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Magnetic and superconducting phase diagram of Nb/Gd/Nb trilayers
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We report on a study of the structural, magnetic, and superconducting properties of
Nb(25 nm)/Gd(df )/Nb(25 nm) hybrid structures of a superconductor/ ferromagnet (S/F) type. The structural
characterization of the samples, including careful determination of the layer thickness, was performed using
neutron and x-ray scattering with the aid of depth-sensitive mass spectrometry. The magnetization of the
samples was determined by superconducting quantum interference device magnetometry and polarized neutron
reflectometry, and the presence of magnetic ordering for all samples down to the thinnest Gd(0.8 nm) layer
was shown. The analysis of the neutron spin asymmetry allowed us to prove the absence of magnetically dead
layers in junctions with Gd interlayer thickness larger than one monolayer. The measured dependence of the
superconducting transition temperature Tc(df ) has a damped oscillatory behavior with well-defined positions
of the minimum at df = 3 nm and the following maximum at df = 4 nm, in qualitative agreement with prior
work [J. S. Jiang et al., Phys. Rev. B 54, 6119 (1996)]. We use a theoretical approach based on the Usadel
equations to analyze the experimental Tc(df ) dependence. The analysis shows that the observed minimum at
df = 3 nm can be described by the so-called zero to π phase transitions of highly transparent S/F interfaces with
a superconducting correlation length ξf ≈ 4 nm in Gd. This penetration length is several times higher than for
strong ferromagnets like Fe, Co, and Ni, thus simplifying the preparation of S/F structures with df ∼ ξf which
are of topical interest in superconducting spintronics.

DOI: 10.1103/PhysRevB.97.144511

I. INTRODUCTION

Superconductor/ ferromagnet (S/F) hybrid structures are
attracting great interest nowadays due to a large number
of phenomena, including π Josephson junctions, the non-
monotonous dependence of the critical temperature Tc on the
thickness of the F layer df , superconducting spin valves, triplet
superconductivity, etc. [1–5]. This rich physics is based on
the proximity effect, i.e., the penetration of superconducting
correlations from the S into the F layer over a typical distance
ξf of the order of 1–10 nm. This leakage leads to the damped
oscillatory behavior of the pairing potential in S/F multilayers.
Even for the simplest system, i.e., a S/F bilayer, this effect
leads to a nontrivial Tc(df ) dependence: depending on the
interface transparency, the Tc(df ) function can be oscillating,
reentrant for highly transparent interfaces, or monotonously
decaying for interfaces with medium or low transparency
[6–10]. For a larger number of S/F interfaces the behavior of
the pairing potential becomes more complicated. For df < ξf ,
the pair wave function in the F layer changes little, and the
superconducting pair potential in the adjacent S layers remains
the same. The phase difference between the pair potentials in

the S layers is then absent, which is referred to as the zero
phase state. On the other hand, if df ∼ ξf , the pair wave
function may cross zero at the center of the F layer with an
opposite sign or π shift of the phase of the pair potential
in the adjacent S layers, which is called the π phase state
[11,12]. An increase in the F layer thickness df may provoke
subsequent transitions from zero to π phases or even into
more complex phases [13,14]. The existence of the π state
leads to a number of striking phenomena. For example, the
critical current in S/F/S Josephson junctions exhibits a damped
oscillatory behavior with increasing F layer thickness [15–19].
In the π state the critical current is negative, and the transition
from the zero to the π state results in a sign change of the
critical current. Zero to π transitions can also be observed
as density-of-states oscillations [20–23], critical temperature
Tc oscillations [24,25], or peculiarities in the electrodynamics
[26] of S/F multilayers.

The S/F structures attract interest not only from the
scientific point of view but also from the technologi-
cal point of view as elements of superconducting spin-
tronics [4,5,27–31]. High performance of such devices is
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predicted and realized for highly transparent S/F interfaces
with df ∼ ξf .

One of the first S/F systems which were proved to have
high transparency were Gd/Nb systems [24,25]. A series of
Nb/Gd/Nb trilayers and periodic structures were prepared
using magnetron sputtering, and an oscillatory Tc(df ) behavior
was observed. More recently, homogeneous NbGd alloys [32]
and GdN/Nb/GdN trilayers [33] were studied. However, pure
gadolinium in combination with niobium has several advan-
tages compared to other S/F systems widely used nowadays.
First, gadolinium is a localized ferromagnet with a rather
low (compared to Fe, Co, and Ni) bulk Curie temperature of
Tm = 293 K [34]. Strong localization of the magnetic moment
stabilizes ferromagnetism even in ultrathin Gd layers. In
contrast itinerant ferromagnets (Fe, Co, Ni) form magnetically
dead layers at the S/F interface [35–37], thus deteriorating the
interface transparency. Another advantage of Gd is its ability
to couple with other ferromagnets [38–42], forming nontrivial
magnetic ordering patterns which can be used for the creation
of superconducting spin valves [29–31]. Finally, niobium and
gadolinium components are not mutually soluble in either the
solid or liquid phase [43,44].

Motivated by these arguments, we prepared and thoroughly
studied a series of Nb(25 nm)/Gd(df )/Nb(25 nm) trilayers.
Our work extends the pioneering work of Jiang et al. [25] on a
set of samples whose structural and magnetic properties were
thoroughly characterized by x-ray and neutron reflectometry.
The resulting dependence of the superconducting Tc on df

exhibits substantial quantitative differences with Ref. [25].
We discuss the origin of these differences and analyze the
experimental Tc(df ) dependence in a theoretical framework
based on the Usadel equations, leading to a full quantitative
description of this prototypical S/F/S heterojunction system.

II. SAMPLE FABRICATION AND EXPERIMENTAL
TECHNIQUES

The samples of the nominal structure Ta(3 nm)/Cu(4 nm)/
Nb(25 nm)/Gd(df )/Nb(25 nm) (here and later SFSx, where
x ≡ df measured in nanometers) were prepared using an UHV
magnetron machine ULVAC MPS-4000-C6 at constant current
on Al2O3(11̄02) substrates with a thickness of the Gd layer

df = [0.8-7.5] nm (see inset in Fig. 1). The bilayer Ta/Cu on
the top is required to protect against oxidation and to create a
neutron waveguide structure [45].

Before the deposition, the substrate was cleaned from or-
ganic contaminations with acetone and alcohol. The substrate
was further cleaned in situ with reverse magnetron sputtering
(2 min at an argon flow rate of 25 sccm) in the load chamber.
The base pressure was lower than 2 × 10−9 mbar. Pure argon
gas (99.9998% purity) at a flow rate of 25 sccm was used as the
sputter gas. The deposition was carried out at room temperature
(about 25 ◦C) at a magnetron sputtering power of 100 W in an
argon atmosphere of 1 × 10−3 mbar. In these conditions Nb,
Gd, Cu, and Ta layers were sputtered at deposition rates of
2.35, 6.85, 6.45, and 2.8 nm/min, respectively. The deposition
rates were calibrated using test samples with the help of a Zygo
NewView7300 white-light interferometer.

The quality of the layers and interfaces was studied by
secondary neutral mass spectrometry (SNMS; SPECS GmbH
Berlin INA-X type) and x-ray (XRR) and neutron reflectome-
tries (NR). Both x-ray and neutron reflectometries allow one to
reconstruct the depth profile of x-ray/neutron scattering length
density (SLD) [46]. In addition, the SLD of neutrons is spin de-
pendent: ρ± = ρ0(z) ± cM(z), where the superscript denotes
the sign of the neutron spin projection on the external field,
ρ0(z) and M(z) are the depth profiles of the nuclear SLD and the
in-plane magnetization, and c = 0.231 × 10−4 nm−2/kG is a
scaling factor. Polarized neutron reflectometry (PNR) can thus
be used as a depth-sensitive magnetometric method. In the part
of the PNR measurements at remanence we measured the inten-
sity of spin-flip scattering. This scattering channel allowed us to
obtain information about the component of the in-plane magne-
tization noncollinear to the external field. We note that PNR is
sensitive only to the in-plane component of the magnetization.
The x-ray reflectivity curves were measured on the PANalyt-
ical Empyrean diffractometer at the wavelength λ = 0.229
nm. In addition to PNR we used superconducting quantum
interference device (SQUID) magnetometry for the magnetic
measurements. The PNR experiments were conducted on
the angle-dispersive reflectometer NREX (λ = 0.428 nm)
at the research reactor FRM-II (Garching, Germany) and
time-of-flight reflectometer REMUR (λ = [0.15-1] nm) at the
research reactor IBR-2 (Dubna, Russia). In all magnetometric

FIG. 1. (a) The x-ray experimental (dots) and theoretical (solid curves) reflectivity curves for sample SFS7.5. The inset shows the general
design of the prepared structures. (b) Concentration profiles of Cu, Nb, Gd, and Al for the same sample measured by SNMS. The dots show
the x-ray SLD depth profile for the model reflectivity depicted in (a).
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measurements, the external magnetic field was applied in
the plane of the structure. Superconducting properties were
measured by a SQUID magnetometer and a mutual inductance
setup.

III. STRUCTURAL PROPERTIES

A typical x-ray reflectivity curve measured on sample
SFS7.5 is shown in Fig. 1(a). The curve exhibits so-called Kies-
sig oscillations caused by the interference of x rays reflected
from different interfaces inside the structure. The experimental
curve can be reasonably well fitted by the model reflectivity
calculated for the SLD depth profile depicted in Fig. 1(b).
In the same figure we show the concentration depth profile
measured by SNMS. One can see a good correspondence
between the layer thicknesses obtained with different methods.
By further analysis of the depth profiles we can conclude that
the real thickness of the layers deviates by at most 10% from
the nominal values and that the interfaces are characterized by
an rms roughness of the order of 1 nm.

A similar data treatment was performed for the other
samples. In the cases when SNMS was not measured, we fitted
x-ray and neutron reflectivity curves simultaneously while
keeping the parameters ds and df the same for both curves.
Thicknesses of all samples are within 10% of the nominal
values. The rms roughness of the Gd/Nb interfaces obtained
from the fits is 0.5–1 nm.

IV. MAGNETIC PROPERTIES

The spin-polarized neutron reflectivities measured on sam-
ple SFS3 at T = 6.2 K and H = 4 kOe are shown in Fig. 2(a).
The nonzero spin asymmetry S ≡ (R+ − R−)/(R+ + R−)
[Fig. 2(b)] evidences the presence of a magnetic moment in
our system. The inset in Fig. 2(a) shows the depth profiles
ρ+(z) and ρ−(z) corresponding to the best-fit model. One can
see that the splitting of the curves is due to the presence of a
magnetization M = 7.5 kG in the Gd layers (here and below
we assume that the magnetization is already multiplied by a
factor of 4π ).

We paid particular attention to possible magnetic dead
layers in our samples. First of all, we note that the sample
with the thinnest df = 0.8 nm is still ferromagnetic, which
gives us a lower bound on the thickness dDL of the dead layer.
We also included dead layers in our models of the PNR data.
In Fig. 2(b) we show the calculated spin asymmetries for three
models: no magnetic dead layer (model 1), a dead layer with
thickness dDL = 0.5 nm at the bottom S/F interface (model 2),
and a dead layer at the top S/F interface (model 3). In all
models the total magnetic moment is constrained to be equal to
the macroscopic moment measured by SQUID magnetometry.
Model 1 provides the best description of the data with goodness
of fit χ2 = 8.6. Models 2 and 3 show worse agreement with
experiment with χ2 = 9.8 and χ2 = 9.5, respectively. We also
tried to model the presence of dead layers on both interfaces
and ended up with χ2 = 9.7.

The temperature dependence of the magnetic moment
measured by SQUID in a magnetic field H = 661 Oe on sample
SFS3 is shown in Fig. 3(a). The SQUID measurements have
to be carried out in low magnetic fields due to the diamagnetic

FIG. 2. (a) Experimental (dots) and model (solid line) neutron
reflectivity curves for sample SFS3 measured at T = 6.2 K andH = 4
kOe. The inset shows the SLD depth profiles for spin-up (ρ+) and
spin-down (ρ−) neutrons corresponding to the best-fit model. (b) The
experimental (dots) spin asymmetry for the reflectivities depicted in
(a). The solid lines show the model curves for the magnetic profiles
which are shown in the inset.

response of the substrate [see Fig. 3(b)]. The smaller df is,
the higher the field range is where the magnetic signal of the
substrate dominates over the signal of the F layer. The PNR
data, in contrast, are insensitive to the magnetic moment of
the substrate and can be measured in fields above saturation.
In Fig. 3(a) we also show the temperature dependence of the
neutron spin asymmetry measured in an applied field H = 4
kOe. We can see good agreement between neutron and SQUID
data at all temperatures down to T = 60 K. The difference
at lower temperature can be ascribed to a reorientation of
the easy axis which was observed in bulk Gd [47]. The
Curie temperature Tm was extracted from the temperature
dependence of m(T ), and the resulting dependence Tm(df ) is
shown in the inset of Fig. 3(a). Tm grows with increasing df up
to df ∼ 3 nm and then saturates at the bulk value. This behavior
is in qualitative agreement with previous reports [24].

The field dependence of the SQUID magnetic moment
measured at T = 13 K on the same sample is shown in
Fig. 3(b). The hysteresis loop reveals a coercivity field of Hc ≈
500 Oe and saturation magnetic moment of msat ≈ 50 μemu.
Knowing from XRR and NR the Gd layer thickness and
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FIG. 3. (a) The temperature dependence of the SQUID magnetic moment (solid line) and averaged spin asymmetry (dots) for sample SFS3.
The inset shows the dependence of Tm(df ). (b) The field dependence for sample SFS3 measured at T = 13 K. Original and background-corrected
loops are shown by black and red curves, respectively. The top and bottom insets show the df dependencies of the saturation magnetization
and the squareness of the hysteresis loop.

sample area S = 25 mm2 the saturation magnetization can be
calculated as Msat = msat/(df S) = 7.6 kG. This value is in
good agreement with M = 7.5 kG found from PNR, giving
thus another cross-check of our determination of the thickness
df and magnetization. The top inset in Fig. 3(b) shows the
dependence Msat(df ). One can also see that Msat(df ) correlates
with Tm(df ), depicted in the inset in Fig. 3(a).

Another characteristic of a hysteresis loop is its squareness
Sq ≡ mrem/msat (mrem is the remanent magnetic moment). A
squareness less than 100% means that the external magnetic
field was applied at an angle α ≈ arccos(Sq) to the easy axis
direction. The Sq(df ) dependence shown in the bottom inset
of Fig. 3(b) tells us that the easy axis (EA) of all samples
makes a nonzero angle with H . If the EA lies in the plane of
the structure, we should observe neutron spin-flip scattering,
which, however, was not observed in the experiment. This leads
us to the conclusion that the EA is aligned out of plane.

V. SUPERCONDUCTING PROPERTIES AND THE
PROXIMITY EFFECT

The temperature dependencies of the magnetic moment
around Tc in different magnetic fields measured by SQUID on
the SFS3 sample are shown in Fig. 4(a). In magnetic fields
H < 0.5 kOe the total magnetic moment decreases below
Tc due to the Meissner response of the S layers. For fields
H > 0.5 kOe, in contrast, an increase in the magnetic moment
is observed with almost linear dependence of the jump on
magnetic field [inset in Fig. 4(a)]. A similar jump with linear
dependence was observed recently in (Fe, Co, Ni)/V bilayers
[48]. It is interesting to note that PNR, in contrast, does not
reveal any difference in the spin asymmetries above and below
Tc within the statistical accuracy.

The field dependence of Tc is shown by red dots in the inset
of Fig. 4(a). The Tc(H ) dependence for this sample has a linear
form typical for three-dimensional superconductors which
evidences coupling of the S layers through the F one. By fitting
the experimental dependence Tc(H ) we can extract Tc(0) =
5.7 K and Hc2(0) = 12.6 kOe. The latter value allows us to
estimate the superconducting correlation length ξs ∼ 10 nm.

The Tc(df ) dependence is shown in Fig. 4(b). It has a
damped oscillatory behavior with a minimum at df = 3 nm
followed by a maximum at df = 4 nm. The shape of the
curve is similar to the one measured by Jiang et al. [25] for
similar Nb(25 nm)/Gd/Nb(25 nm) trilayers; however, both
minimum and maximum are observed in our case at δdf ∼
1.5 nm higher values. After taking this offset into account,
both Tc(df ) dependencies become consistent.

VI. DISCUSSION AND CONCLUSION

In this work we have studied the df dependence
of the magnetic and superconducting properties of
Nb(25 nm)/Gd(df )/Nb(25 nm) S/F/S trilayers. The thickness
df was derived from comprehensive analysis of several
structural and magnetic techniques such as secondary neutral
mass spectrometry, x-ray and neutron reflectometries, and
SQUID magnetometry. The magnetic and superconducting
transition temperatures generally agree with the ones
reported in Ref. [24] if an offset in the thickness of the
Gd layer δdf ∼ 1.5 nm is taken into account. The difference
cannot be explained by the presence of magnetically dead
layers in our structures since both PNR and SQUID data
exclude the presence of any dead layer with a thickness of
more than one monolayer. Taking into account the similar
Curie temperatures of the S/F/S systems in this work and
analogous trilayers in Ref. [25], the offset cannot be explained
by different experimental conditions either. We attribute the
difference to a miscalibration of the thicknesses of the Gd
layer in Refs. [24,25]. In those works the thicknesses were
calibrated using a quartz-crystal monitor and the position
of the Bragg peaks in the x-ray reflectivities. However, the
quartz-crystal monitor has a sensitivity of the order of 1 nm,
and the positions of the low-order Bragg peaks are shifted
towards higher angles due to the refraction effect. This means
that attempts to calculate the thickness of a Nb/Gd bilayer
using the standard Bragg law will generate a systematic error
of 1–3 nm (see Appendix B). Taking into account this offset
allows us to reconcile the dependencies of Tc(df ) in both
cases.
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(a)
(b)

FIG. 4. (a) Temperature dependence of the magnetic moment measured by SQUID on sample SFS3. The inset shows the field dependence
of the upturn amplitude and Tc (defined as the midpoint of the transition). (b) Experimental Tc(df ) dependence for this work (red dots) and
Ref. [25] (black dots) with δdf = 1.5 nm correction. Black and red lines show calculations using the Usadel equations for zero and π phase
states. The inset shows the temperature dependence of the magnetic moment change dm(T ) ≡ m(T ) − m(T > Tc) for the set of samples marked
in the main panel.

We compared the experimental Tc(df ) dependencies to
model curves calculated for the zero and π states using the
Usadel approach (see Appendix A). For the calculations we
fixed ξs = 10 nm and the exchange energy Eex = 280 K
and varied ξf , γ , and γb. The parameters γ and γb are
expressed via the normal-state conductivity of the S (F) layer
σs(n), the resistance of the S/F boundary RB , and above-
defined correlation lengths as γ = ξsσn/ξnσs , γB = RBσn/ξn.
Reasonably good agreement between experiment and theory
was obtained for γ = 0.07, γb → 0, and ξf = 4 nm. The
extremely small parameter γb indicates a high transparency
of the S/F interface. Thus, according to our calculations the
superconducting correlations penetrate into the Gd layer with a
typical length of ξf = 4 nm. The π state becomes energetically
favorable for a region of thickness df = [3-6] nm. For higher
thicknesses transmission of the correlations through the F layer
becomes impossible, and the S/F/S structure splits into two
independent S/F bilayers.

We now discuss the magnetic properties of the samples.
Our investigation has shown that samples with df > 2 nm
have Curie temperatures close to the bulk and almost square
hysteresis loops. However, the magnetic moment of our struc-
tures is only 3.7μB/Gd, i.e., roughly half of the bulk value. A
similarly suppressed moment was found in Gd/U [49], Gd/V
[50], and Gd/Cr [51] multilayers. This suppression may well be
related to the presence of the less magnetic fcc phase together
with the bulk hcp phase which was recently found in Fe/Cr/Gd
multilayers [40].

Below Tc we observed an upturn of the magnetic moment
if the sample was cooled down in a certain magnetic field.
A similar upturn, often called the paramagnetic Meissner
effect (PME), was already observed in several prior works
[48,52–56] and was explained by either electrodynamic or
exchange coupling mechanisms. Based on (a) the observation
of the effect at high fields, (b) the linear field dependence of
the enhanced moment, and (c) the absence of the effect in
PNR, we attribute the PME in our samples to out-of-plane
vortices. In Ref. [57] the PME for a single S film with the

external field directed normal to the surface was explained
by vortex trapping. In our case the stray field of Gd can play
the role of the out-of-plane external field. It is also known
that the proximity effect can influence the vortex dynamics and
hence cause a PME [58]. This question has to be addressed by
future investigations.

In conclusion, we have shown that high-quality Nb/Gd/Nb
trilayers can be grown using magnetron sputtering in a wide
range of thicknesses. The penetration depth of superconducting
correlations in the Gd layer is found to be several times higher
than for strong ferromagnets like Fe, Co, or Ni. This simplifies
the preparation of S/F structures with df ∼ ξf which are of
topical interest in superconducting spintronics.
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APPENDIX A: CRITICAL-TEMPERATURE
CALCULATION

The model of the S/F/S junction we are going to study is
depicted in Fig. 5 and consists of a ferromagnetic layer of thick-
ness df and two superconducting layers of thickness ds along
the x direction. The structure is symmetric, and its center is
placed atx = 0. We assume the diffusive limit and h̄ = kB = 1.

To calculate the critical temperature Tc(df ) of this structure
we use the framework of the linearized Usadel equations for
the S and F layers. Near Tc the normal Green’s function is G =
sgn ωn, and the Usadel equations for the anomalous Green’s
function F in the S layers reads (df /2 < |x| < ds + df /2) [59]

ξ 2
s πTcs

d2Fs

dx2
− |ωn|Fs + � = 0. (A1)

In the F layer (−df /2 < x < df /2) the Usadel equation can
be written as [1]

ξ 2
nπTcs

d2Ff

dx2
− (|ωn| + iEex sgn ωn)Ff = 0. (A2)

Finally, the self-consistency equation reads [1],

� ln
Tcs

T
= πT

∑
ωn

(
�

|ωn| − Fs

)
. (A3)

Here ξs = √
Ds/2πTcs , ξn = √

Df /2πTcs , ωn = 2πT (n +
1
2 ), with n = 0, ± 1, ± 2, . . ., are the Matsubara frequencies;
Eex is the exchange field in the ferromagnet; Tcs is the critical
temperature of the S material (df → 0); and Fs(f ) denotes the
anomalous Green’s function in the S (F) region. We note that
ξf = ξn

√
2πTcs/Eex .

Equations (A1)–(A3) must be supplemented by the follow-
ing boundary conditions at the S/F interfaces (x = ±df /2)
[60]:

ξs

dFs(±df /2)

dx
= γ ξf

dFf (±df /2)

dx
, (A4a)

ξf γb

dFf (±df /2)

dx
= ±Fs(±df /2) ∓ Ff (±df /2), (A4b)

where γ = ξsσn/ξnσs , σs(n) is the normal-state conductivity of
the S (F) layer,γB = RBσn/ξn [60–62], andRB is the resistance
of the S/F interfaces (we assume a symmetric structure with

F SS

0 d /2f d +d /2s f
x

0 state

π state

-d /2f-d -d /2s f

FIG. 5. Geometry of the considered system. The thickness of the
ferromagnetic interlayer is df . The typical behavior of the real part
of the pair wave function F is shown schematically. The pair wave
function in the zero state is shown by the solid red line, while in that
the π state is shown by dashed blue line. Only one of these states is
realized depending on the F layer thickness df .

FIG. 6. Model x-ray reflectivity curve calculated for the
[Nb(8.1 nm)/Gd(2.5 nm)]x14/Si system (compare with Fig. 1 in
[24]). The vertical red arrows show the positions of the Bragg
reflections calculated by Eq. (B1). The inset shows the deviation of
the peak position from the Bragg law as a function of peak order.

the same resistance RB for x = ±df /2). At the borders of the
S layer with a vacuum we naturally have

dFs(±ds ± df /2)

dx
= 0. (A5)

The solution of the Usadel equation in the F layer depends
on the phase state of the structure. In the zero phase state the
anomalous Green’s function is symmetric relative to x = 0
(see Fig. 5) [6],

F 0
f = C(ωn) cosh(kf x),

kf = 1

ξn

√
|ωn| + iEex sgn ωn

πTcs

. (A6)

In the π phase state the anomalous Green’s function is
antisymmetric relative to x = 0 (see Fig. 5),

Fπ
f = C ′(ωn) sinh(kf x). (A7)

In Eqs. (A6) and (A7) C(ωn) and C ′(ωn) are the integration
constants to be found from the boundary conditions.

The boundary value problem (A1)–(A5) can be solved
in order to obtain the closed boundary condition for the Fs

function. At the right S/F interface (x = df /2) it acquires the
form

ξs

dFs(df /2)

dx
= γ

γB + Bf (ωn)
Fs(df /2). (A8)

A similar boundary condition can be written at x = −df /2. In
Eq. (A8) the Bf function can acquire different values in zero
and π phase states. The zero state was already considered in
Ref. [6],

B0
f = [kf ξn tanh(kf df /2)]−1, (A9)

while in the π state from Eq. (A7) we obtain

Bπ
f = [kf ξn coth(kf df /2)]−1. (A10)
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The boundary condition (A8) is complex. In order to rewrite it
in a real form, we use the following relation:

F± = F (ωn) ± F (−ωn). (A11)

According to the Usadel equations (A1)–(A3), there is a
symmetry relation F (−ωn) = F ∗(ωn) which implies that F+
is real while F− is a purely imaginary function.

Thus, we can consider only positive Matsubara frequencies
and express the self-consistency equation (A3) only via the
symmetric function F+,

� ln
Tcs

T
= πT

∑
ωn>0

(
2�

ωn

− F+
s

)
. (A12)

The problem of Tc determination can be formulated in a closed
form with respect to F+

s . Using the boundary condition (A8),
we arrive at the effective boundary conditions for F+

s at the
right S layer boundaries,

ξs

dF+
s (df /2)

dx
= W (ωn)F+

s (df /2), (A13a)

dF+
s (ds + df /2)

dx
= 0. (A13b)

Similar boundary conditions can be written at the left S layer
boundaries. In Eqs. (A13) we used the notations

W 0,π (ωn) = γ
As

(
γB + Re B

0,π
f

) + γ

As |γB + B
0,π
f |2 + γ

(
γB + Re B

0,π
f

) ,

As = ksξs tanh(ksds), ks = 1

ξs

√
ωn

πTcs

. (A14)

The self-consistency equation (A12) and boundary conditions
(A13), together with the Usadel equation for F+

s ,

ξ 2
s πTcs

d2F+
s

dx2
− ωnF

+
s + 2� = 0, (A15)

can be used to find the critical temperature of the S/F/S structure
both in zero and π phase states. In general, this problem
should be solved numerically [6]. In Ref. [6] it was also
found that the so-called single-mode approximation (SMA)
essentially simplifies the numerical problems and gives the
Tc(df ) dependency with an accuracy which is high enough for

our consideration. In the SMA the self-consistency equation
(A12) takes the form [6]

ln
Tcs

Tc

= ψ

(
1

2
+ �2

2

Tcs

Tc

)
− ψ

(
1

2

)
, (A16)

where ψ is the digamma function and � can be found from the
following equation:

� tan

(
�

ds

ξs

)
= W 0,π (ωn). (A17)

The critical temperature Tc(df ) is then determined by
Eqs. (A16) and (A17). This result extends the result of Ref. [6]
to the case of S/F/S hybrid structures, where the π phase
state can be realized for large enough F layer thickness,
df ∼ ξf . A previous approach by Buzdin and Kupriyanov
[63] and Buzdin et al. [11] was formulated for thin S layers
(ds/ξs � 1) and in the limit of small critical-temperature
variations (Tcs − Tc)/Tcs � 1, while calculations done in [6]
were focused only on large F layer thickness.

APPENDIX B: X-RAY REFLECTOMETRY FOR THE
DETERMINATION OF THE LAYER THICKNESSES IN

PERIODIC STRUCTURES

The position of Bragg reflections in diffraction experiments
from structures with periodicity D can be written as

QBr = 2πn/D, (B1)

where n is an integer. Reflectometric experiments also
show Bragg-like peaks, although their positions deviate
from Bragg’s law close to the total external reflection due
to the refraction effect [64]. As an example we show in
Fig. 6 the calculated x-ray reflectivity curve for the structure
[Nb(8.1 nm)7sol;Gd(2.5 nm)]x14/Si described in [24]. Verti-
cal arrows correspond to the Bragg law equation (B1). One can
see that the positions of the maxima are shifted towards higher
values compared to the Bragg condition (B1). The deviation
from the Bragg law is especially strong for smaller orders and
vanishes gradually for the higher orders. Attempts to calculate
the period using Eq. (B1) for the n = 1 and n = 2 peaks give
D = 7.5 nm and D = 9.3 nm, which are 3.1 and 1.3 nm smaller
than the real thickness.
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