling changes in enthalpy. The

thermal and compositional Peclet numbers, PeT ¼ �w0=�

and PeC ¼ �w0=D, characterize the importance of advec-

tion relative to diffusion. Representative mantle values

for dimensional parameters are given in Table 1. Closure

conditions for dimensionless Enthalpy Method variables

f, 
, Cf and Cm and the fluid velocity vf are given in non-

dimensional form in Appendix B. With these closures,

equations (17)^(21) are a closed set of 4þD coupled partial

differential equations for 4þD primary variables

(H; C; P; P; vm), where D is the number of spatial

dimensions.

It is important to note that the melting rate, �, does not

appear in the final set of PDEs. The assumption of local

thermodynamic equilibrium everywhere in the domain

means that � is determined implicitly by the local rate of

change of conditions that affect melting. Given a solution

to the governing equations, � can be extracted using the

conservation of mass equation (2) in nondimensional form

� ¼
@f

@t
� r � ð1� fÞvm: ð22Þ

Thus the melting rate is the time-rate of change of porosity

that is not due to compaction.

The derivation of equations (17)^(21) is based on a

number of assumptions. The most important is the

assumption of local thermodynamic equilibrium every-

where in the domain. This allows for the local phase

fractions, compositions and temperature to be deter-

mined from bulk enthalpy and composition using the

Enthalpy Method. To simplify the equations to a manage-

able level of complexity, an extended Boussinesq approxi-

mation is applied. Using this approximation, variations in

density that are not associated with buoyancy terms are

neglected (except in allowing for adiabatic changes in tem-

perature). Moreover, buoyancy is driven by a constant den-

sity difference �r between the phasesçthermal and

compositional buoyancy are neglected.The system of equa-

tions is further simplified by setting material properties

such as specific heat and thermal expansivity equal bet-

ween phases. A more rigorous treatment of the thermody-

namics would require consistency between these material

properties and the details of the binary phase diagram

(e.g. Denbigh, 1981). Finally, irreversible sources of heat

including dissipation and radiogenic heating are neglected.

Much complexity remains in these equations, however.

As written, the equations allow for variations in viscosity.

Such variations arise from, for example, gradients in

porosity, temperature, and stress (e.g. Karato & Wu,

1993). Buoyancy caused by the presence of fluid is included

in the equations, allowing for modeling of melting-induced

Table 1: Parameters and their representative values for the

mantle

Quantity Symbol Value or range Units

Shear viscosity �0 1019 Pa- s

Bulk-to-shear viscosity ratio �R 10–200

Reference porosity f0 0.05 vol. frac.

Permeability constant K0 10
�9
–10

�6
m

2

Permeability exponent n 3

Fluid viscosity m 1 Pa- s

Density r 3000 kg/m3

Density difference �r 500 kg/m3

Specific heat cp 1200 J/kg/K

Gravity g 9.8 m/s
2

Thermal diffusivity � 10
�6

m
2
/s

Chemical diffusivity or dispersivity D 10
�7

m
2
/s

Thermal expansivity � 3� 10
�5

K
�1

Latent heat L 4� 10
5

J/kg

Clapeyron slope g 1.7� 107 Pa/8C

Inflow concentration C0 0.12 wt. frac.

Reference temperature T0 1227 8C

Reference temperature T1 1927 8C

Mantle potential temperature TP 1350 8C

Half-spreading rate U0 5 cm/yr

The size of the chemical diffusivity or dispersivity D is
exaggerated here to speed numerical convergence. Results
do not differ significantly for smaller values of this
parameter.
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solid upwelling (Buck & Su,1989; Scott & Stevenson, 1989;

Cordery & Phipps Morgan, 1992, 1993). The equations

allow for segregation of melt and, with it, fluid transport

of heat and chemistry. Chemical reactions between fluid

and matrix are implicit; they occur as melt segregates and

rises along a lithostatic pressure gradient. The inclusion of

pressure gradients caused by compaction allows for locali-

zation of melt as a result of reactive (e.g. Aharonov et al.,

1995; Spiegelman et al., 2001) and mechanical (e.g.

Stevenson, 1989; Katz et al., 2006) mechanisms. Because of

this complexity, analytical solutions to the full equations

do not exist; numerical methods are required and these

are discussed below.

Permeability and viscosity
In keeping with the principal goal of this paper, to demon-

strate the utility of the Enthalpy Method for problems of

magma dynamics, I have chosen to reduce constitutive

equations to the simplest reasonable form. For the binary

phase diagram (Fig. 1), I have applied the same

Clapeyron slope g to the entire phase diagram.

Dimensional permeability is calculated according to the

standard Kozeny^Carmen relationship (Bear, 1972), sim-

plified for small porosity and constant grain size to (Wark

& Watson, 1998;Wark et al., 2003)

K ¼ K0f
n ð23Þ

where n is a constant exponent typically taken to equal 2 or 3.

The bulk viscosity is taken as a constant for the 1D melt-

ing column described below and as being proportional to

the inverse porosity in 2D calculations (Batchelor, 1967;

Schmelling, 2000; Bercovici et al., 2001; Simpson, 2008).

In the latter case, it is given in dimensional form by

� ¼ �R�
f0

f
ð24Þ

where �R is the ratio of bulk to shear viscosity at the refer-

ence porosity f0. The product �Rf0 has been estimated

experimentally by Cooper (1990) to be about 10 and theo-

retically by Hewitt & Fowler (2008) and Simpson (2008) to

be about unity. The singularity in equation (24) has impli-

cations for the behaviour of the compaction length as

f ! 0. Ghods & Arkani-Hamed (2000) used a bulk vis-

cosity formulation without a singularity, giving smaller

compaction lengths near f¼ 0 than those calculated

here. This may have lead to the low focusing efficiency of

the decompaction channel in their simulations.

For the purposes of the present research, the shear

viscosity � is taken to be a constant �0, independent of tem-

perature, pressure, porosity, stress, etc. This simplification

is inconsistent with experiments on mantle deformation

(e.g. Karato & Wu, 1993; Hirth & Kohlstedt, 2003)

and excludes the possibility of plate-like behaviour of

cold thermal boundary layers, as well as localization as a

result of mechanical interactions between fluids and solids

(e.g. Holtzman et al., 2003). Such behaviour is considered to

be important for melt segregation in the Earth (e.g.

Kelemen et al., 2002; Katz et al., 2004, 2006). However, the

simulations described below are readily extended to more

complex rheologies, and this extension is among the goals

for future work.

The compaction length �c is the length-scale that

emerges from nondimensionalization of the equations of

magma dynamics (1)^(4). It is the scale over which pertur-

bations to the compaction pressure decay away

(Spiegelman, 1993b). As pointed out by Schmelling (2001),

with a bulk viscosity proportional to �f�1 the compaction

length can be considerably longer than previous estimates,

where the bulk viscosity was taken to be approximately

equal to �. Applying the relation (24) for the bulk viscosity

and assuming that 3�Rf0 � 4f,

�c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kð� þ 4�=3Þ=�
p

�
�Rf0

f

� �1=2
ffiffiffiffiffiffiffiffiffiffiffiffi

K�=�
p

: ð25Þ

This equation states that for a porosity of 1% and

�Rf0 ¼ 1, the compaction length is about a factor of 10

larger than estimated by McKenzie (1984).

SOLUT IONS TO THE EQUATIONS

The equations (17)^(21) are in a form amenable to numeri-

cal solution. Below I describe the discretization approach

and the numerical method used to solve the discrete

system. Results of 1D simulations are presented and com-

pared with semi-analytical calculations (Ribe, 1985a) as a

benchmark of the simulation code and as a means to con-

strain certain parameters. Two-dimensional simulations

were performed for a restricted set of parameters; results

of these simulations are presented following the 1D results.

Parameter values used in the constitutive and governing

equations are given inTable 1.

Discretization and numerical solution
The governing equations are discretized on a staggered,

Cartesian grid with matrix and fluid velocities located on

cell boundaries and all other variables located at cell cen-

ters. The nonlinear system resulting from the discrete mass

and momentum equations is separated from that of the

enthalpy and bulk composition equations; the two are

solved in a Picard iteration loop. Advection terms are

handled using an upwind Fromm scheme with second

order accuracy (Albers, 2000). Solution of each set of dis-

crete equations is performed using a Newton^Krylov^

Schwartz method provided by the Portable, Extensible

Toolkit for Scientific Computation (PETSc, Balay et al.,

2001, 2004). Details and references for this approach have

been provided by Katz et al. (2007) for the equations of

magma dynamics and by Katz & Worster (2008) for the

Enthalpy Method.
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Time-stepping of the enthalpyandcomposition equations

is performed semi-implicitly using a Crank^Nicolson

scheme. Although this scheme is unconditionally stable, the

time-step size is limited, to preserve accuracy, to be close to

the limit prescribed by the Courant^Friedrichs^Levy

(CFL) condition. This limit is derived from the velocity of

the magma, which can be orders of magnitude larger than

that of the mantle matrix, depending on the permeability of

the matrix and the buoyancy of the magma. For permeabil-

ity in the range considered here, a grid spacing of 0.75 km

and a domain of about 150 km�70 km, the simulation of

0.5^2 Ma of model-time required about 40 h of clock-time

on eight nodes of a cluster with one Intel� Xeon�

(2.4 GHz,1GBRAM) processor per node.

Convergence of the simulations to an accurate solution

for decreasing grid-spacing and time-step is not rigorously

proven here. Katz & Worster (2008) performed simplified

benchmark simulations of the Enthalpy Method and of

thermal convection in a fixed porous medium and found

excellent convergence with analytical or accepted solu-

tions; much of the discretization details and code from

that work are reused here. A further benchmark of the

Enthalpy Method is performed below with a 1D upwelling

column. In two dimensions, comparison of simulations at

different spatial resolutions indicates that for grid-spacing

smaller than �1km, integrated results such as focusing dis-

tance do not vary systematically with grid-spacing. This

result is shown below in Fig. 7a; it gives confidence that

the simulations are convergent.

Upwelling column model
One-dimensional simulations of upwelling and melting

mantle rock were performed as a benchmark for the simu-

lations code. Ribe (1985a) considered the melting of a two-

component mantle with complete solid solution and no

thermal or chemical diffusion. He derived a simplified

ordinary differential equation for the steady-state profile

of temperature. From the temperature profile, Ribe

(1985a) calculated the degree of melting, and the approxi-

mate porosity and fluid upwelling profiles, all of which can

be compared directly with results of simulations.

Neglecting diffusion, the steady-state, nondimensional gov-

erning equations become

@wm

@z
¼ P=	 ð26Þ

�
@

@z
K
@P

@z
þ P=	 ¼

@

@z
K

@P

@z
þ 1

� �

ð27Þ

@P

@z
¼ 2

@

@z
�
@wm

@z
ð28Þ

eAz @

@z
w
 ¼ S

@

@z
ð1� fÞwm ð29Þ

@

@z
fwfCf þ ð1� fÞvmCm

� �

¼ 0; ð30Þ

where wf and wm are the vertical components of fluid and

solid velocity, respectively. The matrix-buoyancy term fĝ

in equation (19) has been dropped because matrix convec-

tion is not possible in 1D solutions. Boundary conditions

include a fixed potential temperature of 1350�C at the

bottom of the domain and a fixed solid upwelling rate,

U0¼5 cm/yr, at the top of the domain. Incoming mantle

is taken to be 12% of the less fusible component and 88%

of the more fusible component. Other parameters are as

given inTable 1.

Although it is possible to reduce equations (26)^(30) ana-

lytically to ordinary differential equations matching those

solved by Ribe (1985a), I have solved them numerically to

demonstrate the validity of the method and implementa-

tion. Figure 2 shows the comparison between results from

these simulations and the curves calculated by Ribe

(1985a). The correspondence is imperfect for porosity,

fluid velocity and bulk composition because Ribe (1985a)

neglected pressure gradients arising from compaction in

his solution. Temperature and the degree of melting for a

steady-state, equilibrium, 1D melting column are indepen-

dent of the flow parameters, as demonstrated by Ribe

(1985a), and as evident in Fig. 2a and b, where curves for

all values of K0 exactly coincide.

These results demonstrate that the Enthalpy Method

and this implementation are valid for simulations of

magma dynamics. They also show that the calibration of

the phase diagram (i.e. the chosen values of T0, T1, and g)

gives an amount of melting for 1350�C potential tempera-

ture mantle that is consistent with expectations (Langmuir

et al., 1992). Figure 2 shows that the porosity and fluid

upwelling rate depend on the choice of K0 [in particular,

f / K
�1=n
0 and w / K

1=n
0 (Ribe, 1985a)]. Constraints on

the permeability of mantle rock come mainly from experi-

mental measurements of monomineralic samples (e.g.

Wark & Watson, 1998), texturally equilibrated rocks (e.g.

Faul, 1997), or from grain-scale models (e.g. Zhu & Hirth,

2003; Cheadle et al., 2004). These studies generally used an

equation similar to (23) to fit their results. The permeabil-

ity exponent n is typically estimated to be two or three.

Wark et al. (2003) has shown that permeability laws derived

for monomineralic systems can be applied to upper mantle

assemblages. Given the variability of experimental results

and the poor constraints on grain size in the mantle, other

workers such as Faul (2001) have taken an inverse

approach, seeking a permeability model that is consistent

with geophysical and geochemical data. Results from the

Mantle ELectromagnetic and Tomography (MELT)

experiment (Forsyth et al., 1998) were interpreted by Faul

(2001) based on reductions in P-wave speed (Faul et al.,

1994) to indicate the presence of �1^2% melt in disk-

shaped pores beneath the East Pacific Rise. Observed tho-

rium disequilibria (see the Discussion below) suggest even

smaller residual porosities. Simulations shown in Fig. 2
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indicate that 10�9 5K0 5 10�6 m2 is the range of perme-

ability constants that produces such a range in porosity.

Mid-ocean ridge model
In this section I describe 2D simulations of mid-ocean

ridge melting and melt transport.The simulations combine

melting, freezing, and porous flow of magmawith a consis-

tent determination of the matrix flow field as a result of

both compaction and lithospheric motion. The Enthalpy

Method is unchanged in higher spatial dimensions. The

domain, shown schematically in Fig. 3, contains a vertical

section of the ridge perpendicular to the ridge strike. It

extends laterally from the ridge axis to a specified width

and from the surface to a specified depth. Reflection

boundary conditions on the vertical boundary beneath

the axis enforce symmetry across the axis and prevent

flow through the boundary. The other vertical boundary

uses open, outflow conditions to minimize disturbance to

the interior of the domain. The bottom boundary has

fixed enthalpy corresponding to the desired potential tem-

perature at zero porosity.The top boundary has a specified

matrix velocity vm ¼ ðU0; 0Þ representing the moving tec-

tonic plate. Away from the ridge, the top boundary has a

fixed enthalpy corresponding to a temperature of 08C. In

contrast, within a region less than 6 km from the ridge,

the boundary condition on enthalpy is insulating,

@H=@z ¼ 0. This allows hot, upwelling mantle to reach

the surface and provides a porous conduit for magma to

leave the domain. Further details on boundary conditions

are given in Fig. 3.
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Fig. 2. Results of 1D simulations with the Enthalpy Method (continous curves) compared with semi-analytical calculations after Ribe (1985a)
(dashed curves). Darker line colour represents a smaller value of K0; the black curve denotes the line for which K0¼ 0. The other six curves
represent K0¼10�11, 10�10, 10�9, 10�8, 10�7 and 10�6 m2. The poor match between simulations and theory for porosity, fluid velocity and bulk
composition is the result of the use of the ‘zero-compaction length’ approximation by Ribe (1985a). General agreement validates the numerical
approach and implementation.

Fig. 3. Schematic diagram of 2D model domain with boundary con-
ditions. Partial derivatives with respect to x, z are denoted by @x, @z.
The horizontal and vertical components of the matrix velocity vm
are denoted U andW, respectively. HC is the enthalpy corresponding
to T ¼ 08C and f¼ 0; HP is the enthalpy corresponding to the pre-
scribed inflow temperature and f¼ 0. C0 is the concentration of the
incoming mantle.
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The segment of the top boundary with an insulating

boundary condition in enthalpy allows hot mantle to

reach the surface and thus gives magma a route to leave

the domain at the ridge. Unfortunately, this approach

works only when the spreading rate U0 is large enough

that vertical advective heat transfer dominates lateral dif-

fusive cooling beneath the ridge. In this paper I consider

only one half-spreading rate, 5 cm/yr, that is large enough

to avoid this problem. In similar calculations, Ghods &

Arkani-Hamed (2001) specified a fixed, low temperature

over the entire upper boundary and extracted melt from

where it pooled below the thermal boundary layer. Such

an approach is also possible for the present model but has

not been implemented at present.

Below I describe the initial condition, time-evolution

and steady state of a typical simulation, as well as the effi-

ciency of melt focusing. Additional simulation results are

considered in the Discussion, with predictions for crustal

thickness and magmatic transit time as a function of key

model parameters.

Initial condition

Because of the complexity of the equations, the lack of a

good starting guess, and the possible presence of solitary

waves, it has not been possible to solve the steady-state

equations directly for the 2D mid-ocean ridge model.

Instead, a fully time-dependent solution is computed; this

solution may approach steady state. Because such an

approach can be computationally expensive, it is impor-

tant to choose an initial condition that minimizes the tran-

sient time in the model. One possible choice is to prescribe

sub-solidus enthalpy throughout the domain and allow

heat advection by the solid to establish the thermal ridge

structure and melting regime.This is impractical, however,

because once melting and melt transport begin, the advec-

tive time-scale for the magma reduces the time-step size to

a small fraction of that determined by the advective time-

scale for matrix motion.

A better approach was developed by Ghods & Arkani-

Hamed (2000) and has been adapted for use here. To ini-

tialize the time-dependent simulation, the matrix velocity

vm is specified by the isoviscous corner-flow solution

(Batchelor, 1967) for an incompressible fluid. The pre-

scribed velocity field is then used to solve the energy equa-

tion (20) with K0¼ 0 to eliminate melt-segregation effects.

This solution provides a map of (non-dimensional)

enthalpy, porosity, temperature and phase compositions

everywhere in the domain. The enthalpy is then reduced

by subtracting off the fraction that is contained in latent

heat, SfðxÞ. Next, the porosity is set to zero and the bulk

composition is set to the composition of the solid phase

after the initial melting; temperature is left unchanged.

The result is a melting region that is perched precisely on

the solidus with a temperature structure very close to

steady state.

Steady and quasi-steady solutions

There is an initial transient phase in all simulations during

which porosity in the melting region increases from zero

and melt begins to percolate upward. Melt produced

directly under the ridge ascends vertically and never

encounters the base of the cold lithospheric plate. In con-

trast, off-axis melts rise nearly vertically and accumulate

at the depth of the solidus, which is a sloping boundary

beneath the lithospheric thermal boundary layer, as

shown in Fig. 4a. Pooling of magma beneath this bound-

ary leads to a high-porosity layer that Sparks &

Parmentier (1991) termed the decompaction layer. The

slope of this layer directs the buoyant flow of magma

toward the ridge. Porosity and permeability in the decom-

paction layer increase with time during the transient phase

until a balance exists between (1) the flux of magma up the

decompaction layer to the ridge, (2) the flux of magma

from the melting region into the decompaction layer, and

(3) the flux of magma from the decompaction layer into

the cold lithosphere via under-plating (Sparks &

Parmentier, 1991).

If the decompaction layer is morphologically stable, an

approximately steady-state solution may emerge after the

initial transient. The model time required to establish this

steady state decreases with increasing background fluid

velocity, w0, as defined in Appendix B. This means that

although simulations with larger magmatic flow velocities

are more computationally intensive, such simulations also

pass through the initial transient phase in less model time.

In general, larger values of the bulk-to-shear viscosity

ratio, �R, are associated with a larger compaction length,

stability of the decompaction layer, and the existence of a

quasi-steady state. Instability of the decompaction layer is

considered below.

Figure 4c shows that steady-state melting and melt seg-

regation deplete the solid mantle of the more easily fusible

component. The lithosphere is slightly enriched relative to

the solid within the compaction layer because of the under-

plating that occurs at the top of the compaction layer. This

reintroduces a measure of the more easily fusible compo-

nent into the the solid phase.

Time-dependent solutions

Bulk viscosity plays an important role in determining the

stability of the decompaction layer. Figure 4b shows a

snapshot of a simulation in which �R ¼ 25, a factor of four

smaller than that of figure 4a. Magma has ponded on the

solidus boundary and formed narrow regions of high

porosity up to 9%. Streamlines show that magma rises

within the decompaction layer only until it reaches a

high-porosity zone where it is trapped. A comparison of

the solidus and isotherm contours in Fig. 4a and b demon-

strates that the trapped magmatic flux creates a local dis-

turbance to the temperature and bulk composition.
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The disturbance grows with time as more magma is

trapped, modifying the composition of the lithosphere, as

shown in Fig. 4c and d.

Magmatic focusing

Tracers are introduced into the flow to determine the path

lines of fluid parcels. The particles have zero distribution

coefficient and are thus advected at the velocity vf, which

is equal to the matrix velocity where the porosity is zero.

The particles do not otherwise affect the simulation. For a

simulation with K0 ¼ 10�7 m2 and �R ¼ 100, a swarm of

tracers was introduced into the bottom of the domain

after the simulation had reached steady state. Figure 5a is

a histogram of the lateral distance from the ridge axis

where these tracers cross into the bottom of the melting

region. Black bars represent particles that arrive at the

ridge axis and white bars represent particles that are

frozen into the oceanic lithosphere. It is evident that for

this simulation the focusing distance is �60 km. For tracers

that are advected to the ridge, Fig. 5b shows the elapsed

time for the tracer to travel from a given depth near the

bottom of the melting region. The elapsed time is longer

for particles that travel through the decompaction channel

to reach the ridge axis.

Figure 5b compares the transit time along (tracer) path

lines with the transit time along streamlines. If the flow

field was in perfect steady state then the two would give

the same result. Good agreement close to the ridge axis

for K0 ¼ 10�7 m2 suggests that streamline transit times,

which can be calculated instantaneously, are an acceptable

substitute for expensive tracer transport calculations for

simulations that approach a steady state. As expected,

transit time decreases as the permeability constant K0 is

increased. For K0 between 10�6 and 10�7 m2, transit

times for melts that originate beneath the ridge near the

bottom of the melting region (�54 km depth) range from

50 to 100 kyr. For comparison, the half-life of 230Th is

about 75 kyr.

Estimation of the distance over which magma is focused

to the ridge is possible using results in Fig. 5a. A similar

result can be obtained by finding the width of the region

that produces enough melt to balance the surface melt

flux. In steady state one can calculate the balance of melt

production and melt extraction at the ridge by integrating

equation (1). Let us consider a rectangular region �

extending from the surface to a depth below the melting

region and from the ridge axis to some distance, x�, as

shown in Fig. 4a. Using Gauss’ theorem, the integral of

(1) can be written

Z

@�

rfvf � n̂dS ¼

Z

�

�dV ð31Þ

where � is given by equation (23), @� represents the bound-

ary of the region and n̂ is a unit normal vector pointing out

of the region. This equation states that the net melting

within the region must be balanced by magmatic flux into

or out of the region.

The utility of equation (31) is clarified by expanding its

two terms.The surface integral can be rewritten as the sum
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Fig. 4. Example simulation result for two simulations with K0¼10�7 m2 and different values of �R. Mesh spacing is 0.75 km. (a) Steady-state
conditions for a simulation with bulk to shear viscosity ratio �R¼100. The grey scale represents porosity, dashed lines represent instantaneous
fluid streamlines, fine continuous lines represent isotherms and the bold continuous line marks the position of the solidus. The box labelled �

represents the subdomain used for integration in equation (31). (b) Conditions at 900 kyr in a simulation with �R¼ 25.The porosity grey scale is
clipped; porosity reaches 9% within the blob at 10 km depth and 25 km from the ridge. Lines as defined in (a). (c) Concentration of less fusible
component in the solid for the same simulation as in (a). Lines are streamlines of matrix flow. (d) Concentration in the matrix for the same
simulation as in (b). The white blob along the solidus has a concentration of & 10 wt% of the less fusible component.White blobs in the top-
right corner of (c) and (d) are remnants of the initial condition and should be ignored.

JOURNAL OF PETROLOGY VOLUME 49 NUMBER 12 DECEMBER 2008

2110

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
e
tro

lo
g
y
/a

rtic
le

/4
9
/1

2
/2

0
9
9
/1

5
3
1
3
0
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



of the melt flux out of the domain at the ridge and the melt

flux into the domain along the vertical boundary at x�;

there is no melt flux over the bottom boundary or the

ridge-axis boundary. The volume integral of � can be

rewritten in terms of the integral of the melting

(�m!f 4 0) and freezing (�f!m 5 0) rates. With these

expansions, equation (30) becomes

r

Z zD

0

fudzjx¼x� �

Z x�

0

fw dxjz¼0

� �

¼

Z

�

ð�f!m þ �m!f Þ dV

ð32Þ

where u and w are the horizontal and vertical components

of the velocity of the fluid and zD is the depth of the

domain. Equation (32) is true for any value of x�. At some

distance xf
�
, shown in Fig. 6, the flux out of � at the ridge

axis [term 2 in equation (32)] is balanced by melting

(term 4) and the flux into � through the vertical boundary

at xf
�
(term 1) is balanced by freezing (term 3). This dis-

tance is named the equivalent focusing distance (EFD),

the distance within which the melt produced is equal to

the melt delivered to the ridge. Because streamlines initiat-

ing farther from the ridge axis always travel through the

compaction channel at shallower depth than those origi-

nating closer to the ridge axis (see Fig. 4), these distal

melts are frozen into the lithosphere first. The EFD is

therefore approximately equal to the maximum lateral dis-

tance over which magma is focused to the axis in simula-

tions that have reached steady state.

Figure 7b shows the EFD for an ensemble of simulations

with different values of K0 and the viscosity ratio, �R. For

values of �R below 25, increased permeability cannot com-

pensate for reductions in �R. Larger values of �R and K0,

however, yield a larger compaction length and more effi-

cient melt focusing. Moreover, Fig. 7c shows that the EFD

is correlated with the compaction length at 30 km depth

below the ridge axis. Evaluation of the compaction length
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Fig. 5. Results of tracer transport calculations in a simulation with
K0¼10�7m2 and �R¼100, after that simulation had reached approx-
imate steady state (Fig. 4a). (a) A histogram of the lateral distance of
tracer particles from the ridge axis when they enter the melting
region. Bins are 2.5 km wide and are plotted according to their max-
imum distance from the axis. Black bars represent particles advected
to the ridge axis; white bars represent particles frozen into the litho-
sphere. Total tracers per bin increase towards the ridge because faster
matrix upwelling there introduces a larger flux of particles into the
melting region, where they travel rapidly to the ridge axis. (b) Points
represent transit time of fluid parcels from 54 km depth (just within
the melting region) to the ridge axis as a function of their initial lat-
eral distance from the axis. Dashed lines represent the transit time
along fluid streamlines that start at the same depth.
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Fig. 6. A plot of the terms in equation (32) as a function of the width
xV of the region V. This result is from the simulation shown in Fig 4.
The equivalent focusing distance is denoted x

f

V
. By definition, the

cumulative melting curve is always positive and the cumulative freez-
ing curve is always negative. The outflux curve is positive and it is
constant for all xV greater than the width of the ridge outflux region.
The melting curve and the outflux curve must intersect because all
the melt erupted at a ridge is produced in the melting region below
it. Because equation (32) states that at any xV the y-values of the four
curves must sum to zero, the freezing curve must intersect the
influx curve, at steady state, where the melting curve intersects the
outflux curve. This point defines the equivalent focusing distance.
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at this position avoids perturbations caused by the decom-

paction channel and gives a value representative of the

behaviour of the simulation.

DISCUSS ION

An important check of a model of melt transport at a mid-

ocean ridge is the predicted crustal thickness as a function

of time. In this model, crustal thickness is computed as the

integrated volumetric magma flux through the surface

divided by the half-spreading rate times the ratio of crustal

density to magmatic density (which is taken as unity here)

and is shown in figure 8. Mid-ocean ridges with full

spreading rates greater than 2 cm/yr have seismically mea-

sured crustal thickness of 5^7 km (Bown & White, 1994).

In simulations, crustal thickness is sensitive to the melt

production rate in the melting region and the efficiency of

focusing of melt to the ridge. All simulations reported here

use the same mantle potential temperature, composition

and phase diagram, and hence the maximum degree of

melting (�20%) and melt production is roughly constant

between them.

Quasi-steady-state solutions produce crustal thickness

that is either constant or oscillates around a constant

value, as evident in Fig. 8. Oscillations may be due to low-

amplitude, large-wavelength solitary waves in the melting

region or the decompaction channel. Numerical simula-

tions reported by Ghods & Arkani-Hamed (2000) also

produced oscillations of crustal thickness, although of a

much larger amplitude than those reported here. This

may be due to their recipe for extracting melt at the ridge,

which differs from the open top boundary in the present

simulations.

The results in Fig. 8 show that predicted crustal thick-

ness depends on the permeability and resistance to com-

paction of the mantle matrix. It is evident that smaller

values of �R lead to oscillatory crustal thickness that is con-

sistently below observed values. Both K0 and �R exert an

important control on melt transport within the decompac-

tion layer that, in turn, controls the efficiency of magmatic

focusing to the ridge. The streamlines in Fig. 4a and b

demonstrate how a decrease in efficiency occurs in simula-

tions. As noted by Spiegelman (1993c), melt is deflected

into the compaction channel more efficiently if the width

  0

 20

40

60

80

100

∆x = 0.5 km

∆x = 0.75 km

∆x = 1 km

 0

20

40

60

80

ζR = 200

ζR = 100

ζR = 50

ζR = 25

ζR = 12.5

0 10 20 30 40
 0

20

40

60

80

Compaction length

30 km below ridge axis, km

E
q
u
iv

a
le

n
t 
fo

c
u
s
in

g
 d

is
ta

n
c
e
, 
x

f Ω
, 
k
m

Permeability constant, K0, m2

10−9
10−610−710−8

(b)

(c)

(a)

EFD = 6 + 2.7 δc

Fig. 7. Plots showing the variation of equivalent focusing distance, x
f

V

with model parameters. (a) EFD vs permeability constant K0 for
three grid spacings, 0.5, 0.75 and 1km. Evidently, for �R¼100, a 1km
grid resolution is sufficient to resolve the integrated behaviour of

the system. (b) EFD versus K0 for values of �R varying from 12.5 to
200. At lower �R the equivalent focusing distance is small, even for
large permeability. This is due to magmatic trapping in mushy pools
along the solidus, as shown in Fig. 4b. (Note the agreement between
the EFD for �R¼100, K0¼10�7 m2 here and in the tracer focusing
region in Fig. 5a). (c) EFD vs compaction length calculated with
equation (25) at 30 km depth directly below the ridge axis. Each
point represents the state of an independent simulation at the final
output time of that simulation (i.e. at steady state, if applicable).
The line is a least-squares fit to the data and has a y-intercept of
6 km, the prescribed axial half-width of the ridge. The simulations
vary in K0 and �R but all have a grid spacing of 0.75 km.
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of the freezing interval around the solidus is small relative

to the compaction length. Figure 9 shows that this is

clearly the case when the permeability and bulk viscosity

prefactors, K0 and �R, are large.

The total focusing efficiency, averaged over a period

from 250 kyr into each simulation until its end, is shown

in Fig. 10 for a range of simulation parameters. These

results can be compared directly with figure 6 of Sparks

& Parmentier (1991). In general, total focusing efficiency is

higher than their prediction for a given value of K0=�

where the ratio of bulk to shear viscosity is greater than

about 50. For the maximum degree of melting (�20%)

that is imposed in present simulations by the choice of

mantle potential temperature, phase diagram parameters,

spreading rate, etc., the total melt production can yield a

crust of about 7 km thickness; hence an efficiency of greater

than �70% is required to produce a crust thicker than

5 km. If, however, more melt were produced overall then

the necessary efficiency would be smaller.

Figure 11 shows the composition of the evolving and

steady-state crust for �R ¼ 100 and a range of K0 in terms

of the concentration of the high-temperature melting com-

ponent. The variation is �5% around the mean, whereas

crustal thickness varies by more than a factor of two.

Higher permeability corresponds to a thicker crust with a

larger fraction of the high-temperature-melting compo-

nent. One-dimensional upwelling columns produce crust
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Fig. 8. Crustal thickness as a function of time. Each panel shows the evolution of crustal thickness from four simulations with K0¼10�9, 10�8,
10�7 and10�6 m2 and a grid spacing of 0.75 km. (a) �R¼100, (b) �R¼ 50, (c) �R¼ 25, (d) �R¼12:5. Simulations with �R¼ 200 are not shown but
display similar evolution to those with �R¼100. The continuous grey lines for K0¼10�7m2 in (a) and (c) correspond to the simulations shown
in Fig. 4.
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Fig. 9. A map of the compaction length �c from the same simulation
as in Fig. 12a with K0¼10�7 m2 and �R¼100. It should be noted that
although the bulk viscosity decreases in the sub-lithospheric decom-
paction layer, the effect of increased permeability is larger and leads
to a factor of �5 increase in compaction length there. The black band
around the melting region is where the porosity is very small, giving
an extremely large bulk viscosity and hence an extremely large com-
paction length. Simpson (2008) has suggested that in the limit of van-
ishing porosity, compaction length should go to zero; in that work this
was accomplished by regularizing the permeability and bulk viscosity
functions.
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of a single composition, independent of permeability or

other flow parameters (Ribe, 1985a). In 2D simulations,

lateral melt focusing injects magma into the mantle

column directly beneath the axis. This exotic magma equi-

librates with the sub-ridge mantle by reactive melting.

Greater focusing efficiency yields a larger flux of magma

(and heat) through the mantle immediately beneath

the ridge. Melting reactions increase the local degree

of melting and deplete the solid of its low-T -melting com-

ponent. Therefore, more melt focusing yields a more

depleted bulk composition and a more depleted magma

composition beneath the ridge axis at steady state.

This is shown in Fig. 11a and explains the positive correla-

tion in Fig. 11b between crustal thickness (magmatic flux)

and depletion of that crust in the low-T -melting

component.

Observations of uranium-series disequilibrium in young

lavas provide another constraint on magmatic transport

processes. If fractionation of uranium and thorium takes

place mainly within the garnet stability field at �
4 60 km

depth and magmatic transport is by diffuse porous flow,

then preservation of a 230Th excess at the surface requires

mantle porosities below 1% and transport times of

the order of a few half-lives (Spiegelman & Elliott, 1993).

The present model does not include explicit calculations

of radiogenic transport. It does, however, achieve ambient

porosities and magma transit times that are small enough

to be consistent with observed 230Th disequilibrium.

Figure 12 shows mantle residual porosity predicted by

simulations with different values of K0 and �R. Consistent

with 1D column model results presented above, permeabil-

ity is a strong control on ambient porosity. Resistance to

compaction provided by the bulk viscosity does not exert

an important influence on residual porosity because in the

melting region, where the melting rate varies slowly with

respect to the compaction length, the zero-compaction

length approximation (neglecting compaction stresses) is

valid.
231Pa and 226Ra, with half-lives of only about 32500

and 1600 years respectively, may represent a tighter con-

straint on magmatic transport if excesses are generated

within the melting region and not the magma chamber

(Stracke et al., 2003). According to models by Stracke et al.

(2006), disequilibrium transport of magma with a velocity

between 2 and 100 m/yr is required to match data from

Iceland. Stracke et al. (2006) also argued for mixing of

rapidly transported melts from beneath the ridge with

melts transported over a greater transit time, perhaps

those originating at a larger lateral distance from the

ridge. Melt focusing along the base of the lithosphere

might provide the mechanism for such mixing. Porosity in

the decompaction channel, however, is predicted to be

larger than that in the ambient melting region, and this

will affect the degree of secular disequilibrium of the

melts that pass through it. In particular, if the porosity of

the decompaction channel is significantly larger than the
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distribution coefficients of the radiogenic nucleides then

decay back to secular equilibrium will occur. Future work

will incorporate direct calculations of U-series fractiona-

tion, transport and disequilibrium.

SUMMARY AND CONCLUSIONS

The simulations described here combine the fluid-mechan-

ical theory of McKenzie (1984) for mass and momentum

conservation with the Enthalpy Method for modelling

energy transport and the thermodynamics of melting. A

pressure-dependent phase diagram describing a two-

component system with full solid solution is employed as a

representation of thermodynamic equilibrium. The equa-

tions are solved numerically in one and two dimensions

and the results are analysed in terms of the efficiency of

melt focusing.

Melt focusing at mid-ocean ridges may have important

3D characteristics, especially near the ends of offset seg-

ments of ridge. Carbotte et al. (2004) discovered a global

pattern of asymmetry in axial depth across ridge trans-

form faults and showed that it is correlated with the direc-

tion of ridge migration over the mantle in the hotspot

reference frame. These observations motivated a model of

asymmetric upwelling, melt production and 3D magmatic

focusing by Katz et al. (2004). In that work, magmatic flow

was not calculated explicitly but was parameterized

according to inferences about the behaviour of magma

beneath a migrating ridge with a transform fault (Magde

& Sparks, 1997). A 3D extension of the current simulations

would provide a basis for evaluating these inferences and

exploring along-axis variations in melt supply. Such a

simulation, however, would require a substantial increase

in the number and/or speed of processors to maintain cur-

rent simulation run-times.

The choice of constitutive equations has an important

influence on the behaviour of the system. Simulations pre-

sented here use a constant shear viscosity and a bulk vis-

cosity that varies with the inverse porosity. The later has a

singularity when the porosity is zero, which is handled

here such that the equations reduce to incompressible

Stokes’ flow in that limit. This is different from the

approach of Ghods & Arkani-Hamed (2001), which used a

non-singular (but temperature-dependent) relation for the

bulk viscosity. The difference suggests a possible explana-

tion for the relatively low focusing efficiency predicted by

Ghods & Arkani-Hamed (2000): in their simulations,

magma was able to migrate into the sub-solidus region

above the decompaction layer and solidify, instead of

being deflected by a gradient in compaction pressure. The

temperature dependence of the bulk viscosity might be

expected to enhance magmatic focusing. However, this is

true only if a sharp change in matrix viscosity occurs

at the temperature of the mantle solidusçnot the case

for experimentally constrained rheological parameters.

Hence the incorporation of a temperature-dependent bulk

viscosity into our model would probably not change the

results significantly.

Temperature and porosity dependence of the shear vis-

cosity might have interesting consequences for the flow

field of the matrix phase. In particular, it will be instruc-

tive to study the effect of porosity-weakening viscosity in

the context of the stress and deformation field of a ridge.

There has been much speculation (e.g. Rabinowicz &

Vignersse, 2004; Katz et al., 2006; Holtzman & Kohlstedt,

2007) on the relevance of a mechanical porosity-banding

instability for the melting region beneath ridges.

Although this instability is clearly active in experimental

deformation of partially molten rocks (e.g. Holtzman

et al., 2003), experiments show it emerges only at strains

larger than unity. Flow within the region of partial melting

beneath ridges may not achieve such large strains, or it

may achieve large enough strains but over a time-scale

that is long relative to the time-scale for annealing to tex-

tural equilibrium. Furthermore, although buoyancy-driven

segregation of melt does not occur in experiments because

of their small size and rapid deformation rate, it is clearly

active in the mantle. Butler (2009) has shown that buoy-

ancy will modify the signature of a porosity-banding

instability, although it should not erase it altogether. An

extension of the models described here will provide a basis

for addressing these questions.

Assuming that the neglected dependences of shear and

bulk viscosity are not leading-order controls on melt focus-

ing, and hence that the current models capture the physics

of melt focusing at ridges, we can draw conclusions about

the magnitude of the parameters K0 and �R. If the melting
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Fig. 12. Fine lines represent the porosity at 30 km depth and 10 km
distance from the ridge axis as a function of K0 for different values of
�R.The bold continuous line is the porosity at 30 km depth in 1D simu-
lations (see Fig 2). The bold dashed line is the curve f¼K0

�1/3/
(3�104).
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rates calculated here are within 10% of natural values such

that the total melt production rate is approximately cor-

rect, then it is reasonable to rule out any combination of

K0 and �R that yield a crustal thickness smaller than 5 km

or a focusing efficiency less than about 70%. From Fig. 10

we can see that this can be achieved for K0 as small as 10�8

m2 if �R�4 100. If we take account of the observed 230Th

excesses and assume that the current models capture the

physics of magma migration (i.e. no channel or dike flow),

then K0�
4 10�7 m2 is required to give magma transport

times that would preserve disequilibrium formed deep in

the melting column. In this case, �R could be as low as

about 25 and the bulk viscosity prefactor �Rf0 would be

in good (although perhaps fortuitous) agreement with pre-

vious estimates (Batchelor, 1967; Bercovici et al., 2001;

Hewitt and Fowler, 2008; Simpson, 2008).

Although porosity-induced matrix buoyancy is included

in the full governing equations [fĝ in equation (19)], it has

been excluded from the equations that are solved numeri-

cally. Many researchers, beginning with Buck & Su (1989)

and Scott & Stevenson (1989), have considered the possibi-

lity of active, porosity-driven upwelling beneath ridges.

Melting and magmatic flow within an actively convecting

sub-ridge mantle were modeled by Scott & Stevenson

(1989) and Spiegelman (1996); the pattern of convection is

similar to that modeled by Rabinowicz et al. (1984). These

models prescribe isoviscous conditions throughout the

domain, which may be a significant deficiency. In the nat-

ural ridge system the cold, rigid lithosphere above and the

viscosity reduction caused by ambient porosity in the melt-

ing region could have important effects. Porosity-induced

buoyancy, along with temperature and porosity-dependent

viscosity can be included in simulations that extend those

presented here.

Reactive channelization of magmatic flow is a chemical

instability that is thought to occur in the melting region

beneath ridges (Kelemen et al., 1995). High-flux magma

channels have implications for uranium-series disequilib-

rium, as well as trace element distribution and variability

in erupted lavas (Spiegelman & Kelemen, 2003). Past

models have considered reactive channelization in the con-

text of a static or uniformly upwelling mantle without

internal deformation. Combining tectonic-scale models,

such as those described here, with calculations of channel-

ized melt transport would illuminate the behaviour of a

channelized system in a deforming mantle with a cold,

impermeable lid. Calculations of geochemical transport

layered on top of such simulations would provide an input

for investigations of magma mixing and fractionation in

magma chambers beneath volcanoes (e.g. Maclennan,

2009).

Some workers have interpreted geological and geochem-

ical evidence to suggest that melt migration is extremely

rapid. For example, Maclennan et al. (2002) estimated

magmatic ascent rates of 450 m/yr based on eruption

rates in Iceland after the the last glacial period. It is

unlikely that porous magmatic flow, even if it is channel-

ized, could reproduce such rapid melt migration. If these

estimates prove correct, an alternative fluid-mechanical

model of melt migration involving flow in cracks and

dikes may be required.

Cracks and dikes are clearly responsible for melt trans-

port at shallow depths across the lithosphere. Off-axis

magmatism may tap pools of magma trapped along the

solidus boundary, as in Fig. 4b. Whether over-pressures

in such pools are sufficient to initiate hydrofracture is a

question for future work. Moreover, it is interesting to note

that for often-cited estimates of the compaction length of

10^1000 m, melt focusing is predicted to be inefficient and

melt pooling on the solidus is expected. If melting beneath

ridges is due to passive upwelling and if melt focusing

occurs according to the physics of porous flow and compac-

tion, then the compaction length remains a key param-

eter in explaining the high efficiencies that are expected.

Melting in subduction zones is more complex than

beneath ridges because of the effects of water. Subduction-

related magmatism has therefore received less attention.

Reactive flow may be a useful framework for considering

magma genesis in arcs, as it is for ridges (Grove et al.

2006). Along these lines, simulations by Katz (2005) of

infiltration of reactive, aqueous fluid into the mantle

wedge predict that channelization of fluid or melt occurs

above the slab where temperature increases upward.

These simulations consider a static mantle, however, and

thus neglect advection of porosity and solid depletion

through the wedge. A model of melt transport in a deform-

ing mantle wedge was described by Cagnioncle et al.

(2007). This work invoked a melt-focusing mechanism

based on that of Sparks & Parmentier (1991). However, by

neglecting compaction stresses and freezing, the model of

Cagnioncle et al. (2007) excluded the possibility of actually

resolving such behaviour. A subduction-zone model imple-

mented using the approach described here, augmented by

the inclusion of water as a thermodynamic component,

would provide a means for investigating reactive melting

as well as magmatic focusing in arcs.

The number of possible extensions to the work described

here indicates the utility of the Enthalpy Method. It pro-

vides a clean, transparent approach to incorporating ther-

mochemical complexity into models of magma dynamics.

Such complexity is required to address physical phenom-

ena such as magmatic focusing in a tectonic context. This

power comes at a cost of making the questionable assump-

tion of thermodynamic equilibrium between magma and

the mantle matrix. Coupling this approach with disequilib-

rium geochemical transport, however, may provide an

effective tool for making geochemical predictions that are

testable against measurements of lava chemistry.
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APPENDIX A: CONSERVAT ION

OF BULK ENTHALPY AND

COMPOSIT ION

The derivation begins by considering an arbitrary

Eulerian volume V bounded by a surface @V containing

both fluid and matrix material. The change in time of the

energy contained in this volume is related to the flux across

its boundary. Internal sources of heat, radioactive decay,

and viscous dissipation are not included in this derivation.

Rewriting equation (7),

d

dt

Z

V

H� �rg �x dV ¼�

Z

@V

rhv�rvg �x� krT
� �

� n̂ dS

ðA1Þ

where we have also neglected the contribution of kinetic

energy because, for the mantle, it is very small relative to

the other terms. Applying Gauss’ theorem and allowing

the volume to shrink in size until it is small compared

with the length-scale of variation of any phase averaged

property but large relative to the grain size of the mantle,

we can write a differential form of equation (A1) as

@H

@t
� g � x

@ �r

@t
þ r � rv

� �

þ r � rhv� g � rv ¼ r � �krT :

ðA2Þ

Using the sum of conservation of mass equations (1) and

(2) and expanding the term describing the divergence of

the enthalpy flux in (A2) gives

@H

@t
þ hmr � rmð1� fÞvm þ hfr � rffvf

þ rmð1� fÞvm � rhm þ rffvf � rhf � g � rv ¼ r � �krT :

ðA3Þ

This equation can also be derived by recasting equation

(A39) of Mckenzie (1984) as an equation for conservation

of enthalpy and neglecting viscous dissipation and internal

heating (J. Rudge, personal communication).

Assuming that the phase densities rf and rm are con-

stant, the sum of equations (1) and (2) can be written

r � rffvf ¼ �r � rmð1� fÞvm þ�r
@f

@t
ðA4Þ

where �r ¼ rm � rf . Furthermore, for changes between

equilibrium states, the total differential of enthalpy can be

expressed in terms of total differentials of temperature and

pressure as (e.g. Denbigh, 1981)

dh ¼ cPdT þ r�1ð1� �T Þ dP ðA5Þ

where � is the coefficient of thermal expansion. Substitut-

ing (A4) and (A5) into (A3) and rearranging gives

@H

@t
� rmLr � ð1� fÞvm þ hf�r

@f

@t
þ cPrv � rT

þ ð1� �T Þv � rP � g � rv ¼ kr2
T

ðA6Þ
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where L ¼ hf � hm is the latent heat per unit mass.

The specific heat, thermal diffusivity and thermal

expansivity have been assumed equal between phases.

Applying the extended Boussinesq approximation,

rm ¼ rf ¼ r, and assuming a static pressure gradient,

rP ¼ rg,

@H

@t
� rLr � ð1� fÞvm þ rcPr � vT � r�Tg � v ¼ kr2

T

ðA7Þ

which states that changes in volumetric enthalpy are due to

advection of latent heat, advection of sensible heat, adia-

batic pressure changes and diffusion of sensible heat.

Equation (A7) can be simplified by substitution of

the potential temperature, which implicitly accounts

for adiabatic changes. Potential temperature T is defined

as

T ¼ T exp ð�gz=cPÞ ¼ T exp ð�P=rcPÞ: ðA8Þ

Using equation (A8) and taking the z-coordinate to be

depth into the Earth, equation (A7) becomes

@H

@t
þ rcP exp ð�gz=cPÞr � �vT ¼ rLr � ð1� fÞvm

þ k exp ð�gz=cPÞr
2T :

ðA9Þ

In this equation, terms proportional to ð�g=cPÞ � 1 have

been neglected.

Mass conservation for one thermochemical component

can be written for the same Eulerian volume as considered

above. If the concentration of this component is Cf in the

fluid phase and Cm in the matrix phase,

d

dt

Z

V

rffCf þ rmð1� fÞCmdV ¼

�

Z

@V

½rffCf vf þ rmð1� fÞCmvm � rffDrCf 	 � n̂ dS:

ðA10Þ

Applying the same reasoning as for the equation (7) and

taking rf ¼ rm ¼ r, this equation can be rewritten in dif-

ferential form as

@C

@t
þ r � fvfCf þr � ð1� fÞvmCm ¼ Dr � frCf ðA11Þ

where C ¼ fCf þ ð1� fÞCm.

APPENDIX B: NON-

DIMENSIONAL I ZAT ION

Following Katz et al. (2007) we introduce a decomposition

of the fluid pressure into three parts

Pf ¼ rgzþ P þ P ðA12Þ

where rgz is the lithostatic pressure, P ¼ ð� � 2�=3Þr � vm
is the compaction pressure and P is the remaining,

‘dynamic’ pressure. Moreover, we introduce the following

dimensionless variables:

x ¼ dx0; v ¼ w0v; t ¼
�

w0

t0;

K ¼ K0 K
0; ðP;PÞ ¼ ��rgðP0;P0Þ; � ¼

w0r

�
�
0;

ð�; �; 	Þ ¼ �0ð�
0; �0; 	0Þ:

The velocity scale w0 is given by

w0 ¼
K0�rg

�
ðA13Þ

and the length scale, �, is

� ¼

ffiffiffiffiffiffiffiffiffiffi

K0�0

�

s

: ðA14Þ

Using equations (3), (4) and (A12), substituting nondimen-

sional variables, and dropping primes gives the equations

governing matrix shear and compaction:

r � vm ¼
P

	
ðA15Þ

� r � KrP þ
P

	
¼ r � K rP þ ĝ

� �

ðA16Þ

rP ¼ r � � rvm þ rvTm
� �

� fĝ: ðA17Þ

Here, ĝ ¼ g=jgj is the normalized gravity vector and

	 ¼ � � 2�=3 is the compaction viscosity. The nondimen-

sional fluid velocity is

vf ¼ vm �
K

f
rP þ rP þ ĝ
� �

: ðA18Þ

To nondimensionalize the conservation of energy

equation we introduce the nondimensional temperatures


 ¼
T � T 0

T 1 � T 0

; ~
 ¼
T � T0

T 1 � T 0

; ðA19Þ

where T0 and T1are the minimum and maximum melting

temperatures over all compositions at atmospheric pres-

sure. The nondimensional bulk enthalpy is defined as

H ¼ rcP�TH 0 with �T ¼ T 1 � T 0. Using nondimen-

sional variables in equations (8) and (9) and dropping

primes gives

@tH þ eAzr � �vy ¼ Sr � ð1� fÞvm þ Pe�1
T
eAzr2
 ðA20Þ

@tC þr � fvfCf þ r � ð1� fÞvmCm ¼ Pe�1
C r � frCf :ðA21Þ

Here, @t is a partial derivative with respect to time,

A ¼ ��g=cP is the adiabatic parameter, S ¼ L=ðcP�T Þ is

the Stefan number, PeT ¼ �w0=� is the thermal Peclet
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number, and PeC ¼ �w0=D is the compositional Peclet

number. Equation (12), which describes the bulk enthalpy,

becomes

H ¼ Sfþ ~
 ¼ Sfþ 
 þ 

ð ÞeAz � 

 ðA22Þ

where 

 ¼ T 0=�T.

APPENDIX C: THE ENTHALPY

METHOD FOR SYSTEMS WITH

MORE THAN TWO COMPONENTS

The Enthalpy Method can be generalized to N42 compo-

nents in two phases (fluid and matrix). To do so requires

mathematical descriptions of the solidus and liquidus

surfaces in N dimensions. We seek a closure condition for

porosity and temperature as functions of bulk enthalpy

and composition. In this case, however, instead of solving

for the concentration of a single component in each phase

we must solve for all the N concentrations. It is convenient

to define N-component vectors Cf, Cm, and C for the fluid,

matrix, and bulk concentrations respectively.These vectors

have the property that

X

N

i¼1

C i
f ¼ 1;

X

N

i¼1

C i
m ¼ 1;

X

N

i¼1

C i ¼ 1 ðA23Þ

where a superscript i represents the ith component of a

vector. This property allows us to trivially obtain the Nth

component of any vector if we know the other N�1

components. As in the case of a two-component system

where one PDE for bulk composition is solved, for an

N-component system N�1 partial differential equations

are used, each identical to equation (9) but each for a

different component. The equation that describes the

conservation of energy is unchanged from equation (8).

The problem is then to find closure conditions for

2N þ 2 unknowns: f, T, Cf, and Cm as functions of H and

C. To do so, in addition to (A23), we have the equations

Ci ¼ fCi
f þ ð1� fÞCi

m ðA24Þ

Cm ¼ fSðT ;P;CÞ ðA25Þ

Cf ¼ fLðT ;P;CÞ ðA26Þ

and equation (12), which defines bulk enthalpy as the

sum of sensible and latent heat. Here fS and fL are

N-component vector functions that give the matrix and

fluid phase compositions on the solidus and liquidus as a

function of pressure, temperature and bulk compositionç

they define the phase diagram.

Combining equations (12) and (A24)^(A26) with the

constraint on bulk composition from equation (A23) gives

an expression for porosity:

f
X

N�1

i¼1

f iL
H � frL

rcP
þ T0;P;C

� �

þ ð1� fÞ
X

N�1

i¼1

f iS
H � frL

rcP
þ T0;P;C

� �

¼
X

N�1

i¼1

Ci:

ðA27Þ

A value of f from equation (A27) is substituted into

equation (12) to obtain the temperature, which is then be

used in equations (A25) and (A26) to calculate the phase

compositions. These values of f, T, Cf, and Cm are used

in the discretized partial differential equations for

bulk enthalpy and composition to construct a residual

vector suitable for use in Newton’s method (see Katz

et al., 2007).

The Enthalpy Method may be simplified by

prescribing a phase diagram in terms of ðH;P;CÞ instead

of ðT;P;CÞ. To my knowledge, neither case has

been implemented for more than two thermochemical

components and both raise the difficulty of reasonably

parameterizing the surfaces described by equations

(A25) and (A26).
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