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Magnetar oscillations – II. Spectral method
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ABSTRACT
The seismological dynamics of magnetars are largely determined by a strong hydromagnetic
coupling between the solid crust and the fluid core. In this paper, we set up a ‘spectral’
computational framework in which the magnetar’s motion is decomposed into a series of
basis functions that are associated with the crust and core vibrational eigenmodes. A general
relativistic formalism is presented for evaluation of the core Alfvén modes in the magnetic
flux coordinates, as well for eigenmode computation of a strongly magnetized crust of finite
thickness. By considering coupling of the crustal modes to the continuum of Alfvén modes
in the core, we construct a fully relativistic dynamical model of the magnetar which allows:
(i) fast and long simulations without numerical dissipation; and (ii) very fine sampling of
the stellar structure. We find that the presence of strong magnetic field in the crust results in
localizing of some high-frequency crustal elastomagnetic modes with the radial number n ≥
1 to the regions of the crust where the field is nearly horizontal. While the hydromagnetic
coupling of these localized modes to the Alfvén continuum in the core is reduced, their energy
is drained on a time-scale of �1 s. Therefore, the puzzle of quasi-periodic oscillations with
frequencies larger than 600 Hz still stands.
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1 IN T RO D U C T I O N

Magnetar oscillations have been subject of extensive theoretical re-
search since the discovery of quasi-periodic oscillations (QPOs) in
the light curves of giant flares from soft gamma repeaters (SGRs)
(Israel et al. 2005; Strohmayer & Watts 2005; Watts & Strohmayer
2006; see also Barat et al. 1983). The observed oscillations are
measured with high signal-to-noise ratios during time-intervals of
typically few minutes in the frequency range 18–1800 Hz. It has
been proposed by many authors that the physical origin of the QPOs
is seismic vibrations of the star; an idea which opens the possibility
to perform asteroseismological analysis of neutron stars, giving a
unique observational window into the stellar interior. Initially it was
hypothesized that the observed oscillations originate from torsional
shear modes which are confined to the magnetar crust (e.g. Dun-
can 1998; Piro 2005; Watts & Strohmayer 2006; Samuelsson &
Andersson 2007, hereafter SA; Watts & Reddy 2007; Steiner &
Watts 2009). If this hypothesis were true, then the observed QPOs
would strongly constrain physical parameters in the neutron star
crust. However, it was soon realized that, due to the presence of
ultrastrong magnetic fields (B ∼ 1014–1015 G; Kouveliotou et al.
1999) which are frozen both in the crust and in the core of the star,
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the crustal motion is strongly coupled to the fluid core on time-
scales �1 s (Levin 2006, hereafter L06). Over the years, several
authors have studied the coupled crust–core problem (Glampedakis,
Samuelsson & Andersson 2006; Levin 2007, hereafter L07; Gruzi-
nov 2008; Lee 2008; Colaiuda & Kokkotas 2011; Gabler et al.
2011a,b; van Hoven & Levin 2011, hereafter Paper I). In particu-
lar, L06 and L07 argued that for sufficiently simple magnetic field
configurations (i.e. axisymmetric poloidal fields), the Alfvén-type
motions on different flux surfaces are decoupled so that the Alfvén
frequencies in the core feature a continuum. This result is well
known from previous magnetohydrodynamic (MHD) studies, and
it applies to general axisymmetric poloidal–toroidal magnetic fields
(Poedts, Hermans & Goossens 1985). It allows one to describe the
problem of magnetar dynamics in terms of discrete crustal modes
that couple to a continuum of Alfvén modes in the core. With this
approach, L07 and Paper I demonstrated that the presence of an
Alfvén continuum has some important implications for magnetar
oscillations: (i) global modes of the star with frequencies that are
located inside the continuum undergo strong exponential damping
[this phenomenon is often called resonant absorption in the con-
text of MHD (Goedbloed & Poedts 2004)]; and (ii) after the initial
period (<1 s) of exponential decay, the system tends to settle in a
steady state in which it oscillates at frequencies close to the edges of
the continuum; these oscillations correspond to the so-called edge
modes, which were first seen numerically in L07 and Gruzinov
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(2008), and were explained analytically in Paper I. The edge modes
were further observed in the simulations of Gabler et al. (2011a,b)
and Colaiuda & Kokkotas (2011).

In the past half-decade, two distinct computational strategies have
been applied to the problem of calculating magnetar oscillations:

(1) Several groups employed general relativistic MHD grid codes
to simulate the dynamics of magnetized neutron stars. Sotani,
Kokkotas & Stergioulas (2008), Colaiuda, Beyer & Kokkotas (2009)
and Cerdá-Durán, Stergioulas & Font (2009) were able to reproduce
continuum Alfvén modes in the purely fluid stars with axisymmetric
poloidal magnetic field, which provided important benchmark tests
for the ability of the codes to handle complex MHD oscillations.
Building on this, Gabler et al. (2011a,b) and Colaiuda & Kokkotas
(2011) included a crust in their neutron star models, and were thus
able to study the coupled dynamics of the crust and the core.

(2) Our group (L07 and Paper I) and Lee (2008) decomposed the
motion of a magnetar into a set of basis functions, and studied the
dynamics of the coefficients of these series expansions; we shall
refer to this strategy as the ‘spectral method’. This framework is
able to handle both the dynamical simulations and the stationary
eigenmode problem; the latter reduces to solving the eigenvalue
problem for a large matrix. L07 and Paper I chose the basis functions
so that the crustal motion is decomposed into the normal modes of
the free crust, and the core motion is decomposed into the sum of
core Alfvén modes and a separate contribution of the core’s ‘dc’
displacements in reaction to the motion of the crust. We refer the
reader to section 3.2 of L07, section 4.2 of Paper I and Section 4.2
of this paper for technical details. This choice of basis functions
casts the dynamics of magnetars as a problem of coupled harmonic
oscillators, in which the discrete modes of the crust are coupled to
the Alfvén modes in the core.

The computations of Paper I have been performed using New-
tonian equations of motion and in the limit of a thin crust. In this
paper, we improve on Paper I in two ways: (i) we adopt a realistic
crust of finite thickness, threaded with a strong magnetic field; and
(ii) we employ fully relativistic equations governing the motion of
axial perturbations in the crust and the core. Our spectral method
has several practical and conceptual advantages: (i) it is numeri-
cally inexpensive, making implementation of long simulations of
the magnetar dynamics in an ordinary workstation possible; (ii) it
allows one to sample the stellar structure at high spatial resolution;
(iii) it does not suffer from the problem of numerical viscosity that
occurs in some finite difference schemes (scaling with the grid size);
and (iv) it is able to handle arbitrary axisymmetric poloidal fields,
and not just those that are the solutions of the Grad–Shafranov (GS)
equation.1

The outline of this paper is as follows. In Section 2, we derive
relativistic equations describing the magnetic forces acting on axial
perturbations inside a neutron star with an axisymmetric poloidal
magnetic field. We construct a coordinate system which has one
of its axes parallel to the field lines. The equations thus obtained
will be discussed in later sections when we calculate elastomagnetic

1 The approach developed by Sotani et al. (2008) and used in Colaiuda et al.
(2009) and Colaiuda & Kokkotas (2011) casts the MHD equations in the core
into a particularly simple form. This transformation is possible if the poloidal
field is the solution of the GS equation. There is, however, no compelling
reason why the GS equation should hold, since neutron stars feature very
strong stable stratification due to the radial gradients in proton-to-neutron
ratios (Goldreich & Reisenegger 1992; Mastrano et al. 2011).

modes of the crust, and when we calculate the Alfvén continuum in
the core.

In Section 3.1, we introduce a formalism which allows us to
calculate general relativistic elastomagnetic eigenmodes of the crust
by expanding the elastomagnetic equations of motion in a set of
basis functions. This reduces the eigenmode problem of the crust to a
matrix eigenvalue problem. In Sections 3.2 and 3.3, we work out the
relativistic equations describing the magnetic and elastic restoring-
force densities in the curved space–time of the neutron star crust. In
Section 3.4, we apply these equations to the formalism of Section 3.1
in order to find free crustal eigenmodes and eigenfrequencies.

In Section 4, we find the core continuum Alfvén modes in full
general relativity, and we calculate their coupling to the crustal
modes of Section 3. The magnetar model constructed in this way
qualitatively shows the same features of the Paper I model, that is,
above the fundamental Alfvén frequency of ∼20 Hz; the frequency
domain is covered by the core continuum which effectively acts
to damp crustal motion. For particular choices of the field config-
uration, the continuum may contain a number of gaps, generally
well below 200 Hz. These gaps give rise to the characteristic ‘edge
modes’ of Paper I. Moreover, the crustal modes that reside inside
gaps remain undamped. In the appendix, we revisit the problem
of crustal mode damping due to the presence of an Alfvén contin-
uum, by analytically calculating damping rates according to Fermi’s
golden rule.

2 R ELATI VI STI C EQUATI ONS FOR
M AG N E T I C FO R C E S

Magnetic coordinates

We shall consider strongly subequipartition B � 1018 G magnetic
fields, so that the physical deformation of the star is very small and
the space–time is spherically symmetric with respect to the star’s
centre. The metric can be written in the standard Schwarzschild-type
coordinates r, θ and φ. It is natural, in analogy with the Newtonian
treatments, to introduce the flux coordinate system in which one of
the axes is parallel to the magnetic field lines (the precise meaning
of this construction in relativity is described below). In the axisym-
metric poloidal field geometry, the magnetic field lines are located
in planes of constant azimuthal angle φ, which allows us to define
the two ‘magnetic’ coordinates χ (r, θ ) and ψ(r, θ ), such that the
(covariant) vectors eφ = ∂/∂φ and eχ = ∂/∂χ are orthogonal to
eψ = ∂/∂ψ . In the flux coordinate system, the metric is given by

ds2 = −gttdt2 + gχχ dχ2 + gψψdψ2

+ 2gψχ dχdψ + gφφdφ2, (1)

while the magnetic field vector is given by

B = Bχ eχ . (2)

Here B is the 4-vector whose components are given by

Bμ = 1

2
εμναβFαβvν, (3)

where vν is the 4-velocity vector which for the stationary star is
given by vt = gtt v

t = √−gtt , vi = 0.
Clearly, gtt and gφφ are identical to the corresponding

Schwarzschild metric terms,

gtt = 1 − 2m(r)

r
,

gφφ = r2 sin2 θ . (4)

C© 2012 The Authors, MNRAS 420, 3035–3046
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/420/4/3035/972472 by guest on 21 August 2022



Magnetar oscillations – II 3037

Maxwell’s equations

The evolution of the magnetic field is described by Maxwell’s equa-
tions. In curved space–time, these read

Fμν;λ + Fλμ;ν + Fνλ;μ = 0. (5)

In the ideal MHD limit, the electric field Eμ = vνFμν vanishes so
that the only contribution to the electromagnetic tensor comes from
the magnetic field:

Fμν = −εμνλσ vλBσ . (6)

After some manipulation, relations (5) and (6) yield the MHD equa-
tion for the magnetic field:

(vμBν − vνBμ);μ = 0. (7)

This equation entails both magnetic induction, which describes the
flux freezing that characterizes magnetic fields in the ideal MHD
approximation, and Gauss’ law for magnetic fields, that is, (vμBt −
vtBμ);μ = 0. For a static equilibrium, that is, vt = √−gtt and vi =
0 (where the index i runs over the spatial indices), Gauss’ law can
be expressed in the more familiar form

Bi
;i = 1√

g

(√
gBi

)
,i

= 0, (8)

where g ≡ det (gij )/gtt . This expression provides the basis for a
convenient map between magnetic fields of Newtonian and rela-
tivistic stars. In the Newtonian case, the flux coordinates χ and ψ

are functions of r and θ ; we keep this functional form for the rela-
tivistic versions of χ and ψ . The expression in equation (8) is valid
both in the curved space–time and in the flat Euclidean space (with
gij is replaced by the Euclidean metric terms) of the Newtonian star.
We can therefore use equation (8) to convert the values of the Eu-
clidean field, BE, to the correct values of the magnetic field in curved
space–time, BS (the subscript E stands again for Euclidean and S for
Schwarzschild): equation (8) gives

(√
gSB

i
S

)
,i

= (√
gEBi

E

)
,i

= 0.
We thus obtain

B
χ
S =

√
gE√
gS

B
χ
E = 1√

grr

B
χ
E , (9)

which results in the relativistic poloidal magnetic field which is tan-
gent to the flux surfaces ψ = constant and which satisfies Gauss’
law. (In the following, we will drop the subscript S.) In this work,
for concreteness, we use the Newtonian configuration of the mag-
netic field generated by a current loop inside the neutron star and
discussed in detail in Paper I. Other Newtonian configurations are
readily mapped on to the relativistic configurations using the pro-
cedure specified above.

Euler equations

The equations of motion are obtained by enforcing conservation
of momentum, that is, by projecting the conservation of energy
momentum 4-vector on the space normal to the 4-velocity vλ:

hλ
μT μν

;ν = 0, (10)

where the projection tensor hλ
μ is given by

hλ
μ = δλ

μ + vλvμ. (11)

Tμν is the stress energy tensor for a magnetized fluid in the ideal
MHD approximation and can be expressed as

T μν =
(

ρ + P + B2

4π

)
vμvν +

(
P + B2

8π

)
gμν − BμBν

4π
, (12)

where ρ and P are the mass density and pressure and B2 = BμBμ

is the square of the magnetic field, where Bμ = 1
2 εμνλσ uνF λσ is

the covariant component of the Lorentz invariant magnetic field 4-
vector (εμνλσ is the four-dimensional Levi–Civita symbol and Fλσ

is the electromagnetic tensor). The equations of motion become(
ρ + P + B2

4π

)
vμ

;νv
ν

= hμλ

(
P + B2

8π

)
;λ

+ hμ
σ

(
Bσ Bλ

4π

)
;λ

. (13)

Here we have used the relation vνv
ν = gμνv

μvν = −1. Equa-
tion (13) together with equation (7) provides a full description of
(incompressible) motion of the magnetized fluid in a neutron star.

Perturbation equations

We are now ready to derive equations that describe the linearized
motion of a small Lagrangian fluid displacement ζμ about the static
background equilibrium of the star. The perturbed components of
the velocity and the magnetic field 4-vectors, v

μ
pert and B

μ
pert, are

v
μ
pert = vμ + δvμ = vμ + ∂ζμ

∂τ
,

B
μ
pert = Bμ + δBμ, (14)

where the first terms on the right-hand side denote the unperturbed
equilibrium quantities, and the second terms on the right-hand side
denote the Eulerian perturbations associated with the displacement
ζμ. In our ‘magnetic’ coordinates, the only non-zero component of
the unperturbed magnetic field is Bχ = B/

√
gχχ , and because the

equilibrium star is static and non-rotating the only non-zero com-
ponent of the 4-velocity is vt = 1/

√−gtt . Restricting ourselves
to axisymmetric torsional oscillations of the star, we introduce a
small incompressible axisymmetric displacement ζ φ . This implies
that v

μ
pert;μ = δvμ

;μ = δvt
;t , and that the perturbations in pressure,

δP, and mass density, δρ, vanish. Technically, a full description of
the linearized motion of a neutron star would involve perturbations
of the metric gμν , requiring one to augment the above equations of
motion with the perturbed Einstein equations. However, since we
are considering incompressional axial oscillations only, the metric
perturbations are dominated by the current dipole moment. One can
show that this causes perturbations in the off-diagonal elements of
the metric tensor which are of the order of δv2, so that the metric
perturbations can be safely ignored (the so-called Cowling approx-
imation). Taking these considerations into account, we linearize
equations (13) and (7) and after some work we obtain(

ρ + P + B2

4π

)
∂2ζ φ

∂t2
=

√
gtt

gχχ

B

4πgφφ

∂

∂χ

(
gφφ

√−gtt δB
φ
)

(15)

and

δBφ = B√
gχχ

∂ζ φ

∂χ
. (16)

These equations can be combined into a single equation. After
restoring a factor of c2, we find(

ρ + P

c2
+ B2

4πc2

)
∂2ξ

∂t2

=
√

gtt

gχχ

B

4πc2√gφφ

∂

∂χ

[√
gtt

gχχ

gφφB
∂

∂χ

(
ξ√
gφφ

)]
, (17)

where ξ = √
gφφζ φ is the physical displacement (in the φ direc-

tion) in unit length. This equation describes Alfvén waves travelling
along magnetic field lines in the curved space–time of a magnetar.
We checked that in the non-relativistic limit equation (17) reduces
to the correct expression for Alfvén waves in self-gravitating mag-
netostatic equilibria (Poedts et al. 1985).
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3 MO D E S O F A MAG N E T I Z E D C RU S T IN
G E N E R A L R E L AT I V I T Y

In this section, we will describe a formalism that allows us to cal-
culate relativistic eigenmodes and eigenfrequencies of a neutron
star crust of finite thickness and realistic equation of state, threaded
with an arbitrary magnetic field. By considering a crust of finite
thickness, we will obtain high-frequency radial harmonics that are
not present in the crust model of Paper I but which should be taken
into account in view of the observed high-frequency QPOs. In the
past, several authors carried out theoretical analyses of torsional
oscillations of neutron stars with a magnetized crust. Carroll et al.
(1986), Piro (2005), Glampedakis et al. (2006) and Steiner & Watts
(2009) considered horizontal shear waves in a plane-parallel crust
threaded by a vertical magnetic field, whereas Sotani, Kokkotas &
Stergioulas (2007) have performed the first study of magnetized
crusts in general relativity. These authors wrote down equations of
motion for the crust with the frozen-in dipole field but then simpli-
fied their system of equations by neglecting l → l ± 2 couplings.
Effectively, this procedure substitutes the dipole field with an l-
dependent split-monopole field, enforcing the spherical symmetry
for the elastic-MHD equations and restricting the eigenfunctions
to be vector spherical harmonics. Lee (2008), on the other hand,
studied the Newtonian dynamics of spherical neutron stars with a
dipole field, by decomposing the perturbed quantities into a set of
basis functions, and following the dynamics of the expansion coef-
ficients. Here we follow a strategy which is closely related to that
of Lee (2008), but generalize his treatment to general relativity and
arbitrary axisymmetric poloidal fields and find normal modes of
the magnetized neutron star crust in the absence of external forces.
The hydromagnetic coupling of the crust normal modes obtained in
this section, to the core Alfvén modes, will be discussed further in
Section 4.

Formalism for finding crustal eigenmodes

In a magnetized and elastic crust, the motion of a small torsional
Lagrangian displacement away from equilibrium ξ̄ (x, t) (we use the
notation from Paper I; ξ̄ denotes crustal displacements, ξ denotes
displacements in the core) can be described in the general form

∂2ξ̄

∂t2
= Lel(ξ̄ ) + Lmag(ξ̄ ), (18)

where Lel and Lmag are the accelerations due to the elastic and
magnetic forces acting on the displacement field. Expressions for
Lel and Lmag are given and discussed in the next subsection. Aug-
mented with no-tangential-stress conditions, δTrφ = δTrθ = 0, on
the inner and outer boundaries, this equation describes the free os-
cillations of a magnetized neutron star crust. Our procedure for
solving equation (18) is as follows:

First, we decompose the crustal displacement field ξ̄ (t, x) into a
set of basis functions � i(x),

ξ̄ (t, x) =
∞∑
i=1

ai(t)� i(x). (19)

The functions � i form an orthonormal basis for a Hilbert space
with the inner product

〈η|ζ 〉 =
∫
V

w(x)η · ζd3x, (20)

where η and ζ are arbitrary functions defined in the volume V of
the crust, and w(x) is a weight function. Orthonormality of � i(x)
implies that 〈� i |�j 〉 = δij , where δij is the Kronecker delta. The

coefficients ai of the expansion of equation (19) are then simply
ai(t) = 〈ξ̄ (t, x)|� i(x)〉.

Secondly, we decompose the acceleration field of equation (18)
into basis functions � i according to equation (19), and to calculate
the matrix elements 〈∂2ξ̄/∂t2|�j 〉. This yields equations of motion
for ai(t):

äj = Mijai, (21)

where the double dot denotes double differentiation with respect to
time, and

Mij = (〈Lel(� i)|�j 〉 + 〈Lmag(� i)|�j 〉
)
,

Clearly, a crustal eigenmode with frequency ωm (i.e. am,i ∝ eiωmt for
all i) is now simply an eigenvector of the matrix M with eigenvalue
−ω2

m:

−ω2
mam,j = Mijam,i . (22)

The index m is used to label the different solutions to the above
equation. In practical calculations, one truncates the series of equa-
tion (19) at a finite index i = N, so that one obtains a total number
of N eigensolutions. The eigenvalue problem of equation (21) with
finite (N × N) matrix M can be solved by means of standard linear
algebra methods. Given a set of suitable basis functions, the eigen-
vectors and eigenvalues (or crustal eigenfrequencies) converge on
the correct solutions of equation (18) for sufficiently large N (see
the discussion of Section 3.5).

Orthogonality relation for elastomagnetic modes

In the limit of N → ∞, the elastomagnetic eigenfunctions are

ξ̄m(x) =
∑

i

am,i� i(x), (23)

where we omitted the time-dependent part eiωmt , on both sides.
The eigenfunctions ξ̄m will form a new basis for a Hilbert space of
crustal displacements. We can introduce an inner product 〈. . .|. . .〉me

in which this basis is orthogonal as follows: consider a deformation
ξ̄ (x, t) of the crust, decomposed into a sum of eigenfunctions

ξ̄ (x, t) =
∑

m

bm(t)ξ̄m(x), (24)

where we incorporated the harmonic time dependence in the coef-
ficients bm(t). Since ξ̄m are the eigenmodes of the crust, the kinetic
energy of the displacement field K(ξ̄ ) must be equal to the sum of
kinetic energies of the individual modes K(bmξ̄m):

K
(
ξ̄ (x, t)

) =
∑

m

K
(
bm(t)ξ̄m(x)

)
. (25)

In the static Schwarzschild space–time of the neutron star, the con-
jugate time-like momentum pt = −E is a constant of geodesic
motion (see e.g. Misner, Thorne & Wheeler 1973, section 25.2). In
terms of the locally measured energy EL = √−gttp

t , the conserved
‘redshifted’ energy is E = −pt = √−gttEL. Similarly, the kinetic
energy K in terms of the locally measured kinetic energy KL is

K
(
ξ̄
) = √−gttKL

(
ξ̄
)

= 1

2

∫
V

√−gtt ρ̃

∣∣∣∣∂ξ̄

∂τ

∣∣∣∣
2

dṼ = 1

2

∫
V

ρ̃√−gtt

∣∣∣∣∂ξ̄

∂t

∣∣∣∣
2

dṼ

≡ 1

2
〈∂ξ̄/∂t |∂ξ̄/∂t〉me, (26)

where ρ̃ = (
ρ + P/c2 + B2/4πc2

)
is the mass density in a local

Lorentz frame, and dṼ = √
grrgφφgθθ dr dφ dθ is the locally mea-

sured space-like volume element. By substituting this expression for
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the kinetic energy into equation (25), one finds that the cross-terms,
〈∂ξ̄m/∂t |∂ξ̄ k/∂t〉me = ωmωk〈ξ̄m|ξ̄ k〉me with m = k, vanish. After
normalizing the eigenfunctions ξ̄m, so that K(bmξ̄m) = 1/2ω2

mb2
m,

we obtain the orthogonality relation

〈ξ̄m|ξ̄ k〉me =
∫
V

ρ̃√−gtt

ξ̄m · ξ̄ kdṼ = δmk. (27)

The coefficients bm(t) are now simply obtained by taking the inner
product between the displacement field ξ̄ (x, t) and the eigenfunc-
tions ξ̄m(x):

bm(t) = 〈ξ̄ (x, t)|ξ̄m(x)〉me. (28)

In the next two sections, we give expressions for Lmag and Lel,
and we discuss our choice of basis functions � i and the resulting
boundary forces (due to the no-stress boundary conditions) at the
end of Section 3.2. In Section 3.3, we set up a realistic model of
the magnetar crust and we calculate the corresponding elastomag-
netic modes in Section 3.4, where we apply the formalism described
above. In the remainder of this paper, we will focus solely on ax-
isymmetric azimuthal displacement fields, that is, ξ̄ = ξ̄ êφ (where
êφ is the unit vector in the azimuthal direction and ξ̄ is the displace-
ment amplitude) and ∂ξ̄ /∂φ = 0.

3.1 Magnetic force density in the free crust

While the equations of Section 2 hold at arbitrary locations in the
star, we will now consider magnetic forces acting on axisymmetric,
azimuthal perturbations ξ̄ (r, θ ) = ξ̄ (r, θ )êφ in the ‘free’ crust, that
is, a crust with no external stresses acting on it. This implies that
to equation (17) we have to add boundary force terms arising from
this no-external-stress condition. The tangential forces per unit area
on both boundaries are given by

Tmag(rin + ε) − Tmag(rin − ε) = Tmag(rin + ε),

Tmag(rout + ε) − Tmag(rout − ε) = −Tmag(rout − ε), (29)

where Tmag(r) is the magnetic stress at r, and ε is an infinitesimal
number. Adding the boundary terms, we obtain

Lmag(ξ̄ )

=
√

gtt

gχχ

B

4πc2ρ̃
√

gφφ

∂

∂χ

[√
gtt

gχχ

gφφB
∂

∂χ

(
ξ̄√
gφφ

)]

+ 1

ρ̃
Tmag [δ(r − r0) − δ(r − r1)] , (30)

where δ is a Dirac delta function. The magnetic stress Tmag is
derived by linearizing equation (12) and retaining first-order terms.
One obtains

Tmag =
√

gttgφφ

gχχ

cos α
B2

4π

∂

∂χ

(
ξ̄√
gφφ

)
. (31)

3.2 Relativistic equations for elastic forces

In the following, we use relativistic equations describing the elastic
force density acting on axial perturbations in the crust as derived
by Schumaker & Thorne (1983) (see also Karlovini & Samuelsson
2007), and presented in a convenient form by SA (for more details
on the derivation of the following equations, we refer the reader to
these two papers). As shown in SA, the equation of motion for axial
perturbations in a purely elastic crust, that is, ∂2ξ̄/∂t2 = Lel(ξ̄ ),
can be solved by expanding the displacement field ξ̄ (r, θ, φ) into

vector spherical harmonics ξ̄H,lm(θ, φ) ∝ r × ∇Ym
l (where Ym

l is
a spherical harmonic of degree l and order m) and corresponding
radial- and time-dependent parts ξ̄R(r) and f T(t) of the displacement
field. Rewriting equation (2) of SA now gives

Lel

(
ξ̄
)

= 1

ρ̃

[
1

r3

√
gtt

grr

d

dr

(√
gtt

grr

r4μ
d

dr

(
ξ̄R

r

))

−μgtt

(l − 1)(l + 2)

r2
ξ̄R

]
ξ̄H,lmfT, (32)

where the metric terms gtt and grr are the standard Schwarzschild
metric terms, and μ(r) is the (isotropic) shear modulus. The ex-
pansion of ξ̄ into vector spherical harmonics leads to a particularly
simple stress-free boundary condition for the radial function ξ̄R:

d

dr

(
ξ̄R

r

)
= 0, (33)

which is valid on the inner and outer boundaries, r = r0 and r = r1,
respectively.

We are now ready to select our basis functions � i in order to
solve equation (18). It is convenient to separate � i into angular and
radial parts, that is, � i = �H,i�R,i. Although our particular choice
of basis is technically arbitrary, in view of the above discussion, a
natural choice for the angular part �H,i is vector spherical harmonics
of order m = 0 and l = 2, 4, 6, . . . , etc. (we consider axisymmetric
perturbations which are antisymmetric with respect to the equator),

�H,l(θ ) =
√

4π

l(l + 1)

(
r × ∇Y 0

l

) =
√

4π

l(l + 1)

dY 0
l

dθ
êφ, (34)

which are orthonormal with respect to the following inner product:

〈�H,l|�H,l′ 〉 =
∫ π

0
�H,l · �H,l′ sin θdθ = δll′ . (35)

One tempting choice for the radial function is to use the radial
eigenmodes of equation (32), ξ̄R,n (where n is the number of radial
nodes) as basis functions, that is, �R,n = ξ̄R,n. It turns out, however,
that the expansion of the elastomagnetic displacement field (see
equation 19) into elastic eigenfunctions is very inefficient. We found
that better convergence is realized with

�R,n(r) = r

√
2

r1 − r0
cos

(
πn(r − r0)

r1 − r0

)
for n = 1, 2, . . .,

�R,n(r) = r

√
1

r1 − r0
for n = 0, (36)

which obey equation (33), so that no extra boundary terms in Lel

are needed to preserve the stress-free condition. The basis functions
of equation (36) are orthonormal with respect to the following inner
product:

〈�R,n|�R,n′ 〉 =
∫ r1

r0

�R,n�R,n′
1

r2
dr = δnn′ (37)

Combining equations (34) and (37) gives us a series of basis func-
tions that we use in the next section to calculate elastomagnetic
modes of the crust

� ln(r, θ ) = �R,n(r)�H,l(θ ), (38)

which are orthonormal:

〈� ln|� l′n′ 〉 =
∫ r1

r0

∫ π

0

sin θ

r2
� ln · � l′n′ dθ dr = δll′δnn′ . (39)

Note that the weight function w of equation (20) takes the form
w(r, θ ) = sin θ /r2.
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3.3 The neutron star model

We assume that our star is non-rotating and neglect defor-
mations due to magnetic pressure, which are expected to be
small. Therefore, we adopt a spherically symmetric background
stellar model that is a solution of the Tolman–Oppenheimer–
Volkoff equation. We calculate the hydrostatic equilibrium us-
ing a SLy equation of state (Douchin & Haensel 2001; Haensel
& Potekhin 2004; Haensel, Potekhin & Yakovlev 2007) (see
http://www.ioffe.ru/astro/NSG/NSEOS/by Haensel & Potekhin for a
tabulated version). The model that we use throughout this paper has
a mass of M∗ = 1.4 M�, a radius R∗ = 1.16 × 106 cm, a crust thick-
ness �R = 7.9 × 104 cm, a central density ρc = 9.83×1014 g cm−3

and cental pressure Pc = 1.36 × 1035 dyne cm−2. The crustal shear
modulus μ is given by (Strohmayer et al. 1991)

μ = 0.1194

1 + 0.595(173/�)2

n(Ze)2

a
, (40)

where n is the ion density, a = (3/4πn)1/3 is the average spacing be-
tween ions and � = (Ze)2/akBT is the Coulomb coupling parameter.
We evaluate μ in the limit � → ∞.

To the spherical star we add a poloidal magnetic field, which
we generate as follows: we start with an Euclidean (flat) space
into which we place a circular current loop of radius rcl = 0.55R∗
and current I and calculate the magnetic field generated by the
loop (see e.g. Jackson 1998). Then we map this field on to the
curved space–time of the neutron star, as discussed in Section 2.
The field is singular near the current loop; however, all the field
lines which connect to the crust (and thus are physically related to
observable oscillations) carry finite field values. This particular field
configuration is chosen as an example; there is an infinite number
of ways to generate poloidal field configurations. In Fig. 1, we plot
resulting shear and Alfvén velocities in the crust as a function of
radial coordinate r.

3.4 Results

We now use the formalism and equations of the previous sections to
calculate elastomagnetic modes of the magnetar crust. We construct

Figure 1. Shear velocity cs = √
μ/ρ (solid line) versus Alfvén velocity

cA =
√

B2/4πρ for a poloidal field strength of 1015 G (dotted line). The
dashed lines are the radial components of the Alfvén velocity, cA,rad =
cA cos α, evaluated at (from the left-hand to right-hand side) θ = 69o, 79o

and 89o. Closer to the poles (smaller θ ), the field becomes nearly radial and
cA,rad ∼ cA. The cA curve shown in this plot is evaluated at the pole (θ =
0o), but varies negligibly as a function of θ .

Figure 2. Radial profiles of l1 = 2 elastomagnetic modes, evaluated at θ =
81o. The vertical scale of individual curves is adapted for visual convenience.

Figure 3. Examples of elastomagnetic eigenmodes for Bp = 1015 G (where
Bp is the field strength at the magnetic pole), as a function of the polar
angle θ , evaluated at the crust–core interface. The n1 = 0 modes are nearly
unaffected by the magnetic field and are spread out over the crust, whereas
the n1 > 0 modes are affected strongly by the magnetic field, and are confined
to regions near the equator, where the field is horizontal.

a basis from Nn radial functions �R,n(r) (see equation 36) with
index n = 0, 1, . . . , Nn − 1, and Nl angular functions �H,l(θ ) (see
equation 34) with even index l = 2, 4, . . . , 2Nl. These functions
provide a set of Nn × Nl linearly independent basis functions � ln.
Using this basis, we solve the matrix equation (22), and reconstruct
the normal modes according to equation (19).

Radial and horizontal cross-sections of a selection of eigenmodes
are plotted in Figs 2 and 3, and Table 1 contains a list of frequen-
cies. These results are based on a stellar model with a poloidal
field strength of 1015 G at the magnetic pole. For the calculation,
we used Nn = 35 radial basis functions and Nl = 35 angular basis
functions. We labelled the modes with integer indices n1 = 0, 1,
2, . . . and l1 = 2, 4, 6, . . . , where n1 is defined as the number of
nodes along the r-axis and l1 + 1 is the number of nodes along the
θ -axis (including the poles). Note that the index l1, in contrast to
l, does not signify a spherical harmonic degree since the angular
dependence of the elastomagnetic modes differs from pure spher-
ical harmonics. However, there is a connection between the two
indices: the elastomagnetic mode of degree l1 and order n1 can be
interpreted as the magnetically perturbed elastic mode of the same
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Table 1. The eigenfrequencies of the non-magnetic crust
(second column) versus the eigenfrequencies of the magne-
tized crust (third column), with a magnetic field of 1015 G
at the polar surface. The elastomagnetic frequencies were
calculated using a basis of 35 × 35 basis functions � ln.

Mode indices Elastic modes Elastomagnetic modes
(B = 0 G) (B = 1015 G)

n1 = 0, l1 = 2 27.42 Hz 27.61 Hz
n1 = 0, l1 = 4 58.16 Hz 59.14 Hz
n1 = 0, l1 = 6 86.69 Hz 88.13 Hz
n1 = 0, l1 = 8 114.7 Hz 116.5 Hz

n1 = 1, l1 = 2 895.9 Hz 954.1 Hz
n1 = 1, l1 = 4 897.4 Hz 985.7 Hz
n1 = 1, l1 = 6 899.7 Hz 1001.4 Hz
n1 = 1, l1 = 8 902.8 Hz 1003.4 Hz

n1 = 2, l1 = 2 1474.6 Hz 1607.1 Hz
n1 = 2, l1 = 4 1475.7 Hz 1664.4 Hz
n1 = 2, l1 = 6 1477.5 Hz 1708.1 Hz
n1 = 2, l1 = 8 1479.9 Hz 1740.4 Hz

Figure 4. Angular geometry of the l1 = 2, n1 = 1 crustal mode (at the crust–
core interface), as a function of the magnetic field strength. For zero magnetic
field, the curve is identical to the l = 2 vector spherical harmonic �H,l(θ ).
As the field strength increases, the crustal motion becomes gradually more
confined towards the equator.

order and (spherical harmonic) degree. More precisely, if one grad-
ually increases the magnetic field strength, the n, l elastic mode
transforms into the elastomagnetic mode of the same indices, n1 =
n and l1 = l (see Fig. 4). It is interesting to note (see Figs 3 and 4)
that as the field strength increases, modes with n1 > 0 become more
and more confined to a narrow region near the equator (a similar
effect was recently observed in the grid-based simulations of Gabler
et al. 2011b). In the equatorial regions, the horizontal field creates
a magnetic tension-free cavity for modes with radial nodes, which
are reflected back towards the equator at higher latitudes where the
field becomes more radial.2 The n1 = 0 modes, however, having no
radial nodes, are virtually insensitive to the magnetic field and are
therefore not confined to low latitudes. The field strength depen-

2 A similar effect is well known from the study of waveguides: as the
waveguide gets narrower (i.e. as its transverse frequency increases), the
propagating wave may become evanescent in the longitudinal direction and
be reflected.

Figure 5. Frequencies as a function of B. For n1 > 0, the frequencies of
(low) l1 modes nearly coincide and are therefore collectively indicated with
their n1 value, that is, n1 = 1, 2, . . . , etc. Note that at high field strengths,
the n1 > 0 frequencies collectively behave as ω ∝ B.

dence of the eigenfrequencies, illustrated in Fig. 5, is qualitatively
similar to results obtained by other authors (see Carroll et al. 1986;
Piro 2005; Sotani et al. 2007). As we increase the field strength,
we find that the increase in frequency δω for n1 = 0 modes scales
weakly with B, that is, δω ∝ B2. For modes with n1 > 0, δω ∝ B2

if B < 5 × 1013 G, and δω ∝ B if B > 5 × 1013 G.
As a test, we compared the eigenfrequencies and eigenmodes

for zero field, B = 0, to those obtained by a direct integration of
the elastic equation of motion equation(32).3 We find that both
frequencies and wavefunctions obtained by the series expansion
method converge rapidly4 to real values, obtained by integration of
equation (32). For example, for Nn = 10, n1 = 0 elastic frequencies
have a typical error of 0.02 per cent, while frequencies for modes
n1 < 4 are well within 1 per cent accuracy. In Fig. 6 , we plot elas-
tic eigenfunctions, obtained by both methods. The solutions from
the series expansion method with Nn = 10 radial basis functions
are nearly indistinguishable from the solutions obtained by direct
integration.

For the full elastomagnetic equation of motion, equation (18)
with a magnetic field strength of 1015 G at the pole, we tested the
convergence of resulting eigenfrequencies by increasing the number
of basis functions, Nn and Nl (see Fig. 7). We find that, compared to
the non-magnetic case, a significant number Nn of radial functions
and Nl angular functions are required to get acceptable convergence
to stable results. The large number of required radial basis functions
can be understood from the fact that the magnetic acceleration LB

(equation 30) contains delta functions, arising from the boundary
terms. Obviously, one needs many radial basis functions to obtain an

3 The latter works as follows: one starts by assuming harmonic time de-
pendence for the displacement ξ̄ , so that Lel(ξ̄ ) = −ω2ξ̄ . Dropping the
angular- and time-dependent parts of ξ̄ on both sides of the equation, one is
left with an equation for ξ̄R, which is integrated from the bottom of the crust,
with corresponding boundary condition, to the surface. This is repeated for
different ω until the surface boundary condition is satisfied, that is, one has
found an eigenmode. By repeating this procedure with gradually increasing
ω, one obtains a series of eigenmodes and eigenfrequencies.
4 Note that in the purely elastic case, l is a good quantum number and the
angular basis functions �H,l(θ ) are already solutions to the elastic eigen-
mode equation. Therefore, for a given l1 = l, only the series with the radial
basis functions needs to be considered.
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3042 M. van Hoven and Y. Levin

Figure 6. Elastic crustal modes obtained through integration of the elastic
equation of motion (thick dashed curves), and the same modes obtained
by the series expansion method (overplotted by the thin solid curve), using
Nn = 10 radial basis functions.

Figure 7. Demonstration of convergence for elastomagnetic frequencies for
low-order, low-degree modes as a function of Nn and Nl, where we took
Nn = Nl. The actual number of basis functions, N = Nn × Nl, is the square
of the value along the x-axis.

acceptable sampling of these boundary terms. The number of com-
putational operations, however, is a steep function of the number
of basis functions [approximately ∝(Nl × Nn)3], so that compu-
tations with large Nl and Nn can become unpractical in ordinary
workstations. Although this limits the number of basis functions in
our calculations, we find that for Nl, Nn ∼ 35, the scatter in fre-
quencies is typically �1 per cent for most modes (Fig. 7), and the
eigenfunctions ξ̄m reproduce the orthogonality relation (27) with
good precision.

4 C O R E C O N T I N U U M A N D C RU S T – C O R E
C O U P L I N G

4.1 The continuum

The equation of motion in this case is simply the Alfvén wave
equation

∂2ξ (ψ, χ )

∂t2
= Lmag [ξ (ψ, χ )] , (41)

where t denotes the Schwarzschild time-coordinate. The operator
Lmag is given in equation (17), which we repeat here for convenience:

Lmag [ξ (ψ, χ )]

= 1

ρ̃c2

√
gtt

gχχ

B

4π
√

gφφ

∂

∂χ

[√
gtt

gχχ

gφφB
∂

∂χ

(
ξ√
gφφ

)]
. (42)

Here gtt, gχχ and gφφ are the metric terms corresponding to the
system of coordinates defined in Section 2.

For determining the spectrum of the core continuum, the appro-
priate boundary conditions are ξ (χ = χ c) = 0, where χ c(φ) marks
the location of the crust–core interface. The full significance of this
boundary condition will become apparent later in this section when
we develop the analysis for the crust–core interaction (see also
section 4.2 in Paper I). With this boundary condition, equation (41)
constitutes a Sturm–Liouville problem on each separate flux surface
ψ . Using the stellar structure model and magnetic field configura-
tion described in Section 3.3, we can calculate the eigenfunctions
and eigenfrequencies for each flux surface ψ . The reflection sym-
metry of the stellar model and the magnetic field with respect to
the equatorial plane assures that the eigenfunctions of equation (41)
are either symmetric or antisymmetric with respect to the equatorial
plane. We can therefore determine the eigenfunctions by integrat-
ing equation (41) along the magnetic field lines from the equatorial
plane χ = 0 to the crust–core interface χ = χ c(ψ). Let us consider
the odd modes here for which ξ (0) = 0, and solve equation (41) with
the boundary condition ξ (χ c) = 0 at the crust–core interface; for
even modes, the boundary condition is dξ (0)/dχ = 0. We find the
eigenfunctions by means of a shooting method; using fourth-order
Runge–Kutta integration, we integrate from χ = 0 to χ c. The cor-
rect eigenvalues σ n and eigenfunctions ξ n(χ ) are found by changing
the value of σ until the boundary condition at ξ n is satisfied. In this
way, we gradually increase the value of σ until the desired number
of harmonics is obtained. In Fig. 8, we show a typical resulting core
continuum. The continuum is piece-wise, and covers the domains
σ = [41.8, 67.5] Hz and σ = [91.4, ∞) Hz. Gaps, such as the one
between 67.5 and 91.4 Hz in Fig. 8, are a characteristic feature of
the type of poloidal field that we employ in this paper, and typi-
cally occur at low frequencies (i.e. σ < 150 Hz). As we discuss in

Figure 8. The curves show the Alfvén frequencies σ n as a function of the
angle θ (ψ), the polar angle at which the flux surface ψ intersects the crust.
Since we are only considering odd crustal modes, the only Alfvén modes
that couple to the motion of the star are the ones with an odd harmonic
number n. This particular continuum was calculated using a poloidal field
with a surface value of B = 1015 G at the poles.
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Section 4.3, they may give rise to strong low-frequency QPOs (see
also Paper I and Colaiuda & Kokkotas 2011).

According to Sturm–Liouville theory, the normalized eigenfunc-
tions ξ n of equation (41) form an orthonormal basis with respect to
the following inner product:

〈ξm, ξn〉 =
∫ χc

0
r (χ ) ξm (χ ) ξn (χ ) dχ = δm,n, (43)

where δm,n is the Kronecker delta. Noting that the operator Lmag(ξ )
is in Sturm–Liouville form, one reads off the weight function r(χ ):

r =
√

gχχ

gtt

4πρ̃

Bχ

. (44)

We have checked that the solutions ξ n(χ ) satisfy the orthogonality
relations.

4.2 Equations of motion for the coupled crust and core

We are now ready to compute the coupled crust–core motion. In
contrast to L07 and Paper I, where the crust was assumed to be an
infinitely thin spherical elastic shell, we shall here adopt a crust of
finite thickness with realistic structure. We label the latitudinal loca-
tion by the flux surface ψ intersecting the crust–core interface, and
consider the crustal axisymmetric displacements ξ̄φ(ψ, r), where r
is the radial Schwarzschild coordinate. In the MHD approximation,
the magnetic stresses enforce a no-slip boundary condition at the
crust–core interface (at r = r0 in the Schwarzschild coordinates
of the crust, or χ c in the flux coordinates of the core), such that
ξ (ψ, χc) = ξ̄ (θ (ψ), r0) instead of ξ (ψ , χ c) = 0. It is useful to
make the following substitution:

ζ (ψ, χ ) ≡ ξ (ψ, χ ) − ξ̄ (θ (ψ), r0) w (ψ, χ ) , (45)

where we choose the function w(ψ , χ ) so that (i) it corresponds to
the static displacement in the core and hence satisfies Lmag(w(ψ ,
χ )) = 0, and (ii) w(ψ , χ c) = 1. From the definition of the operator
F, it follows that for the odd modes

w (ψ, χ ) = √
gφφ

∫ χ

0

√
gχχ

gtt

K (ψ)

gφφB (ψ, χ ′)
dχ ′. (46)

Here the constant K(ψ) is chosen such that w(ψ , χ c) = 1. The new
quantity ζ from equation (45) now satisfies the boundary condition
ζ (ψ , χ c) = 0 and can be expanded into the Alfvén normal modes
ξ n which satisfy the same boundary conditions.

We now proceed by substituting equation (45) into equation (41),
thus obtaining a simple equation of motion for ζ :

∂2ζ (ψ, χ )

∂t2
− Lmag (ζ (ψ, χ )) = −w (ψ, χ )

∂2ξ̄ (θ (ψ), r0)

∂t2
. (47)

We expand ζ and w into a series of ξ n:

ζ (ψ, χ, t) =
∑

n

an (ψ, t) ξn(ψ, χ ), (48)

w (ψ, χ ) =
∑

n

cn (ψ) ξn(ψ, χ ). (49)

Using these expansions, equation (47) reduces to the following
equations of motion for the eigenmode amplitudes an:

∂2an (ψ)

∂t2
+ σ 2

n (ψ) an (ψ) = −cn (ψ)
∂2ξ̄ (ψ, r0)

∂t2
. (50)

These equations show how the core Alfvén modes are driven by
the motion of the crust. To close the system, we must address the

motion of the crust driven by the hydromagnetic pull from the core:

∂2ξ̄

∂t2
= Lcrust

(
ξ̄
)

− 1
ρ̃

[
gtt

gχχ

√
gφφB2

4πc2
cos α

∂

∂χ

(
ξ√
gφφ

)]
δ(r − r0). (51)

The expression between the square brackets is the hydromagnetic
stress from the stellar core acting on the crust, α is the angle between
the magnetic field line and the radial coordinate of the star, and
Lcrust

(
ξ̄
) = Lmag

(
ξ̄
) + Lel

(
ξ̄
)

is the acceleration of the crustal
displacement due to magnetic and elastic stresses (see Section 3).
We can rewrite this in terms of the coefficients, using equation (45),
the definition of w, and the expansions and orthogonality relations
of equations (27) and (28), as

∂2bj

∂t2
+ �2

j bj

= −
∫ π

0

√
grrgtt

gχχ

B2

2c2
cos α

(∑
n

an

∂ξn

∂χ

+
√

gχχ

gtt

K

B
√

gφφ

∑
i

bi ξ̄i

)
ξ̄j

∣∣∣∣∣
r=r0

r2
0 sin θ dθ, (52)

where the coefficients bj(t) are crustal mode amplitudes defined in
equations (24) and (28). Up to this point the derived equations of
motion for the crust and the fluid core are exact. Note that, as a
consequence of the crust–core coupling, equation (53) describing
the evolution of bj(t) contains a term proportional to bj on the right-
hand side. This term enters due to the static fluid displacement wξ̄

corresponding to the jth crustal mode, and effectively loads this
mode with tension. The ‘tension-loaded’ frequency �̃j of the jth
crustal mode is obtained by moving the term proportional to bj to
the left-hand side of equation (53):

�̃2
j = �2

j +
∫ π

0

√
grr

gχχ

BK

2c2
cos αξ̄ 2

j r

∣∣∣∣
r=r0

dθ. (53)

In the appendix, we use these ‘tension-loaded’ frequencies to cal-
culate theoretical damping rates of crustal modes.

We are now ready to discretize the continuum by converting the
integral of equation (51) into a sum over N points θ i. In order to
avoid the effect of phase coherence (see Section 3) which caused
drifts in the results of L07, we sample the continuum randomly over
the θ interval [0, π/2]. In the following, functional dependence of
the coordinate ψ or θ (ψ) is substituted by the discrete index i which
denotes the ith flux surface:

∂2bj

∂t2
+ �2

j bj

= −
∑

i

√
grr,igtt,i

gχχ,i

B2
i

2c2
cos αi

(∑
n,i

an,i

∂ξn,i

∂χ

+
√

gχχ,i

gtt,i

Ki

Bi
√

gφφ,i

∑
m

bmξ̄m,i

)
ξ̄j ,i

∣∣∣∣∣
r=r0

r2
0 sin θi�θi (54)

∂2ank

∂t2
+ σ 2

nkank = −cnk

∑
j

∂2bj

∂t2
ξ̄j ,k . (55)

These are the equations that fully describe dynamics of our magnetar
model. As with the toy model from Section 2 we integrate them
using a second-order leap-frog scheme which conserves the total
energy to high precision. As a test we keep track of the total energy
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of the system during the simulations. Further we have checked our
results by integrating equations (53) and (55) with the fourth-order
Runge–Kutta scheme for several runs and found good agreement
with the leap-frog integration.

4.3 Results

Based on the results of Paper I, we expect the following dynamical
characteristics to occur:

(i) Crustal modes with frequencies that are inside the continuum
should undergo resonant absorption, that is, if such a mode couples
efficiently to continuum Alfvén modes of the core with similar
frequencies, its motion will be damped on rather short time-scales.
In the appendix, we analytically investigate the efficiency of this
coupling and the resulting damping time-scales.

(ii) Late-time behaviour of the system will show oscillations near
the edges of the continuum; the edge modes.

(iii) Gaps, as present in the continuum of Fig. 8, will give rise to
two types of QPOs: first, crustal modes which are inside these gaps
will remain undamped, although slightly shifted in frequency due
to the interaction with the continuum5; and, secondly, edge modes
near the edges of the gaps may occur.
All of these characteristics were observed in simulations of Paper
I, and we expect them to occur in this work.

We consider 16 crustal modes, that is, (n, l) = (0, 2), (0, 4), (0, 6),
(0, 8), (0, 10), (0, 12), (0, 14), (0, 16), (0, 18), (0, 20), (1, 2), (1, 4),
(1, 6), (1, 8), (1, 10) and (1, 12). We couple these crustal modes to
9000 continuum oscillators, that is, 300 different flux surfaces, each
with 30 Alfvén overtones. We start the simulation by initializing the
crustal mode amplitudes bj = 1 for all crustal modes, while keeping
the continuum oscillators relaxed (ani = 0), and evolve the system
for 52 s in time.

In Table 2, we list the ‘free’ crustal frequencies � and ‘tension-
loaded’ frequencies �̃ for the 16 modes considered in our sim-
ulation. The last column of Table 2 contains the corresponding
theoretically calculated damping rates (see Appendix A). In Figs
9 and 10, we show power spectra which were calculated using the
data of the last 26 s of the simulation.Displacement of the l1 = 2,
n1 = 1 mode is shown in Fig. 11.

5 D ISCUSSION

In this paper, we have laid out the spectral formalism for compu-
tation of general relativistic torsional magnetar oscillations. This
method is efficient; a typical simulation of 50 s of the magnetar
dynamics (i.e. up to tens of thousands of the oscillatory periods)
takes only a few hours of an ordinary workstation. The second-order
symplectic leap-frog scheme ensures that the energy of the system
is conserved with very high accuracy. Our simulations allow us to
investigate which of the oscillatory behaviour is long-lived enough
(∼100 s) to be relevant to the observations of QPOs in the tails of
giant SGR flares (Israel et al. 2005; Strohmayer & Watts 2006).

The results from our simulations are qualitatively in agree-
ment with earlier results in Paper I. In particular, the presence of
undamped crustal motion in gaps of the Alfvén continuum was
established both analytically and in our numerical simulations, in

5 The presence of ‘gap modes’ like the ones found in Paper I was recently
confirmed by Colaiuda & Kokkotats (2011).

Table 2. Frequencies � of the ‘free’ crustal modes (second
column), and ‘tension-loaded’ frequencies �̃ due to the crust–
core coupling (third column; see equation 53). The resonant
damping time-scales τ d (see Appendix A) are given in the fourth
column. The n1 = 0, l1 = 2, 4 modes are shifted into the ‘gap’ (in
the interval σ = [67.5, 91.4] Hz) and are therefore undamped.
The long damping time of the n1 = 0, l1 = 12 crustal mode is due
to the fact that the only resonant Alfvén layer nearly coincides
with a crustal node.

Mode indices Crustal Tension-loaded Damping
frequencies frequencies time

� (Hz) �̃ (Hz) τ d (ms)

n1 = 0, l1 = 2 27.61 71.10 ∞
n1 = 0, l1 = 4 59.14 86.49 ∞
n1 = 0, l1 = 6 88.13 107.6 6.2
n1 = 0, l1 = 8 116.5 131.6 0.47

n1 = 0, l1 = 10 144.7 157.0 0.53
n1 = 0, l1 = 12 172.7 183.0 287
n1 = 0, l1 = 14 200.6 209.5 0.67
n1 = 0, l1 = 16 228.5 236.3 1.3
n1 = 0, l1 = 18 256.3 263.3 0.97
n1 = 0, l1 = 20 284.1 290.4 0.83
n1 = 1, l1 = 2 954.1 955.0 5.8
n1 = 1, l1 = 4 985.7 986.7 11.4
n1 = 1, l1 = 6 1001.4 1002.4 1.4
n1 = 1, l1 = 8 1003.4 1004.5 3.3

n1 = 1, l1 = 10 1006.5 1007.5 2.7
n1 = 1, l1 = 12 1010.5 1011.6 2.5

Figure 9. Power spectrum of the crustal motion.

contrast to recent results by Gabler et al. (2011b), where the authors
report in some detail the strong damping of an elastic crustal mode
inside a gap. We argue that this discrepancy might be due to the
fact that Gabler et al., while considering stronger magnetic fields,
couple the entire core mass, including the neutrons, to the Alfvén
modes. As a result, the effective mass of the Alfvén modes is a
factor of ∼20 greater than ours, imposing a frequency shift on the
crustal mode, which may well push it out of the gap.

One of the puzzling features of the observations is several high-
frequency QPOs above 600 Hz (Watts & Strohmayer 2006). The
thin-crust models of Paper I had strongly suggested that crustal
modes of such high frequency should be subject to the strong res-
onant absorption in the core, even if the core’s Alfvén modes do
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Figure 10. The same power spectrum, but closed up. The position of the
continuum is indicated by the arrows.

Figure 11. Displacement of the l1 = 2, n1 = 1 mode. The theoretically
calculated damping time τ d = 5.8 × 10−3 s. Note the transient increase in
the mode amplitude. This is due to the initial Alfvén wavetrain, which is
reflected at the equator.

not form a mathematical continuum.6 In accordance with results of
Gabler et al. (2011b), we found that some crustal modes are con-
fined to the regions in the crust where the magnetic field is nearly
horizontal. Because of this, the coupling to the Alfvén modes in the
core is reduced relative to the coupling strength estimated in Paper
I; however, the coupling is still large enough for the mode energy to
be drained on a time-scale small compared to the observed QPOs
(τ d � 100 s). Thus, it is still hard to understand the high-frequency
QPOs (>600 Hz) in terms of axial oscillations of the star. An in-
teresting alternative might be to consider polar Alfvén oscillations.
The polar oscillations studied by Sotani & Kokkotas (2009) form
a discrete set of modes with frequencies of several hundreds of Hz
and may be interesting candidates for high-frequency QPOs if their
coupling to other Alfvén modes turns out to be weak.

6 This is because the frequencies of even discrete Alfvén modes form a
grid, whose characteristic spacing is much less than 600 Hz. At such high
frequencies, the grid acts dynamically as a continuum (see Paper I for a
more detailed discussion).
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APPENDI X A : DAMPED MODES

Now we explore the phenomenon of resonant absorption which
occurs in a system where a harmonic oscillator is coupled to a con-
tinuum of oscillators. Our aim is to find an analytic estimate for
the rate at which the energy of such an oscillator is transferred to
the continuum. The objective of this section and the method that we
follow are analogous to a derivation of quantum mechanical Fermi’s
golden rule, which gives the transition rate from one quantum me-
chanical eigenstate to a continuum of states.
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Consider the coupled crust–core dynamics of Section 4. The
forced motion of the core Alfvén modes due to the acceleration of
the crust is

än(ψ) + σ 2
n (ψ)an(ψ) = −cn(ψ) ¨̄ξ (ψ, r0), (A1)

where an(ψ) is the displacement of the nth core Alfvén harmonic
on the flux surface ψ with frequency σ n, ¨̄ξ (ψ, r0) is the accel-
eration of the crust at the location where the flux surface ψ in-
tersects the crust, and cn(ψ) = 〈w(ψ , χ ), ξ n〉 is a coupling con-
stant (see equation 49). Suppose that we keep the system initially
fixed in a position where the crust is displaced with amplitude
bm,0 according to the mth eigenmode, that is, ξ̄ = bm,0ξ̄m, and
the continuum oscillators are relaxed; an(ψ) = 0. At time t = 0
we release the crust which starts oscillating at the ‘tension-loaded’
frequency �̃m. Suppose that the damping time-scale τ d,m of the
crustal mode is much larger than its period τm = 2π/�̃m, then
the crust oscillates at roughly constant amplitude, that is, bm(t) ≈
bm,0 cos �̃mt . This motion forces the Alfvén oscillators according
to

än(ψ) + σ 2
n (ψ)an(ψ) = cn(ψ)�̃2

mbm,0ξ̄m(ψ, r0) cos �̃mt. (A2)

One can solve the time-evolution of the oscillator an(t) using stan-
dard techniques (see e.g. Landau & Lifshitz 1976, section 22). After
a time t the energy per flux surface En(ψ) = 1/2(ȧ2

n + σ 2
n a2

n) ab-
sorbed by the oscillator is

En(ψ, t) = 1

2
c2
n(ψ)�̃4

mb2
m,0ξ̄

2
m(ψ, r0)

∣∣∣∣
∫ t

0
cos �̃mt ′e−iσnt ′ dt ′

∣∣∣∣
2

.
(A3)

It is easy to verify that at late times the term between the vertical
lines in equation (A3) becomes narrowly peaked around σn = �̃m,
so that the bulk of energy is transported to oscillators which are in
(near) resonance with the crust. The average rate of energy (per flux

surface) transfer 〈Ėn(ψ, t)〉 from the crust to the flux surface ψ at
time t is En(ψ, t)/t . For sufficiently large t one finds

〈Ėn(ψ, t)〉 ≈ π

4
c2
n(ψ)�̃4

mb2
m,0ξ̄

2
m(ψ, r0)δ(�̃m − σn), (A4)

where δ(�̃m −σn) is a Dirac delta function. This expression is exact
in the limit of t → ∞. The total rate of energy transfer Ė from the
crust to the Alfvén continuum is then obtained simply by integrating
equation (A4) over ψ and summing over all n:

Ė =
∑

n

∫ ψmax

ψmin

〈Ėn(ψ)〉dψ

=
∑
n,k

π

4
c2
n(ψk)�̃4

mb2
m,0ξ̄

2
m(ψk, r0)

dψ

dσn

∣∣∣∣
ψ=ψk

, (A5)

where ψk denotes flux surfaces that are in resonance with the crustal
motion,σn(ψk) = �̃m. Since for a given n, the crustal mode may
be in resonance with Alfvén modes in several flux surfaces ψk,
the total energy transfer is obtained by summing over the index
k. Equation (A5), which is the analogue of Fermi’s golden rule
in quantum physics, leads to a simple expression for the energy-
damping time-scale τE,m (=1/2τ d,m) of the crustal mode:

τE,m ∼ E(t = 0)

Ė
=

[∑
n,k

π

2
�̃2

mc2
n(ψk)ξ̄ 2

m

dψ

dσn

∣∣∣∣
ψ=ψk

]−1

, (A6)

where E(t = 0) = 1/2�̃2
mb2

m,0 is the initial energy of the mth crustal

mode. Using numerical simulations, we verified the correctness of
equation (A6). Even for very short damping times, that is, τd =
2τE ∼ 2π/�̃m, equation (A6) proves remarkably accurate.
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