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1. Introduction

Conventional electronic devices are based on the manipulation

of electrons as charged particles. Spintronics adds a new degree

of freedom, where the intrinsic property of electrons—the spin—
is used to perform operations, or transport and store informa-

tion.[1,2] Prominent spintronic devices are disk read-and-write
heads based on magnetic tunnel junctions (MTJ) used in

conventional hard disk drives, but are
under development nowadays also for tape
drives[3] or magnetic random access mem-
ories (MRAM) based on the tunnel magne-
toresistance effect (TMR). In an MTJ, two
ferromagnetic electrodes sandwich a thin
insulating layer with Al2O3 and MgO being
typical barrier materials. Large TMR values
can be obtained, if half-metallic electrodes
are used, an insight which triggered an inten-
sive investigation of half-metallic oxides.[4–7]

In general, oxides have proved to be an
astonishing materials class. They exhibit
the striking property of being synthesiz-
able as well-defined thin films opening
the path toward realizing 2D electronics,
layered superstructures, or devices, which
rely on the coupling and interaction
between various degrees of freedom pres-
ent in different sublayers.[8] Furthermore,
oxides allow for a rich phase space of
chemical composition, because several
elements can be combined within an oxide
structure in terms of an ordered or disor-

dered compound where the desired target properties can be
tuned depending on the underlying composition. Hence, this
versatile class of materials represents a relevant prospect for
industry, as the miniaturization of sensors and other devices
calls for multifunctional materials, externally controllable and
compatible with nanostructured devices. Transition metal
oxides (TMOs), showing ferroic or antiferroic phases such as
ferromagnetism, antiferromagnetism, ferroelectricity, etc. have
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The theoretical treatment of complex oxide structures requires a combination of

efficient methods to calculate structural, electronic, and magnetic properties, due

to special challenges such as strong correlations and disorder. In terms of a

multicode approach, this study combines various complementary first-principles

methods based on density functional theory to exploit their specific strengths.

Pseudopotential methods, known for giving reliable forces and total energies,

are used for structural optimization. The optimized structure serves as input

for the Green’s function and linear muffin-tin orbital methods. Those methods

are powerful for the calculation of magnetic ground states and spectroscopic

properties. Within the multicode approach, disorder is investigated by means of

the coherent potential approximation within a Green’s function method or by

construction of special quasirandom structures in the framework of the pseu-

dopotential methods. Magnetic ground states and phase transitions are studied

using an effective Heisenberg model treated in terms of a Monte Carlo method,

where the magnetic exchange parameters are calculated from first-principles. The

performance of the multicode approach is demonstrated with different examples,

including defect formation, strained films, and surface properties.
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therefore attracted significant attention. Of special interest are
multiferroic materials,[9] because several ferroic phases are cou-
pled nontrivially giving rise to novel tuning mechanisms and
control of future electronic and spintronic devices. Another sig-
nificant breakthrough in oxide materials research was achieved
by the discovery of the first oxide quasicrystal (OQC),[10,11]

where it was shown that bariumtitanate, intensively investi-
gated and applied over decades, shows a quasicrystalline struc-
ture as a monolayer on a Pt(111) surface. This underlines the
importance of the study of oxide thin films.

Oxides containing transition metals or rare earth elements
furthermore exhibit strongly localized electrons. Thus, the weak
overlap of localized orbitals with orbitals of neighboring atoms
leads to a decrease of the electron hopping strength resulting
in flat bands. In such flat bands the involved energy range in
terms of the band width becomes comparable with the electron–
electron interaction strength leading to strong correlation effects
and results in rich phase diagrams containing various phases of
magnetic, charge, or orbital ordering as well as unconventional
superconductivity.[12,13]

The general development of novel oxide-based devices and
oxide materials research—only a few trends were mentioned
earlier—revealed several challenges in basic research.[14]

In addition to understanding the underlying physics of the
emerging effects, a major bottleneck remains in identifying
respective functional materials for future technical applications.
This concerns the identification of relevant oxides, the growth
and fabrication of oxide thin films, and the development of
control and tuning mechanisms based on strain and defect
concentration. A combination of first-principles methods based
on density functional theory (DFT) and simulation techniques
in close collaboration with experiments is inevitable in
this field.

We review how first-principles methods can be combined
in terms of a multicode approach to investigate challenging
complex oxide structures with respect to their electronic and
magnetic properties. The paper is organized as follows. We start
with an overview of different first-principles methods
relevant for our investigations, highlighting the main concepts
of each method together with its strengths and weaknesses.
A sufficient treatment of the strong correlations appearing in
oxides is necessary for a precise calculation of physical properties
of oxides. Two schemes, the self-interaction corrections (SICs)
and Hubbard corrections, will be discussed in more detail.
Furthermore, we review how disorder can be described, which
plays an important role in oxides. It can appear as disorder in
a sublattice of a solid solution, as chemical disorder
at interfaces, or in terms of intrinsic defects and impurities.
Here, we introduce and compare two different approaches, the
coherent potential approximation (CPA) to be used in connection
to Green’s function methods and the special quasirandom
structures (SQS), which can be used in connection with efficient
basis set methods allowing us to handle large supercells.

In addition to electronic properties we will explain the deter-
mination of magnetic ground state structures by first-principles
methods together with the transition between magnetic
structures in dependence on temperature. While the magnetic
ground state structure can be found by comparison of the total
energies of different magnetic structures, the temperature

dependence will be investigated by means of an effective classical
Heisenberg model. We review first-principles methods to deter-
mine Heisenberg exchange parameters as well as the implemen-
tation of the Monte Carlo method used to study the magnetic
ground state and temperature-dependent behavior. In the last
section, we review several applications and combinations of
the methods on the example of relevant functional oxides.
A summary concludes the paper.

2. First-Principles Methods

Many macroscopic properties of solids can be described uniquely
via their electronic structure, which is determined using a quan-
tum mechanical approach. The theoretical description of the
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electronic structure requires nevertheless a nontrivial treatment
of a many-body problem. The corresponding many-body wave

function of a quantum mechanical system is a function of the
position and spin of all particles, which results in a huge number

of degrees of freedom. The calculation of such a wave function is
possible only for very small systems consisting of a few atoms.
Therefore, a quantum mechanical description of many-particle

systems necessarily requires suitable approximations.

2.1. Basics of Density Functional Theory

A prominent simplification is given by the framework of the
DFT, a first-principles approach that has been applied success-

fully for more than 50 years in simulations throughout solid state
physics, nuclear physics, and chemistry. The DFT is based on the
two Hohenberg and Kohn theorems, which state that all ground

state properties of a quantummechanical system can be uniquely
described via its particle density and that a related and unique

ground state exists.[15] According to the Hohenberg–Kohn
theorems, the total energy of a system is a unique functional
of an external potential vðrÞ caused by the underlying lattice

of atomic nuclei and sources other than the solid itself

E½ρ� ¼ T ½ρ� þ
Z

dr vðrÞρðrÞ þ Vee½ρ� (1)

which is determined, except for a trivial additive constant, by the
electron density ρðrÞ. The electronic density ρðrÞ determines
uniquely the ground state and all other electronic properties

of the system, where T ½ρ� and Vee½ρ� are functionals of the kinetic
energy and the electron–electron interaction, respectively. In

Equation (1), the total energy is exact for any quantum mechani-
cal system, but a closed expression for T ½ρ� and Vee½ρ� as func-
tionals of ρðrÞ is unknown and, therefore, the equation cannot be

directly exploited. Kohn and Sham suggested to represent the
electronic density via electronic wave functions in the indepen-

dent particle approximation.[16] In this approach, the total energy
functional is given by (this and the following equations are

expressed in Rydberg units)

E½ρ� ¼ T s½ρ� þ
Z

dr vðrÞρðrÞþ

þ
Z

drdr 0
ρðrÞρðr 0Þ
jr 0 � rj þ Exc½ρ�

(2)

where T s½ρ� is the single-particle kinetic energy functional of the
independent electrons, the second term is the same as in
Equation (1), the third term is the Hartree or Coulomb energy

functional, and the last term is the so-called exchange-correlation
energy functional Exc½ρ�. The latter contains the difference

between T ½ρ� and T s½ρ� and those contributions of Vee½ρ� which
go beyond the electrostatic interaction of charge densities. This
term is presumably small and must be approximated.

The electronic density in the independent particle approxima-
tion is given by

ρðrÞ ¼
Xocc

i

ψ iðrÞψ*i ðrÞ (3)

where the ψ iðrÞ represent the N lowest occupied eigenstates of

the one-electron Kohn–Sham Hamiltonian and are solutions of
the corresponding Kohn–Sham equation

ð�∇
2 þ veff ðrÞ � εiÞψ iðrÞ ¼ 0 (4)

with an effective Kohn–Sham potential

veff ðrÞ ¼ vðrÞ þ 2

Z

dr 0
ρðr 0Þ
jr 0 � rj

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

vHðrÞ

þ vxcðrÞ (5)

Here, the first term is the external potential, the second term is
the Coulomb or Hartree potential vHðrÞ, and the last term is the

exchange-correlation potential defined as

vxcðrÞ ¼
δExc½ρ�
δρðrÞ (6)

which must be approximated together with Exc½ρ�. The first
efficient approximation was introduced by Kohn and Sham,

who restrict Exc½ρ� only to the local density at r and approximate
it with the uniform electron gas formula,[16] known as the

local density approximation (LDA) or the local spin density
approximation (LSDA) for magnetic systems (only the term

LDA is used in the following independently of the particular

system). Nowadays there exist various efficient parameteriza-
tions of Exc½ρ�.[17,18]

Throughout our examples and studies discussed subse-

quently, we always chose the exchange-correlation functional
best suited to the posed problem and most reasonable in

terms of computing times. Where the parameterization of
Perdew and Wang[19] for the LDA failed to describe the

materials properties well enough, we adapted mostly the
generalized gradient approximation (GGA) from Perdew–

Burke–Ernzerhof (PBE).[20] In other cases, the especially for

solids revised PBE functional PBEsol was applied[21]—we point
out explicitly, when other functionals were used. In case of

magnetic systems, the respective spin-resolved functionals were
applied.

Altogether, Equation (4) reduces the complex many-body

problem to that of one electron interacting with the effective field
of all other electrons and the nuclei, expressed by veff ðrÞ in

Equation (5). The latter, however, also depends on the electronic

charge density and the final solution is found by a self-consistent
iteration of the so-called Kohn–Sham Equations (3)–(5). The total

energy is calculated from Equation (2). Based on this iteration
procedure, various numerical methods have been developed over

the past decades being successful in describing ground state
properties of materials systems. They can be divided into a

few basic categories depending on the approach to solve the
Kohn–Sham equations. In the following, we will focus on two

methods: first, those based on basis sets and, second, the multi-

ple scattering theory applied to the electronic structure of solid
materials, which was pioneered by Korringa, Kohn and Rostoker

(KKR)[22,23] and developed later to the Green’s function
method.[24,25] Both names, KKR and Green’s function method,

are often used synonymously.[25]
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2.2. Basis Set Methods

The solution of the Kohn–Sham–Schrödinger Equation (4) can
be obtained by expanding the Kohn–Sham wave functions in
terms of a basis set. As a result, the differential equation is
transformed into a system of linear algebraic equations for
the expansion coefficients, which can be solved numerically.
Although the general formalism remains the same, additional
conditions and approximations might emerge from the choice
of the respective basis. A prominent example is the introduction
of so-called pseudopotentials that allow us to use efficiently
a set of plane waves instead of strongly oscillating atomic wave
functions. Such an approach is implemented in several program
packages, such as VASP,[26,27] ABINIT,[28] and Quantum
ESPRESSO.[29] In addition to plane waves, the linear combination
of atomic orbitals (LCAO) offers another well-established
approach, which is used in program codes such as CRYSTAL,[30]

FPLO,[31] and SIESTA.[32] Furthermore, both approaches can be
combined, e.g., in the full-potential augmented plane wavemethods
combining atomic orbitals and plane waves: WIEN2K,[33]

FLEUR,[34] and ELK.[35] Another combination of atomic orbitals
with partial waves leads to the linear muffin-tin orbital method
(LMTO)[36,37] or the augmented spherical wave method.[38,39]

In the following, we give an overview of the basic concepts of
pseudopotential methods and LMTO methods.

2.2.1. Pseudopotentials

Themodern pseudopotential and projector augmented plane wave
(PAW)methods have the orthogonal plane wavemethod (OPW)[40]

as a predecessor. The basic idea is to transform the original
problem to a form that operates with smoothly varying functions,
i.e., removing strongly oscillating parts of the wave function close
to the nuclei. To briefly outline the main concept, we recall the
very early ideas by Phillips and Kleinman.[41] Therein, the exact
wave function of a valence electron ψν can be expressed as

jψνi ¼
�
�
�ϕ̃ν

E

þ
X

c

αcjϕci, αc ¼ �
D

ϕc

�
�
�ϕ̃ν

E

(7)

The valence wave function jψνi has to be orthogonal to the
core functions jϕci of the same symmetry. The pseudo-wave

function jϕ̃νi is a smooth function and follows as a solution
of the modified Schrödinger equation
h

H þ
X

c

ðE � EcÞjϕcihϕcj
i�
�
�ϕ̃ν

E

¼ E
�
�
�ϕ̃ν

E

HPS
�
�
�ϕ̃ν

E

¼ E
�
�
�ϕ̃ν

E (8)

where H ¼ T þ V is the full electronic Hamiltonian operator
(e.g., Kohn–Sham Hamiltonian in Equation (4)). The energies
Ec are the energy levels of the core states and the potential part

in HPS is given by

VPS ¼ V þ VR ¼ V þ
X

c

ðE � EcÞjϕcihϕcj (9)

The nonlocal operator VR represents a repulsive potential and
cancels the attractive potential from the cores, resulting in a
smoothly varying pseudopotential VPS. In addition, the states

of the core electrons are treated as constant—the so-called frozen

core approximation.
Over the years several important schemes to construct pseu-

dopotentials have been developed, such as norm-conserving

pseudopotentials,[42] ultrasoft pseudopotentials,[43] and the PAW
method,[44] to name only the most important. These approaches

are implemented in packages such as VASP, ABINIT, or
Quantum ESPRESSO.

The use of pseudopotentials is the basis of an efficient repre-

sentation of the crystal wave function. A big advantage of the

here-discussed codes is that they allow a detailed investigation
of the real structure of complex bulk materials, defects, surfaces,

or interfaces. Instead of using experimental information, which
is not always available or precise, such methods allow for

determining the ground state crystal structure in a theoretical
consistent way by structural optimization.

To find the correct structure representing the energy minimum

from an initial guess in agreement with all symmetry require-

ments, one has to minimize the forces acting on the atoms.
The calculation of forces is based on the Hellmann–Feynman

theorem (force theorem), where the force acting on an atom at
position R is given as a derivative of the total energy E by[45]

FR ¼ � ∂E

∂R
¼ �

Z

dr ρðrÞ ∂vðrÞ
∂R

� ∂EI

∂R
(10)

with the external potential vðrÞ in Equation (5) and the ionic energy
EI. The latter can be efficiently calculated using a DFT approach

with an appropriate exchange-correlation potential.
However, the evaluation of forces in Equation (10) is an intricate

task, which cannot be implemented efficiently in all DFT methods.

For example, the Green’s function method or the LMTO-ASA
method described later cannot provide accurate calculations of

forces because of their potential representation and the partial

wave expansion of the wave function. Therefore, plane wave meth-
ods are often used to generate ground state structural information,

which serves as input for other methods, as presented for our
multicode approach later, where VASP is one of the basic tools.

2.2.2. Linear Muffin-Tin Orbitals

The LMTO method can be derived from partial wave methods by
energy linearization. Generally, the atomic sphere approximation

(ASA) is used, i.e., the potential is represented by slightly overlap-
ping, space-filling spheres around the nuclei (LMTO-ASA),

although there exist several efficient full-potential implementa-
tions of the LMTO method.[46–48] In LMTO-ASA, the potential

inside the sphere is spherical symmetric. The solution of the sin-
gle-site problem in the sphere at R with angular momentum L ¼
ðl,mÞ and energy E is given by φR,Lðr,EÞ ¼ φR,lðr,EÞYLðr̂Þ. The
total wave function ψðrÞ is built from so-called muffin-tin orbitals

ψðrÞ ¼
X

RL

cRLψRLðr,EÞ (11)

defined inside and outside the sphere as

ψ<
RLðr, EÞ ¼ NRlðEÞφR,LðrR ,EÞ þ PRlðEÞJLðrRÞ

ψ>
RLðr, EÞ ¼ KLðrRÞ

(12)
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The functionsNRlðEÞ and PRlðEÞ are normalization and poten-
tial functions, while JLðrÞ and KLðrÞ are solutions of the Laplace
equation [JLðrÞ ¼ JlðrÞYLðr̂Þ, KLðrÞ ¼ K lðrÞYLðr̂Þ]. This formula-
tion leads to a KKR-like secular equation that separates the
properties of the individual atoms from the structure of the sys-
tem, but has a nonlinear energy dependence. The key step is to
linearize the energy dependence of the radial function by a Taylor
series expansion around some fixed energy E0 ¼ Eν,Rl, which
represents usually the center of the occupied part of the
R and l projected density of states of the valence electrons

φR,lðr,EÞ ¼ ϕR,lðrÞ þ ϕ̇R,lðrÞðE � E0Þ
ϕR,lðrÞ ¼ φR,lðr,E0Þ

(13)

ϕ̇R,lðrÞ ¼ φ̇R,lðr,E0Þ (14)

Here, ϕ̇R,lðrÞ is the energy derivative of φR,lðr,EÞ at E0. This
linearization restores an eigenvalue problem. Lattice Fourier
transformations are used to take translational symmetry into
account. Despite the limitations due to the potential approxima-
tion, the LMTO method allows for the construction of Green’s
functions, the treatment of disorder, or the extension into a rel-
ativistic theory.[49] In addition, next generation muffin-tin meth-
ods are also applied successfully to various materials research
problems, e.g., the exact muffin-tin orbital method (EMTO).[50]

In our studies of oxide systems, we used the fully relativistic
LMTO band structure method for simulations of magneto-optics,
X-ray absorption spectroscopy (XAS), and X-ray magnetic
circular dichroism (XMCD) data (see Section 6.3). It applies
an implementation, which uses four-component basis functions
constructed by solving the Dirac equation inside an atomic
sphere.[51,52] Further details of the method can be found in pre-
vious studies.[49,53,54]

2.3. Green’s Function Method

In contrast, the solution of the Kohn–Sham Equation (4) can be
approached also in terms of the multiple scattering theory, which
leads in a natural way to the Green’s function method.[24,25,55–58]

This formulation provides flexibility and wide applicability,
because the Green’s function itself contains all information of
the system and can be straightforwardly used to calculate the
spectral properties of the Kohn–Sham Hamiltonian, the charge
density of the system, or any other observable.[22,23] Without pro-
viding a complete list, there are various successful realizations of
the Green’s function approach available, such as the Munich
SPRKKR program package,[58] the Jülich massively parallel
Green’s function method for large-scale systems,[59] the LSMS
package,[60] AkaiKKR,[61] the disordered local moment method
(DLM),[62] or HUTSEPOT.[63,64] The latter is the method of
choice for our multicode approach, as it is designed for a multi-
tude of problems in materials research from bulk materials, sur-
faces, interfaces, or real space clusters. The code development
started several years ago with the calculation of semirelativistic
angle-resolved photoemission spectra.[65]

In general, the one-electron Kohn–Sham Green’s function
of a complex energy E can be constructed in real space in terms
of a complete set of orthonormal wave functions, ψ iðrÞ, the

eigenfunctions of a Kohn–Sham Hamiltonian, and correspond-
ing eigenenergies εi

Gðr, r 0;EÞ ¼
X

i

ψ iðrÞψ*i ðr 0Þ
E � εi

(15)

Alternatively, the Green’s function Equation (15) can be found
as the resolvent of the Kohn–Sham Equation (4) by solving
self-consistently

ð�∇
2 þ veff ðrÞ � EÞGðr, r 0;EÞ ¼ �δðr, r 0Þ (16)

where veff ðr) is the effective Kohn–Sham potential, as introduced
in Equation (5). The corresponding Green’s function can be con-
structed for any complex energy E. It determines the expectation
value of an observable Ô by

hÔi ¼ � 1

π
Im Tr

Zþ∞

�∞

dE f ðEÞÔGðr, r 0;EÞ (17)

where f ðEÞ is the Fermi–Dirac distribution function. In particu-
lar, the electronic density in Equation (3) can be also calculated
using the Green’s function as

ρðrÞ ¼ � 1

π
Im Tr

Zþ∞

�∞

dE f ðEÞGðr, r 0;EÞ (18)

Within the multiple scattering theory, a crystal under consid-
eration has to be decomposed into distinct atomic regions.
Therefore, we use in HUTSEPOT various shape approximations
for the effective Kohn–Sham potential in Equation (5). Assuming
a nonoverlapping spherical potential at each atomic site with a
constant interstitial region utilizes the so-called muffin-tin
approximation (MTA). This method is simple to implement
and is very efficient for metallic close-packed systems.
Another spherical approach is given by the ASA, where the vol-
ume of all atomic spheres in the unit cell is chosen to be equal to
the volume of the Wigner–Seitz cell. This method provides a bet-
ter description of open systems than the MTA, although it suffers
from an artificial scattering of electrons because of overlapping
atomic spheres. The ASA Green’s function can be improved by
inserting so-called empty spheres (with a nuclear charge Z ¼ 0)
into the interstitial region. However, the error introduced by the
overlap of the atomic potentials remains, although it can be
reduced efficiently using a proper choice of atomic and empty
spheres. The accuracy of total energy calculations can be substan-
tially improved using a full-charge density representation in
the integrals entering Equation (2).[66] In this method the charge
density (Equation (18)) is expanded into spherical harmonics
YLðr̂Þ ¼ YLðθ,ϕÞ inside the Wigner–Seitz cells as

ρðrÞ ¼
X

L

ρLðrÞY*L ðr̂Þ (19)

where L ≡ ðl,mÞ. The integrals in Equation (2) are calculated using a
shape function representing the underlying Wigner–Seitz cell. In
contrast, the real shape of the Wigner–Seitz cell can be taken into
account by a full-potential approach,[57,61,67,68] in which the effective
potential is decomposed with respect to spherical harmonics
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veff ðrÞ ¼
X

L

veffL ðrÞYLðr̂Þ (20)

Based on this full-potential approximation and the real-space
multiple scattering theory, the Green’s function is expressed for
any arrangement of atoms in terms of the scattering path opera-
tor τnmðEÞ

Gðrn, r 0m;EÞ ¼
X

LL
0
Zn
Lðrn;EÞτnmLL0 ðEÞZm

L0 ðr 0m; εÞ�

� δnm

X

L

Zn
Lðr<;EÞJmL ðr>;EÞ

(21)

The building blocks of Green’s function are the regular
solutions, ZLðr;EÞ, and the irregular solutions, JLðr;EÞ, of the
radial Schrödinger equation at the given (complex) energy E
(e.g., Kohn–Sham Equation (4)), which are matched to spherical
Bessel and Hankel functions outside the potential range
(r ≥ S).[69] The scattering path operator describes all scattering
events between different lattice sites and is given in the angular
momentum representation. For general electronic systems, the
τ-matrix is implicitly given in terms of the single-site scattering
t-matrices of the different atoms and the structure constants
gðEÞ, representing the free-electron Green’s function, and can
be found from the matrix equation

τðEÞnm ¼ f½tðEÞ�1 � gðEÞ��1gnm (22)

The t-matrix can be determined from the normalization
conditions of the wave functions and describes the scattering
of an electron at the atomic potential.[69]

Equation (22) is the main quantity of the Green’s function
method. It yields a complete separation of the atomic properties
at different sites of a material, expressed in the scattering matri-
ces, from the structural aspects, embodied in the structure con-
stants gðEÞ of the underlying lattice. The structure constants gðEÞ
can be obtained in real space and generalized to any symmetric
lattice by a corresponding Fourier transformation according to
the symmetry of the problem.

Moreover, the Green’s function formalism can be naturally
extended to incorporate also relativistic effects by solving a single-
site Kohn–Sham Dirac equation instead of the Kohn–Sham
Schrödinger Equation (4).[68] This approach was implemented
also in HUTSEPOT within the full-potential approximation.[70]

2.4. Group Theory and GTPack

Symmetry and symmetry breaking, as general concepts of
nature, play a significant role also in oxide materials. While
the crystalline symmetry of oxides determines the degeneracy
of electronic, magnonic, or phononic bands as well as the
degeneracy and magnetization of local defect states, symmetry
breaking corresponds to the underlying mechanism behind,
e.g., interaction instabilities driving the system into various
ordered phases of matter such as magnetic, orbital, or charge
ordering as well as superconductivity. To provide a powerful tool
to complement first-principles investigations with symmetry
analyses, we have implemented the Mathematica group theory
package GTPack.[71] GTPack contains more than 200 additional

modules to the Mathematica core language, covering several
fields of application such as basic group theory and tables of
point and space groups, representation theory, crystal field
theory, electronic structure calculations in the tight-binding
and pseudopotential approximations, photonic band structure
calculations, and Landau–Ginzburg–Wilson theory of phase
transitions. Some functions allow an import of data from first-
principles calculations for further investigations. The construc-
tion of tight-binding models helps to understand better the
complex physics, using input parameters from the first-
principles calculations.

Among others, GTPack was successfully applied for the
classification of superconducting gap functions including
odd-frequency superconducting states as they might arise in
strongly correlated layered cuprates[72] or the analysis of topolog-
ically protected Hund-nodal-line semimetals,[73] which can be
realized in double-perovskite manganites in the twisted magnetic
phase. Details about the implementation of GTPack and a com-
prehensive introduction to group theory are given by Geilhufe
and Hergert.[74,75]

3. Correlation Corrections

As many oxides contain transition metal or rare earth elements,
strongly localized d- and f-electrons arise, which exhibit signifi-
cant Coulomb interactions compared to the order of magnitude
of their kinetic energy. These localized states in the so-called
strongly correlated materials represent a challenge for first-
principles investigations, because conventional LDA and GGA
exchange-correlation functionals typically fail to describe
correctly their electronic structure.[12,13] To overcome this limita-
tion, several correlation corrections have been developed over the
past decades (see previous studies[76,77] for a detailed overview).

The most popular are the SIC method,[78] the LDAþU
approach,[79–81] and the extension of the last—the dynamical
mean field theory (DMFT).[82,83] While the first two can well
reproduce ground state properties of strongly correlated materi-
als, the DMFT can describe adequately excited state properties
and other many-body effects, e.g., metal-to-insulator transitions
in TMOs.[84–87] The DMFT uses the spatial localization of
the Coulomb interaction to map the many-body lattice problem
to a local but time- or energy-dependent mean field,[83] hence the
name dynamical mean-field theory, where at its basis a single-
impurity Anderson model has to be solved self-consistently.[76] In
many cases such an impurity model gives accurate results but is
usually solved with computationally expensive quantum Monte
Carlo methods. Therefore, the SIC and LDAþU approaches have
remained dominant in many theoretical studies and they are
most crucial for our investigations on complex oxides as well
(see Section 6). In particular, we implemented a numerically
simpler scheme of SIC in terms of a local SIC method in
HUTSEPOT,[88] which we outline in Section 3.2. But before,
we briefly review the necessity of the SIC and underlying ideas.

3.1. Self-Interaction Correction

The need for a SIC follows directly from the DFT scheme and the
approximations to the exchange-correlation functional, because
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the latter is not strictly self-interaction-free, whereas the exact

density functional is, as observed by Perdew and Zunger[78] as
well as other authors before (see, e.g., previous studies[89,90]).

This self-interaction term should vanish exactly, as it is realized
in Hartree–Fock theory, for a single, fully occupied orbital,

expressed here in terms of a density ρασ with quantum number
α and spin σ[78]

EH½ρασ � þ Eexact
xc ½ρασ , 0� ¼ 0 (23)

where EH is the Hartree energy vHðrÞ realized from the second

contribution in Equation (5) and Eexact
xc is the unknown exact

exchange-correlation energy in Equation (6).
However, the cancellation is incomplete and Perdew and

Zunger[78] proposed an orbital-dependent self-interaction-
corrected energy functional

ESIC½fρασg� ¼ Ẽapprox½ρ", ρ#��

�
Xocc

ασ

ðEH½ρασ � þ E
approx
xc ½ρασ , 0�Þ

(24)

which is in principle valid for all approximate Exc which do not
satisfy Equation (23). The tilde for Ẽapprox denotes that this energy

functional has basically the same form as its equivalent in the
Kohn–Sham theory but the orbitals in Equation (24) do instead

minimize the self-interaction corrected energy functional.[91]

In particular for the LSDA, Equation (24) leads to an
orbital-dependent effective SIC potential seen by an electron

in orbital ψασ

vSIC�LSDA
eff ,ασ ðrÞ ¼ vðrÞ þ vH½ρ�ðrÞ þ vLSDAxc,σ ½ρ", ρ#�ðrÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

vLSDA
eff ,σ

� vH½ρασ �ðrÞ � vLSDAxc,σ ½ρασ , 0�ðrÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

vSICα ðrÞ

(25)

with the potentials in Equation (5).
One possible implementation of a generalized version of the

scheme presented by Perdew and Zunger[78] (referred to as full
SIC subsequently) is realized in the LMTO-ASA band-structure

method,[36,92,93] where the complete implementation of the

SIC-LSDA formalism is provided in previous studies.[94,95]

One advantage of this formalism is the possibility to study the

valency of ions. The total energy minimization is not unique
anymore but depends on the localized orbitals as well. When

the lowest configuration with NSIC localized states is found,
the resulting valency is

Nval ¼ Z � Ncore � NSIC (26)

with the atomic number Z and the number of core states Ncore.
The valency is successfully reproduced for various materials

from rare-earth elements, actinides, over TMOs, to materials

exhibiting the colossal magnetoresistance effect.[96–100] In con-
trast, the full SIC–LSDA scheme is rather time consuming

because it involves a band-structure problem. The scheme makes
it necessary to repeat transformations from reciprocal space to

real space, transform Bloch functions to Wannier functions,

and evaluate the SIC potential followed by a back transformation
to reciprocal space.[88,91]

3.2. Local Self-Interaction Corrections

Tominimize computational effort and take advantage of the mul-
tiple scattering formalism, we introduced and implemented the
so-called local SIC (LSIC) to HUTSEPOT.[88,91] It utilizes the very
sharp resonances of the scattering phase shifts of bound states,
associated with a large Wigner-delay time at the considered site.
Localized valence states show an abrupt jump of π in the gener-
alized complex phase shift similar to the core electron states but
at positive energies.[91] This complex phase δilðϵÞ contributes to
Equation (22) as the t-matrix

tilðϵÞ ¼ � 1

κ
sin δilðϵÞeiδ

i
l
ðϵÞ (27)

with κ being
ffiffiffi
ϵ

p
, the site index being i, and the angular momen-

tum quantum number being l.
As before, the charge density is needed for the self-consistent

cycle and we can in accordance with Equation (18) define an
orbital-resolved corrected density

ρSIC
iL̃σ

ðrÞ ¼ � 1

π
Im

ZE2

E1

dϵGL̃σðr, r; ϵÞ (28)

whereas the angular momentum contributions L̃ ≡ ðl, m̃Þ result
from an unitary transformation in order to adapt the spherical
symmetry.[91] The integration in Equation (28) runs over an
energy contour encompassing the whole valence band.[91] The
resulting density is used for self-interaction-corrected potentials
expressed as

vLSIC
eff ,iL̃σ

ðrÞ ¼ vLSDAeff ,σ ðrÞ�
� vH½ρSICiL̃σ

�ðrÞ � vLSDAxc ½ρSIC
iL̃σ

, 0�ðrÞ
(29)

The latter potential defines the single-scattering matrices

ti,corr
L̃σ

¼ ti
L̃σ
ð1� δL̃,L̃cδσ,σcÞ þ ti,LSIC

L̃cσ
δL̃,L̃cδσ,σc (30)

where some orbitals marked with L̃cσc are corrected and
the t-matrix element ti

L̃σ
is obtained from the uncorrected

LSDA potential.[91] Finally, these t-matrices are put into
Equation (22) to obtain the self-interaction-corrected scatter-
ing-path operator, which is then used in the self-consistent cycle
again to calculate the total energy (Equation (2)). The latter is also
orbital dependent and allows again the study of different valence
states via Equation (26).

The LSIC scheme was demonstrated and compared with the
full SIC approach implemented in the LMTO code at first for
NiO as a prototypical strong correlated material.[91] NiO is one
compound of the 3d TMO series (MnO, FeO, CoO, NiO, and
CuO) and appears as a comparative example at several places
in this work. Hence, we briefly recollect the basic characteristics
of the TMO. All of them crystallize in the rock-salt lattice structure
(see Section 4 and 5 for a structural sketch). They are wide-gap
Mott–Hubbard or charge transfer antiferromagnetic (AFM)
insulators and order AFM as type 2 (AFII): Two planes in [111]
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direction always have opposite spin and create two sublattices. The

TMOs are one example where the convential LSDA und GGA
exchange-correlation functionals fail and correlation corrections

improve the electronic structure, resulting in magnetic moments
and bandgaps in agreement with experiments.[80,84–87,91–93,102–105]

In particular for NiO, the LSIC recovers well the important

features of the density of states (DOS) calculated also with the
full SIC approach (Figure 1a). The corrected Ni d states are

shifted correctly to the bottom of the valence band and the

Ni3d–O 2p hybridization is reduced. The comparison to experi-
mental valence band photoemission spectra reveals also a better

agreement than the DOS calculated with the conventional LSDA
(Figure 1). Even though the Ni d states are slightly higher in

energy than in the full SIC result, the bandgap and the O 2p
states close to the Fermi energy are almost similar. The provided

bandgap of 3.7 eV does not exactly match with the experimentally
measured value of 4.3 eV but is a large improvement with respect

to the DOS obtained with LSDA, which is even metallic with the

Ni 3d states localized in the upper part of the valence band
(Figure 1b). We note that the Fermi energy obtained from the

numerical calculation lies inside the bandgap but cannot be
directly related to the experimental spectra. Although in calcula-

tions the Fermi level can be placed arbitrarily between the
valence and conductance bands, the position of the Fermi level

in experiments can be affected by any kind of doping and other
imperfections. Hence, we shifted in Figure 1–3 the calculated

DOS by 1 eV with respect to the original publications.
For the LSIC results, we have, in contrast to conventional self-

consistent calculations, at first determined the ground state

configuration and valency, because the total energy and the
potential in Equation (29) are orbital dependent. These are iden-
tified by the lowest total energy in dependence of different self-
interaction-corrected orbitals—here, the 3d states of Ni. It turned
out that the resulting 2þ state, with electrons in the five majority
Ni 3d and three minority Ni t2g states, fulfills indeed the first
Hund’s rule (maximizing the spin moment).[91] The corrected
states become very sharp in the DOS and are shifted
by � 10 eV down in energy, whereas the uncorrected states
are shifted to higher energies (Figure 2a). The well-localized
character of the considered Ni 3d states can be also verified
via the phase shifts, as discussed previously. Whereas the cor-
rected states have a very sharp resonance, the uncorrected states
or the states considered in the LSDA calculation vary continu-
ously (Figure 2b).

3.3. Correlation Correction via Hubbard U Parameter

Another approach to correct the description of localized states is
based on the assumption that the strongly localized states can be
described via an on-site atomic interaction in terms of the Hubbard
Hamiltonian.[106] Anisimov and coworkers[79,107,108] suggested to
include this interaction at the DFT level via the Hubbard U

U ¼ Eðdnþ1Þ þ Eðdn�1Þ � 2EðdnÞ (31)

which can be understood as the Coulomb energy required to place
two electrons at the same site, i.e., for d or f states. In those works,
the authors introduced the LDAþU method, but the same concept

(a)

(b)

Figure 1. The NiO total density of states calculated with a) the full SIC

approach implemented in the LMTO-ASA[94,95] (blue line) and LSIC (black

line) and b) conventional LSDA (gray line). The latter two were obtained

with HUTSEPOT. The right axis in (b) is related to the intensities of simu-

lated and experimental valence band photoemission spectra for different

photon energies from Taguchi et al.[106] Adapted with permission.[91]

Copyright 2009, Publisher IOP Publishing Ltd.

(a)

(b)

Figure 2. Detailed results of LSIC calculations with HUTSEPOT: a) orbital

resolved density of states of Ni d states (colored lines) with replotted total

DOS of NiO from Figure 1a. b) Comparison of the phase shifts of the

orbital-resolved Ni d states in NiO with a conventional LSDA calculation.

The dashed line indicates the potential in the interstitial region called muf-

fin-tin zero (MTZ). Adapted with permission.[91] Copyright 2009, IOP

Publishing Ltd.
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can be applied in principle to a generic approximate correlation-

exchange functional.[81] Hence, the term ‘GGAþU’ also appears
subsequently with respect to our examples in Section 6.

The LDAþU corrects the original DFT total energy of the local-

ized states based on aHubbard-like term EU , while the other states
are treated normally[81]—a similar idea as SIC in Equation (24).

However, an additional double-counting term Edc has to be sub-
tracted to eliminate the part of interaction energy which is already

included in EU .[81] Although nowadays several different ways of

Hubbard U corrections are implemented in many first-principles
methods, we will use the most basic formulation to outline the

underlying concept.[79,108,109]

Let us assume that all d electrons of a specific ion have
roughly the same kinetic energy Td and feel the same

Coulomb repulsionU. The total energy of a shell with n electrons
is En ¼ nTd þ nðn� 1ÞU=2 with the excitation spectrum

εn ¼ En�1 � En ¼ Td þ nU. The Coulomb energy of d–d interac-
tions as a function of the number of d electrons N is in such a

case E ¼ NðN � 1ÞU=2.[108] In fact, the latter represents the dou-

ble counting term Edc in the most general form. It has to be sub-
tracted from the total energy (Equation (2)) when EU is added[108]

E ¼ ELDA � NðN � 1Þ
2

U þ 1

2
U
X

α6¼β

nαnβ (32)

with the orbital occupation numbers nα. The orbital energies are
derivatives of Equation (32)

εα ¼
∂E

∂nα
¼ εLDA þ

�
1

2
� nα

�

U (33)

and the effective potential in the Kohn–Sham Equation (4)
becomes orbital dependent

vαðrÞ ¼ vLDAeff ðrÞ þ
�
1

2
� nα

�

U (34)

Both of the previous equations reveal the main features of the
LDAþU approach. The total energy of occupied orbitals (nα ¼ 1)

is according to Equation (33) shifted down by�U=2, whereas the
energy of unoccupied orbitals (ni ¼ 0) is shifted up by þU=2.
This opens a bandgap in case of the Mott insulators. At the same
time, the correction to the potential restores the discontinuous

behavior of the one-electron potential of the exact DFT.[81,108]

In modern implementations of the LDAþU, the exchange
interaction and a nonsphericity of the on-site Coulomb interaction

are taken into account by a rotationally invariant formulation[110]

ELDAþU ½ρðrÞ, fρ̂σg� ¼ ELDA½ρσðrÞ�þ
þ EUðfρ̂σgÞ � Edcðfρ̂σgÞ

(35)

where EUðfρ̂σgÞ and Edcðfρ̂σgÞ depend now on elements fρ̂g of

the density matrix ρ̂σmm0 (σ – spin direction,m –magnetic quantum

number). The latter consists in the general case of spin-diagonal
and spin-off-diagonal terms and can be calculated, e.g., from

Green’s function.
A simplified rotational invariant formulation of the LDAþU is

implemented in both program codes, VASP and HUTSEPOT,

and given explicitly as[80]

ELSDAþU ¼ ELSDA þU � J

2
�

�
X

σ

��
X

m

ρ̂σmm

�

�
X

m,m
0
ρ̂σmm0 ρ̂σm0m

� (36)

where U and J are spherically averaged matrix elements of the
screened Coulomb and the exchange interactions, respectively.
Only the difference Ueff ¼ U � J as an effective U parameter
is relevant in Equation (36).

The latter was explicitly used to obtain agreement between
measured and calculated electron energy loss spectra (EELS) for
NiO with Ueff ¼ 5.3 eV.[80] Other calculations, with LSDA alone
or with largerUeff parameters, did not agree with the experimental
results. Therefore, we used a similar Ueff to compare the DOS of
NiO with the ones calculated with LSIC and LSDA (Figure 3).
The LDAþU recovers as well as the LSIC the insulating character
of the Mott insulator NiO, which is not available within LSDA.
However, the bandgap of 2.7 eV obtained from LDAþU is
smaller than the one obtained from LSIC. The Ni 3d states are
also shifted down in energy, forming broader valence bands
due to a hybridization of Ni 3d and O p states but they are not as
separated as it could be expected from the model in Taguchi
et al.[106] (see Figure 1). In summary, the LDAþU reproduces
for NiO to some extent properties of excited states, e.g.,
EELS,[80] whereas the LSIC offers a parameter-free method to
describe its ground state properties. Nevertheless, the most
accurate metal-to-insulator transition temperature is obtained
with DMFT.[87]

3.4. Advantages and Disadvantages of the Two Methods

The SIC and LDAþU approaches improve the description of
structural, electronic, and magnetic properties of strongly corre-
lated systems in comparison with conventional LDA or GGA
functionals. However, it is not directly possible to compare
the two. They are based on different ideas to correct the total
energy in Equation (1): SIC acts at the level of the exchange-
correlation functional and subtracts the Hartree and LDA total

Figure 3. Density of states for NiO in the AFII structure (gray curve) cal-

culated using the LDAþU method within HUTSEPOT (Ueff ¼ 5.3 eV

motivated from Dudarev et al.[80]). The structure was taken from experi-

mental measurements. The estimated bandgap value is 2.7 eV. For com-

parison, the simulated and experimental valence band photoemission

spectra for different photon energies from Taguchi et al.[106] and results

for LSIC are replotted from Figure 1a.
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energy for a specific charge density from the whole density,
whereas LDAþU introduces a physically motivated parameter.
Nevertheless, both methods are highly needed for the study of
oxides, because those include quite often strongly localized d
or f electrons (as demonstrated with the examples in Section 6).

The numerical implementation of the SIC scheme is, most
importantly, a first-principles approach, as the implementation
of SIC does not involve any additional physical parameters.
The determination of the ion valency becomes very crucial for
magnetic oxides with a low, high, or intermediate spin state
as, e.g., in SrCoO3,

[110] or oxides with defects like oxygen vacan-
cies. At the same time, the SIC method is designed mainly for
the description of ground state properties and cannot describe
excited state properties very well. Here, the combination of
SIC with Slater transition approaches[111] offers an approxima-
tion of these characteristics.[91]

However, systems with weaker correlation effects might suffer
from an overlocalization of the orbitals within SIC (e.g., in
Sr2FeMoO6, Section 6.2), where the LDAþU can perform better.
By comparing, numerical results for different U parameters with
experimental results for, e.g., photoemission spectra, XAS, and
XMCD, Curie temperature, or spin waves, one can estimate the
impact of electronic correlation to those quantities or find a good
approximation for the underlying electronic structure of the con-
sidered material. In addition to this semi-empirical approach,
there exist several methods to calculate the Hubbard U parame-
ter from first-principles, e.g., Slater’s transition state technique,
linear response,[112] from constrained random phase approxima-
tion calculations.[113] However, for the materials considered in
our studies either no U parameters were calculated or they were
strongly overestimated. One example for an overestimated U
parameter is found for SrCoO3.

[114,115] The calculated U ¼
10.83 eV and J ¼ 0.76 eV parameters are far too large to describe
well the magnetic transition temperature of � 300K.

Other advantages are implicitly included. Whereas the imple-
mentation of LSIC intoHUTSEPOT offers the features of themul-
tiple scattering theory, as disordered systems treated with CPA or
NLCPA (see Section 4), the simple formulation of the LDAþU
approach allows the calculation of energy derivatives.[81] Forces
as in Equation (10), stresses, or dynamical matrices are most cru-
cial to find the ground state structure of the considered oxides.

4. Treatment of Disorder

Almost all numerical first-principles methods, as discussed in
Section 2, are designed to treat 3D periodic systems. This allows
us to exploit Bloch’s theorem to reduce the numerical effort.
Low-dimensional systems, such as surfaces and clusters, can
be treated in a supercell approach, to restore the translational
symmetry at the expense of increased numerical burden. Real-
space formulations do not rely on Bloch’s theorem and are of
advantage if systems such as quasicrystals are studied.[116–118]

Due to chemical disorder in solid solutions, e.g., AxB1�x , the
translational symmetry is broken. Although the concentration x
of the species is known, the microscopic distribution of the atoms
in the sample remains hidden. Two principal approaches to
perform a configuration average are possible: the CPA in the
framework of multiple scattering theory constructs an effective

medium, having the advantage to be lattice periodic again[119–121];
the construction of SQS mimics the correlation functions of an
infinite substitutional alloy in a certain supercell.[122,123]

Subsequently, we review the general concepts and implemen-
tations of both methods and give respective examples to discuss
and compare their performance.

4.1. Coherent Potential Approximation

The general idea of the CPA is to construct an auxiliary medium,
characterized by a single-site t-matrix tC which takes into account
implicitly all configurations of the disordered alloy AxB1�x . The
construction of this effective medium in multiple scattering
theory is based on the single-site t-matrices tAðEÞ and tBðEÞ,
describing the scattering properties of the individual atoms
A, B and the scattering path operator, as defined in Equation (22).

For the site-diagonal quantity τC, we get for the binary alloy

τCðEÞ ¼ xτAðEÞ þ ð1� xÞτBðEÞ (37)

i.e., τC is found from the concentration-weighted scattering path
operators τA, τB describing the scattering properties of A,B
embedded in the effective medium (see Figure 4). As an example
τA can be obtained from

τA ¼ τC½1þ τCðt�1
A � t�1

C Þ��1 (38)

The scattering path operator of the coherent medium can be
evaluated for 3D periodic solids from

τCðEÞ ¼
1

ΩBZ

Z

dk½t�1
C ðEÞ � gðk;EÞÞ��1 (39)

where ΩBZ is the volume of the Brillouin Zone (BZ) and gðk;EÞ
represents the structural Green’s function (see Equation (22)) in
momentum space representation. The relation (39) between tC
and τC together with Equation (37) and (38) allows for a self-
consistent determination of the scattering properties of the
effective medium. The scheme can be easily generalized to N
components each with concentration ci and i¼ 1,⋯,N. A new
approximation tnewC can be generated from the previous step by

tnewC ¼
(

τCð
P

iciτiÞ�1 � 1

ðPiciτiÞ�1
þ t�1

C

)�1

(40)

By means of Equation (40), the new scattering path operator
of the effective medium is calculated. The CPA condition
(Equation (37)) is an additional self-consistency requirement
on top of charge or potential self-consistency.

The CPA equations can be easily generalized for any boundary
conditions. In contrast to many simple single-site theories such

Figure 4. Schematic representation of the CPA condition for a binary alloy.

The sites labeled C are characterized by a coherent potential, while sites

labeled A and B represent the impurity potentials. The impurity concen-

trations at both sites are not independent: cA¼ x, cB¼ 1� x.
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as virtual crystal or average t-matrix approximations, the CPA
is exact in both, the weak-scattering and the narrow-band, limits.
It has been successfully applied to basic problems in statistical
physics,[124] electronic structure calculations of bulk and low-
dimensional materials,[125–127] and so on.

However, the CPA remains a single-site approximation and
environmental effects on scattering properties are neglected,
except on average. This limitation does not allow us to investigate
fluctuations around the CPA average and to elucidate the influ-
ence of atomic short-range order. Such multisite effects can be
systematically taken into account using a nonlocal coherent poten-
tial approximation (NLCPA). This theory was recently derived
within the KKR framework.[128–132]

The books of Gonis[25,56] and Turek et al.[49] present more
basic details and implementation-related discussion of the treat-
ment of disorder.

4.2. Special Quasirandom Structures

In a solid solution AxB1�x , the local structural relaxations around
an individual A or B atom play an important role, even if the
experimental techniques probe local properties only on average.
An obvious drawback of the CPA is that local relaxations due to
the microscopic distribution of the constituents cannot be taken
into account. In contrast, a binary system with N sites leads to
nc¼ 2N different configurations σ, which have to be relaxed and
averaged; i.e., to get the average value P of the physical property
P one has to evaluate

hPi ¼
Xnc

σ

wðσÞPðσÞ (41)

where wðσÞ denotes the probability of a certain configuration in
the ensemble. The construction of SQS is an approximation, pio-
neered by Zunger et al.,[122,123] to handle the large configuration
space. It is based on the cluster expansion formalism.[133–135]

The method is based on the fact that contributions from dis-
tant neighbor interactions to the total energy become negligible
beyond a certain range. A configuration is discretized in figures
f ¼ ðk,mÞ consisting of k vertices (pair, triplet, tetrahedron) and
separated by an mth neighbor distance. This decomposition is
used to mimic the correlation functions of the solid solution
as closely as possible. Details of the method can be found in pre-
vious studies.[122,123,136–139]

The SQS method is designed for a rigorous consideration of
binary, ternary, and multicomponent alloy systems by means
of large supercells. An example for a disordered ternary system
of MgO and ZnO is shown in Figure 5. A practical realization of
the method is discussed by van de Walle et al.[138,139] The obvious
advantage is that the normal DFT codes can be used. The relax-
ations in the supercell also include the microscopic structure
around A and B atoms. The construction of the SQS is separated
from the electronic structure calculation itself.

4.3. Comparison of the Two Methods

The topic of disordered systems is still an interesting and heavily
investigated problem in materials sciences. CPA and SQS

compare very well for alloys, as demonstrated in several works for
Fe–Cr, Ti–Nb, or Ti–V,[141–143] and Ti–Al or Cu–Au alloys.[144,145]

Both methods are applied to different kinds of systems, includ-
ing oxides[146–148] and high-entropy alloys.[149–152]

Therefore, our studies usually apply both methods. For exam-
ple, Maznichenko et al.[125] investigated structural phase transi-
tions and fundamental bandgaps in MgxZn1�xO by means of
CPA as implemented in HUTSEPOT. According to Figure 6
three structural phases appear in the phase diagram, namely,
rock-salt (RS), hexagonal (HX), and wurtzite (WZ) structure.
In addition to the treatment of disorder, correlation corrections
to the Zn 3d electrons in terms of the SIC scheme were included.

In the following, both methods to treat disorder, CPA and
SQS, are compared on the example of MgxZn1�xO. A concentra-
tion of x ¼ 0.75, i.e., a solid solution in the RS phase with the
corresponding equilibrium volume, was selected for compari-
son. The SQS, constructed for this concentration, is shown in
Figure 5. The SQS was constructed by means of the Alloy
Theoretical Automated Toolkit (ATAT).[138] The supercell was
built with 64 atoms starting in RS structure, which contains only
two atoms. To sufficiently mimic the correlation functions of a

Figure 5. SQS for Mg0.75Zn0.25O in RS structure (orange, Mg; gray, Zn;

red, O). Structure figures prepared with VESTA.[101]

Figure 6. Energy of formation per f.u. of MgxZn1�xO versus equilibrium

volume and Mg concentration. Straight bold lines mark phase boundaries

(RS, rock-salt, HX, hexagonal, WZ, wurtzite). Adapted with permission.[125]

Copyright 2009, American Physical Society.
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random distribution of Mg and Zn inside the supercell, three
kinds of clusters are considered, i.e, pair, triplet, and quadruplet
clusters. Those clusters characterize interactions between two,
three, and four sites (Mg, Zn), respectively. The pair clusters
are taken into account up to the seventh nearest neighbors,
whereas the triplet and quadruplet clusters are only considered
up to the third and first nearest neighbors, respectively.

For the actual calculations in KKR-CPA, as well as in VASP-
SQS, the LDAþU scheme was used for correlation corrections.
Figure 7 compares the DOS, where a good agreement of both
calculations is obtained. It is quite common that a unique
Ueff value does not lead to identical results in different first-
principles methods due to distinct approximations used in the
codes; e.g., typically chosen values of Ueff in a KKR setup are
smaller than in a VASP setup. Because Ueff is seen as an adjust-
able parameter, it can be used to achieve agreement between the
methods in the basic electronic structure as a requirement to
use the distinct strengths of the methods to calculate physical
properties.

5. Magnetism

As many oxide materials are discussed as applications for
magnetic devices, the accurate description of those magnetic
properties is one of the most important aspects in oxide research.
Many of them, such as spin densities, the magnetic ground state,
and exchange interactions, are not easy or impossible to access by
experimental means and need first-principles calculations for a
better understanding. Perovskite manganites, e.g., show a series of
interesting properties, including colossal magnetoresistance, coex-
istence of clusters with different phases, rich phase diagrams, and
effects like unusual spin, charge, lattice, and orbital order.[153]

The magnetic characteristics such as spin-polarized band
structure, magnetic moments, spin densities, and magnetization
can be obtained directly from the Kohn–Sham Equation (4) using
an appropriate spin density functional. The ground state mag-
netic order can be determined from total energy calculations
of various static spin configurations, although this method might
be very demanding for systems with a nontrivial magnetic struc-
ture. It can be done more efficiently utilizing a noncollinear
spin density functional, which enables a direct search of the

ground state magnetic structure by simultaneous simulations
of magnetization dynamics.[154,155] Temperature effects, on
which magnetic properties are extremely sensitive, can be taken
into account, e.g., by the disordered local moment picture,[62,156]

which is implemented in HUTSEPOT. In this approach, a mag-
netic system is modeled as an array of microscopic magnetic
moments of fixed magnitude but random orientation in terms
of the CPA. This approach described, e.g., very successfully
the variation of the magnetic transition temperature in
SrCoO3 with varying oxygen vacancy concentrations.[110]

Other magnetic properties important for the study of oxides,
e.g., magnetization dynamics and thermodynamics, including
the determination of the spin-wave dispersion relation, or the
transition temperature, can be studied with the Heisenberg
model Hamiltonian

H ¼ � 1

2

X

i, j

Jijei ⋅ ej (42)

Here, the unit vectors are ei ≡ Si=Si at site i, where Si is the
localized spin moment with an always positive moment size Si.
The Jij are the so-called exchange parameters. We adopt the con-
vention that Jii ¼ 0. The exchange parameters represent one of
our most important tools to understand the microscopic mag-
netic order and can either be determined from experiments or
in particular calculated from first-principles methods.

5.1. Calculation of Exchange Interactions

In the literature, several approaches are presented to calculate
the magnetic exchange interactions Jij. For example, the so-called
frozen magnon approach is one possible technique allowing us to
find directly the energies of different magnetic configura-
tions.[154] In contrast, Jij can be also extracted from the knowledge
of the static magnetic susceptibility.[157]

In this work, however, we focus on two approaches being
more compatible with our considered multiple scatting
(Section 5.1.1) or pseudopotential methods (Section 5.1.2). We
consider again the TMO series MnO, FeO, CoO, and NiO, as
a simple oxide test case (see also Section 3), and describe the
underlying ideas of the calculation of Jij by recapitulating their
numerical results.[103] All of them are in particular good exam-
ples of the Heisenberg model (Equation (42)), as their exchange
interactions are very short ranged and only two are relevant to
capture their magnetic structure (see sketch in Figure 8).

Figure 7. Comparison of the density of states calculated with HUTSEPOT

(CPA, red line, Ueff ¼ 5 eV) and VASP (SQS, gray regions, Ueff ¼ 8 eV).

Figure 8. Schematic representation of the exchange interactions in a (001)

plane of the RS structure of TMO (gray TM and red oxygen site).

www.advancedsciencenews.com www.pss-b.com

Phys. Status Solidi B 2020, 257, 1900671 1900671 (12 of 24) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.pss-b.com


The exchange constant J1 represents the nearest neighbor inter-
action, while J2 is a next-nearest superexchange interaction
including the oxygen atom.[103]

5.1.1. Explicit Calculation from Scattering Quantities

By means of the so-called magnetic force theorem (MFT), one
obtains an explicit equation to determine Jij.

[158] The basic idea
behind the MFT is to consider a small rotation of classical spins
at two different lattice sites as perturbation and map the resulting
energy change onto the Heisenberg model (Equation (42)). This
energy change can be expressed via the Lloyd formula and
thereby represented by using the Green’s function. Hence,
the Jij between two lattice sites depend only on the scattering path
operator τij (already defined in Equation (22)) and on differences
of the single site t-matrices Δi ¼ t�1

i" � t�1
i# for the two spin direc-

tions at site i. Both quantities are easily accessed via the Green’s
function method and the Jij are calculated by

Jij ¼
1

8π

ZEF

dE ImTrLðΔiτ
ij
"Δjτ

ji
# þ Δiτ

ij
#Δjτ

ji
"Þ (43)

Note, compared to the equation in Liechtenstein et al.[158] an
average over two spin directions results in an additional factor of
1=2 in Equation (43).

In practice, one needs only the respective lattice structure and
calculates the electronic structure via self-consistent iterations of
the Kohn–Sham equations. Then the quantities of the multiple
scattering theory determine Equation (43). Thus, it is easy to vary,
e.g., the lattice constant a of the TMO and determine the depen-
dence of the Jij (see Figure 9). The variation of lattice constants
can be related to different pressures.[88] For example, the nearest
neighbor exchange interaction J1 is for NiO ferromagnetic
(FM, positive) and almost constant at different pressures,

whereas the other TMO show a strong increase of the absolute
value of J1 (Figure 9a). The compressed lattice causes a stronger
overlap of the d orbitals with the p orbitals of oxygen. Thus, a
stronger superexchange is obtained. A similar behavior is found
for J2 for all TMO (Figure 9b). Here, the NiO J2 is strongly AFM,
compensating the FM J1, while the AFM character reduces with
the series CoO, FeO, and MnO. Other examples for calculated
Jij with Equation (43) are given in Section 6.

5.1.2. Calculation from Total Energy Differences

The Jij can be also calculated from the total energy differences of
several magnetically ordered structures. This is related to the idea
of only perturbing the magnetic state by a small rotation and
obtaining the infinitesimal total energy change as used for the
MFT described previously. In general, any first-principles
method can be used to derive the total energies, but we have
a bias for the pseudopotential method VASP as being a reliable
tool to determine DFT total energies. The arising energy differ-
ences are mapped again to the corresponding energy differences
in the Heisenberg model, given by Equation (42). This results in
a linear system of equations for the Jij and is a rather general
approach. However, its feasibility depends on the range of the
exchange parameters, which determines the number of magnetic
structures that have to be considered.

For example for the TMO, only nearest and next-nearest
neighbors Jij have to be taken into account, as shown in
Figure 8. Thus, three magnetic structures are used: the FM
and two AFM (AFI, AFII) configurations. The AFI structure is
characterized by oppositely magnetized planes, which are
stacked along the (001) direction, whereas those planes are
stacked along the (111) direction in the AFII structure.[103] By
counting the number of nearest and next-nearest neighbors
for the TMO, the Jij are determined as

J1 ¼
1

16
ðEAFI � EFMÞ (44)

J2 ¼
1

48
ð4EAFII � 3EAFI � EFMÞ (45)

The resulting Jij agree very well with those obtained from the
MFT previously and experimental values (Table 1). The complete
discussion for all 3d-TMO is given by Fischer et al.[103]

Another example of this energy difference method in oxides is
provided by Ködderitzsch et al.[101] Equation (44) and (45) were
applied to bulk NiO in the framework of the full SIC-LMTO.
In addition, they were extended to study the NiO(100) surface.

(a)

(b)

Figure 9. The exchange parameters a) J1 and b) J2 calculated with

HUTSEPOT by Equation (43) for different lattice constants a of TMO.

The vertical lines mark the calculated equilibrium lattice constants.

Adapted with permission.[88] Copyright 2009, American Physical Society.

Table 1. Comparison of the exchange parameters (in meV) of

NiO obtained with the energy difference method ΔE and MFT[103]

with experimental results from Hutchings and Samuelsen.[159] The

calculated magnetic moment for Ni was 1.68μB and the experimental

values were adapted to match the same Heisenberg Hamiltonian

(Equation (42)).[103]

Exp. MFT ΔE

J1 0.69 0.15 1.44

J2 �9.51 �6.92 �6.95
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Due to the broken symmetry, more exchange coupling constants
enter the model.[101] Recently, Ben Hamed et al.[148] investigated
the magnetic phase diagram of GdxCa1�xMnO3 using a model
containing up to three exchange constants. A calculation of the
exchange parameters by the MFT approach for the latter system
reveals also that more distant interactions have to be taken into
account. Hence, the model was extended to include eight
exchange parameters calculated within the energy difference
method with much more magnetic structures.[160] It results in
an improvement of the calculated Néel temperature.

5.2. Magnons

In addition to the static magnetic properties described previously,
the appearance of spin-wave excitations or so-called magnons is an
important dynamic feature of magnetic materials, because their
excitation spectrum can be compared directly with experimental
results obtained, e.g., from neutron powder diffraction[161] or
spin-resolved electron energy loss spectroscopy.[162,163]

In collinear systems, the magnons are described by the excited
states of the Heisenberg Hamiltonian (Equation (42)) under the
assumption that the magnetic moments deviate only a little from
their ground state directions. Their spectrum and the corre-
sponding transverse magnetization deviations are given as the
eigensystem[164]

ωλe
þ
λi ¼

X

j

T ije
þ
λj (46)

of the torque matrix

T ij ≡ 2S�1
i δij

X

k

Jikek � 2S�1
i eiJij (47)

which is associated with the Heisenberg Hamiltonian
(Equation (42)) using also the magnetic spin moment Si and
the exchange constants Jij. The ei are no vector components
but ei¼þ1 when the moment in the ground state at site i points
upwards or �1 otherwise. The index λ in Equation (46) labels
eigenvalues. The eþλi are interpreted as the spin-wave mode ampli-
tude of mode λ at site i and ωλ is the spin-wave frequency space.

The calculation of the torque matrix in Equation (47) yields
for many different materials a very good description of the
magnon spectrum. For the TMO, e.g., the theoretical calculations
compare well with the experimental results (Figure 10). Some
deviations can be attributed to the anisotropy and the alignment
energy terms, which were neglected in our consideration.
Furthermore, the theoretical curves generally underestimate the
experimental energies in particular for larger wave vectors q away
from the Γ point because of the underestimation of the exchange
parameters, which directly contribute to the torque matrix
(Equation (47)) (cf. Table 1). Moreover, this approach to calculate
magnon spectra can be generalized also to disordered materials,
which was demonstrated by Buczek et al.[163] for binary alloys.

5.3. Monte Carlo Simulations

In addition to the spin-wave spectra and the mean-field approxi-
mation of the magnetic transition temperature, the classical

Heisenberg Hamiltonian (Equation (42)) can be used in a
Monte Carlo (MC) simulation to estimate temperature-dependent
quantities such as magnetic susceptibility, heat capacity, and
magnetic phase transition temperature Tm. Such a procedure
is independent of the way of obtaining Jij.

We briefly summarize the important technical aspects but refer
the reader to the book of Landau and Binder[165] for more details.
With respect to the oxides, we simulated a lattice of theNmagnetic
sites repeating the systems unit cell L times in each direction. In
general, theMCmethod can be applied to all kinds of systems from
bulk, over thin films, to disordered lattices (see Section 6 for vari-
ous examples on oxides). The latter might include random occu-
pation of lattice sites with magnetic atoms. Periodic boundary
conditions can be included and adapted for any geometry.

The desired observables are determined at each temperature
step T from importance sampling as average over a large

Figure 10. Calculated spin-wave dispersion of TMO obtained with

HUTSEPOT (blue lines) and compared with experimental data (black

diamonds and open circles). The paths in the BZ were chosen along

several high-symmetry lines: from X ¼ ð0.25, 0.25, 0.25Þ via Γ ¼ ð0, 0, 0Þ
to M ¼ ð�0.5, � 0.5, 0.5Þ, and then from M0 via Γ to M 00 of the neighbor-
ing AFII BZ (see insets in the MnO panel). Adapted with permission.[103]

Copyright 2009, American Physical Society.
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number of Monte Carlo steps. Here, a single Monte Carlo step
means in case of the Heisenberg Hamiltonian (Equation (42))
one sweep over all N sites in the lattice model. At each site i,
a new orientation of its magnetic moment unit vector e0i is
randomly determined. The variation of the total energy ΔE is
calculated by evaluating Equation (42) for the old ei and the
new orientation of the magnetic moment unit vector e0i.
Afterwards, the acceptance of the new orientation is determined
by means of the Metropolis algorithm. Then, the next site is con-
sidered and so on.

Before the observable is ‘measured’, we perform a large
number of MC steps to reach the equilibrium state at a given
temperature. After that, the average is taken over more MC steps.
The optimal number of MC steps depends strongly on the type of
considered system and its atomic species. Hence, the calcula-
tions are done several times with increasing number of MC steps
to converge the results for the desired observables. The same has
to be done for the lattice model size L due to finite-size effects or
the number of included Jij from Equation (42).

We used here an implementation[64] of the MC method with
the classical Heisenberg Hamiltonian specially adjusted for the
use with HUTSEPOT. It was extended several times,[103,166,167]

and applied to many different materials, especially oxides, as
discussed in Section 6. It turns out that in particular for oxides
and AFM materials additional observables can be defined, which
can attribute for the correct Tm. Here, we want to emphasize the
staggered magnetization ms, as an average over the different
AFM sublattices.[168] It was successfully applied to study the tran-
sition temperature in TMO[103] in combination with the four-
order cumulant U4.

[169] Using the Jij obtained with the MFT
for the TMO series (see Figure 9), the Tm calculated with the
MC method underestimate the experimental reference values
(Table 2).[103] The deviations being in the order of a few tens
of kelvin fall in line with results for other oxide systems
(see Section 6). Fischer et al.[103] argued with imperfect lattices
in the experiments and not accounting for quantum nature or
short-range order effects. Indeed, the theoretical determination
of Tm poses a complex problem trying to compare a perfect lattice
of magnetic atoms with real macroscopic samples, which might
have different grains or other possible lattice defects. In particu-
lar, we discuss subsequently how oxygen vacancies might
increase Tm in more complex oxides.

6. Selected Examples

We demonstrated above how the different aspects of our numeri-
cal methods work well for basic examples such as transition metal
monoxides. The latter form rather simple lattice structures and
many of their material properties are well understood. More com-
plex oxide materials pose many more unresolved questions from

the theoretical as well experimental point of view. Here, the
proposed combination of theoretical methods proved to be very
useful in the understanding ofmicroscopic aspects sometimes not
even accessible by experimental means: the magnetism in bulk
ZnO[170,171] or at its surface,[172] the variation of magnetic proper-
ties with defects in the ferrite ZnFe2O4,

[173,174] or the stability of
hexagonal BaTiO3,

[175] while ferroelectric BaTiO3 can influence
magnetic properties in on-top-deposited Co films.[115]

In what follows, we focus on a few specific examples to dem-
onstrate our multicode approach. Hereby, the most examples
appeared either in perovskite or in double-perovskite structures
with generic structure formula ABO3 and ABB0O6, respectively.
The perovskite prototype lattice model is cubic with B or B0 cat-
ions at the center, an A cation at the corners, and oxygen at the
faces of the cube, but strong internal distortions can appear
depending mainly on the ratio of the cations A, B, and B0. We
can compare, e.g., the lattice structure of the double perovskite
Sr2FeMoO6 (SFMO) with the heavily distorted perovskite struc-
ture of PrMnO3 (PMO) (figures shown below). Such a lattice
structure is also a general feature of other manganites, e.g.,
GdMnO3.

[148,160] PMO was in particular interesting as the parent
compound of the solid solution Pr1�xCaxMnO3 (PCMO).[177,178]

6.1. Magnetostructure of Pr0.9Ca0.1MnO3

PCMO remains in the perovskite lattice structure over the whole
concentration range 0 ≤ x ≤ 1 and reveals a series of different
properties in dependence on x; i.e., it can be considered as a mul-
tifunctional semiconducting material. The magnetic structure
for x ¼ 0.1 was characterized by Jirák et al.[179,180] by a canted
AFM model. A change to x ¼ 0.2 (magnetic cluster glass behav-
ior[181]) or x ¼ 0.3 (insulator to metal transition[182,183]) changes
the situation completely. Thus, a critical reinvestigation of the
magnetic structure for x ¼ 0.1 was performed by Tikkanen
et al.[177] combining neutron powder diffraction, SQUID magne-
tometry, and first-principles calculations. The latter utilized
two components out of our toolbox: 1) HUTSEPOT for the cal-
culations of the electronic and magnetic properties and 2) the
Monte Carlo method to determine temperature-dependent mag-
netic quantities. In addition, correlation corrections played an
important role and were taken into account via the GGAþU
method (Section 3.3). The mixing of Pr and Ca atoms in the cat-
ion sublattice was accomplished by means of the CPA
(Section 4.1). More technical details of the calculations can be
found in previous studies.[177,178]

Figure 11 shows the DOS for x ¼ 0.1. It shows metallic behav-
ior, which does not agree with experimental findings. Small con-
centrations of O vacancies are likely in the experimental samples.
Assuming 2% oxygen vacancies restores the semiconducting
character in the calculation.

Heisenberg exchange parameters can be effectively calculated
based on the MFT, as discussed in Section 5.1.1. The results
are shown in Figure 12. The coupling between Mn1 and Mn3,
i.e., between two Mn planes, is given by J ¼ 4.8meV, whereas
the coupling between Mn1 and Mn4 is found to be AFM
(J ¼ �1.0meV). The effective coupling of two adjacent Mn
planes is antiferromagnetic, as it is found by counting the inter-
actions of the Mn atoms between the planes. MC simulations

Table 2. Magnetic transition temperatures of TMO (in K) from Fischer

et al.[103]

MnO FeO CoO NiO

MC calculation 90 162 260 458

Experiment 118 192 289 523
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based on the Heisenberg exchange parameters lead to a Néel
temperature of TN � 120K. MC simulations with an applied
magnetic field reveal that the Pr moments order simultaneously
with the Mn moments, as found from experiments. The combi-
nation of neutron diffraction, SQUID magnetometry, and
first-principles calculations leads to the conclusion that the low-
temperature magnetic moment of Pr is close to the high-spin
value of 2μB per formula unit, being 300% larger than previously
thought.

6.2. Tuning of Magnetism in Sr2FeMoO6 via O Vacancies

For the double perovskite SFMO, we were interested in similar
properties as in the case of PCMO in the last section but with
another motivation. SFMO shows in experimental and theoreti-
cal studies a high spin polarization.[184,185] This points to a half
metallic character of SFMO, which provides a good starting point
for spintronic devices,[7] and can be in fact well described
by SIC calculations[186] or with a GGAþU approach.[187,188]

We used the latter because DOS calculations with SIC by
Szotek[186] show the d states of SFMO far below the Fermi
energy, hinting at a too strong localization caused by the method.

The spintronic devices would require SFMO in thin film form,
which can be grown with high structural quality.[189] However, it
is known that the preparation of SFMO thin films, e.g., with
pulsed layer deposition, is sensitive to various kinds of defects
(see for examples Figure 13). Hence, the magnetic transition
temperatures Tm of the thin films are found to be below those
of bulk SFMO (Tm � 400K).[176] SFMO shows a ferrimagnetic
ground state with Fe moments aligning antiparallel to the Mo
moments.

In contrast to the Ca doping in PMO described earlier, SFMO
shows already intrinsically some disorder at the two transition
metal cation sites B and B

0
; here Fe and Mo have almost equiva-

lent lattice positions. Therefore, Mo might sit at the Fe site and
vice versa—known as an antisite defect (ASD). It has been shown
that those ASDs influence the electronic properties and reduce
the spin polarization,[185,190] whereas Tm was only affected for
larger ASD concentrations.[191]

We showed theoretically that more oxygen vacancies in SFMO
will increase the magnetic transition temperature for the price of
a reduced magnetic moment (Figure 14a). We combined again
the magnetic exchange interactions Jij calculated with
HUTSEPOT and the determination of Tm by the Monte Carlo
method.[167,187] The observed variation of magnetic moment
and Tm was attributed to the increasing AFM coupling between
Fe and Mo, while at the same time the strength of the coupling
between Fe─Fe pairs was reduced (Figure 14b). This observation
is also supported by experiments with films additionally annealed
after preparation.[176] The high temperatures in the annealing
cause more oxygen vacancies, while in turn the measured Tm

is higher than for untreated samples.
In case of the thin films, the substrate will cause epitaxial

strain in the SFMO films. In a joint experimental and theoretical
study, we excluded epitaxial strain as a source varying Tm on its
own but found hints that the defect concentration varies substan-
tially from the bulk sample to thin films.[176] Therefore, we stud-
ied with VASP the behavior of a number of point defects under a
biaxial strain.[188] The internal structure of 2� 2� 1 supercells of

(a) (b)

Figure 12. Lattice structure of PCMO with x ¼ 0.1: a) side view and b) top

view. Exchange parameters Jij among Mn and Pr ions (gray and yellow

spheres) are indicated by arrows together with the multiplicity of

Mn─Mn and Mn─O bonds. Red spheres represent oxygen atoms.

Adapted with permission.[177] Copyright 2016, IOP Publishing Ltd.

(a) (c)

(b) (d)

(e)

(f)

Figure 13. Sketch of the SFMO structure as a 2� 2� 1 supercell:

a,b) including internal relaxations calculated with VASP, c) oxygen vacancy,

d) ASD, and e,f ) defect complexes. Adapted with permission.[176]

Copyright 2016, American Chemical Society.

Figure 11. Calculated total and orbital-resolved DOS of PCMO with

x ¼ 0.1 obtained with HUTSEPOT. The influence of O vacancies is shown

by the red dashed line. Adapted with permission.[177] Copyright 2016, IOP

Publishing Ltd.
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an SFMO unit cell was relaxed including various point defects—
ASD, oxygen vacancies VO, cation vacancies VSr, VFe, VMo—and
substitutional defects FeMo and MoFe (not all are sketched in
Figure 13). The total energies of the different supercells were
then used to determine the defect formation energies as
described by Nayak et al.[175] with

EformðD, εaÞ ¼ EðD, εaÞ � EHostðεaÞ þ
X

i

piniμi þ Ecorr (48)

where EðD, εaÞ is the total energy of the supercell including
an uncharged defect D. Ehost(εa) is the total energy of the host
supercell of equal size under the influence of the strain εa.
Equation (48) has to be balanced by the chemical potentials μi
of the atomic type (i). The choice of μi is related to the oxygen-
rich case (see the supporting information from Adeagbo
et al.[188]). In addition, the chemical potential for oxygen is con-
nected to the oxygen partial pressure by thermodynamic rela-
tions. This allows a direct comparison of the theoretical
results with the experimental growth conditions. The last term
Ecorr in Equation (48) takes into account potential correction
schemes for postprocessing formation energy results obtained
by DFT methods.[175,193]

Thus, we calculated the defect formation energy for different
biaxial strains under oxygen-rich condition with Equation (48).
The lattice constants in the xy of the supercell were varied
and the resulting lattice constant in z direction relaxed. Those
results were then related to a partial oxygen pressure correspond-
ing to air (Figure 15a) and high vacuum (Figure 15b). At air par-
tial pressure with a low EformðVSr, 0Þ, VSr are the most likely
defects, which is a little surprising, because the Sr stoichiometry
is rarely taken into account as a potential source of variations in
earlier studies. In contrast, EformðVSr, εaÞ varies only a little for
strains in an experimentally realizable range of�3%. The forma-
tion energy for ASD increases for compressive strains, whereas
it decreases slightly for tensile strains, resulting in an lower
and higher probability of ASD, respectively (Figure 15a). As
EformðASD, εaÞ does not depend on the oxygen partial pressure,

the curve remains at the same position also for lower
oxygen partial pressure (Figure 15b).

Most importantly, oxygen vacancies are on the one hand
very likely for low oxygen partial pressures. On the other hand,
strain—independently from the direction—lowers the formation
energy and, hence, increases the probability to form oxygen
vacancies during the growing process. This will have in turn
an impact on the magnetic properties with the relations dis-
cussed previously (Figure 14a).

In summary, we showed how sensitive the properties of
SFMO are with different concentrations of defects. The latter
can be directly influenced by epitaxial strain, demonstrating a
path to tune the magnetic properties of oxides in general via
variation of intrinsic point defects.

6.3. XMCD as a Chemical Fingerprint

Although we could show in the last section that oxygen vacanices
in SFMO are one source of variations in the measured saturation
magnetization, there could be many other sources which
influence this single observable as well. Thus, we also study
XAS and the XMCD. XAS and XMCD spectra are very sensitive
to chemical composition, valency, and crystal structure and
may, therefore, act as a fingerprint to the local chemical
environment—most important in our studies on oxides. X-ray
absorption is in general a many-body problem, but it can be
approximated to some extent with in a one-particle picture.
This can be better handled within first-principles methods,
where it was formulated, e.g., in terms of the KKR Green’s func-
tion method[58,194] or the LMTO method.[195,196] We apply the
latter (see Section 2.2.2) to complement the study of electronic
and magnetic properties within our multicode approach.

(a) (b)

Figure 15. Defect formation energies obtained from VASP for different

point defects in SFMO in dependence of biaxial strain at oxygen partial

pressure equivalent to a) air and b) high vacuum. Adapted with permis-

sion.[188] Copyright 2018, American Physical Society.

(a) (b)

Figure 14. Magnetic properties of oxygen-deficient Sr2FeMoO6�δ

calculated with HUTSEPOT and CPA. a) Magnetic exchange interactions

between nearest and next-nearest-neighbor Fe sites and between Mo and

Fe sites. b) Total magnetic moment per f.u. and Curie temperature TC.

Experimental saturation magnetization from Kircheisen and Töpfer.[192]

Adapted with permission.[187] Copyright 2018, IOP Publishing Ltd.
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In case of SFMO, the calculated XAS and XMCD spectra

supported our investigation of oxygen vacancies with CPA.[115]

A good agreement with experimental spectra at the L2 and L3
edge of Fe[197] was only possible when oxygen vacancies were also
taken into account (Figure 16). In fact, the small features at a and

e in the experimental XAS results could not be explained without
oxygen vacancies, which also cause the valency change of Fe from

Fe3þ to Fe2þ. In adddition to SFMO, other double-perovskite mate-
rials were of interest, e.g., A2FeReO6 with A ¼ Ca, Sr, and Ba.[198]

Moreover, SFMO is not the only material discussed for
spintronic applications.[7] Another promising candidate is the

half-metallic La0.7Sr0.3MnO3, which is used as electrode in mag-
netic tunnel junctions.[6] Here, the interface to other oxide mate-

rials is crucial and we applied our multicode approach to study
electronic and magnetic properties of SrRuO3/La0.7Sr0.3MnO3

heterostructures. Although SrRuO3 (SRO) can be correctly
described from first-principles within the GGA approxima-

tion,[199] the Mn 3d electrons in La0.7Sr0.3MnO3 (LSMO) are

strongly localized and cannot be treated with the conventional
DFT approach. At the same time, LSMO is a metal and the

on-side Coulomb interaction can be efficiently screened by free
electrons. To estimate the strength of correlation effects, we

vary the Hubbard Ueff (see Section 3.3) as a parameter to fit

calculated XAS and XMCD spectra from the Mn L2,3 edges with
experimental observations (Figure 17). Due to restriction in

the considered supercell, we approximate La0.7Sr0.3MnO3

with La0.75Sr0.25MnO3. The best agreement with experiments
is found for Ueff ¼ 0.9 eV, whereas smaller (LDA) or larger

(Ueff ¼ 4.0 eV) values do not reproduce correctly the shape of
the L3 X-ray absorption spectrum (Figure 17a). Such a small
Ueff parameter also describes satisfactorily other properties of

La0.75Sr0.25MnO3, e.g., the electronic structure or optical and
magneto-optical Kerr (MOKE) spectra.[201]

The XMCD spectrum at the Mn L3 edge shows the prominent
negative peak at 643.3 eV and a positive broad high-energy shoul-

der at 645–648 eV. Although all three theoretical results describe
the major negative peak relatively well, Ueff ¼ 0.9 eV covers the
broad high-energy shoulder best. Thus, we conclude that the

electronic correlations in the system are moderate and can
be efficiently described with the relatively small Hubbard param-
eter Ueff ¼ 0.9 eV, which was used in our works on the

SRO/LSMO heterostructure.[202,203] Therein, SRO and LSMO are
ferromagnetic but couple antiparallelly to each other over their
interface (see Figure 18). The estimated strength of this AFM
coupling is –13.3meV and is caused by the spin polarization

of the oxygen atoms at the interface, visible in the spin density.
The latter is in SROmostly of the same sign (blue color), whereas
it alternates in sign along the Mn–O bonds in LSMO (see inset in

Figure 18). In particular, at the interface, the oxygen ions are
strongly polarized by the Mn atoms, leading to an asymmetry
in the spin density. Induced by the negative spin density of

the σ bond at the interface, the Ru atoms adjust their moments
in parallel direction. Thus, we could show via the theoretical con-
siderations why the SRO magnetization is oppositely aligned

with respect to the LSMO magnetization.

(a)

(b)

(c)

Figure 16. Calculated a) left and b) right circularly polarized light XAS and

c) XMCD results for the L2,3 edge of Fe in SFMO with and without oxygen

vacancies calculated with the LMTO method and compared to experimen-

tal measurements.[197] Adapted with permission.[187] Copyright 2018, IOP

Publishing Ltd.

(a)

(b)

Figure 17. a) XAS and b) XMCD spectra at the Mn L2,3 edge for

La0.75Sr0.25MnO3 calculated by the LMTO method within LDA and

LDAþU approximation with Ueff ¼ 0.9 eV and 4 eV and compared to

experimental results for La0.7Sr0.3MnO3.
[200]
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6.4. Microscopic Structure of CoO Bilayers on Ir(001)

The SFMO films discussed so far are “thin films” (a few 100 nm)
from the experimental point of view, but the calculations were
done for strained bulk material. In films of only a few mono-
layers, however, it is again different and the local structure can
be even more important than before. The microscopic structure
and electronic properties of CoO raised lengthy discussions
across the literature. Bulk CoO is a wide-gap AFM insulator
in the RS crystalline structure discussed earlier. CoO(111) is
instead composed of alternating layers of Co and oxygen atoms
(one bilayer) and should be actually polar. Hence, films of
CoO(111) should be unstable despite their existence. This
opened room for several speculations of charge compensation
mechanisms and beyond.[204–207]

It turned out that ultrathin CoO films compensate the addi-
tional charge by structural transition to a wurtzite-like structure,
while the surface remains metallic.[204] In this study, we comple-
mented surface X-ray diffraction (SXRD) and stress measure-
ments by first-principles calculations with HUTSEPOT. The
latter was especially suited for the task, as it is also designed
for semi-infinite systems.

Two different films were grown by depositing Co atoms on an
Ir(001) surface followed by annealing in an oxygen atmosphere.
The structural characterization by SXRD showed different cover-
ages of 1.6 and 2.0 bilayer of CoO(111).[204] All bond lengths are
much smaller than for bulk CoO, whereas those inside the
2.0ML film are a little bit smaller than those of the 1.6 ML film,
to accommodate the larger coverage (Figure 19). The other
features of the two films are very similar and we only show here
the important features for the 1.6ML CoO film.

We adapted the experimental structure model to our
first-principles simulations and applied the GGAþU method

to describe the localized nature of Co d states to calculate
electronic and magnetic properties. From the DOS we conclude
that the films were metallic, which contributes to the compensa-
tion of the polarity (Figure 20). Apparently, the thickness of the
films is not large enough to open a bandgap. Our calculations
indicate a very strong hybridization between cobalt d and oxygen
p states throughout the whole valence band due to reduced dis-
tances between the Co and O atoms. This hybridization also
enhanced the Co magnetic moments (see values in Figure 20).

The magnetic exchange interactions can be also easily calcu-
lated with Equation (43) for thin films. Thereby, not only the
nearest and next-nearest Jij are nonnegligible as for CoO
(Section 5.1), but many more are not small and have to be taken
into account because the AFM super exchange coupling is sig-
nificantly suppressed. The main exchange interactions have

(a)

(b)

Figure 18. The MnO2/SrO-terminated interface in the La0.7Sr0.3MnO3/

SrRuO3 heterostructure. a) Structure model used as a periodic superlattice

for calculations. Atomic types are color coded in the labels. b) Layer-

resolved magnetic moments obtained with HUTSEPOT. The inset shows

the atomically resolved spin-density distribution with red/blue denoting

spin up/down, respectively. Adapted with permission.[202] Copyright

2019, American Physical Society.

(a)

(b)

Figure 19. Lattice model for the 1.6ML CoO film at Ir(001) derived from

XRDmeasurements shown for a) top view and b) side view. The indices “i”

and “s” mark atoms in the bilayer next to the Ir(001) substrate or at the

surface, respectively. All bond lengths are given in angstroms. Adapted

with permission.[204] Copyright 2014, American Physical Society.
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AFM character, but many Jij are also FM or vanish completely

due to the large variations in the Co─O bond lengths and the
interaction with the underlying Ir substrate.

Hence, we showed that the electronic and magnetic properties

of the ultrathin CoO film are significantly altered, revealing a new
character totally different from the wide-gap AFM CoO bulk.

Those variations were strongly connected to the influence of
the substrate and resulting structural variations within the ultra-

thin regime. Such deep understanding on the atomic level was
hardly possible for experimental studies alone. In particular, the

first-principles complemented the experimental findings nicely,
which underlines their merits.

7. Conclusions

In this work, we presented a multicode approach for computa-
tional design of complex oxide materials which combines several

complementary first-principles methods within the DFT. First,
the crystalline structure can be obtained using pseudopotential

codes, which are well designed for total energy calculations.
Further information about the structure and chemical composi-

tion can be elucidated from first-principles simulations of observ-
ables, e.g., XAS and XMCD spectra, and their match to

experimental results. The obtained structural information serve

as input for calculations of the electronic and magnetic proper-
ties utilizing a first-principles Green’s function method.

For the complex oxides, the strongly localized electrons are
treated by means of the SIC-LSDA or LDAþU methods, while
itinerant Bloch electronic states are described within the LDA
or GGA approximations. Disorder effects can be treated effi-
ciently using either a CPA based on a Green’s function formal-
ism or the SQS method, which mimics efficiently random alloy
correlation functions up to next-nearest-neighbor interactions.
The interplay of the different methods used in this multicode
approach is illustrated by examples of electronic and magnetic
structure studies of transition metal and complex oxides.

The approach is general and is successfully used to study elec-
tronic and magnetic properties of other classes of materials as
well, e.g., diluted magnetic semiconductors, ferroelectrics, multi-
ferroics, graphene-based compounds, topological insulators,
Weyl semimetals, Heusler alloys, superconductors, metallic sur-
faces, interfaces, and clusters. Nevertheless, several applications
are recently implemented to HUTSEPOT, in particular, the
description of relativistic phenomena, or magnetic excitations
in ordered and disordered materials. Further developments
are currently being made to describe excited state properties
beyond the conventional density functional applying the linear
response theory[208,209] or the GW approximation.[210]
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[1] I. Žutić, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 2004, 76, 323.

[2] M. Bibes, A. Barthelemy, IEEE Trans. Electron Devices 2007, 54, 1003.

(a)

(b)

Figure 20. Density of states for the 1.6ML CoO film at Ir(001) for the

(top) surface and (bottom) interface layers obtained with HUTSEPOT.

The magnetic moments are shown for each Co atom. Adapted with per-

mission.[204] Copyright 2014, American Physical Society.

www.advancedsciencenews.com www.pss-b.com

Phys. Status Solidi B 2020, 257, 1900671 1900671 (20 of 24) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.pss-b.com


[3] R. G. Biskeborn, R. E. Fontana, C. S. Lo, W. S. Czarnecki, J. Liang,

I. E. T. Iben, G. M. Decad, V. A. Hipolito, AIP Adv. 2018, 8,

56511.

[4] A. Gupta, X. W. Li, G. Xiao, Appl. Phys. Lett. 2001, 78, 1894.

[5] J. M. D. Coey, M. Venkatesan, J. Appl. Phys. 2002, 91, 8345.

[6] M. Bowen, A. Barthélémy, M. Bibes, E. Jacquet, J. P. Contour, A. Fert,

F. Ciccacci, L. Duò, R. Bertacco, Phys. Rev. Lett. 2005, 95, 137203.

[7] N. Kumar, G. Khurana, R. S. Katiyar, A. Gaur, R. K. Kotnala, in

Magnetic Sensors: Development Trends and Applications

(Ed.: A. Asfour), InTech, Rijeka, Croatia 2017.

[8] H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa,

Y. Tokura, Nat. Mater. 2012, 11, 103.

[9] N. A. Spaldin, M. Fiebig, Science 2005, 309, 391.

[10] S. Förster, K. Meinel, R. Hammer, M. Trautmann, W. Widdra, Nature

2013, 502, 215.

[11] S. Förster, M. Trautmann, S. Roy, W. A. Adeagbo, E. M. Zollner,

R. Hammer, F. O. Schumann, K. Meinel, S. K. Nayak, K. Mohseni,

W. Hergert, H. L. Meyerheim, W. Widdra, Phys. Rev. Lett. 2016,

117, 095501.

[12] E. Dagotto, Science 2005, 309, 257.

[13] E. Morosan, D. Natelson, A. H. Nevidomskyy, Q. Si, Adv. Mater. 2012,

24, 4896.

[14] P. D. Esquinazi, W. Hergert, M. Stiller, L. Botsch, H. Ohldag,

D. Spemann, M. Hoffmann, W. A. Adeagbo, A. Chassé,

S. K. Nayak, H. Ben Hamed, Phys. Status Solidi B 2020, 257, 1900623.

[15] P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864.

[16] W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133.

[17] A collection of many reasonable exchange-correlation functionals is

available via https://tddft.org/programs/libxc/.

[18] S. Lehtola, C. Steigemann, M. J. Oliveira, M. A. Marques, SoftwareX

2018, 7, 1.

[19] J. P. Perdew, Y. Wang, Phys. Rev. B 1992, 45, 13244.

[20] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

[21] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria,

L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 2008, 100, 136406.

[22] J. Korringa, Physica 1947, 13, 392.

[23] W. Kohn, N. Rostoker, Phys. Rev. 1954, 94, 1111.

[24] B. L. Gyorffy, M. J. Stott, in Proc. Int. Conf. on Band Structure

Spectroscopy of Metals and Alloys (Eds.: D. J. Fabian,

L. M. Watson), Academic Press, San Diego, CA 1973, pp. 385.

[25] A. Gonis, W. Butler, Multiple Scattering in Solids, Springer-Verlag,

New York 2000.

[26] G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

[27] G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.

[28] X. Gonze, J. M. Beuken, R. Caracas, F. Detraux, M. Fuchs,

G. M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet,

M. Torrent, A. Roy, M. Mikami, P. Ghosez, J. Y. Raty, D. Allan,

Comput. Mater. Sci. 2002, 25, 478.

[29] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni,

D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de

Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann,

C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos,

N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,

L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen

et al., J. Phys.: Condens. Matter 2009, 21, 395502.

[30] R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri,

L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman,

Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1360.

[31] K. Koepernik, H. Eschrig, Phys. Rev. B 1999, 59, 1743.

[32] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón,

D. Sánchez-Portal, J. Phys.: Condens. Matter 2002, 14, 2745.

[33] P. Blaha, K. Schwarz, P. Sorantin, S. B. Trickey, Comput. Phys.

Commun. 1990, 59, 399.

[34] S. Blügel, G. Bihlmayer, The Full-Potential Linearized Augmented Plane

Wave Method, NIC Series, Vol. 31, John von Neumann Institute for

Computing, Jülich, Germany 2006, p. 85.

[35] The ELK code is available via http://elk.sourceforge.net/.

[36] O. K. Andersen, Phys. Rev. B 1975, 12, 3060.

[37] O. K. Andersen, O. Jepsen, Phys. Rev. Lett. 1984, 53, 2571.

[38] J. Kübler, Theory of Itinerant Electron Magnetism, International Series

of Monographs in Physics, Vol. 106, Oxford University Press, Oxford

2000.

[39] V. Eyert, The Augmented Spherical Wave Method, Lecture Notes in

Physics, Vol. 849, Springer, Berlin 2013.

[40] F. Herman, Rev. Mod. Phys. 1958, 30, 102.

[41] J. C. Phillips, L. Kleinman, Phys. Rev. 1959, 116, 287.

[42] D. R. Hamann, M. Schlüter, C. Chiang, Phys. Rev. Lett. 1979, 43, 1494.

[43] D. Vanderbilt, Phys. Rev. B 1990, 41, 7892.

[44] P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.

[45] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods,

Cambridge University Press, Cambridge 2004.

[46] M. Methfessel, Phys. Rev. B 1988, 38, 1537.

[47] S. Y. Savrasov, D. Y. Savrasov, Phys. Rev. B 1992, 46, 12181.

[48] J. M. Wills, M. Alouani, P. Andersson, A. Delin, O. Grechnyev,

O. Eriksson, Full-Potential Electronic Structure Method, Springer-

Verlag, Berlin 2010.

[49] I. Turek, V. Drchal, J. Kudrnovský, M. Šob, P. Weinberger, Electronic

Structure of Disordered Alloys, Surfaces and Interfaces, Kluwer Academic

Publishers, Dordrecht, The Netherlands 1997.

[50] L. Vitos, Computational Quantum Mechanics for Materials Engineers,

1st ed., Engineering Materials and Processes, Springer, London 2007.

[51] V. V. Nemoshkalenko, A. E. Krasovskii, V. N. Antonov, V. N. Antonov,

U. Fleck, H. Wonn, P. Ziesche, Phys. Status Solidi B 1983, 120, 283.

[52] V. N. V. Antonov, A. Y. Perlov, A. P. Shpak, A. N. Yaresko, J. Magn.

Magn. Mater. 1995, 146, 205.

[53] H. L. Skriver, The LMTO Method—Muffin-Tin Orbitals and Electronic

Structure, Reprint ed., Springer Series in Solid-State Sciences, Vol. 41,

Springer-Verlag, Berlin 1984.

[54] V. N. Antonov, B. Harmon, A. N. Yaresko, Electronic Structure and

Magneto-Optical Properties of Solids, Kluwer Academic Publishers,

Dordrecht, The Netherlands 2004.

[55] P. Weinberger, Electron Scattering Theory for Ordered and Disordered

Matter, International Series of Monographs on Physics, Clarendon

Press, Oxford, UK 1990.

[56] A. Gonis, Green Functions for Ordered and Disordered Systems,

North-Holland, Amsterdam, The Netherlands 1992.

[57] Electron Scattering in Solid Matter (Eds.: J. Zabloudil, R. Hammerling,

L. Szunyogh, P. Weinberger), Springer Series in Solid-State Sciences,

Vol. 147, Springer-Verlag, Berlin 2005.

[58] H. Ebert, D. Ködderitzsch, J. Minár, Rep. Prog. Phys. 2011, 74,

96501.

[59] A. Thiess, R. Zeller, M. Bolten, P. H. Dederichs, S. Blügel, Phys. Rev. B

2012, 85, 235103.

[60] M. Eisenbach, Y.W. Li, X. Liu, O. D. K. Odbadrakh, Z. Pei, G.M. Stocks,

J. Yin, LSMS Computer Software, Version 00, USDOE, December 2017,

https://www.osti.gov//servlets/purl/1420087.

[61] M. Ogura, H. Akai, J. Phys.: Condens. Matter 2005, 17, 5741.

[62] J. B. Staunton, B. L. Gyorffy, A. J. Pindor, G. M. Stocks, H. Winter,

J. Phys. F: Met. Phys. 1985, 15, 1387.

[63] A. Ernst, Multiple-Scattering Theory: New Developments and

Applications, Habilitation, Martin Luther University, Halle-

Wittenberg 2007.

[64] The code is available at https://hutsepot.jku.at.

[65] M. Lüders, A. Ernst, W. M. Temmerman, Z. Szotek, P. J. Durham,

J. Phys.: Condens. Matter 2001, 13, 8587.

[66] L. Vitos, J. Kollár, H. L. Skriver, Phys. Rev. B 1997, 55, 13521.

www.advancedsciencenews.com www.pss-b.com

Phys. Status Solidi B 2020, 257, 1900671 1900671 (21 of 24) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

https://tddft.org/programs/libxc/
http://elk.sourceforge.net/
https://www.osti.gov//servlets/purl/1420087
https://hutsepot.jku.at
http://www.advancedsciencenews.com
http://www.pss-b.com


[67] B. Drittler, M. Weinert, R. Zeller, P. Dederichs, Solid State Commun.

1991, 79, 31.

[68] T. Huhne, C. Zecha, H. Ebert, P. H. Dederichs, R. Zeller, Phys. Rev. B

1998, 58, 10236.

[69] J. S. Faulkner, G. M. Stocks, Phys. Rev. B 1980, 21, 3222.

[70] M. Geilhufe, S. Achilles, M. A. Köbis, M. Arnold, I. Mertig,

W. Hergert, A. Ernst, J. Phys.: Condens. Matter 2015, 27, 435202.

[71] The package is freely available at http://gtpack.org.

[72] R. M. Geilhufe, A. V. Balatsky, Phys. Rev. B 2018, 97, 24507.

[73] R. M. Geilhufe, F. Guinea, V. Juričić, Phys. Rev. B 2019, 99, 20404.
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M. C. Muñoz, M. C. Munoz, J. Phys.: Condens. Matter 2016, 28,

016003.

[173] C. E. Rodríguez Torres, G. A. Pasquevich, P. M. Zélis, F. Golmar,

S. P. Heluani, S. K. Nayak, W. A. Adeagbo, W. Hergert,

M. Hoffmann, A. Ernst, P. Esquinazi, S. J. Stewart, Phys. Rev. B

2014, 89, 104411.

[174] K. L. Salcedo Rodríguez, M. Hoffmann, F. Golmar, G. Pasquevich,

P. Werner, W. Hergert, C. E. Rodríguez Torres, Appl. Surf. Sci. 2017,

393, 256.

[175] S. K. Nayak, H. T. Langhammer, W. A. Adeagbo, W. Hergert,

T. Müller, R. Böttcher, T. Müller, R. Böttcher, Phys. Rev. B 2015,

91, 155105.

[176] J. Tikkanen, M. Geilhufe, M. Frontzek, W. Hergert, A. Ernst,

P. Paturi, L. Udby, J. Phys.: Condens. Matter 2016, 28, 36001.

[177] R. M. Geilhufe, Ph.D. Thesis, Martin Luther University

Halle-Wittenberg, 2015.
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[190] A. B. Muñoz-García, M. Pavone, E. A. Carter, Chem. Mater. 2011, 23,

4525.

[191] D. Sánchez, J. A. Alonso, M. García-Hernández, M. J. Martínez-Lope,

J. L. Martínez, A. Mellergård, Phys. Rev. B 2002, 65, 104426.

www.advancedsciencenews.com www.pss-b.com

Phys. Status Solidi B 2020, 257, 1900671 1900671 (23 of 24) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

https://doi.org/10.1002/pssb.201900632
https://doi.org/10.1002/pssb.201900632
http://www.advancedsciencenews.com
http://www.pss-b.com


[192] S. Lany, A. Zunger, Phys. Rev. B 2008, 78, 235104.

[193] H. Ebert, R. Zeller, Phys. Rev. B 1990, 42, 2744.

[194] G. Y. Guo, H. Ebert, W. M. Temmerman, P. J. Durham, Phys. Rev. B

1994, 50, 3861.

[195] V. N. Antonov, A. I. Bagljuk, A. Y. Perlov, V. V. Nemoshkalenko,

V. N. Antonov, O. K. Andersen, O. Jepsen, Fiz. Nizk. Temp. 1993,

19, 494.

[196] M. Besse, V. Cros, A. Barthélémy, H. Jaffrès, J. Vogel, F. Petroff,

A. Mirone, A. Tagliaferri, P. Bencok, P. Decorse, P. Berthet,

Z. Szotek, W. M. Temmerman, S. S. Dhesi, N. B. Brookes,

A. Rogalev, A. Fert, Europhys. Lett. 2002, 60, 608.

[197] V. N. Antonov, L. V. Bekenov, A. Ernst, Phys. Rev. B 2016, 94,

35122.

[198] C. Etz, I. V. Maznichenko, D. Böttcher, J. Henk, A. N. Yaresko,

W. Hergert, I. I. Mazin, I. Mertig, A. Ernst, Phys. Rev. B 2012, 86,

64441.

[199] L. Uba, S. Uba, L. P. Germash, L. V. Bekenov, V. N. Antonov, Phys.

Rev. B 2012, 85, 125124.

[200] S. Das, A. D. Rata, I. V. Maznichenko, S. Agrestini, E. Pippel,

N. Gauquelin, J. Verbeeck, K. Chen, S. M. Valvidares, H. Babu

Vasili, J. Herrero-Martin, E. Pellegrin, K. Nenkov, A. Herklotz,

A. Ernst, I. Mertig, Z. Hu, K. Dörr, Phys. Rev. B 2019, 99, 24416.

[201] M. Ziese, I. Vrejoiu, E. Pippel, P. Esquinazi, D. Hesse, C. Etz,

J. Henk, A. Ernst, I. V. Maznichenko, W. Hergert, I. Mertig, Phys.

Rev. Lett. 2010, 104, 167203.

[202] S. Roy, H. L. Meyerheim, K. Mohseni, Z. Tian, D. Sander,

M. Hoffmann, W. A. Adeagbo, A. Ernst, W. Hergert, R. Felici,

J. Kirschner, Phys. Rev. B 2014, 89, 165428.

[203] C. Ebensperger, M. Gubo, W. Meyer, L. Hammer, K. Heinz, Phys.

Rev. B 2010, 81, 235405.

[204] C. Giovanardi, L. Hammer, K. Heinz, Phys. Rev. B 2006, 74, 125429.

[205] W. Meyer, D. Hock, K. Biedermann, M. Gubo, S. Müller, L. Hammer,

K. Heinz, Phys. Rev. Lett. 2008, 101, 16103.

[206] E. Runge, E. K. U. Gross, Phys. Rev. Lett. 1984, 52, 997.

[207] E. K. U. Gross, W. Kohn, Phys. Rev. Lett. 1985, 55, 2850.

[208] L. Hedin, Phys. Rev. 1965, 139, A796.

[209] R. Kircheisen, J. Töpfer, J. Solid State Chem. 2012, 185, 76.

[210] T. Koide, H. Miyauchi, J. Okamoto, T. Shidara, T. Sekine, T. Saitoh,

A. Fujimori, H. Fukutani, M. Takano, Y. Takeda, Phys. Rev. Lett. 2001,

87, 246404.

www.advancedsciencenews.com www.pss-b.com

Phys. Status Solidi B 2020, 257, 1900671 1900671 (24 of 24) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.pss-b.com

	Magnetic and Electronic Properties of Complex Oxides from First-Principles
	1. Introduction
	2. First-Principles Methods
	2.1. Basics of Density Functional Theory
	2.2. Basis Set Methods
	2.2.1. Pseudopotentials
	2.2.2. Linear Muffin-Tin Orbitals

	2.3. Green&aposx;s Function Method
	2.4. Group Theory and GTPack

	3. Correlation Corrections
	3.1. Self-Interaction Correction
	3.2. Local Self-Interaction Corrections
	3.3. Correlation Correction via Hubbard U Parameter
	3.4. Advantages and Disadvantages of the Two Methods

	4. Treatment of Disorder
	4.1. Coherent Potential Approximation
	4.2. Special Quasirandom Structures
	4.3. Comparison of the Two Methods

	5. Magnetism
	5.1. Calculation of Exchange Interactions
	5.1.1. Explicit Calculation from Scattering Quantities
	5.1.2. Calculation from Total Energy Differences

	5.2. Magnons
	5.3. Monte Carlo Simulations

	6. Selected Examples
	6.1. Magnetostructure of Pr0.9Ca0.1MnO3
	6.2. Tuning of Magnetism in Sr2FeMoO6 via O Vacancies
	6.3. XMCD as a Chemical Fingerprint
	6.4. Microscopic Structure of CoO Bilayers on Ir(001)

	7. Conclusions


