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ABSTRACT

Quasi-periodic oscillations (QPOs) observed at the tail end of soft gamma repeaters giant

flares are commonly interpreted as the torsional oscillations of magnetars. From a theoretical

perspective, the oscillatory motion is influenced by the strong interaction between the shear

modes of the crust and magnetohydrodynamic Alfvén-like modes in the core. We study the

dynamics which arises through this interaction, and present several new results. (1) We show

that discrete edge modes frequently reside near the edges of the core Alfvén continuum,

and explain using simple models why these are generic and long-lived. (2) We compute the

magnetar’s oscillatory motion for realistic axisymmetric magnetic field configurations and

core density profiles, but with a simplified model of the elastic crust. We show that one may

generically get multiple gaps in the Alfvén continuum. One obtains strong discrete gap modes

if the crustal frequencies belong to the gaps; the resulting frequencies do not coincide with,

but are in some cases close to the crustal frequencies. (3) We deal with the issue of tangled

magnetic fields in the core by developing a phenomenological model to quantify the tangling.

We show that field tangling enhances the role of the core discrete Alfvén modes and reduces

the role of the core Alfvén continuum in the overall oscillatory dynamics of the magnetar. (4)

We demonstrate that the system displays transient QPOs when parts of the spectrum of the core

Alfvén modes contain discrete modes which are densely and regularly spaced in frequency.

The transient QPOs are the strongest when they are located near the frequencies of the crustal

modes. (5) We show that if the neutrons are coupled into the core Alfvén motion, then the

post-flare crustal motion is strongly damped and has a very weak amplitude. We thus argue

that magnetar QPOs give evidence that the proton and neutron components in the core are

dynamically decoupled and that at least one of them is a quantum fluid. (6) We show that it is

difficult to identify the high-frequency 625-Hz QPO as being due to the physical oscillatory

mode of the magnetar, if the latter’s fluid core consists of the standard proton–neutron–electron

mixture and is magnetized to the same extent as the crust.

Key words: stars: magnetars – stars: neutron – stars: oscillations.

1 IN T RO D U C T I O N

Since the discovery of quasi-periodic oscillations (QPOs) in the

light curves of giant flares from soft gamma repeaters (SGR; Barat

et al. 1983; Israel et al. 2005; Strohmayer & Watts 2005; Watts

& Strohmayer 2006) there has been considerable interest in their

physical origin. One of the appealing explanations is that the QPOs

⋆E-mail: vhoven@strw.leidenuniv.nl (MvH); yuri@strw.leidenuniv.nl (YL)

are driven by torsional oscillations1 of the neutron stars whose

magnetic energy powers the flares (Duncan 1998). This opens a

unique possibility to perform an asteroseismological analysis of

neutron stars, and possibly obtain a new observational window to

study the neutron star interiors. Many authors have considered tor-

sional modes to be confined to the magnetar crust, and have shown

that seismological information about such modes would strongly

1 By torsional oscillations we mean those which are nearly incompressible.

Modes with compression have strong restoring forces and feature much

higher frequencies than most of the observed QPOs.
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constrain the physics of the crust (Piro 2005; Watts & Strohmayer

2006; Samuelsson & Andersson 2007; Watts & Reddy 2007; Steiner

& Watts 2009).

However, it was quickly understood that the theoretical analysis

of magnetar oscillations is complicated by the presence of an ul-

trastrong magnetic field (B ∼ 1014–1015 G) that is frozen into the

neutron star and penetrates both the crust and the core. The field

provides a channel for an intense hydromagnetic interaction be-

tween the motion of the crust and the core, which becomes effective

on the time-scale of ≪1 s (Levin 2006, hereafter L06). Since the

QPOs are observed for hundreds of seconds after the flare, it is clear

that the coupled motion of the crust and the core must be consid-

ered. In recent years, significant theoretical effort has gone into the

study of this problem (e.g. Glampedakis, Samuelsson & Andersson

2006; Levin 2007, hereafter L07; Gruzinov 2008b; Lee 2008). This

paper’s analysis is based, in part, on an approach of L07.

To make progress in computing the coupled crust–core motion,

L07 has studied the time evolution of an axisymmetric toroidal dis-

placement of a star with axisymmetric poloidal magnetic field. In

that case the Alfvén-type motions on different flux surfaces decou-

ple from each other, a well-known fact from previous magnetohy-

drodynamic (MHD) studies (for a review see Goedbloed & Poedts

2004, hereafter GP). One can then formulate the full dynamics of

the system in terms of discrete modes of the crust which are cou-

pled to a continuum of Alfvén modes in the core. L07 demonstrated

that (i) the global modes with frequencies inside the continuum are

strongly damped via a phenomenon known in MHD as resonant

absorption (see GP), and (ii) in many cases, asymptotically the

system tends to oscillate with the frequencies close to the contin-

uum edges. This result was later confirmed by Gruzinov (2008b),

who has used a powerful analytical technique to solve the L07’s

normal-mode problem (Gruzinov noted that the resonant absorption

is mathematically equivalent to Landau damping). Oscillations near

the continuum edge frequencies were also observed in a number of

numerical general relativistic MHD simulations of purely fluid stars

(Sotani, Kokkotas & Stergioulas 2008; Cerda-Duran, Stergioulas &

Font 2009; Colaiuda, Beyer & Kokkotas 2009).

Apart from finding QPOs near the continuum edges, L07’s dy-

namical simulations identified transient QPOs with drifting frequen-

cies; these were transiently amplified near the crustal frequencies.

No explanation for the origin of the drifts was given.

In this paper, we extend the previous analyses of the hydromag-

netic crust–core coupling in an essential way. In Section 2, we

re-analyse L07’s toy model of a single oscillator coupled to a con-

tinuum, and we show that this system generically contains the edge

normal modes with frequencies near the continuum edges. We show

that these modes dominate the late-time dynamics of the system,

and develop a formalism which allows one to predict analytically

the edge-mode’s amplitude from the initial data. We then explore the

effect of viscosity on the system (introduced as a friction between

the neighbouring continuum oscillators), and show that the edge

mode is longer lived than all other motions of the system. We also

provide a non-trivial analytical formula for the time dependence of

the overall energy dissipation.

In Section 3, we describe how transient QPOs, not associated with

the normal modes of the system, are obtained when parts of the core

spectrum consist of densely and regularly spaced discrete modes

(and in Section 5 we show that such an array of discrete modes

is expected when the magnetic field in the core is not perfectly

axisymmetric but has some degree of tangling). As a by-product of

our analysis, we explain the origin of the QPO frequency drifts seen

in L07 simulations. We provide simple analytical fits to the drifts,

and show that when the regularity of the continuum sampling is

removed (e.g. when the frequencies are sampled as random numbers

picked from the continuum range), the drifts disappear.

In Section 4, we set up models with a more realistic hydro-

magnetic structure of the neutron star core. We show how to find

the continuum modes and their coupling to the crust for an arbi-

trary axisymmetric poloidal field, with an arbitrary density profile

on the core (L07s calculations, for simplicity and concreteness,

were restricted to constant density core and homogeneous magnetic

field). We treat a more complicated case of a mixed axisymmetric

toroidal–poloidal field, with radial stratification, in the Appendix

B. We demonstrate that for realistic field configurations, the Alfvén

continuum of modes coupled to the crust may show a number of

gaps. If a crustal-mode frequency belongs to one of these gaps, a

strong global discrete mode arises which dominates the late-time

dynamics and whose frequency also belongs to the gap. The fre-

quency of the gap global mode does not generally coincide with, but

is often close to that of the crust. We suggest that it was these gap

modes that appeared in Lee’s (2008) calculations as well-defined

discrete global modes.

So far, only axisymmetric magnetic fields have been considered

in the magnetar–QPO literature, with the Alfvén continuum modes

occupying the flux surfaces of the field. In Section 5 we argue that if

the field is not axisymmetric but instead is highly tangled, then the

Alfvén continuum modes become localized within small regions

of individual field lines, and therefore become dynamically unim-

portant. Instead, a set of discrete Alfvén modes appears, with the

spacing between the modes strongly dependent on the degree of field

tangling. We devise a phenomenological prescription which allows

us to parametrize the field tangling for computing the dynamically

important modes, and introduce an easily solvable ‘square box’

model suitable for exploring the parameter range.

Finally, in Section 6, we use the suite of models built in the previ-

ous sections to explore their connection to the QPO phenomenology.

We find that

(a) within the standard magnetar model, it is possible to produce

strong long-lived or transient QPOs with frequencies in the range

of around 20–150 Hz, but only if the neutrons are decoupled from

the Alfvén-like motion of the core; this implies that at least one of

the baryonic components of the core is a quantum fluid;

(b) our models could not produce the high-frequency 625-Hz

QPO within the standard paradigm of a magnetar core composition.

2 A N O SCI LLATO R C OUPLED TO

A C O N T I N U U M : ED G E M O D E S

In this section, we study the motion of a harmonic oscillator (which

we hereafter call the large oscillator) which is coupled to a contin-

uum of modes.2 This model was introduced in L07 and it provides a

qualitative insight into the behaviour of crustal modes (represented

by the large oscillator) coupled to a continuum of Alfvén modes in

the core of a magnetar. L07 found that if the large oscillator’s proper

frequency was within the range of the continuum frequencies, then

the late-time behaviour of the system was dominated by oscillatory

motion near the edges of the continuum interval. Here, we give an

explanation of this phenomenon in terms of the edge modes. Our

2 In many areas of physics similar models have been studied, notably in

quantum optics and plasma physics. By contrast with the case studied here,

in these models the range of the continuum frequencies is not limited.
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Figure 1. Schematic picture of the toy model. A large number N of small

pendulae, representing the (quasi-) continuum, are coupled to one large

pendulum, representing the crust.

analysis allows us to use initial data and predict the displacement

amplitudes and frequencies of the system at late times.

The model consists of the large mechanical oscillator with mass

M and proper frequency ω0, representing a crustal elastic shear

mode. Attached to the large oscillator is a set of N smaller oscil-

lators of mass mn and proper frequency ωn constituting a quasi-

continuum of frequencies ωn (where n = 1, 2, . . . , N). The con-

tinuum is achieved when N → ∞ while the total small oscillator

mass �mn remains finite. The convenient pictorial representation is

through suspended pendulae, as shown in Fig. 1 (see also fig. 2 of

L07).

The equations of motion are obtained as follows. Each small

oscillator is driven by the motion of the large oscillator:

ẍn + ω2
nxn = −ẍ0, (1)

where xn is the displacement of the nth small oscillator in the frame

of reference of the large oscillator, x0 is the displacement of the large

oscillator in the inertial frame of reference and the right-hand side

represents the non-inertial force acting on the small oscillator due

Figure 2. Displacement of the big oscillator as a function of time.

to the acceleration of the large one. The large oscillator experiences

the combined pull of the small ones:

Mẍ0 + Mω̃2
0x0 =

∑

i

miω
2
i xi . (2)

Here ω̃0 is the frequency of the big pendulum corrected for the mass

loading by the small pendulae, i.e. ω̃2
0 = ω2

0(M +
∑

i mi)/M .

2.1 Time-dependent behaviour

In this section we explore the behaviour of this system by direct

numerical simulations. We found this to be helpful in the building

of our intuition. We defer a semi-analytical normal mode analysis

to the next section.

We follow L07 and for concreteness concentrate on a specific ex-

ample; it will be clear that the conclusions we reach are general. We

choose ω0 = 1 rad s−1 and mass M = 1. We choose a total number of

1000 small pendulae with frequencies ωn = (0.5 + n/1000) rad s−1

and masses mn = m = 10−4, to mimic the continuum frequency

range between 0.5 and 1.5 rad s−1. The simulation is initiated by

displacing the large oscillator while keeping the small pendulae

relaxed (this mimics the stresses in the crust), and then releasing.

The subsequent motion of the system is then followed numerically

by using a second-order leapfrog integration scheme which con-

serves the energy with high precision. The resulting motion of the

large pendulum can be decomposed into three stages (see Figs 2

and 3).

(1) During the first 50–60 s, there is a rapid exponential decay

of the large oscillator’s motion, during which most of the energy

is transferred to the multitude (i.e. the ’continuum’) of small oscil-

lators. This is the so-called phenomenon of ‘resonant absorption’,

which has been studied for decades in the MHD and plasma physics

community (e.g. Ionson 1978; Hollweg 1987; GP; L07; Gruzinov

2008b). In this first stage, the amplitude of the big pendulum mo-

tions drops by a factor of ∼100.

(2) After ∼60 s, the exponential decay stops abruptly as the large

oscillator now reacts to the collective pull of the small ones. This

second stage is characterized by a slow algebraic decay of the ampli-

tude of the big pendulum displacement. Gruzinov (2008b) explains

this as being due to the branch cut in the oscillator’s response func-

tion.

Figure 3. A zoomed-in version of Fig. 2. The blue horizontal lines denote

the theoretically predicted amplitude of the dominating upper edge mode

(see Section 2.3).
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Figure 4. The coloured curves show the amplitudes of the small oscillators

during the numerical simulation, at different times t.

Figure 5. A zoomed-in version of Fig. 4. At later times energy is transferred

to the oscillators near the edge of the continuum.

(3) The motion of the large oscillator stabilizes at a constant

level (L07 missed this stage in his simulations, which he stopped

too early). Fourier transform reveals two QPOs at the frequencies

close to the continuum edges, ω = 0.5 and 1.5; the same QPO

frequencies can be observed in the previous stage (2) as well.

What is the origin of the QPOs, and how is this eventual stability

established? In Figs 4 and 5, we show how the amplitude of the

small oscillators evolves with time.

After the initial resonant absorption phase, the amplitude is dis-

tributed as a Lorentzian centred on the frequency around ω = 1;

this is because the small oscillators in resonance with the large one

are the ones which gain the most energy. However, in subsequent

times we see that the energy exchange occurs between the small os-

cillators,3 and that the net result of this exchange is the energy flow

towards the oscillators whose frequencies are near the edges. By the

time the third stage begins, the amplitudes of the oscillators near

the edge stabilize and their phases become locked. They are pulling

and pushing the large oscillator in unison. In the next section, we

3 This is much akin to the well-known phenomenon of resonant energy

exchange between two equal-frequency pendulae hanging on the same sup-

porting wall.

show that this behaviour is due to the presence of the edge normal

modes, and we shall derive their frequencies and amplitudes.

2.2 Finding eigenmodes

In this section we deal with the system of coupled harmonic oscil-

lators, and one should be able to find its normal modes using the

standard techniques (Landau & Lifshitz, Mechanics, Section 23).

However, the fact that all small oscillators are attached to the large

one, and there is no direct coupling between the small oscillators,

allows us a significant shortcut (in Appendix A, we treat a more

general problem of several large oscillators coupled to a multitude

of the core modes). We proceed as follows.

Suppose that we impose on the large oscillator a periodic mo-

tion with angular frequency �, by driving it externally with the

force Fext = F0(�) exp (i�t). This motion in turn drives the small

oscillators according to equation (1):

ẍn + ω2
nxn = �2x0, (3)

which has the steady state solution:

xn =
�2

ω2
n − �2

x0, (4)

where we have omitted the time-dependent factor exp (i�t) on both

sides. The combined force f cont of the small oscillators acting back

on the large one (see equation 2) is given by

fcont (�) =
∑

n

mnω
2
n

�2

ω2
n − �2

x0. (5)

According to Newton’s second law,

F0 (�) + fcont (�) = −M
(

�2 − ω2
0

)

x0. (6)

If � corresponds to the normal-mode frequency, then F0(�) = 0.

Hence by substituting equation (5) into equation (6) we get the

following eigenvalue equation for �:

G(�) = M
(

ω2
0 − �2

)

−
∑

n

mnω
2
n

�2

ω2
n − �2

= 0. (7)

In the continuum limit N → ∞, the above equation becomes

G(�) = M
(

ω2
0 − �2

)

−
∫ ωmax

ωmin

dωρ(ω)ω2 �2

ω2 − �2
= 0, (8)

where ρ(ω) = dm/dω is the mass per unit frequency of the contin-

uum modes.

In the discrete case, the solutions of equation (7) are N − 1

frequencies �i that are within the quasi-continuum (ωi < �i+1 <

ωi+1, for i = 1, 2, . . . , N − 1; ’quasi-continuum modes’), and two

modes with frequencies �low and �high that are near the edges, but

outside, of the continuum (we will refer to these modes as ‘edge

modes’ from now on). In other words, �low is in general slightly

smaller than the lowest frequency in the continuum, i.e. �low �

ω1 and �high is slightly larger than the highest frequency in the

continuum, i.e. �high � ωN . It can be shown from equation (7) that

in the limit N ≫ 1 and mn ≪ M, the contribution of the small

oscillator to the ith quasi-continuum mode is completely dominated

by the pendulae that are in close resonance with the mode. More

precisely, one can show that as the number of oscillators N increases

and mn decreases, the number of small oscillators contributing to the

mode energy remains constant. However, for the two edge modes

there is no such singular behaviour in the limit of large N, and

consequently they play a special role in the dynamics of the system.
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This last point is clearly seen in the continuum case represented

by equation (8). The eigenvalue equation has no real solutions in

the range of small oscillator continuum ωmin < � < ωmax, since the

response function G(�) is ill defined in this interval.4 However, the

edge modes on both sides of the continuum interval remain, and their

frequencies can be found by numerically evaluating the zero-points

of G(�) in equation (8). For the numerical of the previous section,

one finds �low = 0.5–8.2 × 10−6 and �high = 1.5 + 8.6 × 10−4.

Analytically, one can find the following scaling for the distance

δωedge between the mode frequency and the nearest edge ωedge of

the continuum range:

δωedge

ωedge

= C exp

{

−
M

∣

∣�2
0 − ω2

edge

∣

∣

ρ(ωedge)ω
3
edge

}

, (9)

where C is a constant of order unity. The larger is the density of

continuum modes at the edge ρ(ωedge), the further is the edge mode

pushed away from the continuum range. It is particularly interesting

to consider the case when the continuum interval is limited by a

turning point (L07) with the divergent density of states near the

edge, ρ(ω) = A/
√

|ω − ωedge|, where A is a constant. In this case

the distance from the edge-mode frequency to the nearest continuum

edge is given by

δωedge

ωedge

= C

{

Aω
7/2
edge

M
∣

∣�2
0 − ω2

edge

∣

∣

}2

. (10)

The quadratic dependence in equation (10) versus the exponential

dependence in equation (9) implies that the continua with turning

points typically feature much more pronounced edge modes and

stronger QPOs than the ones with linear edges. In the next section,

we show how to calculate the edge-mode amplitudes and QPO

strengths from the initial data.

2.3 Late-time behaviour of the system

In the continuum limit, the only modes with real oscillatory fre-

quency are the edge modes. Thus, as we demonstrate explicitly

below, they dominate the late-time dynamics of the system when

the number N of small oscillators becomes large. Our analysis pro-

ceeds as follows.

Lets define a new set of variables, expressed as a vector X with

components X0 =
√

Mx0 and Xn = √
mn (x0 + xn) for n = 1, . . . ,

N. With these new variables, the kinetic energy of the system is a

trivial quadratic expression:

K =
1

2
Ẋ · Ẋ, (11)

where the inner product of two vectors A and B is defined as

A · B = �N
j=0AjBj . The potential energy is a positive-definite

quadratic form, whose exact form is unimportant here. The mutually

orthogonal eigenmodes X i can be found via a procedure outlined

in the previous section.5 Their eigenfreguencies �i are identified

by finding zeros of G(�) in equation (7), and the corresponding

4 There is a complex solution if the integration in the expression for G(�) is

performed along the contour chosen according to the Landau rule. One then

obtains a ‘resonantly absorbed’ or ‘Landau-damped’ mode (L07; Gruzinov

2008b), which exactly represents the exponential decay of stage (1) in our

numerical experiment of the previous section.
5 Alternatively, they can be found by diagonalizing the potential energy

quadratic form.

eigenvector components are given by

Xi
0 = 1,

Xi
n =

ω2
n

�2
i − ω2

n

.
(12)

Let us assume that we initiate our simulation by displacing the

large oscillator by an amount x0(0) while keeping the small oscil-

lators relaxed xn(0) = 0 and all initial velocities at zero. In the new

variables, the initial state of the system is given by the vector X(0),

where X0 =
√

Mx0(0) and Xn = √
mnx0(0). The time evolution of

the system is given by

X(t) = ��i
cos(�i t)(X i · X i)−1

(

X(0) · X i
)

X i . (13)

Substituting the initial conditions, and the expression in equa-

tion (12) for the eigenvector components, we get

X(t) =
∑

�i

cos(�i t)
M +

∑

n[(mnω
2
n)/(ω2

n − �2
i )]

M +
∑

n[(mnω4
n)/(ω2

n − �2
i )2]

X i . (14)

The coordinate of the large oscillator is simply given by x0(t) =
X0(t)/

√
M .

For the continuum of small modes, the above expansion breaks

down, since the eigenvalue equation has no real solutions inside

the continuum range. However, the edge modes are well defined,

and they determine the dynamics at late times. Therefore, for the

continuum case we can still write down the analogous expression

which is valid only at late times:

X(t) = ��edge
cos(�edget)

X(0) · Xedge

Xedge · Xedge

Xedge. (15)

The sums of equation (14) are replaced with the corresponding

integrals, and we have the following expression for the displacement

of the large oscillator at late times:

x0(t) = x0(0)
∑

�edge

cos(�edget)
M +

∫

dωρ(ω)[ω2
n/(ω2

n − �2
edge)]

M +
∫

dωρ(ω)[ω4
n/(ω2

n − �2
edge)

2]
.

(16)

This expression is in excellent agreement with the numerical sim-

ulations. In the numerical example of Section 2.1, the upper edge

mode dominates the late-time behaviour of the system, and its calcu-

lated contribution is plotted in Fig. 3, together with the numerically

simulated motion.

2.4 The effect of viscosity

We now add an extra degree of realism by introducing viscous fric-

tion into the system. In MHD, continuum modes are spatially local-

ized, and the effect of viscosity is to frictionally couple the neigh-

bouring modes (see e.g. Hollweg 1987). In our simple model we

introduce viscosity by adding frictional forces between the neigh-

bouring oscillators:

fn,n+1 = −fn+1,n = γ (ẋn − ẋn+1), (17)

where f n,n+1 is the force from the nth oscillator acting on the

(n + 1)th.

We now calculate how the system dissipates energy as a function

of time. We will show that it occurs in two stages (see Fig. 6).

(1) Initially, the small oscillators are strongly and simultaneously

excited by the ‘Landau-damped’ large oscillator, then they become

dephased, with the average relative motion between the neighbour-

ing oscillators growing linearly in time. This leads to a very rapid

dissipation of the bulk of the initial energy. (2) The edge modes
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Figure 6. The red squares show the viscous dissipation of the total energy

during the numerical simulation. The dotted blue curve shows the analytical

solution from equation (23).

persist, since the participating small oscillators move in phase and

the energy dissipation is small. The energy of the modes is damped

exponentially on a time-scale much longer than that of the first

stage.

The dissipated energy is given by

Wdiss = �N−1
n=1 γ (ẋn+1 − ẋn)2. (18)

In the continuum limit, the small oscillators are labelled not by a

discrete index n, but by a continuous variable λ. The expression for

the dissipated energy is then

Wdiss =
∫

dλγ̃

(

∂
2xλ(t)

∂λ∂t

)2

, (19)

where γ̃ is the viscous coefficient. After the initial exponential

damping of the large oscillator and the excitation of the small os-

cillators, the latter initially move independently, with

xλ(t) ≃ x̃(λ) cos[ωλt], (20)

where x̃(λ) is the amplitude of the λth oscillator. From the above

equation, we then obtain
〈

(

∂
2xλ(t)

∂λ∂t

)2
〉

=
1

2

{

[d(x̃λωλ)/dλ]2 + ω2
λx̃

2
λ(dωλ/dλ)2t2

}

,

(21)

where the 〈···〉 stands for time averaging over many oscillation

periods. For times t ≫ dlog xλ/dωλ the second term on the right-

hand side of equation (21) dominates. For a simple model with

dωλ/dλ = const and ρ(ω) = const,

dE/dt ∝ −At2E, (22)

where E is the total energy of the system and A = (γ̃ /ρ)(dωλ/dλ).

The analytical solution for the energy and dissipated power,

E = E0 exp

(

−
1

3
At3

)

,

Wdiss = −
dE

dt
= At2E0 exp

(

−
1

3
At3

)

,

(23)

agrees very well with numerical simulations; see Fig. 6. While the

equations above were derived for restrictive assumptions (dωλ/dλ=
const and ρ(ω) = const), we found that the analytical formulae in

equation (23) provide a good fit for a large variety of simulations.

Figure 7. As in Fig. 4, this figure shows the amplitudes of the small oscil-

lators at different times t. The energy of most oscillators is drained due to

viscous dissipation. At late times, only the oscillators near the edges of the

continuum have substantial energy.

This is because it is the small oscillators with the frequencies near

that of the large oscillator which carry most of the energy, and in

that narrow band our approximations hold.

After the energy dissipation due to dephasing is over, only the

edge modes remain. This is illustrated in Fig. 7, where we show

how the energies of the small oscillators evolve with time. At late

times, only the oscillators taking part in the edge modes move sub-

stantially; this is because they remain in phase and do not dissipate

much. At this stage the energy is drained by slow exponential decay

of the edge modes.

3 TRANSI ENT A ND DRI FTI NG Q POS

Finite-size MHD systems feature a mix of continuum and discrete

modes (see Poedts, Hermans & Goossens 1985, hereafter P85; GP).

For axisymmetric field configurations the continuum modes occupy

the whole flux surfaces and play an important role in the oscillatory

dynamics; this was the motivation for L07 and our study of the

previous section. We will argue in Section 5 that if the core field

is highly tangled, the continuum modes become localized in space

and discrete core modes will play a more important role. Thus it

is important to study the case when the crustal modes are coupled

to a set of discrete core modes. In this section we show that if

the frequencies of the discrete modes are regularly spaced in some

frequency intervals, then the system displays transient QPOs that

are entirely missed by its normal-mode analysis. This is interesting

from the observational point of view, since many of the observed

magnetar QPO features are transient.

Suppose that a set of discrete modes are located in the interval


ω around frequency ω0 and are separated by a regular frequency

interval δω, and assume the following hierarchy:

δω ≪ 
ω ≪ ω0. (24)

After the modes are excited, they are initially in phase but will

dephase rapidly on the time-scale 1/
ω. However, at times tn =
2πn/δω the modes come into phase again and pull coherently on the

large oscillator. Therefore, a transient QPO feature should appear

around these times at a frequency close to ω0. In Figs 8 and 9 we

show the dynamical spectrum from a simulation where the model

was designed to produce QPOs at two specific frequencies. The

transient QPOs agree well with the expectations. As is seen from the
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Figure 8. Dynamical spectrum from a simulation where we have designed

the continuum so as to produce transient QPOs at frequencies ω = 1 and 2

(the coloured scale denotes log (power)). The green horizontal line denotes

the frequency of the large oscillator (� = 1.2).

Figure 9. Dynamical spectrum from a simulation with a continuum that is

identical to the one of Fig. 8. We have shifted the frequency of the large

oscillator, denoted by the green horizontal line, to � = 1.8. By comparison

with Fig. 8 it is clear that the drifting QPOs at ω = 2 are now much stronger

as they are closer to the large oscillator frequency. Note that the edge mode

at ω = 2.5 is clearly visible.

figures, the strongest transient QPOs are those whose frequencies

are the closest to that of the large oscillator; this is because the

response of the large oscillator is the strongest around its proper

frequency.

One can now easily understand the frequency drifts in fig. 10 of

L07 (Fig. 10 in this paper) as an artefact of the discrete sampling of

the continuum. In the simulations of that paper, the core continuum

was sampled with a set of densely and regularly placed Alfvén

modes by slicing the field into finite-width flux shells. The spacing

δω between the modes was not constant but a function of the Alfvén

frequency ω. In that case, the QPO drifts with the QPO frequency

ω(t) given by the inverse relation

t(ω) =
2πn

δω(ω)
. (25)

With this relation we are able to fit all of L07 drifting QPOs, as

shown in Figs 10 and 11. Note that multiple QPOs correspond

to different branches of the Alfvén continuum. As expected, the

drifting QPOs are amplified near the crustal frequencies, since there

the response of the crust to the core modes’ pull is the strongest.

Figure 10. Dynamical power spectrum of the spherical magnetar model

from L07. The grey-scale denotes log (power).

Figure 11. We have used equation (25) to fit the drifting QPOs from Fig. 10.

The red curves are n = 1 drifts, green curves are n = 2 and blue curves are

n = 3. The higher frequency drifts originate from Alfvén overtones.

4 MORE R EALI STI C MAGNETAR MODELS

In this section we extend the constant magnetic field and constant

density magnetar model from L07 to include more realistic pres-

sure and density profiles and more general (but still axisymmetric)

magnetic field configurations. Our aim is to use this model to (1)

calculate numerically Alfvén eigenmodes and their eigenfrequen-

cies on different flux surfaces inside the star, in order to determine

the continuous spectrum of the fluid core, and (2) use these modes

to simulate the dynamics of a realistic magnetar. In order to cal-

culate the Alfvén eigenmodes and eigenfrequencies for a realistic

magnetar model, we employ the linearized equations of motion for

an axisymmetric magnetized, self-gravitating plasma. The general

equations, which are derived in detail in P85 and given in their

equations (53) and (54), constitute a fourth-order system of coupled

ordinary differential equations in the case of a mixed poloidal and

toroidal magnetic field. The formalism of P85 is briefly summa-

rized in Appendix B. In the case of a purely poloidal magnetic field,

the system simplifies to two uncoupled second-order differential

equations (P85, equations 70 and 71).

4.1 The model

We assume our star is non-rotating and neglect its deformation due

to the magnetic pressure, which is expected to be small. Therefore,

we consider a spherically symmetric background model that is a
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solution of the Tolman–Oppenheimer–Volkoff equation (TOV equa-

tion).6 The hydrostatic equilibrium is calculated using a SLy equa-

tion of state (Douchin & Haensel 2001; Haensel & Potekhin 2004;

Haensel, Potekhin & Yakovlev 2007), which can be found in tabu-

lated form on the website http://www.ioffe.ru/astro/NSG/NSEOS/.

The integration of the TOV equation is performed using a fourth-

order Runge–Kutta scheme, integrating from the centre of the star

outward until we reach a mass density ρ = 1.3 × 1014 g cm−3,

which is consistent with the crust–core interface in the equation of

state from Douchin & Haensel (2001). The resulting model has a

central mass density ρc = 1015 g cm−3, a total mass of 1.40 M⊙ and

a radius of Rcore = 1.07 × 106 cm. To this spherical model we add

a poloidal magnetic field, which we generate by placing a circular

current loop of radius a and current I around the centre of the star.

The field is singular near the current loop, however, all the field

lines which connect to the crust (and thus are physically related to

observable oscillations) carry finite field values. This particular field

configuration is chosen as an example; there is an infinite number

of ways to generate poloidal field configurations. In Appendix B

we will add to this field a toroidal component and calculate the

corresponding Alfvén continuum of the core.

4.2 The continuum

In order to find the equations of motion for the magnetized material

in the neutron star core, we would need to add self-gravity to the

ideal MHD equations. This problem has been solved by P85 in a tour

the force mathematical approach. In that paper the authors assume

a self-gravitating axisymmetric equilibrium with a field geometry

consisting of mixed poloidal and toroidal field components, and

they derive linearized equations of motion. For this field geometry

it is convenient to work with so-called flux coordinates (ψ , χ , φ).7

The basic concept behind this curvilinear coordinate system is the

magnetic flux surface, which is defined as the surface perpendicular

to the Lorentz force FL ∝ j × B. From this definition it is clear

that the magnetic field lines lie in flux surfaces. If one considers a

closed loop on a flux surface which makes one revolution around

the axis of symmetry, then the magnetic flux ψ through the loop

depends on the flux surface only and is the same for all of the loops.

Therefore ψ is chosen as the coordinate labelling the flux surfaces.

In each flux surface we can denote a position by its azimuthal angle

φ and its ‘poloidal’ coordinate χ , which is defined as the length

along φ = const line. In P85, it is shown that the equations of

motion allow for a class of oscillatory solutions that are located

on singular flux surfaces, constituting a continuum of eigenmodes

and eigenfrequencies. In the case of a purely poloidal field (B =
Bχ ), the continuum solutions are degenerate and polarized either

parallel (ξχ ) or perpendicular (ξφ) to the magnetic field lines. In

the latter case the displacement is φ independent. It is clear that in

contrast to the χ -polarized modes, the φ-polarized modes are purely

6 Note that although our background equilibrium model is based on the

relativistic TOV equation, our equations of motion will be derived using

classical MHD.
7 There exists a variety of magnetic coordinate systems that can be used

to study axisymmetric MHD equilibria. A useful overview of systems used

by plasma and MHD physicists is given in Alladio & Micozzi (1996). In

Colaiuda et al. (2009), the authors employ an alternative relativistic system

of coordinates for their study of torsional Alfvén oscillations of magnetars,

which allows them to reduce the 1+2 dimensional evolution equation for

magnetar oscillations to a 1+1 dimensional form.

horizontal and are therefore unaffected by gravity. This latter case

is considered here.

The equation of motion is in this case simply the Alfvén wave

equation:

∂
2ξφ(ψ,χ )

∂t2
= F

[

ξφ(ψ, χ )
]

, (26)

where the operator F is given by

F
[

ξφ(ψ, χ )
]

=
B

4πxρ

∂

∂χ

[

x2B
∂

∂χ

(

ξφ(ψ, χ )

x

)]

. (27)

Here x is the distance to the magnetic axis of symmetry. Although

in the presence of a mixed poloidal and toroidal field the equations

still give rise to a continuous set of solutions, the calculations are

significantly complicated as the continuum modes are affected by

the toroidal component of the field, by gravity and by compressibil-

ity. For the sake of simplicity we will ignore toroidal fields in our

dynamic simulations. We will, however, calculate the continuum

frequencies for a mixed poloidal and toroidal field in Appendix B.

For determining the spectrum of the core continuum, the appro-

priate boundary conditions are ξφ(χ = χ c) = 0, where χ c(φ) marks

the location of the crust–core interface. The full significance of

this boundary condition will become apparent in later in this sec-

tion when we develop the analysis for the crust–core interaction.

With this boundary condition, equation (26) constitutes a Sturm–

Liouville problem on each separate flux surface ψ . Using the stellar

structure model and magnetic field configuration from Section 4.1,

we can calculate the eigenfunctions and eigenfrequencies for each

flux surface ψ . The reflection symmetry of the stellar model and

the magnetic field with respect to the equatorial plane assures that

the eigenfunctions of equation (26) are either symmetric or anti-

symmetric with respect to the equatorial plane. We can therefore

determine the eigenfunctions by integrating equation (26) along the

magnetic field lines from the equatorial plane χ = 0 to the crust–

core interface χ = χ c(ψ). Let us consider the odd modes here for

which ξφ(0) = 0, and solve equation (26) with the boundary con-

dition ξφ(χ c) = 0 at the crust–core interface; for even modes, the

boundary condition is dξφ(0)/dχ = 0. We find the eigenfunctions

by means of a shooting method; using fourth-order Runge–Kutta

integration we integrate from χ = 0 to χ c. The correct eigenvalues

σ n and eigenfunctions ξ n(χ ) are found by changing the value of σ

until the boundary condition at ξ n is satisfied. In this way we grad-

ually increase the value of σ until the desired number of harmonics

is obtained. In Fig. 12 we show a typical resulting core continuum.

According to Sturm–Liouville theory the normalized eigenfunc-

tions ξ n of equation (26) form an orthonormal basis with respect to

the following inner product:

〈ξm, ξn〉 =
∫ χc

0

r (χ ) ξm (χ ) ξn (χ ) dχ = δm,n, (28)

where δm,n is the Kronecker delta and r = 4πρ/Bχ is the weight

function. We have checked that the solutions we find satisfy the

orthogonality relations.

We are now ready to compute the coupled crust–core motion.

Here we follow L07 and assume that the crust is an infinitely thin

elastic shell.8 We label the latitudinal location by the flux surface

8 It is straightforward to relax this assumption, and carry out the analysis

of this section for the finite crustal thickness. However, from Section 2 it is

clear that the interesting dynamics is dominated by the spectral structure of

the core Alfvén waves; therefore, in order to flesh out the physics we choose

the simplified model of the crust.
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Figure 12. The red curves show the Alfvén frequencies σ n as a function

of the angle θ (ψ), the polar angle at which the flux surface ψ intersects

the crust. Since we are only considering odd crustal modes, the only Alfvén

modes that couple to the motion of the star are the ones with an odd harmonic

number n. This particular continuum was calculated using a poloidal field

with an average surface value Bsurface ∼ 6 × 1014 G, generated by a circular

ring current of radius a = R∗/2.

ψ intersecting the crust, and consider the crustal axisymmetric

displacements ξ̄φ(ψ). In the MHD approximation, the magnetic

stresses enforce a no-slip boundary condition at the crust–core in-

terface, such that ξφ (ψ, χc) = ξ̄φ (ψ, χc) instead of ξφ(ψ , χ c) = 0.

It is useful to make the following substitution:

ζ (ψ, χ ) ≡ ξφ (ψ, χ ) − ξ̄φ (ψ) w (ψ, χ ) , (29)

where we choose the function w(ψ , χ ) so that (a) it corresponds

to the static displacement in the core and hence satisfies F(w(ψ ,

χ )) = 0, and (b) w(ψ , χ c) = 1. Therefore the new quantity sat-

isfies the boundary condition ζ (ψ , χ c) = 0 and can be expanded

into the Alfvén normal modes ξ n which satisfy the same boundary

conditions.

We now proceed by substituting equation (29) into equation (26)

thus obtaining a simple equation of motion for ζ :

∂
2ζ (ψ, χ )

∂t2
− F (ζ (ψ, χ )) = −w (ψ, χ )

∂
2ξ̄φ (ψ)

∂t2
. (30)

From the definition of the operator F it follows that for the odd

modes

w (ψ, χ ) = x (ψ, χ )

∫ χ

0

K (ψ)

x2 (ψ, χ ′) Bχ (ψ, χ ′)
dχ ′. (31)

Here the constant K(ψ) is chosen such that w(ψ , χ c) = 1, in order

that ζ = 0 on both boundaries. We expand ζ and w into a series of

ξ ns:

ζ (ψ, χ, t) =
∑

n

an (ψ, t) ξn (ψ, χ ) , (32)

w (ψ, χ ) =
∑

n

bn (ψ) ξn (ψ, χ ) , (33)

equation (30) reduces to the following equations of motion for the

eigenmode amplitudes an:

∂
2an (ψ)

∂t2
+ σ 2

n (ψ) an (ψ) = −bn (ψ)
∂

2ξ̄φ

∂t2
. (34)

These equations show how the core Alfvén modes are driven by

the motion of the crust. To close the system, we must address the

motion of the crust driven by the hydromagnetic pull from the core.

The equation of motion for the crust is given by

∂
2ξ̄φ

∂t2
= Lel

(

ξ̄φ

)

+ LB , (35)

where the acceleration due to elastic stresses Lel is

Lel

(

ξ̄φ

)

= ω2
el

[

∂
2ξ̄φ

∂θ 2
+ cot (θ )

∂ξ̄φ

∂θ
−

(

cot (θ )2 − 1
)

ξ̄φ

]

, (36)

where θ is the polar angle (cf. L07). The acceleration LB due to the

magnetic stresses between the crust and the core can be expressed

as

LB = −
xB2

4π�
cos α

∂

∂χ

(

ξφ

x

)

χ=χcrust

, (37)

where x is the distance to the axis of the star, � is column mass

density of the crust and α is the angle between the magnetic field

line and the normal vector of the crust.

It is convenient to express the crustal displacement ξ̄φ as a Fourier

series, being a sum normal modes of the free-crust problem. Using

equation (36) is straightforward to show analytically that the eigen-

functions fl of the free-crust problem (equation 35 with LB = 0)

are

fl (θ ) ∝
dYl0 (θ )

dθ
, (38)

with eigenfrequencies

ωl = ωel

√

(l − 1) (l + 2). (39)

Here Y l0 is the m = 0 spherical harmonic of degree l. The normalized

functions fl form an orthonormal basis, so that

∫ ∞

0

fl (θ ) fm (θ ) sin (θ ) dθ = δl,m, (40)

where δl,m is again the Kronecker delta. The crustal displacement

can then be expressed in terms of fl:

ξ̄φ (θ, t) =
∑

l

cl (t) fl (θ ) . (41)

Substituting equation (41) into equation (35) we obtain the equa-

tions of motion for the crustal mode amplitudes cl:

∂
2cl

∂t2
+ ω2

l cl =
∫

π

0

LB (θ, t) fl (θ ) sin θ dθ. (42)

We can express LB as

LB (ψ, t) = −
B2

χ (ψ)

4π�
cos (α (ψ))

[

∑

n

an (t)
∂ξn (ψ)

∂χ

+
K (ψ)

x (ψ) B (ψ)

∑

k

ck (t) fk (θ (ψ))

]

χ=χc

. (43)

Up to this point the derived equations of motion for the crust

and the fluid core are exact. We are now ready to discretize the

continuum by converting the integral of equation (42) into a sum

over N points θ i. In order to avoid the effect of phase coherence (see

Section 3) which caused drifts in the results from L07, we sample the

continuum randomly over the θ interval [0, π/2]. In the following,

functional dependence of the coordinate ψ or θ (ψ) is substituted
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by the discrete index i which denotes the ith flux surface:

∂
2cl

∂t2
+ ω2

l cl = 2
∑

i

LB (θi, t) fil sin θi
θi

= −
∑

i

sin (θi)
θifil

[

B2
χ,i

2π�
cos (αi)

(

∑

n

ain

∂ξin

∂χ

+
Ki

xiBχ,i

∑

k

ckfik

)]

χ=χc

, (44)

∂
2ain

∂t2
+ σ 2

inain = −bin

∑

l

∂
2cl

∂t2
fil . (45)

These are the equations that fully describe dynamics of our mag-

netar model. As with the toy model from Section 2 we integrate

them using a second-order leapfrog scheme which conserves the

total energy to high precision. As a test we keep track of the to-

tal energy of the system during the simulations. Further we have

checked our results by integrating equations (44) and (45) with the

fourth-order Runge–Kutta scheme and found good agreement with

leapfrog integration.

4.3 Results

Based on our Section 2 results, we have a good idea of what type of

dynamical behaviour should occur in our more realistic magnetar

model. First, we expect that crustal modes with frequencies inside

the Alfvén continuum will be damped quickly by resonant absorp-

tion (‘Landau-damping’ in the terminology of Gruzinov 2008b).

Second, as with our previous model we expect the late-time be-

haviour of the system to show QPOs near the edges of the con-

tinuum, or edge modes. The third important feature of our model

is that the continuum may possibly contain gaps, as is shown in

Fig. 13. In this case there is the possibility that crustal frequencies

fall inside the gaps and remain undamped. In all of our simulations

these expectations have come true. We will now show the results

from a simulation which illustrate the above-mentioned effects.

The basic freedom of choice that we have for our model is the

strength and geometry of the equilibrium magnetic field. We choose

here a purely poloidal magnetic field with an average strength at

the surface of Bsurf = 1015 G, induced by a circular current loop

of radius a = 0.5R∗. This field gives us a gap in the continuum at

frequencies 53 < ω < 78 Hz.

Figure 13. After filling the curves from Fig. 12, ‘gaps’ in the continuum

become visible around σ ∼ 70 and ∼120 Hz.

Figure 14. Power spectrum of the crustal dynamics for a magnetar with a

single ‘gap’ in the Alfvén continuum. In this case the crustal frequencies are

within the continuum, causing the crust modes to be Landau damped.

We consider the lowest degree odd crustal modes with frequen-

cies ω2 = 40 Hz and ω4 = 84.5 Hz, which we couple to 5000

continuum oscillators (the Alfvén continuum). We sample the con-

tinuum at 1000 randomly chosen flux surfaces, and at each flux

surface we consider five Alfvén overtones.

As with our toy model from Section 2, we initiate the simulation

by displacing the crust (c2 = c4 = 1) while keeping the continuum

oscillators (the Alfvén modes) relaxed (ain = 0).

In Figs 14 and 15 we show the resulting power spectrum for two

different models. In the first one, the crustal frequencies are located

inside the core continuum range, and the peaks due to the edge

modes appear. By contrast, in the second case one of the crustal

frequencies belongs to the gap, and a peak representing the global

gap mode stands strongly above the background. We note that the

gap-mode’s frequency lies close to but does not coincide with the

crustal-mode frequency; we found this to be a generic feature of

our models, with the difference of 10 per cent for the typical model

parameters. The gap modes are particularly interesting because they

have relatively large amplitudes, and are not as strongly damped by

viscosity as the edge modes.

Figure 15. Power spectrum of the crustal dynamics for a magnetar with a

single ‘gap’ in the Alfvén continuum. The global mode within the gap is not

damped, and its frequency is similar, but not identical, to that of the crustal

mode in the same gap.
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It must be emphasized that for all persistent modes in the system,

the position in the frequency space of the core Alfvén continuum

plays the key role in setting the global-mode frequency and in

determining its longevity.

We note that Lee (2008) has used a different method to identify

discrete modes in a magnetar with similar magnetic configuration

to ours. These modes were not associated with crustal frequencies,

and we strongly suspect that they were located in the gaps of the

continuum spectrum and could be identified with the edge or gap

modes presented in this work.

5 TANGLED MAGNETIC FIELDS

Our preceding discussion of the continuum was predicated on the

foliation of the axisymmetric magnetic field into the flux surfaces,

with each of the singular continuum mode localized on the flux

surfaces. These modes are ‘large’ – they are coherent over the

spatial extent comparable to the size of the system, and thus they

play an important role in the overall dynamics – they are responsible

for the resonant absorption of the crust oscillations, and contribute

to generating the edge and gap modes. However, what happens if the

field cannot be foliated into the flux surfaces, but is instead tangled

in a complicated way? One can argue that the continuum part of the

spectrum still persists, as follows.

Consider an arbitrary field line anchored at the crust–core inter-

face at both ends, and choose a tube of field lines of infinitesimal

radius which is centred on the original field line (see Fig. 16). It is

clear that a twisting Alfvén mode exists in the tube: it is obtained by

the circular rotation of the fluid around the central field line, prop-

agating along the central field line with the local Alfvén velocity.

Since there is a continuum of the field-line lengths, there is also a

continuum of Alfvén modes. However, the modes we constructed

are highly localized in space and have a small leverage in the over-

all dynamics. We conjecture that the more tangled the fields are,

the less role do the singular continuum modes play in the overall

dynamics.

Whilst we cannot rigorously prove this conjecture, we can moti-

vate it as follows: consider an area element δS of random orientation

with the normal n̂ inside the star, and consider a shearing motion

along the element. This shearing motion will be resisted by the Bn̂

component of the magnetic field, with the effective shear modulus

of order

μeff ∼
〈B2

n̂〉
4π

, (46)

Figure 16. Schematic illustration of tangled a magnetic field inside a mag-

netar. Locally, the field consists of flux tubes which contain a continuum of

twisting Alfvén modes.

where 〈···〉 stands for averaging over the area element. For ordered

field, it is possible to choose the orientation of the area element so

that μeff ≃ 0; the presence of such an orientation makes a fundamen-

tal difference between MHD and elasticity theory and is responsible

for the presence of continuous spectrum in MHD. However, if the

linear size of the δS is greater than the characteristic length on

which the field is tangled, then μeff is non-zero for all orientations

of n̂. Therefore, for highly tangled fields there can be no large-scale

singular continuum modes, and their existence is restricted to the

small scales. Hence our assertion that for strongly tangled fields

continuum modes play a secondary dynamical role.

One is then faced with the problem when crustal modes are

coupled to a set of discrete core Alfvén modes. In Appendix A we

show how to find the eigensolution of such a problem, provided that

all of the coupling coefficients are known.

How does one quantify the degree to which the fields are tangled?

Some insight comes from the numerical simulations of Braithwaite

and colleagues, who have studied what type of fossil fields remain

in a stratified star after an initial period of fast relaxation. Con-

sider a stable fossil field configuration, such as the one obtained in

the simulations of Braithwaite & Spruit (2004) and Braithwaite &

Nordlund (2006) (see also Gruzinov 2008a for analytical considera-

tions). There, the final field is nearly, but not perfectly axisymmetric

and has a small-scale random component. For a less centrally con-

centrated initial field, Braithwaite (2008) shows that the final fossil

field is in general non-axisymmetric and can have a complicated

topology.9

As a starting point, we shall consider the nearly axisymmetric

field with a small random component. The latter acts like a small

extra shear modulus μeff and dynamically couples the flux surfaces

of the axisymmetric component. We then quantify the degree of

tangling by the relative value of μeff and B2/(4π).

5.1 Simple model: ‘square’ neutron star

To study this idea further, we specify a very simple model of a

neutron star, motivated by the one considered in L06, see Fig. 17

that nevertheless captures the essential physics.

Consider a perfectly conducting homogeneous fluid of density

ρ contained in a box with width Lx, length Ly and depth Lz. The

magnetic field in this box is everywhere aligned with the y-axis

and its strength is a function of x only. We assume that gravity is

zero and consider a Lagrangian displacement ξ (x, y, t) of the fluid

along the z-direction; we specify periodic boundary conditions in

this direction (one should think of the z-direction as azimuthal). We

now add to this model a small effective shear modulus μeff due to

the field tangling. The fluid equation of motion is

∂
2ξ

∂t2
= c2

A (x)
∂

2ξ

∂y2
+ c2

s ∇
2ξ. (47)

Here cA(x) is the Alfvén velocity and cs =
√

μeff/ρ is the μeff-

generated shear velocity. If we assume a small shear speed, i.e.

cs ≪ cA, equation (47) reduces to

∂
2ξ

∂t2
= c2

A (x)
∂

2ξ

∂y2
+ c2

s

∂
2ξ

∂x2
. (48)

9 Gruzinov (2009) demonstrates that even this situation is not the most

general. He finds that the relaxed field generally has multiple current sheets,

and argues that the global field relaxation is dominated by the dissipation

within these singular layers. The details do not concern us for the purposes

of this paper.
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Figure 17. Schematic illustration of the box model. Perfectly conducting

incompressible fluid is sandwiched between perfectly conducting top and

bottom plates. The box is periodic in z-direction and the displacements of

the plates (crust) are in the z-direction. The magnetic field is directed along

y-axis and its strength varies as a function of x.

We now find the core Alfvén eigenmodes. After adapting the no-slip

boundary conditions,

ξ

(

−
Lx

2
, y, t

)

= ξ

(

Lx

2
, y, t

)

= 0,

ξ

(

x, −
Ly

2
, t

)

= ξ

(

x,
Ly

2
, t

)

= 0, (49)

the problem can be easily solved by separation of variables

ξ (x, y, t) ∝ eiωt sin
{

πm[(y/Ly) + 1/2]
}

X (x), where m = 1,

2, . . . . Plugging this in equation (48) we find for the x-dependent

part of the solution:

c2
s

∂
2X

∂x2
=

[

ω2 − ω2
A,m (x)

]

X. (50)

Here ωA,m (x) = πmcA (x) /Ly can be interpreted as the frequency

of the mth Alfvén overtone at x. From the above expression it is clear

that in the limit of very small cs, the solution for X must be close to

zero everywhere except in a very small neighbourhood of ωA,m(x) =
ω. It is in this limit that the solutions are located on singular flux

surfaces. However, in the presence of the non-vanishing shear ve-

locity cs, the eigenmodes spread out on neighbouring field lines,

effectively coupling the motion on different flux surfaces. The con-

tinuum of Alfvén frequencies ωA,m(x) will in this case be no longer

solutions of the system. Instead, the coupling term gives rise to a

discrete set of solutions rather than a continuum. Equation (50) is

the mathematical equivalent of Schrödingers equation, which can

in general cases be solved numerically. However, for many special

case exact solutions exist. Let us consider, for the sake of simplicity,

a field configuration in our box such that

c2
A (x) = acA

x2 + c2
A,0. (51)

We can rewrite equation (50) as follows:

c2
s

∂
2X

∂x2
= −

π
2m2acA

Ly

x2X +
(

ω2
m −

π
2m2c2

A,0

Ly

)

X. (52)

This differential equation is the mathematical equivalent of the

quantum harmonic oscillator problem for which the exact solution

is well known. The eigenfrequencies are given by

ω2
mn = π (1 + 2n) mcs

√
acA

/Ly + c2
A,0π

2m2/Ly . (53)

Here n ( = 0, 1, . . .) is the ‘quantum’ number labelling the harmonic-

oscillator wavefunctions. We see that instead of a continuum, we

Figure 18. Alfvén frequencies as a function of the effective magnetic shear

modulus. As one decreases the shear, the spectrum tends to a continuum.

obtain a densely packed discrete set of frequencies with the fre-

quency spacing ωm,n − ωm,n−1 ∼ πmcs
√

acA
/Lyωm,n.

With the no-slip boundary conditions on the left- and right-hand

sides x = ±Lx/2, the eigenvalue equation must be solved numeri-

cally. An example of such calculation is shown in Fig. 18. There,

the spacing between the discrete Alfvén modes is shown to increase

as one increases the effect of the field tangling characterized by the

μeff .

We now introduce the crustal modes into the problem by making

the top and bottom of the box elastic and mobile. We allow their

displacement ξ̄t,b(x, t) in the z-direction, and impose the boundary

conditions on the sides:

ξ̄t,b(−Lx/2, t) = ξ̄t,b(Lx/2, t) = 0. (54)

Here the subscripts ‘t’ and ‘b’ stand for the top and bottom of the

box, respectively. The top and bottom are assumed to be thin and

have mass Mcr and surface density σ = Mcr/(LxLz). The crustal

equation of motion is given by

∂
2ξ̄t

∂t2
= v2

s

∂
2ξ̄t

∂x2
−

{BzBx}t

4πσ
,

∂
2ξ̄b

∂t2
= v2

s

∂
2ξ̄b

∂x2
+

{BzBx}b

4πσ
, (55)

where vs is the shear velocity in the crust. The crustal angular

frequencies are given by ωcr
j = jπvs/Ly with the corresponding

crustal mode eigenfunctions ξ̄j = sin{jπ[(x/Lx) + 1/2]}, where

j = 1, 2, . . . is roughly equivalent to l in the spherical case. The

symmetry of the problem allows one to consider either symmetric

ξ̄t = ξ̄b or antisymmetric ξ̄t = −ξ̄b crustal modes. This will couple

to the symmetric (m = 1, 3, 5, . . .) or antisymmetric (m = 2, 4,

6, . . .) Alfvén modes of the core.

Just as in Section 4, it is now convenient to define a new variable

ζ (x, y, t) for the core displacement:

ζ (x, y, t) = ξ (x, y, t) − ξ0(x, y, t), (56)

where

ξ0(x, y, t) =
1

2

(

ξ̄t(x, t) + ξ̄b(x, t)
)

+
(

ξ̄t(x, t) − ξ̄b(x, t)
) y

Ly

. (57)

The new variable observes the regular boundary condition ζ = 0 on

all the box edge, and satisfies the following inhomogeneous partial
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differential equation:
(

∂
2

∂t2
− c2

A(x)
∂

2

∂y2
− c2

s

∂
2

∂x2

)

ζ (x, y, t) = g(x, y, t), (58)

where

g(x, y, t) = −
(

∂
2

∂t2
− c2

s

∂
2

∂x2

)

ξ0(x, y, t). (59)

The advantage of the new variable is that it satisfies the regular

boundary condition ζ = 0 on all the boundaries of the box. It can

therefore be expanded as a series consisting of eigenfunctions ξmn

of the right-hand side of equation (48):

ζ (x, y, t) = �mnamn(t)ξmn(x, y). (60)

The rest of the procedure is very similar to that in Section 4. We

expand the crustal displacement into a series consisting of the eigen-

mode wavefunctions ξ̄j :

ξ̄t(x, t) = �jpj (t)ξ̄j (x),

ξ̄b(x, t) = �jqj (t)ξ̄j (x), (61)

where pj(t) and qj(t) are real numbers. The magnetar deformation is

now fully represented by a set of generalized coordinates [pj(t), qj(t),

amn(t)]. The coupled equations of motion are derived by following

the procedure specified in Section 4. We obtain the following system

of equations:

ämn + ω2
mnamn = −�j

[

p̈j + c2
s

(

jπ

Lx

)2

pj

]

α
(p)
(mn)j

−�j

[

q̈j + c2
s

(

jπ

Lx

)2

qj

]

α
(q)
(mn)j

(62)

and

p̈j + ωcr
j

2
pj = −

ρc2
A

σ
�mnβj (mn)amn,

q̈j + ωcr
j

2
qj = −

ρc2
A

σ
�mn(−1)m+1βj (mn)amn,

(63)

where

α
(p)
(mn)j =

∫ [

(1/2) + (y/Ly)
]

ξmn(x, y)ξ̄j (x) dx dy
∫

[ξmn(x, y)]2 dx dy
,

α
(q)
(mn)j =

∫ [

(1/2) − (y/Ly)
]

ξmn(x, y)ξ̄j (x) dx dy
∫

[ξmn(x, y)]2 dx dy
(64)

and

βj (mn) =
∫

[∂ξmn(x, y)/∂y]y=Ly/2 ξ̄j (x) dx
∫

[ξ̄j (x)]2 dx
. (65)

Thus we have obtained a system of linear second-order differential

equations, which describes the time evolution of the square-box

magnetar. These equations are solved by truncating all the series

[i.e. restricting the range of indices (m, n, j)] and then by either

solving the eigenvalue problem in order to find the normal modes,

or by integrating the equations numerically.10 One then checks that

the series truncation does not introduce errors in the magnetar’s

motion within the frequency range of our interest.

So far we have worked in the approximation of the thin crust,

i.e. we have effectively included the crustal modes which have no

radial nodes in their wavefunction. However, several observed high-

frequency QPOs, and in particular the strong QPO at 625 Hz (Watts

10 Our favoured method here is again the energy-conserving second-order

leapfrog. It is both fast and stable over long integration times.

Figure 19. Power spectrum for the dynamics of a magnetized box as de-

scribed in the text. In this particular model we have used the maximum

possible shear modulus, corresponding to a maximally tangled field. The

Alfvén motion in the box is coupled to nine of the lowest frequency ‘crustal’

modes, plus a high-frequency crust mode at 630 Hz.

& Strohmayer 2006) necessitate introduction of higher radial-order

modes into our model. In the square-box model we do this phe-

nomenologically, as follows. We assume that higher radial-order

crustal modes have amplitudes psj(t) and qsj(t) and natural eigenfre-

quencies ωcr
sj , with s being the number of radial nodes, and assume

that they cause displacement at the crust–core interface given by

ξ̄j (x). This mirrors realistic spherically symmetric case where the

functional form of the crust–core displacement due to the torsional

∇ × Ylm mode of the nth radial order is a very weak function n. The

amplitudes psj(t) and qsj(t) are then introduced on into the equations

of motions (62) and (63) in the same way as the other pj and qj am-

plitudes, with the same j-dependent coupling coefficients but with

ωcr
sj instead of ωcr

j on the left-hand side of equation (63).

We now have the basic ingredients of building a phenomenolog-

ical modes with tangled fields. To sum up, we (1) quantify tangling

using the effective shear modulus, (2) find discrete core eigenmodes

and evaluate their coupling to the crustal model and (3) either find

eigenfrequencies of the total star by diagonalizing the potential

energy of the system, or simulate the time-dependent behaviour

directly.

An example of a resulting power spectrum is shown in Fig. 19

for the model described in this section.

6 W H AT D O O U R M O D E L S T E L L U S A B O U T

M AG N E TA R Q P O S ?

In this paper we have developed a formalism which allows one to

build a magnetar model with a variety of the spectral features of

the core Alfvén waves, including continua with gaps and edges,

and the large-scale discrete modes generated by the field tangling.

We have constructed a number of magnetar models and explored

the resulting QPOS, both for the case of axisymmetric magnetar

with core Alfvén continuum, and for the ‘square’ magnetar models

with the tangled fields (see the previous section). The full range

of model parameters, and detailed comparison with the data will

be the subject of a separate study. For now, we have restricted

ourselves to the standard magnetar model, in which the core is a

perfect conductor, the field of ∼1015 G penetrates both the core and

the crust, and the proton fraction in the star is the one tabulated
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Figure 20. This spectrum was generated using a box model similar to the

one from Fig. 19 but with neutron mass loading. Because of the mass loading

the frequencies have shifted down by a factor of ∼4. Note that there is no

significant power above the lower edge-mode frequency of 5.3 Hz.

in Haensel et al. (2007). Our models give us the following robust

conclusions, as compared against QPO observations.

(1) A number of strong QPOs have been observed in the 1998 and

2004 giant flares, with frequencies ranging between 18 and 150 Hz

(Israel et al. 2005, Strohmayer & Watts 2005; Watts & Strohmayer

2006). These QPOs can be qualitatively explained as gap and/or

edge modes of Sections 4 and 2, or even transient QPOs of Section

3.11 However, this was only possible if the neutrons were decoupled

from the Alfvén waves in the core. If the neutrons took part in the

Alfvén motion, then the effective mass of the Alfvén modes shifted

up by a factor of 20–40 and their frequencies shifted down by a

factor of 4–8 (Easson & Pethick 1979; Alpar, Langer & Sauls 1984;

van Hoven & Levin 2008; Andersson, Glampedakis & Samuelsson

2009). As a result, all modes at frequencies above ∼50 Hz were

strongly damped (see Fig. 20). Increasing the magnetic field tension

by a factor of 3 did not affect this conclusion (Fig. 21). For the

spherical magnetar models of Section 4 we obtain similar results if

couple the neutrons to the Alfvén motion in the core. The key point

that we would like the reader to appreciate is that Alfvén modes in

the core are key to determining the frequency and strength of the

observable QPOs, and thus QPOs are very sensitive probe of the

core interior.

(2) A number of the high-frequency QPOs have been measured

in the 2004 giant flare by Watts & Strohmayer (2006), the strongest

among them being the QPO at 625 Hz. This QPO is particularly

strong and long-lived in the hard X-rays, reaching the amplitude

of ∼25 per cent over the time interval of ∼100 s (i.e. it persists for

almost 105 oscillation periods!). Watts & Strohmayer (2006) argued

that this frequency corresponds to the crustal shear mode with a sin-

gle radial node (see also Piro 2005); this interpretation, if correct,

would strongly constrain the thickness of the crust and rule out the

11 L07 and Gruzinov (2008b) associated the long-lived 18–20 Hz QPO with

the lower edge of the Alfvén continuum. However, recent calculations of

Steiner & Watts (2009) have argued that the crustal frequencies can be as

low as 10 Hz due to the uncertainty in our theoretical knowledge of the

crustal shear modulus. It is therefore plausible that the fundamental crustal

mode has the proper frequency below that lower edge of the core Alfvén

continuum. In this case, the 18–20 Hz QPO could be the gap mode which is

dominated by the fundamental crustal mode.

Figure 21. This spectrum was generated with the same box model as in

Fig. 20, but in addition to the neutron mass loading, we have increased the

magnetic field strength by a factor of 3. All frequencies above ∼16 Hz are

significantly damped.

fluid strange stars as magnetar candidates (Watts & Reddy 2007).

To investigate this suggestion, we have introduced several high-

frequency low-j crustal modes into our square-box simulations.

However, as is demonstrated in Figs 14 and 15, the high-frequency

modes are strongly damped and at no time during the simulations

do we observe any significant power at those frequencies. This is to

be expected. No natural axisymmetric model has gaps in the Alfvén

continuum at such high frequencies, so global modes are strongly

absorbed. We have argued that in realistic magnetic equilibria like

the ones obtained by Braithwaite & Spruit (2004), field tangling will

make continuum modes localized in small-scale flux tubes. More-

over, the field tangling creates a dense array of large-scale discrete

modes, with the frequency separation between neighbouring modes

being proportional to the degree of tangling. One could expect that

if the Alfvén modes are discrete in the core due to field tangling, the

absorption of high-frequency crustal modes would not arise. How-

ever, even in the discrete case the frequency spacing between the

modes is around 20 Hz, which is much smaller than 600 Hz. Thus

the grid of Alfvén waves is so dense that it is effectively seen as

the absorbing continuum by the modes around 600 Hz. Our detailed

simulations, of the type shown in Figs 14 and 15, fully confirm this

qualitative picture.

The concern about the viability of high-frequency QPOs as be-

ing due to the physical oscillations of standard-model magnetars

has been raised in the original L06 paper on the basis of rather

simplistic calculations. As our work here shows, more detailed cal-

culations partially alleviate the L06 concern for the frequencies

below ∼150 Hz, but only if the neutrons are decoupled from the

Alfvén motion in the core, i.e. if at least one baryonic superfluid

(protons or neutrons) is present in the neutron star core. Our analy-

sis sustains L06 concern for the high-frequency QPOs, in particular

for the strong long-lived QPO at 625 Hz. Its explanation seems to

require either QPO production in the magnetosphere, or a some-

what radical revision of the magnetar model. Just how radical this

revision has to be will be explored in a separate study.

Our work presented here has several shortcomings. We have lim-

ited ourselves to the linear approximation, and a non-linear regime

may bring surprises. Direct non-linear simulations of axisymmetric

oscillations of a magnetized fluid star have been carried out re-

cently by Cerda-Duran et al. (2009). At this stage it is difficult to
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say whether non-linearities introduce significantly new QPO fea-

tures to their model; their results have largely been in agreement

with the linear simulations of Colaiuda et al. (2009). However, the

computational techniques seem promising and we do not exclude

that large-amplitude simulations of stars with the crust will show

qualitatively new features. Another limitation of our work is that we

have assumed that once the flare sets the magnetar into motion, the

magnetar’s oscillations are not driven externally. This may not be

the case in real flares: some energy stored in the pre-flare magnetar

may be released gradually, and this release could be extended in

time into the flare’s tail.12 The latter consideration is straightfor-

ward to incorporate phenomenologically into our model, and we

plan to address it in our future work.
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A P P E N D I X A : M U LT I M O DA L C RU S T – C O R E

SYSTEM

In this appendix we generalize the normal-mode treatment of

Section 2.2, and write down the general prescription of how to

find the eigenmodes when several ‘large’ crustal shear modes are

coupled to a multitude of small core Alfvén modes, provided the

coupling coefficients are known. In this paper, the coupling coef-

ficients are worked out in simple models of Sections 4 and 5; we

shall postpone the discussion of how the coefficients are computed

in more general case to the future paper.

Let us denote the displacement of the crustal and core modes by

Xn and xi, respectively. Since both the crustal and the core modes

are not directly coupled to themselves (i.e. Xs are only coupled to

xs), most general equations of motion take the form

Ẍn + �2Xn = �iαnixi,

ẍj + ω2
jxi = �mβjmXm,

(A1)

where �n and ωj are the proper frequencies of the crustal and

core modes, and αs and βs are the coupling coefficients. We look

for an oscillatory solutions of the above equations with angular

frequency �. One can trivially rewrite these equation as a matrix

eigenequation with �2 as an eigenvalue, and solve it using standard

methods. However, if the number of crustal modes is not too large, it

is convenient to make a shortcut. Using the second of equation (A1)

to express xis through Xns, and substituting into the first one, we get

the following equation:

�nGmn(�)Xn = 0, (A2)

where the elements of the matrix G are given by

Gmn(�) = (�2 − �2
n)δnm + �i

αniβim

ω2
i − �2

. (A3)

One obtains the eigenfrequencies by finding numerically the zeros

of det Gmn.

A P P E N D I X B: C O R E C O N T I N UA W I T H

A MI XED AXI SYMMETRI C

TO RO I DAL–POLOI DA L MAG NETI C FI EL D

In this appendix we will calculate the continuum of Alfvén fre-

quencies in a magnetar core in the case of a axisymmetric mag-

netic field with mixed toroidal and poloidal components. The gen-

eral MHD equations of motion for spherically symmetric, self-

gravitating equilibrium with an axisymmetric field are derived in

detail in P85. In contrast to the special case of a purely poloidal field

(see Section 4.2) which leads to two uncoupled differential equa-

tions, the continuum for a mixed toroidal–poloidal field is described

by a system of fourth-order coupled ODEs. Because of this cou-

pling, the solutions are complicated as they are no longer polarized

in the directions parallel (so-called ‘cusp solutions’) and perpendic-

ular (Alfvén solutions) to the magnetic field lines, but rather have a

mixed character. Strictly speaking, one can only speak of an ‘Alfvén

continuum’ in the limit that the variations in ρ, P and B2 are small

in the magnetic flux surfaces. The general equations of motion are

given in equations (53) and (54) of P85. We note, however, that in

magnetars the speed of sound c ≫ cA, and therefore we consider

P85’s equations (53) and (54) in the incompressible limit (P85,
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equations 73 and 74). For completeness we give the equations here,

ρσ 2
B2

χB2

B2
φ

Y = B2F
B2

χ

B2
φB2

F
(

ρc2
AY

)

+
1

ρc2
A

[

∂

∂χ

(

ρc2
A

)

]2

Y

+ ρB2
χN 2

χ (Y + Z) −
∂

∂χ

(

ρc2
A

)

FZ, (B1)

ρσ 2B2Z = iF

[

∂

∂χ

(

ρc2
A

)

Y

]

+ ρB2
χN 2

χ (Y + Z) + F
(

ρc2
AFZ

)

.

(B2)

The variables Y ≡ i
(

B2
φξχ − BφBχξφ

)

/BχB2 and Z ≡ i(Bχξχ +
Bφξφ)/B2 are components of the fluid displacement perpendic-

ular and parallel to the magnetic field lines, the operator F ≡
i∂/∂χ is a differential operator along the field lines, Nχ ≡
−

(

1/Bχρ
) √

(∂ρ/∂χ ) (∂P/∂χ ) can be thought of as a Brunt–

Väisälä frequency for displacements along the field lines. According

to Gauss’ law for magnetism, the toroidal component of the mag-

netic field is of the form Bφ = f (ψ)/̟ , where ̟ is the distance

to the polar axis, and f (ψ) is an arbitrary function of ψ . In the

following calculation we adopt a toroidal field component of the

form

Bφ =
Bt,0R∗

̟ (χ )
sin (θ (ψ)). (B3)

Here θ (ψ) is the polar angle at which the flux surface ψ intersects

the stellar crust. Clearly this choice for Bφ is completely arbitrary

and one could in principle try many different toroidal geometries.

As with our calculation of the Alfvén continuum in the case of a

purely poloidal field (Section 4.2), we adopt the zero-displacement

boundary conditions at the crust, and use the fact that our equi-

librium model is (point-) symmetric with respect to the equatorial

plane. This enforces the existence of classes of symmetric and anti-

symmetric eigenfunctions, Yn(χ ) and Zn(χ ). We consider only the

odd modes, and calculate the eigenfunctions by means of the shoot-

Figure B1. The curves show the continuum frequencies σ n as a function

of the angle θ (ψ), the polar angle at which the flux surface ψ intersects

the crust. In the presence of a toroidal field, the degeneracy between the

cusp solutions and the Alfvén solutions is broken and we find two separate

solutions for each wavenumber n; waves with primarily Alfvén character

(red curves) and waves with primarily cusp character (blue curves). This

particular continuum was calculated using a poloidal field with an average

surface value Bp,surface ∼ 6 × 1014 G (again generated by a circular ring

current of radius a = R∗/2) and a toroidal field strength at the equator and

the crust–core interface of Bt,0 = 3 × 1014 G (see equation B3).

ing method; we use a fourth-order Runge–Kutta scheme to integrate

equations (B1) and (B2). Starting with Y(0) = 0 and Z(0) = 0 at the

equator, we integrate outward until we reach the crust at χ = χ c.

We find the eigenfrequencies by changing the value of σ until we

match the boundary conditions at the crust. A resulting continuum

is plotted in Fig. B1.

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 410, 1036–1051
Downloaded from https://academic.oup.com/mnras/article-abstract/410/2/1036/1030568
by Leiden University user
on 24 November 2017


