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We discuss in detail the magnetic and thermal properties of a certain kind of plane deco-
rated Ising lattice; that is, its interesting spin-ordering characteristics, such as the temperature
and magnetic field dependence of the magnetization, the susceptibility and the heat capacity
are investigated. These characteristics may be classified according to the ratio between two
kinds of exchange coupling parameters. The system shows metamagnetism in certain cases.
The characteristic magnetic field at which a logarithmic singularity takes place in the suscepti-
bility as well as the heat capacity is obtained as a function of temperature. In some cases
two chracteristic fields are found below a certain temperature, above which only the one
characteristic field survives up to a higher temperature. A number of typical curves which
represent the relations of the magnetization, the magnetic susceptibility and the heat capacity
with the magnetic field at a fixed temperature and with temperature at a fixed strength of
magnetic field are investigated.

§ 1. Introduction

The decorated lattice was originally introduced by Syozi” in the case of
the honeycomb lattice. By applying the decoration transformation on the one
hand and by applying the star-triangle transformation on the other to that decorated

lattice, he found a relation between the transition temperatures of the honeycomb

and the kagomé lattices. By making use of the already-known transition temper-
ature of the honeycomb lattice in that relation he found the transition temperature
of the kagomé lattice. Nayaz) has extended this approach to include the effects
of an external magnetic field and was able to obtain an expression for the spon-
taneous magnetization of the kagomé lattice by making use of that of the honey-
comb lattice.

Syozi and Nakano® have made use of the decorated square lattice and other
decorated lattices as a model of a ferrimagnet for which an exact calculation can
be made. This model has typical features of the ferrimagnet in the temperature
dependence of its spontaneous magnetization. Fisher? has also investigated the
decorated square lattice but he has designed it to be a model of an antifer-
romagnet for which the magnetization can be calculated exactly even in the
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presence of a finite magnetic field. He has discussed the magnetic property of
his model, which he calls a super-exchange antiferromagnet.

Syozi and Miyazima® have made use of the decorated Ising lattice to in-
vestigate the problem of dilute ferromagnetism, where the spin variable on every
decorating site takes the values not only plus and minus unity but also zero,
corresponding to the occupations of that site by non-magnetic as well as magnetic
atoms. A similar design has been utilized by Hattori and others® in discussing
the ferrimagnetism of a decorated square lattice where all matrix lattice sites
and half of the decorating lattice sites are occupied by a sort of Ising spin and
the remaining lattice sites by another sort of Ising spin. This model is thought
to correspond to the ferrite with the inverse spinel structure and is in contrast
with Syozi and Nakano’s model® which corresponds to the ferrite with the normal
spinel structure.

Nakano” has extended the exchange coupling to every pair of nextnearest
neighbouring sites in Syozi and Nakano’s model of ferrimagnetism and has shown
that the spin ordering in such a model does not monotonously decay with increase

of temperature. He has demonstrated that certain three-dimensional decorated

lattices, e.g. simple cubic and body-centred cubic lattices, have three transition
temperatures. Syozi® has found that the partly- or semi-decorated square lattice
can have three transition temperatures. After him Nakano” has shown that the
partly-decorated triangular lattice can have three transition temperatures as well
and that in general the square and the triangular decorated lattices with anisotropic
exchange couplings can have three transition temperatures. Miyazima'® has shown
that the condition for the appearance of three transition temperatures is more
easily satisfied by increasing the number of decoration sites on every bond in
the lattice. Syozi and Nakano' have shown that three transition temperatures
can exist in the semidecorated hempleaf lattice and a certain super-decorated
triangular lattice, in which the phases separated by these three transition temper-
atures are ferro-, para-, ferro- and para-magnetic ones in the order of successively
rising of temperatures in contrast with the ferro-, para-, antiferrc- and para-
magnetic phases in those models which we have hitherto mentioned.

In this article we modify the decorated lattice model in accordance with
Fisher’s super-antiferromagnet so that we can calculate exactly the partition func-
tion of the system even in the presence of a finite magnetic field. This may be
distinguished from Fisher’s model by the existence of an exchange interaction acting
between every pair of nearest-neighbouring spins of the matrix lattice. By means
of such a modification, all decorated lattices, mentioned above, are transformed
into the corresponding antiferromagnet lattices where the ordered phase is always
antiferromagnetic. In particular the exchange coupling parameters may be ap-
propriately chosen so that the lattice has three transition temperatures; the phases
separated by these temperatures are antiferro-, para-, antiferro- and para-magnetic
ones in the order of increasing temperature,
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960 M. Ha'ttori and H. Nakano

In §2 the model is explained. We confine ourselves to investigating the
decorated square Ising lattice which has only a single transition temperature;
the general features of the argument are applicable to other appropriate decorated
lattices. In this system we suggest that the spin ordering does not décay mo-
notonously with increasing temperature although the long range ordering never
appears above a single transition temperature. The system shows certain com-
plicated behaviours when exposed to an external magnetic field. We can calculate
the partition function exactly in the presence of a finite applied field and with
its use obtain expressions for the magnetization, the susceptibility and the heat
capacity of the system. These calculations are given in § 2.

As shown in §2, the partition function of the decorated lattice can. be re-
duced to that of the matrix lattice which is obtained by removing every decorating
site. The parameter x of the effective exchange . coupling in the matrix lattice
is investigated as a function of the magnetic field and temperature in §3. A
certain kind of singularity occurs in the magnetic and thermal properties of the
system at a particular magnetic field strength, called the critical field, which is
dependent on the temperature. Conversely, the singularity occurs at a critical
temperature which is dependent on the magnetic field. - By solving the equation
either xr=x¢ or x= — x¢, one can determine the critical field Hy as a function
of temperature 7 as well as the critical temperature 7Ty as a function of the
magnetic field H, where x¢ denotes the critical value of x which is characteristic
for the matrix lattice. That is, one can get Hy=Hy(T) from the equation
x (T, Hy) = + x¢. ' ' ‘

Thus there can exist two kinds of critical fields and two kinds of eritical

temperatures, corresponding to plus and minus x¢ in the above equations. Ac-
cordingly, we denote the critical fields and temperatures by H,, H_, T, and T
when we need to distinguish between them. We show the critical fields as fune-
tions of temperature schematically in § 3.

In §4 we investigate qualitatively the field dependences of the magnetization,
the susceptibility and the heat capacity at constant temperature. Under certain
conditions, a metamagnetic transition either of a single step or of double steps takes
place ‘in the relation of magnetization with magnetic field. The susceptibility
~and the heat capacity show logarithmic singularities at the critical fields. We
also discuss the temperature dependences of these quantities fixing the magnetic
field constant and see that the susceptibility and the heat capacity diverge loga-
rithmically at the critical temperature.

We calculate numerically, in §5, the magnetization, the susceptibility and
the heat capacity as functions of the magnetic field and temperature for a few
typical cases of the exchange coupling ratio and show rather precise curves

relating these quantities to-the magnetic field and temperature. In some cases’

the system exhibits a metamagnetic transition of one stage or of two stages.
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§ 2. The partition function, the magnetization,
‘ the susceptibility and the heat capacity

The Ising‘ lattice, an antiferromagnetic square lattice investigated in this arti-

cle, is shown in Fig. 1. White circles, each of which is occupied by a sort of
Ising spin (called a white spin for brevity), compose a square lattice. This
plane lattice is decorated at the midpoint of every bond-line by a black circle
which is occupied by a spin (called a black spin)- different from the white spin.
The black and whité spins are assumed to be magnetic, moment. § and non-
magnetic respectively. ,

We assume the exchange coupling to be either
+J or —J(J>0) between every pair of black and
white spins which are nearest-neighbouring to each
other and —qJ between every pair of nearest-
neighbouring white spins, as shown in Fig. 1. In
order to make the description definite, we restrict
the following discussion exclusively to the case of
the particular decorated square lattice, shown in

Fig. 1, where the plus and minus signs in +.J are

Fig.1. Antiferromagnet of deco- for the transverse and longitudinal bonds, respecti-
rated lattice. J >0, @ : mag-
netic spin, O : non-magnetic
spin.

vely.

The Hamiltonian H of this system exposed to
an external magnetic field H can be written with
the use of the Ising spin variables z; and y, respectively for the white and
black spins: |

H=—J Y uve+Jd Do tvet+ad D) tup;—RH?Y v, (1)
(i):0-® @ (i/50-0 o
where the first and second summations are taken over the pairs of nearest-
neighbouring white and black spins on the transverse and longitudinal bonds
respectively, the third summation is taken over every pair of nearest-neighbouring
white spins, and the last summation represents the magnetic energy of all black
(magnetic) spiﬁs with magnetic moment 8 due to the applied magnetic field .
The partition function Z of the system can be expressed as

z=2 3 ew(~ ) - amz,@), | @)
W kT
where >, and Y, represent the summations over all spin variables z;, --- and
Vi, - respectively for the white and black spins, plus and minus the unity, and

N denotes the total number of lattice sites of the square lattice. Z,(x) denotes

the partition function of this matrix lattice., The parameters A and x are defined

in terms of the parameters,
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J pH .
J=_ d p=Pit
wr 0T ®)

and they are given by
A=2[cosh{(2+7)J"} cosh{(2—7)J"} cosh’ (3J") ]**,

R S [cAcA)sh {@Z+9)J}cosh{(2—17) J’}{I o (4)
4 cosh®(yJ")
The partition function Z;(z) in (2) is written as.
Zo()= 3 - 33 exple Yomnl, \ ®)

p=+1  py==%
where »;; in the exponent means the summation over all pairs of the nearest-
neighbouring sites of the square lattice.
The magnetization of the system can be derived from the formula

M:ﬁf——awan. (6)
J oy
By making use of (2), (3) and (4), one obtains from (6)
ZNB[ 0x ] )
M= -In A+-2-U 7
ary o (x) | (N

= J\;B [tanh (2J” + 9J") —tanh (2J" —J”) + 2 tanh(3J")

-+ U(x) {tanh (2J" +9J") —tanh (2J" —9J") — 2tanh (yJ") } |,

where U(x) denotes the pair correlation of the nearestmneighbouring spins in
the square lattice and is given by ‘

1

=1 0 7
Uz) = 5N 52 In Z,(x). 8

One can obtain the magnetic susceptlblhty by differentiating (7) with respect to
the magnetic field; viz.

2
5 %4 — 1\2 BT [sech? (2 + 5J') + sech? (20 —3J)
+ 2 sech?(yJ”) + U{sech® 2J’ ++75J") +sech®(2J" —3J") —2 sech’(J")}
-+ % %Ui {tanh (2.’ +J”) —tanh (2J" —7J”) —2 tanh (3J") }*]. ©))

The enthalpy U of the system can be calculated from the formula U= —J
X 0ln Z/8.J’. The heat capacity at a constant field is then obtained as

C=90 U/@T: (NEJ?/2) [ (2+79)* sech® (2T +9J") + (2—7)
x sech? (2J" —9J") + 2y’sech’ (3J7) + U{(2+ )" sech® 2J" +3J")
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(2 ) sech? (2 — pJ7) — 27 sech? ()} + (1/4) (QU/0x) (10)
{2+ 7)tanh (2 +4J7) + (2—7) tanh (2’ — 7J") — 27 tanh (7.0) —4a}?].

§ 3. Preliminary investigation and the
' critical magnetic fields

We investigate the effective exchange coupling x; that is, its relation with
temperature and the magnetic field or with the parameters J” and 7 defined in
(3). By differentiating x in (4) in respect of J” one gets

0x/0J =z —«,
where |
xy = (1/4) [ (2+y) tanh 2J" +7J") -+ (2—7) tanh (2J" — 5J”) — 27 tanh (3J7) ].

o The curve which represents the rela-
0

tion between x,” and J” is shown in Fig. 2.
7=0 On the basis of this figure the x versus J’

curves are shown schematically in Fig. 3

05 (0<7sl)

and they are classified according to the
value of the parameter 7. The maximum
and minimum values of z,” in Fig. 2, if

Y5 (I<7<2) they exist, are denoted by «, and «,, re-

spectively, in Fig. 3.
0 630 40 50 J The parameter x is an even function
25 (2<7) of the magnetic field or of the parameter

7 at any given temperature and is repre-

o : P .
Flg'tf"pi;:le 1::]?122 zi gagv;;}ichﬁ;;certam sented by the bell-like curve shown in
' Fig. 4, where the value x; of x at the top

of the bell and x; at the bottom are given respectively by
;=% In cosh 2F) —aJ’, = —al. (11

We now define the values 7, and 7. for which the effective coupling pa-
rameter x is equal to the critical value x¢ of the square lattice and to —x¢
respectively. Ferromagnetic and antiferromagnetic orders exist in the square
Ising lattice if the parameter x in (4) is more than xy and less than —xy re-
spectively, where x¢ equals' (1/2)In (v/2+1)=0.4407. The partition function
Z has a singularity at the values 7. and %_; 0°Z/07°?, 0°Z/0T0H and 0°Z/0H’
show logarithmic singularities at these points. In other words, the derivative
dU/dx of the pair correlation given by (8), to which the singularities of the
second derivatives of the partition function correspond, diverges logarithmically*®
at y=7,. and 7_.

One can say that the present system has two critical fields at most at certain
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{@>1) {a=1) (1>a>0) (02aq)

X x x X
7=0 | , NS
0 J o J 0 J o g’

lazao) (aea>-2) (a=1-7/2) (U-%2>a>0) (0zq)
X3 x X X X
0<7<1 o = , ' , {J, ,
o] J OV»J 0 7 0 J
(@za,) (Qpa>1-2) ae>a>1-%2) (a=1-22} (1-%2>aza,) (,>0>0) (Oza)
x x x) x x x x
1<m<2 ’ ] / ‘
0 7o 7’ OUQ\*J' AN Ovd\f’ 0’ J’ O' 7’

{azae) (@e>0@>0) (ae>a>0) (a=0) (O

>Q)
o X X X . X x ,
7]:2 (€n2)A4r;
0 g VDY‘TI OC:J’ 0 T’

@zay ~ (ag>a>0)  {(0g>a>0) (@
X x X X x X

2<7M|.
< o) J 0 J 0 U%J’ OA*J' 0 J 0 g’

1
e
o
v
Q
v
2
K]
v
g

Fig. 3. Relations of the effective exchange coupling 2 with the reciprocal J’ of temperature in the
cases of different coupling ratios and different field strengths.

temperatures; namely the critical fields H, and H_ which are equal to 7,.J/8
and 7_J/f, respectively. We may denote these critical values by Hy and 7,
irrespective of whether x=xy or x= —xs From the x versus 7 curve shown
in Fig. 4, it'is apparent whether there-exist both, either or none of 7, and 7_
at a given temperature and a given exchange coupling ratio «.

The critical field I, exists in the temperature region, x,< xe¢<x, where
and’ x, are functions of temperatures given by (11) and z¢ is the critical value

charasteristic for the lattice. Another critical field H_ exists for x,<< —xc<xi. .

H, and H_ shrink to zero at the temperatures 7., and 71, respectively, where
the equations x;=x¢ and x,= —x¢ are satisfied respectively. On the other hand,
H, and H_ diverge to the infinity at the temperatures 7',, and 7_, where x;

equals xy and — g respectively. One can conclude that both H,. and H_ exist so.

far as z,<< —zxe<axg<ax, only H, exists for —xe<laxy<xe<zx, only H_ exists
for zy< —x¢<xy<x¢ and neither H, nor H_ exist otherwise; namely in the case
that either x;<—xqg, xe<lap or — xe<xs<la<xe.

In order to investigate the temperature dependence of the critical field Hp,
it is useful to picture those curves @), @), ® and @ on the w—J’ plane as shown
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— > kT/r

Fig. 5. Critical field map on the @-J’ plane.
6 7 curves D: H.=0, @: H,=0, ®: H_=oo,
@: H,=cc; domains (I): both H, and H_
exist. (II): H_ exists, (III): H, exists. At
the intersection of @ with ® &7T/J=0.817
and @=0.360.

Fig. 4. Relatibn of the effective exchange
coupling parameter x with the field par-
ameter 7.
in Fig. 5 which represent the. relations z,= —x¢, Ti=a¢ 3= —2x¢ and x,=x¢
respectively. H =0 on the curve @, H,=0 on &), H_=oc0 on ® and H,=o0
on (9. There exist two critical fields H, and H_ in the region (I) in Fig. 5,
only H_ in (II), only H, in (III) and none in any other regions.

The critical field-temperature curve is drawn as shown in Fig. 6 and is con-
sidered in Appendix 1 for some exchange-coupling ratios, «.

7 %
2(l-a)
0 t_L Y
(@>1) 1>2>0360) W (2=0360) W
7 % %4
> !
Tx E A
2(1-a) !
I
i
O 1

. 0 0
(0360>2>0) % (ez0) % (0ve)y

Fig. 6. Relations of the critical field with temperature in various cases of the coupling ratio .

§4. Temperature and field dependences of the
magnetization, the susceptibility and the heat capacity

We first discuss the limiting constant temperatﬁre properties of the magneti-
.\ : - R . - . . . .
zation M, the susceptibility ¥ and the heat capacity C in the limits of vanishing
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966 \ " M. Hattori and H. Nakano

and increasing of magnetic field. It is seen from (7) that M is proportional to.

the field in the limit of vanishing field,
M= (NS/kT) [2— (1+ Upy) tanh? (2J°) | H , (12)

where Uy, denotes the spin-pair correlation (8) with y=H=0 substituted in
the parameter x glven by (4). In another extreme, H=oco, of the field, one
obtains

M=2N3. as)

The limiting properties of the susceptibility ¥ and the heat capacity C are
seen from (9) and (10). In the limit of vanishing field one obtains

" = ]Zgj [ (1+ Upo) tanh*(2J7) + - <@U> 3 tanh® (2J7) <§_g>2]’

0x kT
’ (14)
N A2
C=ANET?[(1+ Us)sech? @) + (2 Hanb@T)=a) ]
Ox / #H=0 2
In the limit of extremely strong field,
1=0
and
C:ZN/C&ZJ”(Qg) :ZNka2J/2<gg> = finite constant. (15)
T/ H=w X/ w=—ad”’

The singularities of these quantities in the vicinity of the critical field are dis-
cussed in Appendix 2 and are shown in Table I.

Table 1. Singularities of the magnetization, the susceptibility and the heat capacity in the vicinity
of the »critical field Hy (=either H, or H.).

Hc M ‘ X C
non-zero - | —(H—Hy) In|H—Hy| —In |H—Hy| —In | H—Hyl
Zero —H3Iln H —H?2In H —~In H

On the basis of (12), (13), (14), (15) and Table I as well as the investi-

gation of the critical field in the preceding section, one can picture the relations
of the magnetization, the éusceptibility and the heat capacity with the magnetic
field by fixing the temperature constant, as shown in Fig. 7, where several curves
with different characteristics appear according to the values of the temperature
T and the exchange coupling ratio «.

We next discuss the limiting properties of M, % and C in the limits of fall-
ing and rising of temperature at a constant magnetic field. It is seen from (7)
that the magnetization tends to zero in the limit of infinitely high temperature,
J” =0, and in the low temperature limit, J”=co, to a certain value which depends
upon the strength of magnetic field as well as the exchange coupling ratio «
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: M
A, T
Ib,< kxc< pES ) f
0 7 0 7 0 7

M X3 c

B
xb<'xc<xc = X '
0 n oo =7 Ob——7

’ M i x c
X< XXX | 2NB = . Pk Pl
or
X EXp< X <X 0 7 0 (I 1
M X c
X=Xt 2NB |-z !__\ L
or
WeSXe<Xe=Xe | ¢ 7 o N 0T
M X ¢
otherwise M i _____ % e
0 n o 7 0———1
—— 1

Fig. 7. Relations of the mgnetization M, the susceptibility # and the heat capacity C with the field
parameter % at various temperatures and coupling ratios.

and which is given in the following. In the case %>>2, M is equal to 2NB.
When 9=2, M equals N(3— Uj,_.)8/2 which reduces to 2NB, NB[3—U(x=4"
In2)]/2 and N according to whether a>0, a=0 or @<(0. When 2>7>0, M
tends to N3(1—U,_,,) which reduces to 2N, Nf8 and zero according to whether
« is larger than, equal to, or smaller than 1— (3/2). In the vicinity of the
vanishing temperature, M varies proportionally to exp(—t/7) in which 7 is a
constant and the first as well as the higher derivatives of M vanish.

One can see from (9) that y tends to 2NB/kT in the high temperature
limit and tends to those different values in the low temprature limit, depending
on the values of the parameters 7 and «; that is, when 7>2 %—0, when 9=2
1= (NE/2kT) [1+ U+ (1/4)0U/0x] s —e, which reduces to zero, (NS*/FT)[1+U
+ A/ 0U/0x] p—u »u and NB*/ET in the cases >0, a=0 and a< 0 respectively,
when 2>7>0 y— (NF*/2kT) (0U/0x); -, which reduces to zero, NS*/2tT and
zero in the cases of @ larger than, equal to and smaller than 1— (3/2) respectively,
and when =0 x— (NF*/kT)[1— U], which reduces to 2NB/kT, (NR*/ET)
[1+ Uls—gun,. and zero in the cases a>1, @=1 and a<(1 respectively.

It is seen from (10) that the heat capacity C tends to zero in both high
and low temperature limits. It behaves like exp(—7/7) at low temperatures
and like 1/7* at high temperatures.

The singularities of M, x and C in the vicinity of the critical temperature
are discussed in Appendix Il and are shown in Table II below. On the basis
of the limiting properties of the quantities as mentioned above and of the singu-
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larities shown in Table II, one can picture the curves which represent the re-
lations of the magnetization, the susceptibility and the heat capacity with temperature
at any strength of magnetic field as are shown in Fig. 8. They are given in a

Table 1I. Singularities of the magnetization, the susceptibility and the heat capacity in the v1un1ty
of the critical temperature T'g(=either T, or T.).

at the feld | 1% the vicinity magnetization . susceptibility heat capacity
strength of the critical
temperature M Z C
. T, —(T T+) ln[T T, ~In|T T, —In|T-T,]
H=0 T (=T n |T—T_| —In|T—T.| I |T-T]
H=0 T, Zero —(T-T,) n|T-T,] —~In |T—T,}
T ZETO (T-T) In|T—T_| —In|T-T_}|

n>2, a>0 2NB

T OL\»T

T (o] VS,

—
[&]

n52 a=0 |2

n>2, a<0 2Ng

7=2, a>0 | 2\

—
(o]

dAdla

4443

n=2, @=0 x £n2)/4
0 T 0

<
:zé
lel\.l
=
L

=2, a<0 | N8

—
(@]

1esdas

T 0

2>M>0,0>1-%2 | 2N

dilds

=

2>M>0,a=1-% | NB

p

= (O

2>17>0, a<1-%

A

™,
0 T T ol_d\ T
=0, @>1 M= f
- 0 k T
‘ X c
’)’]:O, a:] M:O
r . 0 T O L, T
Z] c
n=0, a=1 M=0 ,
0 T 0 kT

Fig. 8. Relations of the magnetization M, the susceptibility and the heat capamty C with
temperature at various field strengths and coupling ratios.
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certain number of typical cases which are specified by the values of magnetic
field and coupling parameters and are characteristically distinguished from one
another. ‘ '

§ 5. Detailed investigation of certain typical
systems and general discussion

In the preceding section we have investigated the temperature and field
dependences of the magnetization, the susceptibility and the heat capacity, not
quantitatively but rather qualitatively. In this section we calculate these quantities
numerically as functions of the magnetic field and temperature for several typical
values of the coupling ratio @. We choose aa=1.04, 0.6, 0.2 and —0.2 in dis-
cussing the field dependences of the quantities and as o¢=0.6 and —0.2 in dis-
cussing their temperature dependences. By considering Figs. 5, 6, 7 and 8, we
see that these ratios are suitable. “

First we show the field dependences of the magnetization, the susceptibility
and the heat capacity at different temperatures in Figs. 9, 10, 11 and 12 cor-
responding to the cases @ =1.04, 0.6, 0.2 and —0.2 respectively. We next show
the temperature dependences of these quantities at different field strengths in
Figs. 13 and 14 for a=0.6 and —0.2 respectively.

"Many of the curves possess characteristics of what is called metamagnetlsm
For example one can recognize sharp rises in some of the magnetization-field
curves which indicate a certain kind of transition from antiferro- to ferro-magnetic
configurations, as were observed by many anthors, e.g. in FeCl,™ FeCo,™
FeBr,,® rare-earth copper compounds,’® HgCr,S, spinel’™ and so on.
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02 @=1.04

_ 08

o5t
KT/r=2.5 k=25

0 o5 10 15 20 7 0 15 7

(@ )

Fig. 9. Relations of the magnetization M, the susceptibility  and the heat capacity C with the field
parameter 7 in the case a=1.04.

220z 1snbny 0z uo 1s8nb Aq 209606 1/856/S/01/e1o1ue/did/woo dnoolwepede//:sdyy woly papeojumoq



970 M. Hattori and H. Nakano

JXong
2=06 ‘
M/2Ng G2k
7 2=06
10y 206 20} 1.OF
02
N |‘5 0.8
02/ ©8
Klf-25 — -
05 10 05t
KT5=25
05 KTg=25
0 05 10 15 20 7 0 05 10 15 20 7 0 05 10 15 207
(@) | (b) . ©

Fig. 10. Relations of the magnetization M, the susceptibility ¥ and the heat capacity C with the field parameter
» in the case a=0.6.
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Fig, 11. Relations of the magnetization M, the susceptibiltiy ¥ and the heat capactiy C with the field parameter
7 in the case a=0.2.
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Fig. 12. Relations of the magnetization M, the susceptibility ¥ and the heat capacity C with the field parameter
y in the case a=—0.2.
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Fig. 13. Relations of the magnetization M, the susceptibility ¥ and the heat capacity C with temperature in the
case a=0.6. ’
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Fig. 14. Relations of the magnetization M, the susceptibility ¥ and the heat capacity C with temperature in the

case a=—0.2.

Baltzer et al.” have discussed the magnetism of chromium chalcogenide
spinels including the compound HgCr,S, which shows metamagnetism, on the
basis of the Hamiltonian of the system of spins which are distributed on the B
sites in the spinel structure and couple not only with the nearest-neighbour spins
but also with the second-neighbour spins. They have investigated the dependence
of the magnetic character of the system on the exchange coupling ratio between
the first and second neighbour pairs. Such a kind of investigation has been
made recently also by Adachi and the present authors™ in connection with the
experimental research by Adachi et al."” on the series of compound Co (S,S5e;1_,),
of various fraction x and they have made a numerical calculation in order to
picture the magnetization-field curves at different temperatures, where one can
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see how the system changes from a metamagnetic to paramagnetic states with
rising of temperature. '

From the point of view how the system changes from metamagnetic to par-
amagnetic states with rising of temperature, the present calculation is quite similar
to.the above-mentioned works by Baltzer et al. and by Adachi and the present
authors. ' , :

One can find certain two steps of sharp rising in some of the magnetization-
field curves in the present paper, viz. in Figs. 10(a) and 11(a) both at the
temperature 0.2J/k. Such a magnetic behaviour has been found by Kobayashi
and Haseda,’® Narath and Barham® in the compound CoCl;-2H,0 and by Narath™
in the compounds CoBr,-2H,0 and FeCl,-2H,0. These compounds are constituted
of a bundle of linear chains and isomorphous with one another. From the en-
ergetical point of view Oguchi and Takano,” WNarath® and Kanamori® have
shown the doubly-stepwise magnetization process can occur in certain Ising spin
systems which may be the models of the above-mentioned compounds. Yamada
and Kanamori® have extended the discussion to finite temperatures by making
use of the Weiss approximation.. The present model can be regarded as a simplest
system which is shown, on the basis of an exact calculation, to have the same
sort of magn’etization properties. -

6. Conclusion

We have investigated the magnetic and thermal properties of the decorated
Ising lattice, especially that of the square lattice, which is designed to allow the
exact calculation according to Fisher.? If we take such a decorated Ising lattice
that it possesses three transition temperatures, we shall find a more interesting
character in the magnetic and thermal properties of the system. The investigation
of such a system will be reported in the near future.

Appendices

1. On the critical field as a function of temperature

- One can see from the expression for x in (4) in the main text that x tends,
in the limit J’=oco (viz. absolute zero of temperature), to —aJ” if 7>2, to
—aJ + (n2)/4if p=2,to [1—a— (3/2)]J if 2>9>0and to (1—a)J"— (In 2) /2
if 7=0. The solution y=7¢ of the equation x= +z¢ in the limit of zero tem-
perature is thus found as 7,=7.=21—a) F2(x¢/J) =21 —a) F2(kxe/J)T.

In the vicinity of the Néel temperature 7'y (the critical temperature at
vanishing field), 70 as well as T'— Ty are so small that one can expand x (7 7¢)
in a power series of these two small parameters. By solving the equation
z (T, 70) = £ xp in which the above expansion is substituted for x (7, 7¢), we get

T—Ty= 4% [1 —sech? <%>] [04 —tanh <k%{;> } _17702, \ (A1)
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where we have made use of the facts that x is given by (4) in the text and
that x=x¢4, (0x/07) =0 and (0°x/0907) =0 when T'=7Ty and »=0. Then one
can see that T'— Ty is written as —c7ys" and +c¢7s° on the curves of the critical
field Hy=H, and Hy=H_ respectively, where ¢ is a positive constant. This is
due to the fact that the @ on the curve @ in Fig. 5 as a function of 7' is larger
than tanh(2J/FT) and that on the curve (® in that figure is smaller than
tanh (2J/ET).

2. Singularities of the magnetization and other
quantities in the critical region
It is already known' that the behaviour of the spin-pair correlation U(x)
given by (8) in the vicinity of the critical value 4-x¢ is expressed as

U(x) —U(F+x0) ~— (xFxe) In|xFxe]. (A2)

If one regards x as a function of the magnetic field with temperature fixed, one

can write xF xg=x(H) —x(Hy) = @x/0H)g_pn, (H—H,) so far as the critical

field Hy=H, or H_ is unequal to zero. By substituting this relation into (A2)
one gets
Ulx) —U(+x0) ~— (0x/0H) e g, (H— H)In|H—~H, |~ (H—H.,)In|H— H._]|.
. - (A3
In the case that the critical field is equal to zero, x— == (0%r/0H?) gy H*/2
because (0x/0H)g-,=0 as seen from (4) or Fig. 4. In this case (A2) can be
‘rewritten as ’

U(x) — U4 20) ~ — @02/0H) oo H* In H~H*In I1 . (A4)

We next consider x as a function of temperature by fixing the magnetic field
constant. Then in the vicinity of the critical field, x(7") —x(T¢) =(0x/0T )r-r,
X (T'—Tg), where Te=T, or T_ should satisfy x(7T,) = 4-x¢ and is found as a
function of the ‘magnetic field. It is noted that (@x/@_T)T=TO never vanishes;
that \is, (0x/0T)p.r, <O and 0x/0T)p_r >0. Therefore we have x—x¢=
x(T) —z(T,)~F(IT'—T,) and can rewrite (A2) as ‘

U(x) —U(x) ot (T To)In| T =T |. (A5
The singularities of the magnetization M, the magnetic susceptibility y and

the heat capacity C given by (7), (9) and (10) respectively are involved in the
factors U(x) and dU(x)/0x which appear in these quantities; that is,

M~ (0z/0m) U(x),

x~ (0x/09)0U (x) /0x+ (0x/07") U(x), (A6)

Cr (0x/0JY0U () /0 . | |
By substituting (A3), (A4) and (A5), one can see the singularities of M, y and

C in the vicinity of the critical field and in the vicinity of the critical temperature.
The results are shown in Tables T and II in the main text. ‘
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